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ABSTRACT

Wireless Sensor Networks (WSNs) have been utilized for many applications such

as tracking and monitoring of endangered species in a national park, soldiers in a bat-

tlefield, and many others, which require anonymity of the origin, known as the Source

Location Privacy (SLP). The aim of SLP is to prevent unauthorized observers from

tracing the source of a real event (an asset) by analyzing the traffic of the network. We

develop the following six techniques to provide anonymity: Dummy Uniform Distri-

bution (DUD), Dummy Adaptive Distribution (DAD), Controlled Dummy Adaptive

Distribution (CAD), Exponential Dummy Adaptive Distribution (EDAD), Exponen-

tial Dummy Adaptive Distribution Plus One (EDADP1 ), and Exponential Dummy

Adaptive Distribution Plus Two (EDADP2 ). Moreover, an enhanced version of the

well-known FitProbRate technique is also developed. The purpose of these techniques

is to overcome the anonymity problem against a global adversary model that has the

capability of analyzing and monitoring the entire network.

We perform an extensive verification of the proposed techniques via simulation,

statistical, and visualization approaches. Three analytical models are developed to

verify the performance of our techniques: A Visualization model is performed on

the simulation data to confirm anonymity. A Neural Network model is developed

to ensure that the introduced techniques preserve SLP. In addition, a Steganography

model based on statistical empirical data is implemented to validate the anonymity of

the proposed techniques. The Simulation demonstrates that the proposed techniques

provide a reasonable delay, delivery ratio, and overhead of the real event’s packets

while keeping a high level of anonymity.

Results show that the improved version of FitProbRate massively reduces the

number of operations needed to detect the distribution type of a data sequence de-
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spite the number of intervals when compared to the original. A comprehensive com-

parison between EDADP1, EDADP2, and FitProbRate in terms of the average delay,

anonymity level, average processing time, Anderson-Darling test, and polluted sce-

narios is conducted. Results show that all three techniques have a similar performance

regarding the average delay and Anderson-Darling test. However, the proposed tech-

niques outperform FitProbRate in terms of anonymity level, average processing time,

and polluted scenarios. WSN applications that need privacy can select the suitable

proposed technique based on the required level of anonymity with respect to delay,

delivery ratio, and overhead.
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CHAPTER 1: INTRODUCTION

1.1 Research Problem and Scope

WSNs consist of homogeneous, small, and low-cost sensor nodes [1, 2] that have

limitations in resources such as processing power, memory [3–7] and battery life [8,9].

Since WSNs have limited resources [10,11], a sensor node should only compute basic

operations [3]. Usually, sensors are used to sense information such as temperature,

humidity, and light [12–15]. Sensor nodes notify the sink through intermediate sensor

nodes that act as forwarders to pass the data to its final destination [16]. WSNs

can also be used for monitoring and tracking applications such as monitoring and

tracking endangered species in a national park, patients in a hospital, or soldiers in

a battlefield [17–23]. In WSNs, communication between nodes consumes more power

than the processing and computation inside the sensor node itself [3, 24]. WSNs can

be deployed in remote locations [25] that are unreachable by wired networks such as

a hostile environment [26, 27] or a vast forest [28]. Thus, security of sensor networks

is critical, and it should be addressed very carefully [29–31].

Security in WSNs are classified into content threats [32–34] and context threats

[35–38]. Content security focuses on protecting the content of packets by providing

confidentiality, authentication, integrity [39], and many other encryption techniques

[40–42], whereas context security such as SLP focuses on concealing the location of

the source node [30, 43–45]. The anonymity of a node means that this node should

be untraceable under any statistical analyses applied by an adversary [29, 46]. The

main objective of SLP is to keep the originator node untraceable and unlinkable.

Untraceability means that the adversary is unable to trace back the source node

[29, 47], whereas unlinkability means that the adversary cannot gain the identity of
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the origin [29]. In SLP, the real event (an asset) has three parameters: event type,

event time, and event location [30]. These parameters are continually targeted by

the adversary to gain information about them (Figure 1.1). Even after employing the

most sophisticated encryption techniques, context security requires more convoluted

techniques to secure the location of the source as the adversary attempts to locate

the source by eavesdropping on the network traffic. Sink Location Privacy is another

context security concern [48]. It prevents adversaries from gaining information about

the sink location. The anonymity of the sink node is an entirely different problem.

The focus of this work is only on SLP.

Figure 1.1. Real event parameters.

Adversaries can employ two types of attacks: active and passive [49,50]. An active

attack occurs when the adversary attempts to alter the network traffic by modifying

the packets’ header, the packets’ content, or even by injecting new packets into the

network to apply some attacks such as Denial-of-Service (DoS ). In contrast, a passive

attack occurs when an adversary analyzes the network traffic without alteration by

observing which sensor nodes are transmitting and which sensor nodes are not. A pas-

sive attack is more difficult to detect than an active attack because no modifications

are noticed by the system. This work attempts to defend against passive attacks.

Two types of adversaries exist: local and global. A local adversary has a partial

view of the network, limited resources, and is only able to analyze local traffic. The

local adversary can be countered by modifying the existing routing protocols [51]. In

2



contrast, a global adversary has a full view of the network, unlimited power, sufficient

resources, and can analyze the entire traffic of the network [52]. A global adversary

can apply sophisticated analyses such as Rate Monitoring and Time Correlation at-

tacks [52–54]. Global adversaries require more sophisticated methods to be countered.

This work only considers the global adversary as the attacking model.

In WSNs, tracking devices are often attached to assets, e.g., a Radio Frequency

Identification (RFID) tag. A RFID can either employ active or passive tags. The

active tag has a battery and is able to send signals to the sensor nodes, which can be

utilized to simulate the movement of an asset at different locations within the net-

work, whereas the passive tag does not have a battery and cannot send signals [55].

This work only considers passive tags because they are cheaper and more applicable

when the WSNs is out of reach.

A variety of schemes exist to overcome context threats against a global adversary

such as Separate Path Routing (SPR), Network Location Anonymization, Network

Coding, and Dummy Data Sources (DDS ) [4]. SPR creates multiple paths from a

source to the sink, which means each packet of an event uses a different route to the

destination [56]. Network Location Anonymization hides the identity of the source

by using pseudonyms [57, 58]. Network Coding divides a packet into smaller pieces.

These pieces will follow different routes to the sink [59, 60]. DDS [61] creates fake

sources, which generate dummy traffic to hide and obfuscate the real traffic inside.

DDS is by far the most effective method against global adversaries because the use of

fake sources and dummy traffic confuses the adversary about the identity and location

of the source [52,62]. DDS approach will be used in the proposed techniques because

it provides higher anonymity than other methods.

There are three types of packets: real, fake, and corrupted. Real packets carry

information related to the real event such as its location. Fake packets do not carry
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any information about the real event. They are often utilized to mislead and confuse

the adversary about the actual location of the real event [4]. Corrupted packets are

further classified into two types: injected and modified. The injected packets mean

that new packets are inserted into the network by an adversary to apply, e.g., DoS.

The modified packets mean that the existing packets are altered by an adversary [63].

Since the utilized global adversary model is passive, this work only considers real and

fake packets. Figure 1.2 shows the different types of packets.

Figure 1.2. Types of packets.

The fundamental idea behind the proposed techniques is as follows: When a real

event (an asset) is detected, it should be reported to the sink. Therefore, hiding the

real event is mandatory, the network should be injected with dummy traffic using the

lowest transmission rate as possible to confuse the adversary. This low transmission

rate is needed to minimize the communication overhead. The dummy traffic is injected

into the network in a probabilistic manner that leads to time and location privacy of

the source node. In this work, the anonymity of an asset means hiding the existence

of the asset at a certain time located nearby a sensor node, which subsequently leads

to SLP.

This work is about optimizing source anonymity of WSNs with acceptable delay,

delivery ratio, and overhead against a global adversary model that is capable of

employing sophisticated traffic analyses. A WSN application that needs privacy
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should be able to select one of the proposed techniques that fits its required level of

anonymity with respect to delay, delivery ratio, and overhead.

1.2 Motivation behind the Research

The detection of significant events such as the location of endangered species

in a national park or soldiers in a battlefield needs to be securely communicated to

the sink. Protecting assets from being discovered or even captured is essential. In

order to protect these assets, the defensive team (the system) must make the offensive

team (the adversary) confused about the existence of the real event. Therefore, the

defensive team must inject the network with dummy traffic to prevent the adversary

from tracing back the origin by analyzing the network traffic. Traffic analysis can be

Rate Monitoring, Time Correlation, or Size/Structure Correlation.

1.3 Contributions of the Proposed Research

We developed several techniques that outperform existing approaches in provid-

ing source anonymity against a global adversary model. Most of the current tech-

niques compare their work only to the previous ones. However, in this work, we

provided a validation of the proposed techniques by developing analytical models to

confirm the high anonymity of our techniques.

• Six different techniques: DUD, DAD, CAD, EDAD, EDADP1, and EDADP2

are developed to provide source anonymity with acceptable delay, delivery ratio, and

overhead.

• The proposed techniques can protect multiple real packets concurrently, unlike

many of the previous techniques that can only protect one real packet at a time.

• Different analytical models are developed: Visualization, Neural Network, and

Steganography to confirm the validation of the proposed techniques.
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• An enhanced version of the FitProbRate technique is developed that reduces

the number of operations by applying the Anderson-Darling test (A-D) on the last

ten elements of the sequence instead of the entire sequence as implemented in the

original FitProbRate technique.

• A comprehensive comparison between EDADP1, EDADP2, and FitProbRate

is conducted to confirm the high performance of the proposed techniques. The fol-

lowing metrics are used in the comparison: average delay, anonymity level, average

processing time, A-D test, and polluted scenarios.

• A novel software architecture for a specialized network simulator is developed,

and targeted towards analysis and verification of anonymity algorithms.

1.4 Research Hypothesis

The global adversary is confused about the existence of the real event (an asset)

when the WSN is injected with dummy traffic due to the large amount of noise

introduced by the proposed techniques. In this work, Null (H0) means that the

adversary is confused about the existence of the real event. Alternative (H1) means

that the adversary is not confused about the existence of the real event.

The rest of the work is organized as follows: Chapter 2 discusses the background.

Chapter 3 describes the literature. Chapter 4 discusses system models and proposed

techniques. Chapter 5 shows the implementation and test plan. Chapter 6 presents

the results.
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CHAPTER 2: BACKGROUND

A sensor node consists of four components: sensing, processing, communication,

and power subsystems [64]. The sensing subsystem senses the desired phenomena

such as temperature and feeds the detected analog signal to an Analog-to-Digital-

Converter (ADC ) to prepare it for further processing. The processing subsystem is

the core component of the sensor node architecture, and consists of a processor and

memory. This subsystem is responsible for computation and making the data ready

for transmission. The communication subsystem has a radio, and in some cases, its

own processor to transmit, forward, or receive the data from/to neighboring nodes.

Finally, the power subsystem generates DC power to provide the electric current to

the other subsystems. All of these subsystems work together creating a functional

sensor node that is able to interact with the environment and other nodes within its

sensing range to achieve a particular task [3].

Security in WSNs has been a challenge because of the unique aspects they have.

It is unsatisfactory to use the ordinary security mechanisms in WSNs due to the limi-

tation of resources such as processing power and battery life. Sensors are independent

and do not normally follow a central control entity because of their large scale and

frequent topology changes. Therefore, traditional security solutions are inapplicable

since they require significant overhead and sufficient memory. One of the basic de-

fenses against security attacks is the ability to access network nodes physically. This

is impractical in WSNs as many applications require sensor nodes to be deployed in

remote and open locations that are difficult to reach, control, manage and protect

from unauthorized physical accesses. Packets in WSNs are vulnerable to be lost or

corrupted for several reasons such as routing failures or collisions. These challenges

must be taken into consideration when developing a security technique for WSNs [3].
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There are several kinds of attacks that can be a threat to the WSNs security

such as DoS, routing attacks, transport layer attacks, data aggregation attacks, and

privacy attacks, which are all shown in Figure 2.1. DoS occurs when an adversary

prevents the network from functioning or providing the expected services to applica-

tions. DoS has two types of layer attacks: physical layer and link layer. One of the

attacks on the physical layer is the Jamming attack; it interferes with radio frequen-

cies of the sensor nodes preventing them from transmitting and receiving meaningful

data. Tampering attack is also a physical layer attack that attempts to destroy or

modify a sensor node physically. This attack might lead the adversary to obtain sen-

sitive information that could lead to compromising the entire network. A Collision

attack is a link layer attack that interferes with packet transmissions to make the

network re-transmit the same packets repeatedly, which increases the overhead and

power consumption [3].

A variety of routing attacks can be performed by an adversary. For example, a

malicious node in the Blackhole attack and Sinkhole attack tries to convince the net-

work that it is the data forwarder of many routes in the network. Once the malicious

node receives the packets, this node drops them right away. Another attack is the

Selective Forwarding attack, which is very similar to the Blackhole attack and Sink-

hole attack. The only difference is that Selective Forwarding attack discards a certain

number of packets based on specific criteria rather than dropping all incoming pack-

ets. Some other attacks target the on-demand routing protocols such as the Rushing

attack. In this attack, the malicious node forwards all incoming route requests to

nearby nodes without using the actual routing protocol policies, which involves more

nodes in the route. Location-based routing protocols are weak against the Sybil at-

tack that provides the adversary with multiple identities at different locations in the

network. Legitimate nodes will think that the malicious node is one of its trusted

neighboring nodes and start forwarding packets to the malicious node. Wormhole is
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another attack on routing. The Wormhole attack occurs when the malicious node has

more capabilities such as bandwidth than other nodes in the network. This increase

in capabilities might attract authorized nodes to forward their data to the unautho-

rized node since it has a high-speed connection. The Wormhole attack could help

other attacks such as Blackhole to take place [3].

Transport layer protocols such as Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP) are vulnerable to the Flooding attack. A protocol such

as TCP keeps state information allowing the adversary to send multiple connection

requests that waste memory and reject any future connection requests even from au-

thorized nodes. The Desynchronization attack attempts to block the transmission

between two nodes by sending fake messages using a modified sequence number to

both parties making each node believe that its packet has not been delivered. There-

fore, a re-transmission is needed causing unnecessary overhead [3].

Data aggregation works by combining duplicated data from multiple sensor nodes

to reduce the overhead and redundant information. There are many aggregation func-

tions such as Sum, Average, Count, Max, and Min that can be easily modified by the

adversary to make the network act differently [3].

Privacy attacks focus on analyzing the traffic of the network [35–38]. An adver-

sary can obtain critical information by snooping on the network. The nature of WSNs

facilitates attackers to monitor and capture the traffic between sensor nodes. Traffic

analysis allows the adversary to identify the most important nodes in the network

such as source and sink nodes or gain information about the hot-spot and high traffic

regions in the network, known as the Rate Monitoring attack. Time Correlation is

another privacy attack that monitors the difference between transmitting times of

packets and if the network packets follow a specific distribution type in trying to find

the relationship, e.g., transmitting times between real and fake packets. This could
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lead to exposing the location of the source node. Another attack is the Size/Structure

Correlation [65], which focuses on the size and payload structure of packets to ob-

serve any differences. This work focuses on providing techniques that prevent privacy

attacks against source nodes.

Figure 2.1. Types of attacks in WSNs.
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CHAPTER 3: LITERATURE SURVEY

In this chapter, the existing techniques in the literature that rely on fake packet

injections against a global adversary are presented. Additionally, two classifications

of these techniques are conducted: The first classification categorizes the techniques

based on the utilized characteristics. The second classification categorizes the tech-

niques based on their assumptions for the global adversary.

3.1 Fake Packet Techniques

3.1.1 Periodic Collection (PeCo)

PeCo [66] is one of the first techniques that introduced the concept of fake packets

against global adversaries. This technique works as follows: Each node in the network

must obtain a shared individual key between itself and its neighboring nodes for

encryption purposes. When the sensor node receives a packet, it decrypts and adds

the packet to its buffer using the First-In-First-Out (FIFO) queuing mechanism.

Every node has a timer that counts down; once the timer reaches zero, the first real

packet in the buffer is encrypted and sent to the destination. However, if there is no

real packet, a fake packet is generated and sent instead. On the receiving side, if a

node received a fake packet, it discards the packet instantly. The main issue in PeCo

is the buffer size. The network nodes should have a sufficient buffer size to manage

all incoming packets. Overhead, power consumption and latency are also considered

as serious issues in PeCo because the nodes generate a fake packet whenever there is

no real packet to transmit.
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3.1.2 Constant Rate (ConstRate)

The fundamental concept of ConstRate [54] is to divide the lifetime of the network

into intervals. Packets are only sent or forwarded at these intervals whether they are

real or fake to make them indistinguishable. If a node does not have a real packet

to transmit during the interval, a fake packet is transmitted instead. However, the

use of intervals concept increases the latency. In addition, this technique has a high

power consumption due to the number of fake packets created to cover the real traffic.

3.1.3 Probabilistic Rate (ProbRate)

The difference between ProbRate [54] and ConstRate is that ProbRate selects

the next interval to send or forward packets based on the exponential distribution

to reduce the delay and number of fake packets. However, if the adversary knows µ,

which is one over the transmission rate, and it is the only parameter in the exponential

distribution, the network might be compromised. Therefore, the random number that

is used to generate µ needs to be protected and unknown to adversaries.

3.1.4 Fitted Probabilistic Rate (FitProbRate)

FitProbRate [54] uses the same exponential distribution as ProbRate to generate

dummy traffic. If a node detected a real event, it transmits real packets following the

exact exponential distribution of the fake packets. Therefore, the adversary would be

unable to distinguish the difference between real and fake packets. In order to reduce

the traffic overhead, the transmission rate should be as low as possible; in return, this

small transmission rate increases the delay relatively.

The network nodes generate a random number utilizing a unique seed to pre-

dict the following sending time interval. The seed can be known to the adversary,

whereas the random number must be hidden. When a real event occurs, FitProbRate
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must use the same µ of the fake packets exponential distribution to avoid any Time

Correlation attacks by the adversary. Concurrently, packets of the real event should

be transmitted as soon as possible. Therefore, FitProbRate employs the A-D test

to determine whether a series of intervals follow the exponential distribution or not.

This is achieved by searching the first appropriate time interval that satisfies the A-D

test, which at the same time does not break the exponential distribution sequence for

the real packets. In case there is a scheduled fake interval, it is replaced by the real

one. The fake interval will be rescheduled for later, as shown in Figure 3.1. Interval

D is the fake one and it will be replaced by interval C, which has the real packet.

Then, the fake packet in interval D will be rescheduled for transmission in interval E.

The disadvantages of this technique are as follows: First, it has significant traffic

overhead that reduces the lifetime of the network. Second, using the A-D test every

time a real event is detected increases power consumption and processing time. Lastly,

transmission rate and delay cannot be controlled since FitProbRate does not provide

a mechanism to ensure the maximum required delay by intolerant applications.

Figure 3.1. An example of the FitProbRate technique.

3.1.5 Baseline

In the Baseline [67] technique, each node in the sensor network transmits real or

fake messages pursuing a constant or exponential distribution. When a node detects

a real event, it does not transmit the message immediately. Instead, the node waits
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for a while to ensure that the real packet follows the same distribution as the fake

packets. As a result, the adversary cannot recognize the difference between real and

fake events. However, this technique is very expensive for the network because it adds

a massive amount of traffic overhead and decreases the delivery ratio of real packets

since Baseline uses intervals to deliver the real event.

3.1.6 Proxy-based Filtering (PFS)

To overcome the issues of the Baseline technique such as high overhead and poor

delivery ratio, PFS [67] was introduced. The primary concept of PFS is to hire

some of the sensor nodes to act as designated proxies. These proxies filter the fake

packets towards the sink, which reduces the overhead traffic while keeping the source

anonymity.

In PFS, some of the sensor nodes are selected to filter the fake packets from

neighboring nodes, as shown in Figure 3.2, which reduces the overhead as many of

the fake packets are dropped before reaching the sink. A proxy node filters the packets

to decide which packets will be forwarded and which packets will be dropped. PFS

Figure 3.2. The filtration mechanism in PFS.
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relies on the location of the proxy nodes; therefore, a proxy placement algorithm is

performed to minimize the overhead of the network. Further, PFS should select the

values of the proxies’ buffer’s parameters correctly such as size. This selection is nec-

essary to handle the transmission delay of the real event at the source node. Authors

of [67] claim that the PFS technique provides a nearly optimal proxy placement, high

delivery ratio, and low bandwidth overhead.

The PFS technique divides the network into cells that allow every two nodes

in neighboring cells to communicate directly with each other. When an event is de-

tected, it belongs to the cell, not to the node. Each cell has a coordinator node that is

responsible for all actions within the cell. A unique ID is assigned to each cell in the

network. A node recognizes its cell by using a GPS or an attack-resilient localization

scheme. The sink is assumed to be in the center of the network, and each event has

a cell ID, event type, and event time.

After proxies have been selected, they broadcast a “hello message” that includes

Time-To-Live (TTL) that has the ability to reach all cells in the network. Next,

each cell records the nearest proxy based on the received “hello message” and assigns

the selected proxy as the default one for future communications. Then, every cell

responds back to the selected proxy to inform the proxy that it is the one selected

by the cell. Each cell creates a pairwise key with its proxy using one of the keying

schemes. In addition, each proxy has a shared key with the sink. When a cell has a

message to transmit, this message is encrypted using the pairwise key and sent after

encryption to the proxy using a multi-hop routing protocol such as Greedy Perimeter

Stateless Routing (GPSR). However, these messages follow the exponential distri-

bution whether they are real or fake to avoid any Time Correlation attacks by an

adversary. Therefore, if a cell observed a real event, the real event is delayed until

the cell finds the appropriate time interval that does not violate the exponential dis-
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tribution. When a proxy receives a fake packet, it discards the packet immediately.

However, if the received packet is a real packet, the proxy re-encrypts the packet us-

ing the key shared between itself and the sink. Then, the proxy forwards the packet

after delaying it in its buffer for an appropriate time. In case the proxy node did not

receive a real packet for some time, it transmits a fake packet to the sink instead.

Note that a proxy node is able to recognize the difference between real and fake

packets. Moreover, if a proxy receives a packet from another proxy in the network

whether the packet is real or fake, the proxy forwards the packet to the next hop

without filtration. A message routes through multiple proxies on its way to the sink;

however, it is only being filtered in the original proxy. Eventually, optimizing the

proxies location is essential to avoid undesirable traffic overhead. A disadvantage of

this technique is that the sink must be in the center of the network. Another dis-

advantage is the filtration delay as the packet has to be filtered by a proxy before

arriving at the sink.

3.1.7 Tree-based Filtering (TFS)

TFS [67] is an improved version of PFS. The difference between them is that

TFS has several layers of filtration, the proxies nearest the sink filter fake packets

coming from the proxies that are far from the sink, which leads to less overhead. In

TFS each proxy has a parent proxy, and can have some child proxies using a tree

concept to decrease the number of fake messages towards the sink. In contrast, more

delay is required because the message is delayed in each and every proxy towards the

sink. Therefore, the relationship can be described as a trade-off between overhead and

delay while keeping high anonymity. Nevertheless, assuming the sink node is in the

center of the network will limit the applications that can implement this technique.

Using multiple proxies for filtration might also impact the performance of TFS.
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3.1.8 Optimal-cluster-based Source Anonymity Protocol

(OSAP)

Techniques like ConstRate and FitProbRate provide source anonymity but they

are costly since they inject the network with a large number of fake messages. Further,

all nodes in the network transmit traffic towards the sink that causes the network to

be imbalanced as nodes nearest the sink consume more power than nodes far from

the sink, which leads to a shorter lifetime of the network.

To overcome the high overhead in ConstRate and FitProbRate, and latency in

PFS and TFS, OSAP [68] was developed. OSAP is based on FitProbRate and the

authors of [68] argue that the use of unequally clustering mechanism will reduce the

traffic overhead, improve the network balance, and decrease the latency of the real

event. The unequally clustering mechanism is achieved by adjusting the transmission

rate and the radius of unequal clusters. As a result, this mechanism fixes the overhead

issue by transforming the issue into a mathematical programming problem that is

solved by mathematical methods.

If a node has a real event to report, it becomes a source that generates some

real packets, unlike FitProbRate, which allows all nodes to transmit packets whether

they are real or fake. In addition, authors of OSAP assume that the sink is placed

in the center of the network and works as the data collector for all events. Each

packet has a source ID, event description, event time, and packet type (real or fake).

Each node determines the number of hops to the sink by using the following formula:

(2n− 1)πr2θ where n is the number of hops, r is the transmission range and θ is the

network density of nodes distribution. After a node knows its hops count to the sink,

the sensor network is divided into uneven clusters. Clusters, which are close to the

center of the network are larger than the ones that have a further distance from the

center, as shown in Figure 3.3. The sink node has the largest cluster and nodes at
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edges of the network have the smallest clusters. Nodes are categorized into cluster

heads and cluster members. The purpose of the cluster head is to filter the incoming

fake packets, and forward the real packets of the cluster members to the sink. The

cluster head of the cluster with radius R1 is the sink and all nodes within this cluster

transmit their packets directly to the sink. All nodes with distance R2, R3, ...,Rn

are cluster head candidates that have cluster radius of R2 − R1, R3 − 2R2 + R1,

..., Rn − Rn−1 − randin−1, respectively. After cluster head nodes are selected, they

broadcast BEACON packets with TTL, which includes the radius of the clusters they

belong to. Member nodes select their cluster head based on the least communication

cost, which is decided by the received BEACON packets. Then, each member node

notifies its selected cluster head by a BEACON response. Therefore, the network will

consist of rings and each ring consists of clusters. The distance between cluster head

nodes and the sink is R2, R3, ...,Rn.

Figure 3.3. Overview of the unequally clustering mechanism in OSAP.

This technique assumes that each member node shares a pairwise key with its

cluster head using a keying scheme. Each cluster head shares a key with its neighbor-

ing cluster head nodes. Once the member node detects an event, it sends the event
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to its cluster head using a multi-hop routing protocol. The member node delays the

real packet to the next interval. Therefore, the adversary cannot distinguish the real

packets from the fake ones using time analysis. Then, the cluster head decrypts the

message and forwards it to the next cluster head encrypted by the shared key between

them. In order to satisfy source anonymity, the transmitting time intervals follow the

exponential distribution as exhibited by the FitProbRate technique. When a fake

packet is received by the head cluster, it is discarded. In contrast, if the cluster head

received a real packet, it re-encrypts and forwards the packet towards the sink after

an appropriate time that follows the exponential distribution. However, if there is

no real packet, the cluster head sends an encrypted fake packet instead. In case a

cluster head received a packet from another cluster head, it forwards the packet after

an appropriate time whether it is real or fake without filtration. The total delay of

the real event must be less than the maximum required delay by the application. In

addition, it is obvious that member nodes at the edge of the network have more clus-

ter heads on the path to the sink, which increases the delay. Therefore, selecting the

appropriate µ for each cluster is mandatory to balance the latency between clusters

and to avoid any time analysis attacks from the adversary. Finally, balancing the

power consumption between clusters is made by adjusting the radius of the unequal

clusters and transmission rate.

OSAP still has some limitations; it assumes that the sink location is in the center

of the network. This assumption is impractical for many applications that require

the sink to be at different locations in the network. Another limitation is that the

communications within the network are based on the same cluster heads that do not

change during the lifetime of the network. Using the same cluster heads every time

decreases the lifetime of the network because the cluster heads will consume more

power than cluster members causing the network to be imbalanced regarding power

consumption.
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3.1.9 Recurrent Clustering Mechanism (RCM)

The reason current techniques have failed is that the nodes nearest the sink

consume more power than the nodes far from the sink, RCM [69] authors argued.

In order to balance the network, a clustering technique was introduced. All nodes

use the FIFO queuing mechanism. Each cluster has a cluster head that coordinates

the activities within the cluster. Each node has a timer, once the timer is equal to

zero, the sensor node checks if it has a real packet in its buffer to transmit. In case

there is no real packet, a fake packet is sent instead to the sink. Remaining energy

of cluster heads is computed every time there is a packet to transmit. The higher

cluster head in terms of the remaining energy is selected to forward the packet. In

this technique, the sink location is known to the adversary. Since this technique uses

clustering and selects the highest cluster node with remaining energy, RCM improves

the power consumption by half compared to other techniques, the authors of [69]

argued. Moreover, RCM reduces the overhead because of the clustering mechanism.

However, the authors of [69] did not mention how they control the delay and delivery

ratio. Overhead is still a concern because every time the node does not have a real

packet, it generates a fake packet instead, which might lead to traffic overhead.

3.1.10 General Fake Source (GFS)

The GFS [55] technique attempts to simulate the movement of a real asset at

different locations in the network to mislead the adversary about the actual location of

the source node, as shown in Figure 3.4. This mechanism can be implemented easily

if the RFID type is active. However, the goal of GFS is to simulate the movement

of the asset using a passive RFID. GFS generates dummy traffic of a fake source. A

shared token is used to determine which node should act as a fake source. Then, the

fake source generates a fake event just after detecting the real asset. Next, the token is

passed between nodes to simulate the movement of the real asset. In order to simulate
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a real asset, the number of intervals, which is represented by simulateRound that a

fake source will transmit should vary from node to node, to mislead the adversary.

Another variable is the realCount ; it is increased by one whenever a node sends a real

message. Once a node stops sending real messages, the realCount is reset to one, and

simulateRound is updated.

Figure 3.4. Overview of the real asset simulation in GFS.

The fake source is selected randomly and generates fake messages until simulateR-

ound becomes zero; then the token is passed. However, to avoid passing the token

between only two nodes, the last fake source is recorded in the preNode variable.

When the fake source has a real message, the sink should be informed and the token

is passed to the next node. Further, if there are real or fake messages without a token,

the message can be passed normally to the sink. However, if the fake message has a

token, the receiving node will get the preNode and tokenID. Then, the receiving node

becomes the new fake source.

Since the token creates extra traffic that might be noticed by the adversary, each

fake source needs to send a fake report to make the token message look like an ordi-

nary real report. Eventually, real and fake messages have to be transmitted together
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in every interval to distract the adversary. However, GFS has some drawbacks: First,

it assumes that the sink is placed in the center of the network. Second, if the token is

passed among three nodes or more rather than between two nodes, there is no mech-

anism to handle this kind of situations. Third, GFS could fail to provide anonymity

because only fake messages are created when a real event takes place. Therefore, the

adversary might detect that a real event is being sent resulting in exposing the loca-

tion and time of the event in case the adversary has enough capabilities and resources

to examine all nodes at once.

3.1.11 Naive Algorithm (NAA)

Each node in NAA [70] broadcasts a fake message periodically. The time duration

of these periods should be long enough to avoid draining the nodes’ battery very

quickly. If a node has a real message to transmit, it waits until the upcoming fake

message is ready. However, instead of transmitting the fake packet, it is replaced

by the real message. Once the real message is received by intermediate nodes, the

process is repeated until the real message reaches its destination. The adversary

cannot distinguish the difference between real and fake messages since they are sent

using the same transmission rate. Nevertheless, the delay in this technique is high

because it uses fixed long periods to transmit real messages.

3.1.12 Globally Optimal Algorithm (GOA)

The GOA [70] technique is an upgraded version of NAA. It was developed to

decrease the delay of the real event. GOA provides each node with a timer that is

defined by a pseudo-random number generator. This timer is utilized to allow the node

to transmit real packets. If the time count reaches zero, and there is no real packet to

transmit, a fake packet is transmitted instead. All nodes must use the same pseudo-

random number generator and obtain the seed used by other nodes. This concept
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allows GOA to decide the shortest path to the sink. The GOA technique improves

the throughput and power consumption when compared to ConstRate. However, the

primary issue in GOA is that it should have knowledge about the entire topology of

the network, which is not required by ConstRate.

3.1.13 Heuristic Greedy Algorithm (HGA)

The HGA [70] technique is very similar to GOA, but HGA only needs to obtain

the seed and location of neighboring nodes allowing each node to select the best

neighboring node to send or forward the packet.

3.1.14 Probabilistic Algorithm (PBA)

The PBA [70] technique is developed to reduce the overhead of dummy traffic in

GOA and HGA. It fo1lows the same process as HGA. However, nodes do not have to

transmit a fake packet every time the time count reaches zero in case there is no real

packet to transmit. PBA uses a probability p to decide whether the node should send

a fake packet or not; p is considered as a threshold, and used to trade-off between

anonymity and overhead.

3.1.15 Distribution Resource Allocation Algorithm (DRAA)

The DRAA [71] technique uses the same concept as ConstRate. Each node in

DRAA measures the best transmission rate for dummy traffic to reduce the overhead

of the network. The main purpose of DRAA is to hide the real traffic within minimal

dummy traffic. This mechanism can be achieved without applying the entire process of

the original ConstRate technique. The DRAA technique provides SLP with reduced

power consumption when compared to ConstRate according to DRAA developers.
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3.1.16 Optimal Filtering Scheme (OFS)

The OFS [72] technique is based on TFS and PFS techniques. Each node in

OFS has the possibility to become a proxy. This method can provide an optimal

routing and filtering that eventually leads to optimal lifetime for the network. Once

a sensor node is selected to be a proxy, it can use its filtration rules for further

optimization to maximize the network lifetime. Moreover, a proxy has the ability to

filter packets coming from other proxies, unlike TFS, where the proxy transmits all

incoming packets from other proxies without any filtrations. In this protocol, proxies

have two options: First, proxies can work individually, which increases the delay and

provides a high level of anonymity. Second, they work together to decrease the delay

with a low level of anonymity. This technique is considered as a trade-off between

delay and anonymity. The challenge in OFS is to select the best locations for the

proxies.

3.1.17 Aggregation-based Source Location Protection Scheme

(ASLP)

The ASLP [73] technique uses similar filtration techniques as OFS. ASLP has

three phases: fake packets, packet encryption, and data aggregation. In ASLP, the

WSN is divided into clusters, and each cluster has a cluster head. Cluster heads follow

a tree structure scheme to reach the sink. Every cluster member shares a key with

its cluster head to encrypt the traffic between them. In addition, nodes communicate

with their cluster head using the exponential distribution to reduce the delay and

overhead. The exponential distribution is only controlled by one parameter λ, which

is the transmission rate. Cluster nodes report the event to their cluster head, which

also can be the sink node periodically; this period is decided by the value of τ . In

the second phase, values of λ and τ are distributed throughout the network by the

sink. In the third phase, the actual data aggregation and reporting take place. A
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node transmits a real packet whenever it detects a real event to the sink using the

exponential distribution. Otherwise, the node transmits a fake packet instead. The

cluster heads receive the packet from cluster members and forward it to the sink using

an encrypted channel. Values of λ and τ are utilized in this technique to trade-off

between latency and power consumption. This trade-off can be adjusted according

to the requirements of the applications.

3.1.18 Trusted Computing Enabled Heterogeneous (TCH-WSN)

The network in TCH-WSN [74] is also divided into clusters. Each cluster contains

a high-performance node with two modules: Trusted Platform Module (TMP) and

Mobile Trusted Module (MTM ). These two modules are used to provide data security

and integrity. The sink and cluster heads are assumed to have continuous power

supply. The sink communicates with all nodes directly. However, a sensor node

communicates with the sink only through its cluster head. The cluster head assigns

one of the nodes in its cluster to act as a fake source for a specific duration of time.

Then, the fake source transmits dummy traffic to the sink.

3.1.19 Efficient Privacy Preservation (TESP)

The TESP [75] technique uses cluster heads to filter fake packets that are being

transmitted to the sink. TESP consists of three phases: The first phase, the sink

provides public and private keys to each node in the network. The keying mechanism

contributed by the sink is based on elliptic curve cryptography, which is preferred over

the traditional asymmetric key algorithms. In the second phase, nodes are deployed,

organized, and assigned to clusters. All clusters have a cluster head that connects to

all other cluster heads as well as to the sink in a tree structure manner. The sink is

placed at the root of the tree. Neighboring nodes have a symmetric key between them

to communicate securely. In the final phase, each sensor node checks its buffer for
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real packets. If there is no real packet, the node generates a fake packet encrypted by

the public key of the cluster head. However, if the node has a real packet in its buffer,

this packet is encrypted by the sink’s public key. When a packet reaches the cluster

head, if the cluster head is able to decrypt the packet successfully, that means it is a

fake packet. Therefore, the packet is dropped immediately. Each cluster head collects

all packets from its cluster members. Then, the cluster head waits for a higher cluster

head or the sink to ignite the data collection signal. Once the cluster head receives

the signal, it sends the collected data after re-encryption to the higher cluster head

or the sink. In case the higher cluster head received the data from a lower cluster

head, it adds its collected data to the incoming data. This process is repeated until

all collected data reaches the sink.

3.1.20 Cloud-Based Scheme for Protecting Source-Location

Privacy (CSPSLP)

In CSPSLP [43], the authors assume that multiple sensor nodes detect the asset,

and these nodes attempt to inform the sink about the location of the asset simul-

taneously, which creates a traffic hot-spot. Normally, the adversary seeks hot-spot

areas to discover the source node. The main aim of CSPSLP is to hide the actual

source inside a cloud that consists of multiple nodes. Therefore, the real hot-spot is

hidden within a larger cloud. CSPSLP consists of three stages: In the first stage, each

node is assigned a unique ID, a secret pairwise key with its neighboring nodes, and a

shared key with the sink. These ID and keys are used by nodes to build pseudonyms

that are very similar to the hidden identities utilized in Anonymous Path Routing

APR [76, 77].

The second stage is executed at the deployment of the nodes, and it is called the

bootstrapping stage. In this stage, each node sends its location to the sink to obtain

the shortest path between itself and the sink. The following step is to select some of
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the nodes randomly that are at most h hops away from the sensor node itself. These

selected nodes become fake sources, and they exchange data with each other to create

pseudonyms among them. Each node separates its neighboring nodes into different

groups. All created groups are placed in opposite directions from each other. Further,

every node shares a secret key with each group.

The third stage is the event transmission. When a source detects a real event, it

decides which node will act as a fake source. Furthermore, the source node broadcasts

the packet to one of its groups that was already created. However, the chosen group

must have one member on the path towards the selected fake source. The transmit-

ted message contains the actual event encrypted by the pairwise shared key between

the source and the sink. Moreover, the pseudonym is shared among the real and

fake sources as well as among intermediate nodes, fake sources, real sources, and fake

sinks. An intermediate node adds the packet to its buffer only when its pseudonym

is in the packet. Otherwise, the intermediate node generates a fake packet with a

TLL counter. This packet is forwarded until the TLL counter reaches zero. When

the pseudonym of a node is in the packet, the node moves the pseudonym to the next

intermediate node and forwards the packet to the group that the node belongs to.

All members of the group receive the packet; if the member’s pseudonym is not in

the packet, the member generates a fake packet. Nevertheless, if the packet has the

pseudonym of the member, the member node adds the packet to its buffer and repeats

the process until the packet reaches the fake source. Once the fake source receives

the packet, it forwards the packet to the sink using the same process as APR. How-

ever, CSPSLP has only one difference from the original APR; CSPSLP re-encrypts

the packet that has the event information between all intermediate nodes using the

shared key between itself and the sink. When the sink receives the packet, it searches

for the pseudonym of the source and the fake source to select the appropriate key to

decrypt the packet. Finally, dummy traffic that belongs to the same cloud is filtered
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by the intermediate nodes. For example, if one of the intermediate nodes had many

fake packets from the same cloud, the intermediate node has the right to use a filtra-

tion mechanism. This filtration is utilized to only forward one of the fake packets to

reduce overhead.

3.1.21 Dummy Wake-up Scheme (DWUS)

The key concept of DWUS [78] is to create multiple dummy traffic streams to

direct the adversary away from the actual location of the source node. These streams

have to be toward the sink. DWUS coordinates the dummy traffic streams to act

similar to real traffic streams. This technique consists of three phases: First, the WSN

is divided into different groups of dummy populations. Each group has a group leader

that is changed periodically. This group leader is responsible for selecting the fake

sources. The second phase is called the Wake-up, each group leader hires a nearby

fake source and sends a wake-up message to the selected fake source. In the third

phase, once the fake source receives the wake-up message, it sends a fake message

towards the sink using one of the selected intermediate nodes. Phase two and three

are repeated using a fixed transmission rate to simulate the existence of the real asset

at different locations, which subsequently confuses the adversary about the original

location of the real asset.

3.1.22 Group Algorithm for Fake-traffic Generation (GAFG)

The fundamental notion of GAFG [79] is very similar to DWUS. Every node in

the network transmits its packets to the sink following a predefined path. Forwarding

nodes have a higher transmission rate than source nodes. Once a source detects a

real event, GAFG transmits the event to the sink using the exponential distribution.

Then, GAFG attempts to create fake data reports that have a very close µ to the

real data report. Moreover, this technique ensures that many nodes in the WSN will
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transmit fake data at specific times according to the real event exponential distribu-

tion. Nevertheless, GAFG is vulnerable to Rate Monitoring attacks since forwarding

nodes have higher transmission rates than source nodes.

3.1.23 Source Simulation (SoSi)

This technique [80] assumes that the global adversary can only trace the presence

of a moving asset. The adversary tracks every trace in the network whether it is real

or fake. Moreover, each trace is assumed to be a candidate of a real trace. The

main aim is to create several traces to mislead the adversary about the presence of

the real event. Additionally, SoSi has its own definition for privacy. Privacy occurs

when the adversary observes a set of transmissions, which indicates that the asset

is nearby one of the nodes. Virtual assets are created to copy the behavior of the

real asset to confuse the adversary. Another purpose of these virtual assets is to

create dummy traces. In order to implement the virtual assets, some sensor nodes

are selected randomly. Each selected node obtains a token in the deployment stage.

These nodes are called the token nodes. SoSi forces the WSN to function in rounds;

each round has a fixed time. In each round, a fake event is transmitted to the sink by

the token node through its neighboring nodes, which create a stream of traffic. By

the end of each round, the token node selects the next node that will act as a token

node. The SoSi technique does not increase the delay since the dummy streams do

not affect the real event. However, the use of dummy streams increases overhead.

3.1.24 Source and Destination Seclusion using Clouds

(SECLOUD)

The SECLOUD [81] technique has three steps: First step, each node transmits

a “hello message” to all nodes in the network using flooding routing protocol. The

“hello message” includes a TTL counter in trying to find the nearby nodes within a
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specific range h. These nodes create a cloud; if a node of a cloud desires to transmit,

it selects some of the cloud members to act as pseudo-sources. The basic idea of

pseudo-sources is to generate fake packets using the same transmission rate as the

real source. All fake packets will be dropped by the receivers. The sink has its

cloud and uses the same procedure of ordinary nodes. In the second step, SECLOUD

provides the source node with multiple options. The first option is to communicate

with the sink using single path routing algorithm. The other option is to use delegate

sources and delegate sinks. In the second option, the source node assigns some of

its cloud members to be delegate sources, and the sink assigns some of its cloud

members to be delegate sinks. Therefore, packets can travel between the source and

sink through delegate nodes. In the last step, the fake sources and fake sinks that

are created in the first step can be utilized to transmit dummy traffic between them.

This step is essential to hide the real traffic, which confuses adversaries about the

location of the real event. However, the utilized mechanism to create fake clouds is

not explained in details. Moreover, the use of the cloud concept might increase the

power consumption and overhead of the system.

3.1.25 Unobservable Handoff Trajectory (UHT)

The UHT [82] technique has a unique assumption about the adversary. This

assumption is that the asset can enter and move to a random point within the network.

Nodes have information about the poisson distribution of assets entering the WSN.

The traveled distance by assets is based on the uniform distribution. In addition,

all nodes use the same shared key to encrypt and decrypt messages among them.

In this solution, the edge nodes are called the perimeter nodes because they are the

first nodes to detect the asset in the network. The perimeter nodes transmit fake

messages in case there are no real events detected by them. A fake message should

have a length variable that behaves similarly to TTL. The next step is to XOR the
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fake message with the ID of the next node that will send the fake message. The fake

message is routed to the sink through intermediate nodes. All nodes use a broadcast

technique to transmit their messages. Once a node receives a message, it attempts to

XOR the message with its ID to determine whether the node should generate a fake

message or not. If a readable message is the output of the XOR operation, the length

variable is decreased. In case the length variable is not zero, the node sends a fake

message after XORing it with the next node ID. In contrast, if the length variable

is zero, the message is XOR-ed with the current node ID. Then, the node transmits

the fake message to the sink through intermediate nodes. By sending messages from

fake events, the adversary becomes completely confused about the candidate event

and whether it is real or fake.

3.1.26 Pollution Avoiding Source Location Privacy (PA-SLP)

In this technique [63], messages are transmitted in specific time slots to avoid

Time Correlation attacks. In addition, PA-SLP implements random network coding

on the transmitted packets to prevent Size/Structure Correlation attacks. In PA-SLP,

there are three different types of packets: real, fake, and polluted (packets created or

modified by an adversary). Therefore, a mechanism called Triple-Type Homomorphic

Signature (TTHS ) was developed to filter the unwanted packets such as the fake and

polluted ones. Moreover, a signature equation with a secret key is used to determine

the type of the forwarded packets without exposing their contents. If the packet type

is real, it will be forwarded to the next node towards its destination. However, if the

packet is fake, it will be discarded to reduce the overhead of the network. Lastly,

in case the packet is polluted, it will be utilized to improve the Intrusion Detection

Systems (IDS ) by locating the captured nodes. The entire process is employed by

intermediate nodes to enhance the overall performance of the network.
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3.2 Classification of Fake Packet Techniques

This section provides a classification of fake packet techniques regarding the

use of: Intervals, Timers, Random Numbers, Probability, Clusters, Proxies, Constant

Distribution, Exponential Distribution, and Poisson Distribution. The classification

is presented in Table 3.1. Intervals indicate that the lifetime of the network is di-

vided into time durations. These durations can be equal or unequal based on the

implemented distribution. Timers are utilized as a trigger for a node to transmit

either real or fake packets. Random Numbers decide the probability of a node to

transmit a packet. Probability decides whether a node will transmit a packet or not.

Clusters indicate that the network is divided into groups of nodes (Figure 3.5). Each

group has multiple member nodes and one head node. Proxies are commonly used to

filter fake packets towards the sink. Constant Distribution breaks down the time into

equal intervals, whereas Exponential Distribution decides the next interval according

to this equation: X = log (1−u)
−λ , where X is the next interval, u is the uniform random

number, and λ is the transmission rate. Poisson Distribution calculates its intervals

Figure 3.5. The clustering mechanism. H is a cluster head. M is a cluster member. S is the sink.
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distribution based on the following equation: P (x, λ) = λxe−λ
x!

, where P (x, λ) is the

probability, x takes a whole number, and λ is the average number of events per inter-

val. All techniques are assumed to implement similar structure, format and size for

both real and fake packets. Using different size or format for fake packets makes real

packets easily detectable if an adversary applies a Size/Structure Correlation analysis.

Table 3.1. Classification of fake packet techniques.

Technique Intervals Timers Random Numbers Probability Clusters Proxies Distribution Type

PeCo [66] • • - - - - -

ConstRate [54] • - - - - - Uniform

ProbRate [54] • - - - - - Exponential

FitProbRate [54] • - • • - - Exponential

Baseline [67] • - - • - -
Uniform

Exponential

PFS [67] • - - - • • Exponential

TFS [67] • - - - • • Exponential

OSAP [68] - - - - • - Exponential

RCM [69] - • - - • - -

GFS [55] • • - - • - -

NAA [70] • - - - - - -

GOA [70] • • • - - - -

HGA [70] • • • - - - -

PBA [70] • • • • - - -

DRAA [71] • - - • • - Uniform

OFS [72] • - - - - • -

ASLP [73] • - • - • • Exponential

TCH-WSN [74] - - - - • - -

TESP [75] - - - - • • -

CSPSLP [43] - - - - • - -

DWUS [78] • - - - • - Uniform

GAFG [79] • - - • • -

Uniform

Exponential

Poisson

SoSi [80] • - - - - - -

SECLOUD [81] - - - - • - -

UHT [82] • - - - - - Poisson

PA-SLP [63] • - - • - • Uniform

• Used.
- Not used.
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3.3 Global Adversary Models

This section provides a detailed description of the used global adversary models

in fake packet techniques, and how assumptions are made in each one of them.

The PeCo technique assumes that the adversary is able to deploy its own sensor

network to monitor and analyze a WSN. Furthermore, the adversary network con-

sists of a smaller number of nodes than the targeted network as the adversary only

eavesdrops on the radio signals of legitimate nodes. Additionally, the adversary does

not sense the environment like the authorized nodes. The adversary is also equipped

with GPS to detect the location of communications precisely [66].

The adversary is considered as external, global and passive in ConstRat, ProbRate

and FitProbRate techniques. External means that the adversary cannot control or

compromise a sensor node physically. Global means that the adversary has a full

view of network communications as well as sufficient resources and unlimited power.

Passive has three different aspects: First, an attacker cannot expose the content of a

real event message that could lead to the source ID. Second, in the situation where

messages are encrypted the same way during the forwarding process, the attacker has

the capability to trace back the origin. Third, the adversary can apply complicated

traffic analyses such as Rate Monitoring and Time Correlation. In Rate Monitoring

attacks, the adversary focuses on the difference of the transmission rates between

nodes, especially those nodes with higher rates. Nevertheless, the Time Correlation

attack works on the diversity of transmission times between transmitting packets. It

is also assumed that the adversary has enough resources to apply all of these advanced

attacks [54].
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Baseline, PFS, TFS and OSAP techniques have the same assumptions for the

adversary, which is external, global, and passive [67]. However, OSAP provides more

assumptions: First, the adversary knows the location of all nodes in the network.

Second, it knows the distribution type of the WSN. Third, the adversary has the ca-

pability to compare its time interval observations with the known distribution type.

Additionally, the adversary is assumed to be unable to disclose the content of packets

or identify whether the packet type is real or fake [68].

In RCM, the adversary cannot decrypt communications of the network. There-

fore, packets appear completely random from the adversary perspective. Moreover,

the adversary is aware of the sink location [69].

The GFS technique builds its own technique based on the following adversary

model assumptions. The adversary deploys its network to overhear the radio trans-

missions among legitimate nodes. Adversary nodes have unlimited processing power

and battery life. The adversary can only eavesdrop on the traffic, but it is unable to

alter the traffic or compromise the sensor nodes. Data is encrypted and the adversary

cannot gain any meaningful information about the packets’ content. Further, real and

fake packets are identical in size and structure making the adversary unable to dis-

tinguish the difference between them. Lastly, the adversary has knowledge about the

sink location, the network topology, and the implemented routing protocol [55].

NAA, GOA, HGA and PBA techniques utilize a similar adversary model. This

model assumes that the attacker knows the location of all sensor nodes in the targeted

network. Moreover, the attacker has the ability to snoop on the traffic of the entire

network. The adversary has enough resources to keep all collected data for further

offline analyses. However, the attacker is unable to break the encrypted packets or

compromise sensor nodes physically [70].
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DRAA, OFS, ASLP and TESP techniques assume the popular external, global

and passive adversary model [71–73, 75]. However, the adversary in TCH-WSN can

monitor the entire network traffic [74].

The CSPSLP adversary model deploys its monitoring devices in the targeted ar-

eas within the network. The adversary collects information from multiple areas, but

not from the entire network. These areas are called the observation points, and their

location is adjustable to be as close as possible to the real asset. This model has three

different characteristics: passive, well-equipped, and informed. Passive means that

the adversary does not modify the network transmissions; it only observes transmis-

sions among nodes. Well-equipped means that each attacking device can measure the

angle of arrival and strength of the signal to determine the source location. However,

the adversary is unable to spot the receiving nodes because all nodes within the range

of the transmitting node will receive the signal. Lastly, the adversary is informed; it

knows the sink location and is able to monitor the sink node traffic as well [43].

DWUS assumes that the adversary is passive and has unlimited resources. Fur-

ther, the adversary can distribute attackers throughout the network to sense all trans-

mitted packets [78].

In the GAFG technique, the adversary is aware of the sink location and network

topology. The adversary is passive and can detect the time and location of all trans-

missions. Moreover, it has the ability to perform sophisticated statistical methods for

detection. However, the adversary cannot break the encryption of packets [79].

The adversary model in SoSi [80] is considered to be fast and effective. It has

two possibilities: First, the adversary uses a large number of devices to monitor the

entire network. Second, the adversary can deploy a smaller number of devices that

have more capabilities and resources. However, authors of [80] argue that the second
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option is impractical because of the high cost. They also assume that the adversary

can sense the actual asset instead of overhearing the traffic among authorized nodes.

In this technique, the adversary uses GPS or one of the localization techniques to

determine roughly the occurrence area of the real event.

In SECLOUD, the adversary capabilities are a combination of different adver-

sary models presented in [66, 83, 84]. In this model, the attacker knows the network

topology and retains the measurements of the entire network traffic including Rate

Monitoring and Time Correlation. In addition, the attacker has the ability to visual-

ize the network traffic and regulate the network links density. However, the adversary

is passive and cannot compromise network nodes. The attacker has its own network

that consists of several malicious nodes. These nodes collaborate together using a

different frequency band to transmit the collected data to a centralized malicious en-

tity [78].

The UHT technique follows the external, global, and passive adversary model.

However, UHT has further assumptions. In cases where the adversary knows the

location of the sink, it will snoop on all communications within the network. The ad-

versary can attack communications among intermediate nodes in a parallel manner.

After collecting data, the adversary checks the content of packets to gain informa-

tion about the source ID. However, in a situation where packets are well-encrypted,

there are two possibilities: First, if packets remain the same without re-encryption

when they are forwarded, the adversary can trace them back to the origin. Second, if

packets are decrypted and encrypted every time before forwarding, the adversary will

apply complex analysis methods such as Rate Monitoring and Time Correlation [82].

The PA-SLP adversary model is assumed to be both external and internal. More-

over, it can perform active and passive attacks. The adversary has the ability to

eavesdrop on the entire network. In addition, it can apply Time Correlation and
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Size/Structure Correlation attacks. The adversary might capture intermediate nodes

and disclose the secret keys. Exposed keys are utilized to pollute the traffic by in-

serting new packets into the network or altering the existing packets [63].

3.4 Classification of Global Adversary Models

This section provides a classification of the used global adversary models (Ta-

bles 3.2 and 3.3) in the discussed fake packet techniques regarding the usage and

knowledge of the following assumptions: Topology Information, Sink Location, Lo-

calization, Interval Distribution, Rate Monitoring, Time Correlation, Visualization,

Machine Learning, and Statistical Methods. Topology Information means that the ad-

versary knows the location of all nodes in the network and how they are connected to

each other. Sink Location means that the adversary is able to determine the location

of the sink node. Localization means that the adversary can use GPS or one of the

localization techniques. Interval Distribution means that the adversary knows the

distribution type of packets. Rate Monitoring means that the adversary can differen-

tiate between transmission rates of network nodes. If a node has a higher transmission

rate than other nodes, this node is easily detectable, e.g., the 0.4 transmission rate

some nodes use in Figure 3.6.

Time Correlation means that the adversary can distinguish the difference of

transmission times between packets. For instance, in Figure 3.7, interval G does not

seem that it follows the same distribution of the other intervals. Therefore, if network

nodes transmit packets using uniform distribution, and one of these nodes decided

to transmit packets without using the uniform distribution, the adversary can easily

differentiate between these packets. Visualization means that the adversary has the

ability to convert the sending/not-sending behavior of the network nodes into a bi-

nary image. This image can be analyzed to gain meaningful information about the

real event. Machine Learning means that the adversary can employ a classifier such
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as the neural network to analyze the traffic of the WSN. Finally, Statistical Methods

mean that the adversary is able to perform a sophisticated statistical analysis.

Figure 3.6. Rate monitoring. Solid circles are nodes with transmission rate of 0.2 per second.
Dashed circles are nodes with transmission rate of 0.4 per second.

Figure 3.7. An example of time correlation.
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Table 3.2. Classification of global adversary models (1).

Technique Topology Information Sink Location Localization Interval Distribution Rate Monitoring

PeCo [66] not known not known used not known not used

ConstRate [54] not known not known not used known used

ProbRate [54] not known not known not used known used

FitProbRate [54] not known not known not used known used

Baseline [67] not known not known not used not known used

PFS [67] not known not known not used not known used

TFS [67] not known not known not used not known used

OSAP [68] known not known not used known used

RCM [69] not known known not used not known not used

GFS [55]

known

(including the used

routing algorithm)

known not used known used

NAA [70] known known not used not known used

GOA [70] known known not used not known used

HGA [70] known known not used not known used

PBA [70] known known not used not known used

DRAA [71] not known not known not used known used

OFS [72] not known not known not used not known used

ASLP [73] not known not known not used known used

TCH-WSN [74] known not known not used not known not used

TESP [75] not known not known not used not known used

CSPSLP [43]

known

(location of sending

nodes only)

known used not known used

DWUS [78] not known known not used known not used

GAFG [79] known known used known not used

SoSi [80]

not known

(routing algorithm

is known)

not known used known used

SECLOUD [81] known not known not used not known used

UHT [82] not known known not used known used

PA-SLP [63] not known not known not used not known used
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Table 3.3. Classification of global adversary models (2).

Technique Time Correlation Visualization Machine Learning Statistical Methods

PeCo [66] not used not used not used not used

ConstRate [54] used not used not used used

ProbRate [54] used not used not used used

FitProbRate [54] used not used not used used

Baseline [67] used not used not used not used

PFS [67] used not used not used not used

TFS [67] used not used not used not used

OSAP [68] used not used not used not used

RCM [69] not used not used not used not used

GFS [55] used not used not used not used

NAA [70] used not used not used not used

GOA [70] used not used not used not used

HGA [70] used not used not used not used

PBA [70] used not used not used not used

DRAA [71] used not used not used not used

OFS [72] used not used not used not used

ASLP [73] used not used not used not used

TCH-WSN [74] not used not used not used not used

TESP [39] used not used not used not used

CSPSLP [43] not used not used not used not used

DWUS [78] not used not used not used not used

GAFG [79] used not used not used used

SoSi [80] not used not used not used not used

SECLOUD [81] used used not used not used

UHT [82] used not used not used not used

PA-SLP [63] used not used not used used
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CHAPTER 4: SYSTEM MODELS AND

PROPOSED TECHNIQUES

4.1 System Models of the Proposed Techniques

In this section, we present the network model, routing model, adversary model,

anonymity model, and Anderson-Darling model of the proposed techniques.

4.1.1 The Network Model

A number of sensor nodes are distributed in the area of interest. Distribution of

nodes can be random or in fixed locations. All sensors have the same resources such

as memory, processing power, and battery life. A sensor node collects information

about the asset within its sensing area, and transmits this information to the sink

that has more resources than ordinary sensor nodes. The sink node can be placed at

any location in the network such as at one side of the network or in the center of the

network. Sensing area for each node can be calculated as follows:

Rarea = πr2 (4.1)

Where Rarea is the transmission area and r is the transmission range. In the case

of forwarding packets from one node to another, all nodes satisfy Equation (4.2) are

considered as neighboring nodes of the transmitting node.

(xn − xsource)2 + (yn − ysource)2 < r2 (4.2)

Where xsource and ysource are coordinates of the source node. xn and yn are co-

ordinates of the receiving node. Sensor nodes can locate their position by using one
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of the localization techniques in the deployment stage. There are many localization

techniques in the literature [3, 85–87] used by WSNs to provide each node in the

network with its current location as well as neighboring nodes’ locations. Many of

the localization techniques provided in the literature can work just fine as an addi-

tive module to our framework. Each application has its specific requirements such

as the lifetime of the network and the maximum delay. The lifetime of the WSN

is divided into time intervals. Each interval can further include many sub-intervals.

This mechanism can be adjusted to meet the application requirements. All real and

fake packets are assumed to be encrypted using a shared key between senders and

receivers. Therefore, the message payload is secure. Real and fake packets are iden-

tical in terms of size and structure to avoid Size/Structure Correlation attacks by an

adversary. When a receiving node receives a packet, it is able to differentiate between

real and fake packets by decrypting them using the shared key.

4.1.2 The Routing Model

The routing protocol, in our proposed model, is based on the location of sensor

nodes. It is also called geographical routing [88]. Therefore, each node should know

its coordinates and its neighboring nodes’ coordinates as well. The routing protocol

selects the next node on the path towards the sink based on the following equation:

d =
√

(xc − xsink)2 + (yc − ysink)2 (4.3)

Where xsink and ysink are the coordinates of the sink, xc and yc are the coordinates

of the candidate node, and d is the destination between the sink and candidate node.

The node with the smallest d value will be the next hop on the path. The developed

location-based routing protocol is flexible. This flexibility means that if the selected

candidate node is out of battery or has physical damage, the routing protocol will

choose the second best candidate node that satisfies the minimum d. The entire
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process will be repeated until the packet is received by the sink. This routing protocol

does not cause high power consumption. It is employed to reduce the total number

of packets throughout the network, which leads to less overhead. Flooding-based

routing is not utilized in this work because it surges the number of overhead packets

and causes high power consumption.

4.1.3 The Adversary Model

In this work, the employed global adversary is passive, external, and global that

is similar to the model proposed in [54,68]. Passive adversary means that the observer

can analyze and collect packets. An external adversary cannot compromise a sensor

node physically, whereas a global adversary has a full view of the network as well as

sufficient resources and unlimited power. The adversary has malicious nodes that are

deployed to monitor the entire network and generate a high level of statistical analysis.

The capabilities of the adversary are further extended such that the adversary can

create a dataset of many observed intervals for each sensor node during the lifetime

of the network. The adversary uses this dataset to analyze the SLP. For example, a

neural network can be trained on this dataset in trying to expose the existence of the

real event. The adversary also has the ability to visualize the dataset by converting

it into a binary image, and extracting any suspicious patterns that could point to the

existence of the real event. Lastly, the adversary can employ a steganography method

to measure the binary relative entropy and uncertainty of the system.

4.1.4 The Anonymity Model

The anonymity of the proposed system can be broken into three main parts: (1)

existence of the real event, (2) location of the real event, and (3) time of the real

event. In order to satisfy all three parts, the existence of the real event must be

unknown to the adversaries. Then, location and time can be subsequently achieved.

44



Figure 4.1. α is the false negative and β is the false positive.

The existence of the real event can be represented as follows:

f(event) =


1, a real event exists.

0, otherwise.

(4.4)

The anonymity of the system can be calculated by the following steganography

equation [89,90]:

d(α, β) = α log2

α

1− β
+ (1− α) log2

1− α
β

(4.5)

Where α is the probability of an adversary to falsely detect the real event. α is

the false negative of the system, which means the possibility of the adversary to say

there is an asset, and actually, there is no asset (Figure 4.1). In contrast, β is the

probability of the adversary not to detect the presence of the real event. β is the false

positive of the system, which means the possibility of the adversary to say there is

no asset, and actually, there is an asset (Figure 4.1). Therefore, in order to achieve

anonymity, the system should satisfy:

d(α, β) ≤ ε (4.6)
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Where d(α, β) is the binary relative entropy, and considered as the anonymity

provided by a specific technique, whereas ε is the anonymity required by the applica-

tion. The smaller ε is, the higher probability an adversary will fail to detect the real

event correctly.

4.1.5 The Anderson-Darling Test Model

The A-D test [91–96] is a statistical analysis algorithm. The A-D test is a good-

ness of fit test. It is used to determine if a series of data follows a specific distribution.

For example, if there is a sequence of samples that follows an exponential distribution,

the output of the A-D test should be either null or alternative hypotheses. Null (H0)

means the data follows an exponential distribution and alternative (H1) means the

data does not follow an exponential distribution.

Figure 4.2. The CDF of the exponential distribution.

In Figure 4.2, if the p-value that is represented as x falls in the red area under the

curve, this indicates H0 can be rejected, which means the data is not exponentially

distributed. On the other hand, if the p-value falls in the white area under the

curve, that indicates H0 cannot be rejected, which means the data is exponentially

distributed.

In Figure 4.3, random exponential data is examined by the A-D test for normal-

ity and exponentiality to illustrate the difference. The blue dots are the examined
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Figure 4.3. Normality and exponentiality test for samples that follow the exponential distribution.

samples and the red lines are the expected values. On the right side of Figure 4.3,

distributed samples follow the expected values indicating the samples are distributed

exponentially. On the left side of Figure 4.3, it shows that the distributed samples do

not follow the expected values indicating the samples are not normally distributed.

The A-D test works as follows: First, A2 is the mathematical notation of the

A-D test, and it can be calculated by the following equations:

A2 = −N − S (4.7)

S =
N∑
i=1

2i− 1

N
[lnF (Yi) + ln(1− F (YN+1−i)] (4.8)

Where N is the total number of samples, i is the sample ID, Yi is the samples

ordered in an ascending way, YN+1−i is the samples ordered in a descending way, F

is the Cumulative Distribution Function (CDF ) of the data. A2 is compared to the

corresponding critical value of the significance level α. The critical value of α = 0.05

is 1.321 in the exponentiality test, which means that the output of the A-D test

should be less than this number (threshold) for the data to pass the test. In case the

number of samples is small, the following equation is utilized to increase the accuracy

of the test.

A∗ = A2(1.0 +
0.6√
n

) (4.9)
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The complexity of A-D test is O(n log n) since it uses Quicksort to order its

elements. The A-D test is employed by several algorithms to analyze the data in

order to determine the characteristics of the samples’ distribution.

4.2 Proposed Techniques for Source Anonymity against

Global Adversary

In this work, six techniques are developed to provide source anonymity and over-

come the statistical analysis of a global adversary. These techniques are Dummy Uni-

form Distribution (DUD), Dummy Adaptive Distribution (DAD), Controlled Dummy

Adaptive Distribution (CAD), Exponential Dummy Adaptive Distribution (EDAD),

Exponential Dummy Adaptive Distribution Plus One (EDADP1 ), and Exponential

Dummy Adaptive Distribution Plus Two (EDADP2 ). All proposed techniques are

based on injecting the network with dummy traffic to confuse the adversary about

the existence of the real event. Therefore, reducing the number of fake packets while

keeping a high level of source node anonymity is essential.

The notion of all techniques is to divide the lifetime of the network into intervals.

Hence, if an asset is detected by a node and a series of real packets needs to be trans-

mitted, instead of transmitting the real packet immediately after the occurrence of

an event, the packet will be transmitted at the end of the interval. This mechanism

is necessary to avoid the Time Correlation attack. All other nodes in the network

send fake packets at the end of the interval based on probability if they do not have

any real packets. When a sensor node receives a fake packet, the node will discard it

right away. However, if the packet is real, the node will add the packet to its buffer

and try to forward it in the upcoming interval based on probability. In case the real

packet is not transmitted in the upcoming interval, the real packet waits for one more

interval, and the node will attempt to forward it once again based on probability.
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This process means that each node in the network has its private pattern for sending

real packets, which look entirely random to the observer. Since real and fake packets

are sent only at the end of the interval, they should be both indistinguishable from

the adversary perspective.

4.2.1 Dummy Uniform Distribution (DUD)

Injecting a fake packet in every interval for each node during the lifetime of the

network is going to consume a significant amount of power and resources. The moti-

vation behind DUD is to have the same transmission rate for both real and dummy

traffic. DUD works as follows: Each node will throw a random number numrandom

between 0 and 1. If the random number is smaller than the predefined/constant

transmission rate, e.g., numrandom < rateconstant, send the real packet, but if there is

no real packet in the node’s buffer, it will send a fake packet instead. By applying

this mechanism, the adversary cannot recognize if the transmitted packet is real or

fake. When a node detects a real event, it uses the selected transmission rate, e.g.,

0.1, in trying to transmit the first real packet in the upcoming interval. For instance,

if a real event was detected between interval 5 and 6, the node will throw a random

number between 0 and 1. If this number is less than the selected threshold (trans-

mission rate), which is 0.1 in this case, the real packet will be transmitted in interval

6. However, if the random number is larger than the threshold, the real packet will

not be transmitted, and the node will try to send it in the following interval (interval

7). This process is repeated until all real packets are sent.

Fake packets are only generated if a node does not have a real event. In addition,

fake packets are also sent based on probability. If the random number is less than

the threshold and there are no real packets, a fake packet is generated and transmit-

ted instead. In contrast, if the random number was larger than the threshold, the

node will not transmit any packets. However, this scheme does not always guarantee
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the arrival of the real event’s packets because real packets can take a long time to

be delivered especially if there is a required maximum delay by the application. It

is obvious that increasing the transmission rate reduces the delay and increases the

overhead, or vice versa.

4.2.2 Dummy Adaptive Distribution (DAD)

To reduce the delay and increase the delivery ratio of received real packets to

the total number of real packets, the DAD technique is introduced and works as fol-

lows: All nodes in the network are categorized into fake nodes and real nodes. At

the beginning, all nodes will be considered as fake nodes using a predefined/constant

transmission rate as presented in DUD. Fake nodes do not generate fake packets in

every interval. They only generate and transmit fake packets if the thrown random

number between 0 and 1 is less than the selected threshold. However, if a node de-

tects a real event or forwards packets of a real event, then it becomes a real node.

A real node will increase the transmission rate of its real traffic by a specific value

(Equation (4.10)). Then, the real node decreases the transmission rate of its dummy

traffic by the same specific value (Equation (4.11)) after all real packets are transmit-

ted. This reduction in transmission rate occurs after the interval at which the last

real packet is transmitted. The increasing and decreasing percentages of the real and

fake transmission rates are based on the original transmission rate. Real and fake

transmission rates of the real nodes are given by the following equations:

Rreal = Rconst +
Nreal

Itotal
(4.10)

Rfake = Rconst −
Nreal

Itotal
(4.11)
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Rconst =
Rreal +Rfake

2
(4.12)

Where Rreal and Rfake are the real and fake transmission rates. Rconst is the

predefined transmission rate of the network, Nreal is the number of real packets, and

Itotal is the number of total intervals.

Since the average of real traffic and dummy traffic is equal to the original constant

transmission rate (Equation (4.12)), the adversary will not notice any change in the

transmission rate of the network, which is essential to avoid Rate Monitoring attacks.

Additionally, in order to perform well, DAD needs to satisfy the following equation:

Nreal ≤ Rfake ∗ Itotal (4.13)

Otherwise, the number of fake packets will be smaller than the number of real

packets throughout the network. This situation allows the adversary to easily detect

the real event. DAD keeps the same level of anonymity and overhead as DUD, but it

Figure 4.4. An example of the DAD technique.
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increases the delivery ratio and reduces the average delay of the real event. However,

DAD is still unable to guarantee the maximum delay of real packets. An example of

DAD is shown in Figure 4.4. The transmission rate of green nodes is only modified

using Equations (4.10) and (4.11) when they have a real event to report. The black

nodes will keep their original transmission rate without any change because they only

generate fake packets.

4.2.3 Controlled Dummy Adaptive Distribution (CAD)

Since DUD and DAD schemes could fail in delivering packets of a real event

within a specific delay, CAD is introduced to maximize the delivery ratio and minimize

the delay to guarantee the arrival of all packets in the real event to the sink within the

required constraints. Based on DAD, CAD increases the real traffic transmission rate

and decreases the dummy traffic transmission rate using the same Equations (4.10),

(4.11) and (4.12). However, if a real node fails to transmit a real packet using the

real traffic transmission rate for n-intervals, this node will send the first real packet

in its buffer without using any probability (transmission rate is equal to one). Then,

the node reuses the original real traffic transmission rate for the following real packet.

By repeating this process, all real packets can be delivered within guaranteed n-

intervals as presented in Algorithm 4.1. This technique is a trade-off between delay

and anonymity. If n-intervals number is large, it means that there will be more delay

and a higher level of anonymity. If n-intervals number is small, that means less delay

and a lower level of anonymity. Therefore, adjusting the number of n-intervals is

based on the application requirements and the level of tolerance.
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Algorithm 4.1 CAD

1: constantRate← select the desired transmission rate
2: realRate← apply Equation (4.10)
3: fakeRate← apply Equation (4.11)
4: realIntervalCount← the current number of intervals a real packet waited
5: maxIntervalCount← the maximum number of intervals desired by the application
6: randomSending ← a random number between 0 and 1
7: for sloti < number of lifetime slots do
8: for each node in the network do
9: if node has a real packet in its buffer then

10: if sloti == sending interval then
11: if maxIntervalCount == realIntervalCount then
12: make realRate equal to 1
13: else
14: make the transmission rate equal to realRate
15: end if
16: if randomSending ≤ realRate then
17: remove the real packet from node’s buffer
18: adjuest the sending time for other packtes in buffer
19: add partition to time slot
20: run the routing protocol desired
21: send the real packet
22: else
23: delay all packets in buffer and try next interval
24: end if
25: else
26: if randomSending ≤ fakeRate then
27: send a fake packet
28: end if
29: end if
30: end if
31: end for
32: end for

4.2.4 Exponential Dummy Adaptive Distribution (EDAD)

To reduce the overhead of a WSN without sacrificing the anonymity of the source

node, EDAD is introduced. The exponential distribution has only one parameter

λ, which represents the transmission rate. Having one parameter helps to fix the

transmission rates flow of all nodes in the network. Therefore, the adversary is unable
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to distinguish the difference between real and fake events. However, each node still

has its own sending interval pattern that is based on probability. The next sending

interval for real and fake packets can be obtained from the following equation:

p = e−λt (4.14)

Where p is the probability, λ is the transmission rate, and t is the next sending

interval. In order to make the exponential distribution equation predict the next

sending interval, the equation needs to be rearranged. By taking the ln of both sides,

the equation will be as follows:

ln p = ln e−λt

ln p = −λt

t =
ln p

−λ
(4.15)

Each node in the network implements Equation (4.15) to transmit both real and

fake packets. If there is no real event, nodes will keep sending fake packets. Once a

node detects a real event, it starts to transmit the real packets. The next scheduled

fake packet is replaced by the real one. This mechanism is necessary not to violate the

exponential distribution sequence. Otherwise, the real event can be easily detected

if an adversary applies Time Correlation attacks. Since all nodes use the same value

of λ, and each node has a different sending interval pattern, the adversary will be

confused about the existence of the real event.
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4.2.5 Exponential Dummy Adaptive Distribution Plus One

(EDADP1)

EDADP1 is based on the original EDAD. However, EDADP1 gives the priority

to real packets over the fake ones by increasing the transmission rate of real packets

within a certain percentage. This percentage cannot be extremely high; otherwise, the

real event will be easily detected by the adversary. Since the exponential distribution

is a statistical solution, the result should have multiple outcomes that satisfy the

analytical models. Therefore, the adversary should not be able to distinguish the

change of the transmission rate if the increase did not exceed a specific range, e.g.,

30%. For fake packets, EDADP1 uses the original transmission rate to reduce the

overhead. If a real packet is detected, EDADP1 increases the transmission rate

by a certain percentage to reduce the delay of the real event without sacrificing

the anonymity of the system. The decision of the appropriate threshold (maximum

transmission rate increase) relies on the original transmission rate and the number of

real packets. Algorithm 4.2 shows how EDADP1 works.

Algorithm 4.2 EDADP1

1: numberOfScenarios← number of the scenarios to generate
2: numberOfObservations← number of the samples in the sequance
3: numberOfRealPackets← number of real packets
4: rate← the original transmission rate
5: increasedRatePercentage← the increased transmission rate in percentage
6: select the desired numberOfObservations
7: for scenarioi < numberOfScenarios do
8: if there are real packets then
9: for realPacketi < numberOfRealPackets do

10: increase the transmission rate by increasedRatePercentage
11: end for
12: else
13: use the original transmission rate
14: end if
15: end for
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4.2.6 Exponential Dummy Adaptive Distribution Plus Two

(EDADP2)

EDADP2 is an alternative of EDADP1. EDADP2 increases the transmission

rate of only the odd real packets, and for the even real packets, EDADP2 uses the

same transmission rate as the fake packets. This variety provides better anonymity

for the system but in return, the delay will be higher for the real event. EDADP2

needs slightly more processing time since it filters which packets are odd and which

packets are even. This increase in processing time can be considered as a drawback

when compared to EDADP1. Algorithm 4.3 shows how EDADP2 works.

Algorithm 4.3 EDADP2

1: numberOfScenarios← number of the scenarios to generate
2: numberOfObservations← number of the samples in the sequance
3: numberOfRealPackets← number of real packets
4: rate← the original transmission rate
5: increasedRatePercentage← the increased transmission rate in percentage
6: select the desired numberOfObservations
7: for scenarioi < numberOfScenarios do
8: if there are real packets then
9: for realPacketi < numberOfRealPackets do

10: if realPacketi is odd then
11: increase the transmission rate by increasedRatePercentage
12: else
13: use the original transmission rate
14: end if
15: end for
16: else
17: use the original transmission rate
18: end if
19: end for

4.3 Metrics of the Proposed Techniques

The following four metrics affect the performance of the proposed techniques:

transmission rate, number of real packets, number of total intervals, and maximum
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delay a real packet can wait before transmission, which is only applicable to the CAD

technique. Using a higher transmission rate will increase the probability of delivering

all real packets within the application required delay. In addition, higher transmission

rates enhance the anonymity of the entire network and decrease the probability of an

adversary to detect the real event. However, higher transmission rates will cause more

dummy traffic leading to unnecessary overhead. The real event consists of several real

packets; the larger number of real packets, the more difficult it is to hide inside the

dummy traffic. Subsequently, more dummy traffic is required leading to a network

overhead.

The total number of intervals and the maximum delay required by an application

plays an imperative role in real packets delivery ratio. The total number of intervals

is calculated using the following equation:

Itotal =
ts
Ir

(4.16)

Where ts is the simulation time, and Ir is the interval rate. More intervals increase

the probability of real packets to arrive at the sink, which improves the overall per-

formance of the network. However, more intervals require more fake packets that will

consume resources and power. In CAD technique, the n-intervals number represents

how many intervals a node will wait before transmitting the real packet without us-

ing probability. More n-intervals mean higher anonymity and delay, whereas smaller

n-intervals mean less anonymity and delay.

Selecting the suitable values of these metrics will rely on the requirements of the

application. The trade-off between delay and overhead versus privacy must be taken

into consideration.
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4.4 The Proposed Specialized Event-Driven Network

Simulator for Security and Anonymity Applications

of Wireless Sensor Networks

This work presents a novel software architecture for a specialized network sim-

ulator that is targeted towards analysis and verification of anonymity algorithms for

WSNs. Even though many different network simulators exist and are popular such as

NS-2 , none of these can be adapted easily for testing of advanced WSN anonymity

algorithms. For example, in trying to implement anonymity, fake messages need to

be generated. A strong anonymity technique has to randomize the generation of fake

messages and improve the ratio of real to fake messages so that excessive power is

not being wasted by a sensor node. In order to analyze the effectiveness of different

anonymity algorithms, an event-driven network simulator is developed that provides

statistical and visualization features. This simulator can be easily configured to any

WSN topology and routing protocol. The software architecture of the simulator al-

lows for easy pluggability of different algorithms making it a valuable tool in WSN

security/anonymity deployment and research.

Developing a comprehensive WSN simulator is vital for most of the applications

so that engineers, developers, and researchers can examine their algorithms and net-

work policies to verify the functionality and efficiency before implementing them in

real applications. There are many WSN simulators available on the market such as

NS-2. Each one of them has its advantages and disadvantages [97]. Nevertheless,

one of the primary features lacking in prevailing WSN simulators is the support of

direct high-level real/fake packet injections, which is very crucial for anonymity ap-

plications. Such applications require the capability of injecting dummy traffic into

the network to mislead the adversary about the location and time of a real event.
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Since this feature is unavailable in a straightforward manner in current simulators,

a new simulator is introduced to overcome this problem by creating a suitable and

comfortable environment for developers who work in the security and anonymity field.

4.4.1 Background of Network Simulators

There is a variety of WSN simulators for the developers to choose from such as

NS-2, OPNET , and OMNeT++. In this section, a brief review regarding each one is

presented.

NS-2 stands for network simulator version 2. It is an object-oriented discrete

event-driven network simulator developed in C++ and OTcl programming languages.

NS-2 provides many models such as sensor channel and power models that are easy

to manipulate. NS-2 is used to simulate both wired and wireless networks. It has

some built-in protocols that are readily available such as LEACH and Directed Diffu-

sion [98]. However, if a developer desires to design a customized protocol or routing

technique, numerous modifications need to be made to NS-2 system files to incorpo-

rate the created C++ files with the OTcl setup. This process can be quite complicated

and not easy to achieve. Further, NS-2 lacks accommodating variations in specialized

built-in protocols for WSN, which can be inconvenient for developers [99]. Another

drawback is the complicated setup structure of NS-2 that increases the difficulty level

of debugging. Moreover, it contains bugs such as unreliability and simulation vali-

dation. NS-2 consumes a significant memory, and the speed of the simulator is very

slow, especially when simulating large networks [100].

OPNET is a WSN simulator that is based on an object-oriented design. OPNET

is popular and considered as a commercial modeling and simulation tool. It uses a

fast discrete event simulation engine that interacts with a parallel simulation kernel.

OPNET does not provide many built-in protocols, and even the built-in protocols
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are hard to adjust. Therefore, protocols and modules need to be developed from

scratch [101].

OMNet++ is an object-oriented paradigm network simulator, and it is also a dis-

crete simulation framework. OMNet++ can run on Windows, Linux, and Mac OS.

This simulation supports various structures for WSN such as the mobility framework,

MiXiM, Castalia, INET, and NesCT [102, 103]. OMNet++ is not a WSN simulator

itself. It needs to be bundled with other models to simulate WSNs, which can be

complicated [104].

4.4.2 The Proposed Network Simulator Architecture

When designing a reliable simulator, timing is crucial since it is the principal

character of any network simulator. A timing wheel concept is introduced, and it

works as follows: The timing wheel is employed to simulate the time, and it is broken

into many timing slots that are considered as the lifetime of the network. Each

time slot (interval) can denote a time duration such as 1 ns or 1 ms. Moreover,

each time slot consists of several partitions that represent concurrent activities, and

Figure 4.5. The proposed network simulator architecture.
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thus allow the simulator to manage several packets simultaneously. The architecture

of the network simulator contains many components, which collaborate with each

other providing an accurate and trusted outcome. The components are Packet, Node,

Network, Partition, Timing Wheel, Trace File, Traffic Generator, and Controller, as

shown in Figure 4.5. All of the components are developed using C#.

4.4.2.1 The Packet Component

A packet is a component that needs to be passed between nodes until it arrives

its destination. Each packet has a unique ID to distinguish itself from other packets

in the network during the simulation time. In addition, a packet must keep the source

node ID and the destination node ID to find its way throughout the network. Another

value that a packet has to retain is the starting transmitting interval, which allows

the simulator to calculate the packet delay. In some of the applications, a packet

type is necessary. In this kind of applications, some packets can be real, and other

can be fake to confuse the adversary about, e.g., the actual location of the event.

Therefore, adding the capability of having different types of packets is essential to

help the developer accommodate customized implementations. Lastly, the packet also

contains the actual data, known as the payload. An overview of the packet component

is shown in Figure 4.6.

Figure 4.6. The packet component.
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4.4.2.2 The Node Component

A node component is utilized to transmit, forward, or receive packets. For

instance, a source node transmits a sequence of packets to the sink node to notify

it about the current temperature. Each node should obtain a unique ID to have

clear communications between nodes. Some of the existing applications use location-

based routing, which requires the coordinates of nodes in order to select the shortest

path towards the destination. Therefore, a node should be capable of obtaining

and maintaining its current position, and this is accomplished in the deployment

stage. Node transmission range is another specialty included in the architecture,

which can be customized by the developers to fit their assumptions and requirements.

Furthermore, nodes have the capability to calculate the hop count between themselves

and the sink node as well as keeping a record of all neighboring nodes in the case

of using a different kind of routing protocol such as flooding. Additionally, a node

can keep track of all previous packets that were transmitted or forwarded during the

lifetime of the network. This feature is useful in the case where the developers want

to use a smart flooding (each node sends or forwards a packet only once even if the

packet is received multiple times by the same node) to avoid undesirable overhead.

All of these features in the node component provide the proposed architecture with

more flexibility and practicality. This allows developing new anonymity algorithms

Figure 4.7. The node component.
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in an easier way and straightforward manner. An overview of the node component is

shown in Figure 4.7.

4.4.2.3 The Network Component

The network component consists of nodes that are connecting to each other

creating a functional WSN. This component allows the developer to select source

and sink nodes of the event as well as the transmitting time. Commonly, the network

covers an area of interest such as a vast forest or a battlefield. Hence, the network has

two parameters to decide: dimensions of x-axis and y-axis. Each network has its own

lifetime based on the application requirements and topology failures. A scenario might

be deploying the nodes randomly in a particular area of interest or having specific

locations for each node in the network. All of these alternatives can be configured by

the developer based on the requirements of the application. The network component

requires each node in the network to provide a list of its neighboring nodes during

the deployment stage.

4.4.2.4 The Timing Wheel Component

The timing wheel is the primary component of the system since it manages

the simulation time and determines which nodes are transmitting and which nodes

are receiving. The timing wheel is divided into time slots based on the lifetime of

the simulation. Furthermore, each slot is broken into partitions (Figure 4.8). A slot

represents the sending, receiving, or forwarding time, and the partition represents the

sending, receiving, or forwarding node. Once the simulation commences, a method is

invoked that has a nested loop. The first loop iterates through the time slots, and the

second loop iterates through the partitions inside each slot. Moreover, the routing

protocol is a part of the timing wheel component. The routing protocol decides which

time slot will have which partition and action type (sending, receiving, or forwarding).

Algorithm 4.4 shows how the timing wheel component works. Some activities such as
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sending or forwarding will cause new activities like receiving. The new activity needs

to be added to the timing wheel, as shown in Figure 4.8.

Figure 4.8. The timing wheel component.

Algorithm 4.4 Timing Wheel

1: for sloti < number of lifetime slots do
2: for each node in the network do
3: if node has a packet in its buffer then
4: if sloti == sending interval then
5: - remove packet from node’s buffer
6: - adjuest the sending time for other packtes
7: in buffer
8: - add partition to time slot
9: - run the desired routing protocol

10: end if
11: end if
12: end for
13: end for

4.4.2.5 The Partition Component

Each time slot in the timing wheel may contain several partition components.

A partition points to a node object, which represents the sending or receiving node.

Additionally, a partition contains the type of the packet such as real or fake. It might
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further have an action such as sending, receiving or forwarding. Conclusively, the

most significant aspect of the partition component is its ability to possess a pointer

to the following partition that eventually generates a linked list of different events

inside every time slot in the timing wheel. This mechanism allows the network to

deal with multiple packets concurrently.

4.4.2.6 The Trace File Component

The trace file component is essential since it contains the results and statistics of

the simulation. Three files are generated: The first one has the number of packets sent

and dropped, packets type, which nodes are transmitting/forwarding and which are

not, the sender node, the destination node, event starting time, and event delay. All

information is combined into one file to make it easier for the developer to trace the

implementation (Figure 4.9). The second trace file has the statistics of all nodes such

as node ID, node coordinates, hop count to the sink, and the list of all neighboring

nodes (Figure 4.10). The last trace file includes the number of the cases in which

Figure 4.9. The network trace file (1).
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Figure 4.10. The network trace file (2).

Figure 4.11. The network trace file (3).

the event was successfully received, average delay, and average overhead for all cases

(Figure 4.11). Each case represents a complete scenario that has a different location

and starting time for the event.

4.4.2.7 The Traffic Generator Component

When simulating or testing a particular technique, a traffic generator is required.

This component is responsible for generating network traffic. The proposed architec-

ture can create random events including random events’ locations and times. The

generated traffic can also be controlled and specified for a particular location and

time. The adaptability of the architecture enables developers to have a variety of

selections to choose from. Algorithm 4.5 shows how the traffic generator component

works.

Algorithm 4.5 Traffic Generator

1: sendingNode← source node with event to send
2: receivingNode← sink node
3: startingInterval← event starting time
4: for each node in network do
5: if node id == sendingNode then
6: for i < number of packets required do
7: - create a packet
8: - add the packet to source node’s buffer
9: end for

10: end if
11: end for

66



4.4.2.8 The Controller Component

This portion of the simulator architecture can be viewed as the brain of the

design since it brings all components together. This component decides which one

of the other architecture components should be created and which one should wait.

The controller focuses on producing different objects of the components, and how

they interact with each other to construct a scenario that satisfies the developer’s

demands. Additionally, this component is responsible for providing the interface that

will be controlled by the user to select the proper options for the desired simulation

scenario.
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CHAPTER 5: IMPLEMENTATION AND TEST

PLAN

5.1 Simulation Test Plan for DUD, DAD, CAD, and

EDAD

In the simulation, the WSN covers an area of interest: 600 m by 600 m. The

network consists of 25 sensor nodes and the lifetime of the simulation is 100 intervals.

These nodes monitor the movement of an asset such as a panda. The network only

has one sink on the right side of the network, as shown in Figure 5.1. If a node

detects a panda, it starts communicating with its neighbors to inform the sink about

the current location of the panda. All sensor nodes have a transmission range of 200

m. The network is tested at different transmission rates: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,

0.35, and 0.4. Then, if the random number between 0 and 1 is less than the selected

transmission rate, and a real event is received, a real packet will be sent; otherwise, a

fake packet will be sent instead. The number of packets in the real event is selected

Figure 5.1. Network topology. Blue nodes are conventional sensors. The red node is the sink.
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to be 3. If the random number exceeds the transmission rate, no packets will be sent.

For example, if the transmission rate is 0.05, ratereal and ratefake will be 0.08 and

0.02, respectively by using Equations (4.10) and (4.11) for DAD and CAD techniques.

Finally, the maximum number of intervals to wait before mandatory transmission in

CAD is selected to be 5 (the maximum wait before the node is forced to transmit the

real packet).

The panda can only be detected by one node in the network. One thousand

random cases are created for each transmission rate to evaluate the performance of

the WSN. Each case has a random position for the panda and a random starting

interval for the event between 0 and 49. A comparison between different transmission

rates and how they affect the average delay, delivery ratio, and overhead of the real

event is conducted. All of the proposed techniques were developed using C#.

5.2 Anonymity Test Plan for DUD, DAD, CAD, and

EDAD

There are many ways to validate that the proposed techniques are increasing

the delivery ratio and reducing the average delay as well as the overhead without

sacrificing the anonymity of the source node. In this work, three different approaches

are developed: visualize the output data of the simulation, feed the output data of

the simulation to a trained neural network, and apply Equation (4.5) for anonymity

testing as mentioned in the anonymity model described in Chapter 4. In the visu-

alization and neural network models, output data is converted into a binary matrix.

When a sensor node transmits a packet whether it is real or fake, the transmission

is represented by a binary value of 1, whereas if the node does not transmit, it is

represented by a binary value of 0. Since some of the intervals in the simulation will

have values of 1 and others will have values of 0, the output of the simulation can be
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represented as a binary matrix. Analytical models were developed using MATLAB.

5.2.1 The Visualization Model

In this approach, the output data, which is represented as a binary matrix, is

converted into a binary image. This conversion is made by representing ones as

black pixels and zeroes as white pixels to make the image visualization better at low

transmission rates. The main objective of this model is to check if there are any

visible patterns inside the image, such as a set of black pixels that look like a row or a

column, as shown in Figure 5.2b, which indicates the existence of a real event. A weak

technique refers to any technique that provides a binary image that is not entirely

random and can be very easily distinguishable from a completely random binary

image such as the one in Figure 5.2a. However, if there are no visible patterns and

the image looks completely random, the adversary will not be able to differentiate if

the real event exists. In the experiment, one thousand stochastic simulation scenarios

are created and converted into one image. Then, this image is compared to the binary

images generated by proposed techniques to check if there are any patterns. Different

transmission rates of 0.05, 0.1, and 0.15 are evaluated to examine the performance of

the proposed techniques.

(a) (b)

Figure 5.2. (a) The completely random binary image. (b) A weak technique binary image.

During the lifetime of a WSN, some nodes transmit packets, and some nodes do

not. In the case of transmitting, there are two possibilities for the packet type: real or

70



fake. However, if there are no transmissions, there is only one possibility: no packet.

Therefore, real packets are represented as R, fake packets are represented as F, and no

transmissions are represented as 0. Figure 5.3a illustrates a sample of the simulation

output. For example, R in the first row of Figure 5.3a means that a real packet is

transmitted by node 6 in interval one. F in the second row of Figure 5.3a means

that a fake packet is transmitted by node 3 in interval two. This representation is

from the system perspective since the system can distinguish between real and fake

packets. However, the adversary is unable to differentiate between real and fake

packets. Therefore, any packet transmissions whether they are real or fake will be

represented as 1 and for no transmissions, they are represented as 0. Figure 5.3b

illustrates a sample of the simulation output from the adversary perspective.

(a) (b)

Figure 5.3. (a) Simulation output from the system perspective. (b) Simulation output from the
adversary perspective.

The adversary will combine the simulation output rows from Figure 5.3b into a

massive column, as shown in Figure 5.4a. This column has one location for the asset.

Since the adversary monitors the network over time, several columns are generated;

and each column has a different location for the asset to simulate the movement of it.

Figure 5.4b shows the output binary matrix when the adversary monitors the WSN

over time. This binary matrix will be converted into a binary image to extract any

suspicious patterns that might lead to the existence of the real event (Figure 5.2b).

The target of the proposed techniques is to provide completely random binary images
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such as the one in Figure 5.2a. As a result, the adversary will be confused about the

location of the asset as long as there are no visible traces in the produced images.

(a) (b)

Figure 5.4. (a) Simulation output rows combined into one column. (b) An adversary monitors the
WSN over time.

5.2.2 The Neural Network Model

Another way to show that the proposed solutions provide a high level of anonymity

is to create a neural network and train it on many different binary matrix patterns

produced by the proposed techniques. Then, feed the testing data to the trained neu-

ral network to see if it can detect the occurrence of an event. Each approach matrix

is compared with the random matrix to see if the neural network is able to recognize

the difference. In cases where the neural network can distinguish the difference, this

would mean that our solutions have a security flaw. Otherwise, the proposed tech-

niques provide a high level of anonymity.
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Two thousand cases are used as the training input for the neural network. One

thousand cases are random scenarios and the other one thousand cases represent one

of our solutions (DUD, DAD, CAD, and EDAD). The WSN has 25 sensor nodes and

100 intervals, by multiplying them, each case will have 2500 inputs. These cases are

fed to the neural network. W is the weights that are generated by the neural network.

At the beginning, these weights are selected randomly. Then, the weight values are

changed using a training back-propagation algorithm called Gradient Descent to train

the neural network. The aim of Gradient Descent is to find the best combination of

weights that minimizes errors between the neural network actual output and expected

output. b is a constant. A graphical representation of the neural network is shown in

Figure 5.5.

Figure 5.5. Neural network configuration.

The transmission rates of 0.05, 0.1, and 0.15 are used to test each technique.

The hidden layer in the feed-forwarded neural network has 250 neurons. Sigmoid is

utilized as the activation function for both hidden and output layers. The output

layer has one neuron and produces 0, if there is no real event, or 1, otherwise. Two

neural network models have been created: one without validation data and the other

uses validation data to avoid overfitting the neural network.

5.2.3 The Steganography Model

In the steganography model, the adversary attempts to measure the uncertainty

of the system. The ideal case occurs when d(α, β) is equal to 0, which indicates that

the system is perfectly secure. Therefore, the proposed techniques should provide
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d(α, β) that is very close to 0 in order to confirm the high anonymity of our techniques.

Since the neural network in the previous subsection created some probabilities for

false negatives and false positives of the system, these probabilities can be utilized to

generate α and β, respectively.

5.3 Enhanced FitProbRate

The FitProbRate scheme [54] is developed to provide source anonymity. It uses

exponential distribution to predict the next time interval for fake packets. If a real

packet is detected, it uses the first interval that satisfies the A-D test. However, if

more than one real packet is detected, FitProbRate recovers the current mean (µ) of

the intervals to predict the next interval within:

(1− ε)µ ≤ µ ≤ (1 + ε) (5.1)

Where ε is the maximum increase or decrease percentage of the current µ. This

mechanism is essential to avoid a mean reduction for the current intervals sample,

which could lead the adversary to detect the presence of the real event. In addition,

the predicted interval must also satisfy the A-D test. This technique will be tested

under the proposed neural network model to show how it performs. Furthermore,

an enhanced version of FitProbRate is developed and compared to the original one

regarding the number of operations needed to decide whether a specific sequence

follows the exponential distribution or not. In the original technique, each node

performs the A-D test on the entire sequence of intervals, which increases the number

of operations rapidly since the complexity of A-D test is O(n log n). The A-D test

provides high accuracy when the number of intervals is 7 or more (n ≥ 7) [91–

96]. Therefore, instead of applying the A-D test on the entire sequence, it will only

be applied on the last ten intervals of the sequence, which reduces the number of

operations needed to test the exponentially of a selected sequence.

74



5.4 EDADP1 vs. EDADP2 vs. FitProbRate

A comprehensive comparison between two of the proposed techniques EDADP1,

EDADP2, and the original FitProbRate is conducted. One thousand scenarios of each

technique are generated using the same criteria such as the exponential distribution

generator function to have a fair comparison. In addition, the average result of

the simulation output scenarios is calculated to have a more stable and accurate

comparison. The percentage increase in the transmission rate for real packets in

the proposed techniques is selected to be 30%. This increase is reasonable because

if the percentage increase was extremely high, the existence of the real event can

be easily exposed. However, this value should be evaluated based on the application

requirements and level of tolerance, which is considered as a trade-off between latency

and anonymity.

The x-axis of the comparison represents the different number of packets in the

real event, whereas the y-axis represents the tested metric. Therefore, every metric

in each technique is tested under a different number of real packets to evaluate the

technique’s performance. The comparison is divided into five different parts: average

delay, anonymity level, average processing time, A-D test, and polluted scenarios.

First, the proposed techniques are compared to FitProbRate regarding the average

delay. In the anonymity level, EDADP1, EDADP2, and FitProbRate are examined

by the proposed neural network model to show the difference between them in terms

of anonymity. Moreover, all techniques are tested regarding the average processing

time that can be further utilized to provide an indication of the overhead and power

consumption. Another metric is the A-D test, which shows how strict the generated

data sequence follows the exponential distribution. Lastly, polluted scenarios indicate

how reliable and stable the proposed techniques are when compared to FitProbRate.
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CHAPTER 6: RESULTS

6.1 Performance Results of DUD, DAD, CAD, and

EDAD

In Figure 6.1a, CAD performs much better than DAD and EDAD regarding the

average delay especially at low transmission rates, which is desired by most of the

applications. DUD has the worst performance since it does not have any mechanism

to improve the delay of real packets. Regarding the delivery ratio, as shown in Fig-

ure 6.1b, CAD has the best performance. CAD has an advantage over the other three

techniques because it forces packets of a real event to be sent after a specific waiting

time, which is five-intervals in this experiment. DAD still performs better than DUD

since the real packets have a higher probability to be sent than the fake ones. Also,

EDAD has a higher performance than DUD because it uses exponential distribution.

Meanwhile, the overhead traffic in Figure 6.1c, is almost the same for DUD, DAD, and

CAD techniques because the total number of generated fake packets stays the same

for all three techniques. In other words, CAD and DAD reduce the average delay

and increase the delivery ratio without gaining additional overhead when compared

to DUD.

Figure 6.1c shows that EDAD reduces the overhead when compared to the other

techniques. It decreases the number of overhead packets whenever the transmission

rate increases. This reduction indicates that EDAD can be used at high transmis-

sion rates, which increases the delivery ratio and reduces the delay. However, the

performance of EDAD, in terms of average delay, is very similar to DAD and is not

as good as CAD because EDAD uses the exponential distribution without forcing

the real packets to be delivered within maximum delay. Therefore, EDAD does not
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guarantee the maximum delay of the real event. The CAD technique provides a high

delivery ratio at low and high transmission rates because it uses a specific mechanism

that forces the node to transmit its real packet after a predefined number of inter-

vals. However, this mechanism might lead to a privacy flaw because it violates the

uniform distribution sequence. EDAD has a similar performance to CAD regarding

the delivery ratio at high transmission rates. However, at low transmission rates, the

number of delivered packets is decreased in EDAD because of the delay caused by the

exponential distribution. In conclusion, EDAD reduces the overhead, but it increases

the delay while keeping a high level of anonymity. In contrast, CAD increases the

overhead and decreases the delay with an acceptable level of anonymity.

(a) (b)

(c)

Figure 6.1. (a) Average delay of real packets. (b) Delivery ratio of real packets. (c) Overhead of
real packets.
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6.2 Anonymity Analysis Results of DUD, DAD, CAD,

and EDAD

6.2.1 The Visualization Model

In Figures 6.2, 6.3, 6.4 and 6.5, at all transmission rates, the proposed techniques

binary images look entirely random and are very similar to the random cases binary

(a) (b) (c) (d)

Figure 6.2. The produced binary images with transmission rate of 0.15. (a) The completely
random image. (b) The DUD image. (c) The DAD image. (d) The CAD image.

(a) (b) (c) (d)

Figure 6.3. The produced binary images with transmission rate of 0.1. (a) The completely random
image. (b) The DUD image. (c) The DAD image. (d) The CAD image.
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image. The images depict transmission patterns for the DUD, DAD, CAD and EDAD

techniques do not indicate any visual patterns in the output images, which confirms

that the proposed techniques have a high level of anonymity.

(a) (b) (c) (d)

Figure 6.4. The produced binary images with transmission rate of 0.05. (a) The completely
random image. (b) The DUD image. (c) The DAD image. (d) The CAD image.

(a) (b)

Figure 6.5. The produced binary images with transmission rate of 0.15. (a) The completely
random image. (b) The EDAD image.
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6.2.2 The Neural Network Model

The first neural network model (without validation data) is shown in Figures 6.6,

6.7 and 6.8. The number of instances is the y-axis and errors are the x-axis. Errors are

the difference between targets that represent the expected outputs and outputs that

represent the actual outputs. The training data is represented by the blue columns

and testing data is represented by the red columns. The error of the training data

(blue columns) is almost 0 indicating that the neural network is trained properly,

whereas the error of testing data (red columns) is high and almost divided evenly

between 0 and 1 in the three techniques at all transmission rates. Moreover, Table 6.1

demonstrates that the uncertainty of the neural network for all techniques at different

transmission rates is around 50%, which is the ideal case. That means the neural

network is confused about the existence of the real event even after training the

network successfully. This confusion is an indication that the proposed techniques

are very reliable and guarantee a high level of source anonymity.

(a) (b)

(c)

Figure 6.6. DUD with transmission rate of (a) 0.05, (b) 0.1, and (c) 0.15.
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(a) (b)

(c)

Figure 6.7. DAD with transmission rate of (a) 0.05, (b) 0.1, and (c) 0.15.

(a) (b)

(c)

Figure 6.8. CAD with transmission rate of (a) 0.05, (b) 0.1, and (c) 0.15.

The second neural network model (with validation data) is shown in Figure 6.9.

The first row of sub-figures in Figure 6.9 shows that the number of instances is the y-

axis and errors are the x-axis. Errors are the difference between targets that represent
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Table 6.1. Percentage error of the testing data.

Rate DUD DAD CAD

0.05 50.4% 49.4% 56.5%

0.1 48.1% 48.6% 53.0%

0.15 52.3% 51.3% 53.4%

the expected outputs and outputs that represent the actual outputs. The training data

is represented by the blue columns, testing data is represented by the red columns,

and validation data is represented by the green columns. The neural network cannot

achieve 100% accuracy on the training data (blue columns) since the accuracy does

not improve on the validation data (green columns). The second row of sub-figures in

Figure 6.9 shows that after 11 or 12 epochs, based on the tested technique, the neural

network has an early stop to avoid overfitting, which reduces the generalization of the

neural network. The early stop occurs because the large amount of noise that was

introduced by the proposed techniques to disturb the neural network. The noise is

generated by injecting the WSN with dummy traffic that confuses the neural network

about the presence of the real event.

Figure 6.9. Error histogram and validation performance of DUD, DAD, CAD, and EDAD when
using validation data.

Figure 6.10 shows the test confusion matrices of all techniques. The green square in

the first row represents the true negative of the system, the green square in the second
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row represents the true positive of the system, the red square in the first row represents

the false negative of the system, the red square in the second row represents the false

positive of the system, and the blue square in the third row represents the accuracy

of the neural network. The ideal anonymity from the system perspective is when

the accuracy of the neural network is 50%, which indicates that the neural network is

totally uncertain about the existence of the real event. DUD achieved 49.3% accuracy,

DAD achieved 54.3% accuracy, CAD achieved 53.7% accuracy, and EDAD achieved

56.3% accuracy. These percentages are very close to 50% even after avoiding the

overfitting. Accordingly, the test confusion matrix is still unable to distinguish the

difference between real and fake events for all techniques, which validate the high

level of anonymity provided by the proposed techniques.

Figure 6.10. The test confusion matrix of DUD, DAD, CAD, and EDAD when using validation
data.

6.2.3 The Steganography Model

Table 6.2 shows that d(α, β) is very close to 0 in DUD, DAD, and CAD techniques

at different transmission rates, which satisfy a very small ε that is required by most

of the applications to have a high level of anonymity. Moreover, EDAD is tested at

the transmission rate of 0.2, which produced d(α, β) of 0.001 and a neural network

accuracy of 49.4% (Figure 6.11). These numbers indicate the high level of anonymity

EDAD technique provides.
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Table 6.2. The d(α, β) output when uses different probabilities for α and β.

Rate DUD DAD CAD

β α d(α, β) β α d(α, β) β α d(α, β)

0.05 0.494 0.499 0.0001 0.504 0.508 0.0004 0.426 0.442 0.0507

0.1 0.516 0.521 0.0004 0.511 0.517 0.0023 0.468 0.472 0.0104

0.15 0.474 0.481 0.0058 0.486 0.491 0.0015 0.461 0.471 0.0134

Figure 6.11. The test confusion matrix of EDAD.

All analytical models show that the proposed techniques provide a high level of

anonymity and the global adversary cannot recognize the existence of the real event.

6.3 Enhanced FitProbRate

6.3.1 Neural Network Model vs. A-D Test Model

This section shows the reliability of the proposed neural network model when

compared to the A-D test model. The proposed model takes into consideration the

Rate Monitoring, Time Correlation, and the type of distribution when measuring the

anonymity of a system. However, the A-D test in FitProbRate only considers the

type of distribution as a measurement for anonymity. The original FitProbRate in

Figure 6.12a is tested by the proposed neural network model. Three categories are
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created: The real event has one real packet in the first category, two real packets

in the second category, and three real packets in the third category. Each category

consists of one thousand cases, further, each case has a different location and time

that are generated randomly for the real event. Results show that the proposed neural

network is confused about the existence of the real event when it has only one real

packet since one packet can be easily hidden within dummy traffic. However, when

the number of real packets increases, the proposed neural network model started

to detect more cases correctly. In the second category, when the number of real

packets is three, the proposed model detected around 66% of the cases correctly,

whereas in the third category when the number of real packets is five, the proposed

model detected more than 83% of the cases correctly. Therefore, the proposed model

performs much better when compared to the ordinary A-D test, which fails to identify

any of the cases accurately. The reason is that the A-D test only relies on testing the

sequence distribution to decide whether a technique provides high anonymity or not.

In contrast, the proposed model evaluates the anonymity based on many factors that

include Rate Monitoring, Time Correlation, and the type of distribution.

(a) (b)

Figure 6.12. (a) The original FitProbRate analyzed by the proposed neural network model. (b)
The validation performance of the proposed neural network model.

The third category that has five packets in the real event is explained in more

details: Figure 6.12b shows that the neural network stopped training after 41 epochs
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to avoid overfitting. The neural network stopped training since there are no further

improvements on the validation data. Figure 6.13a is the receiver operating charac-

teristic, and provides the relationship between the true positive rate and false positive

rate. The neural network has a higher performance when the blue line is stretched

to the top left corner. If the blue line is stretched to the bottom right corner, low

performance is achieved. In Figure 6.13a, training, validation, and testing data are

very close to the top left corner indicating the high performance of the proposed

model. Figure 6.13b demonstrates the confusion matrix of the training data, valida-

tion data, test data and all of the data combined. In the training confusion matrix,

the neural network achieved 90.3% accuracy, which is very reasonable because the

neural network cannot have 100% accuracy on the training data to avoid overfitting.

Validation data achieved 82.8% accuracy and testing data achieved 83.2% accuracy

for detection of the real event.

(a) (b)

Figure 6.13. (a) The receiver operating characteristic of the proposed neural network model. (b)
The confusion matrices of the proposed neural network model.

6.3.2 Enhanced FitPropRate vs. Original FitProbRate

A comparison regarding the number of operations between the enhanced and

original versions of FitPropRate is conducted to test the exponentiality of a sequence
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of intervals. Table 6.3 and Figure 6.14 show that when the number of intervals is equal

to ten, both techniques perform similarly. However, when the number of intervals

increases, the proposed technique performs much better than the original one since the

enhanced version only uses the previous ten intervals. In the case where the number of

intervals is one thousand, the original FitPropRate needs three thousand operations,

whereas the proposed technique only needs ten operations. Since the complexity

of A-D test is n log n, testing a smaller number of intervals reduces the number

of operations needed to know which type of distribution it is, such as exponential

distribution.

Table 6.3. Number of operations (O(n log n)) for one transmitting node.

Number of Intervals FitProbRate Proposed Technique
10 10 10
20 26 10
50 85 10
100 200 10
200 460 10
500 1349 10
1000 3000 10

Figure 6.14. Number of intervals vs. number of operations for one transmitting node.

In Table 6.4 and Figure 6.15, the number of transmitting nodes is selected to

be five instead of one as in the previous comparison. Results also show that the

87



proposed technique reduces the number of operations needed whenever the number of

intervals increases when compared to the original FitPRobRate. In the case where the

number of intervals is one thousand, the original FitPropRate needs fifteen thousand

operations, whereas the proposed technique only needs fifty operations.

Table 6.4. Number of operations (O(n log n)) for five transmitting nodes.

Number of Intervals FitProbRate Proposed Technique
10 50 50
20 130 50
50 425 50
100 1000 50
200 2301 50
500 6747 50
1000 15000 50

Figure 6.15. Number of intervals vs. number of operations for five transmitting nodes.

6.4 EDADP1 vs. EDADP2 vs. FitProbRate

6.4.1 Average Delay

In Figure 6.16, the y-axis represents the delay per unit interval and the x-axis

represents the number of transmitted real packets. In Figure 6.16c, the average delay

of EDADP1 is similar to FitProbRate when the number of real packets increases in
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the case of 0.15 transmission rate. However, EDADP2 performance is the worst since

it does not increase the transmission rate of all real packets. EDADP2 only increases

the transmission rate of the odd real packets. Unlike EDADP1 that increases the

transmission rate of all real packets and FitProbRate that transmits the real packets as

soon as the entire sequence satisfies the A-D test. If the transmission rate is decreased

to 0.1, EDADP1 and FitProbRate perform similarly especially when the number of

real packets is four or more with a slight advantage to FitProbRate, as shown in

Figure 6.16b. This slightly less delay comes with a massive drawback regarding the

anonymity level, as shown in Figure 6.17. EDADP2 still provides higher delay when

compared to the other techniques. When the transmission rate is 0.05 (Figure 6.16a),

the performance of all three techniques dropped since the real packets are sent using

longer intervals. However, FitProbRate still has a slightly better performance over the

other two techniques due to the transmitting mechanism that is based on satisfying

the A-D test, but this mechanism sacrifices the anonymity.

(a) (b)

(c)

Figure 6.16. Average delay of real packets at (a) 0.05, (b) 0.1, and (c) 0.15 transmission rates.
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6.4.2 Anonymity Level

In Figure 6.17, the y-axis is the anonymity level and the x-axis is the number

of transmitted real packets. The ideal anonymity level is zero. EDADP2 has the

best performance at all transmission rates. EDADP2 provides a higher anonymity

level than EDADP1, especially when the number of real packets increases. The main

reason is the utilized mechanism by EDADP2 that increases the transmission rate of

the odd real packets and uses the original transmission rate for the even ones, which

confuses the neural network about the existence of the real event. EDADP1 provides

a high level of anonymity when the number of real packets is small and an acceptable

level of anonymity when the number of real packets is large. The EDADP1 has a

lower level of anonymity when compared to EDADP2 because EDADP1 increases

the transmission rate of all real packets. The performance of FitProbRate is poor

and far from the ideal anonymity level at all transmission rates because it only uses

(a) (b)

(c)

Figure 6.17. Anonymity level using the proposed neural network model at (a) 0.05, (b) 0.1, and
(C) 0.15 transmission rates.
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the A-D test to measure the anonymity level of a system. In contrast, EDADP1 and

EDADP2 attempt to avoid Rate Monitoring attacks, Time Correlation attacks, and

the A-D test, which results in a much higher level of anonymity.

6.4.3 A-D Test

The A-D test is a useful metric that achieves a high level of anonymity. Never-

theless, it cannot be used as a stand-alone parameter. The A-D test should be merged

with other metrics such as Rate Monitoring and Time Correlation to have a sufficient

analysis of a system. In Figure 6.18, the y-axis represents the percentage of scenarios

that passed the A-D test, whereas the x-axis represents the number of transmitted

real packets. All techniques perform similarly in all transmission rates with a slightly

better performance for FitProbRate. The reason for this outcome is that FitProbRate

applies the A-D test on the entire sequence every time a real packet is detected.

However, this unnoticeable difference comes with massive processing time, overhead,

and power consumption, as shown in Figure 6.19.

(a) (b)

(c)

Figure 6.18. Anderson-Darling test at (a) 0.05, (b) 0.1, and (c) 0.15 transmission rates.
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6.4.4 Average Processing Time

Figure 6.19 illustrates the efficiency of the proposed techniques in regards to the

average processing time, which can also indicate the overhead and power consumption

of the WSN. The y-axis represents the processing delay in seconds, whereas the x-

axis represents the number of transmitted real packets. EDADP1 and EDADP2 have

significantly less processing time when compared to FitProbRate at all transmission

rates. Additionally, the proposed techniques are not impacted by the number of real

packets. The average processing time needed by EDADP1 and EDADP2 is stable

regarding the number of real packets since the A-D test is not part of the proposed

techniques. In contrast, FitProbRate has a higher processing time, especially when the

number of real packets increases. This result was expected since FitProbRate applies

the A-D test every time a real packet is detected, which leads to more processing

delay, overhead, and power consumption.

(a) (b)

(c)

Figure 6.19. Average processing time at (a) 0.05, (b) 0.1, and (c) 0.15 transmission rates.
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Figure 6.20 shows that EDADP1 has a slight advantage over EDADP2 regarding

the average processing time because EDADP1 does not have to track the sequence

number of real packets. In other words, EDADP2 has more average processing time

because it needs to track the sequence number of each real packet to decide whether

the packet is odd or even.

Figure 6.20. Average processing time of EDADP1 and EDADP2 at 0.05 transmission rate.

6.4.5 Polluted Scenarios

The polluted scenarios show the reliability of the proposed techniques. In Fig-

ure 6.21, the y-axis represents the number of polluted scenarios out of one thou-

sand, whereas the x-axis is the number of transmitted real packets. The FitProbRate

technique is based on probability and the A-D test. Therefore, in some situations,

FitProbRate struggles to find the appropriate transmitting interval that satisfies the

A-D test. In this type of situations, FitProbRate enters an infinite loop in trying

to determine the time of the next interval, which causes the polluted scenario. In

FitProbRate, the number of polluted scenarios ranges from 15 to 33 cases based on

the selected transmission rate and the number of transmitted real packets. In the

proposed techniques, EDADP1 and EDADP2 achieved zero polluted scenarios be-

cause of their mechanism that does not allow any polluted scenarios to be created

since the A-D test is not part of the proposed techniques.
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This metric shows the high reliability of EDADP1 and EDADP2 when compared

to the FitProbRate scheme.

(a) (b)

(c)

Figure 6.21. Polluted scenarios at (a) 0.05, (b) 0.1, and (c) 0.15 transmission rates.
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CONCLUSION

Based on the experiments and simulation results of this work, the null (H0) hy-

pothesis cannot be rejected, which means that the adversary is confused about the

existence of the real event when the WSN is injected with dummy traffic. Given the

lack of techniques that provide high anonymity to the source node, this work presents

SLP techniques to improve the performance of WSNs while keeping a high level of

anonymity against a global adversary model that is capable of monitoring the entire

traffic in the network. Six different techniques, DUD, DAD, CAD, EDAD, EDADP1,

and EDADP2 were developed to provide a low transmission rate while still maintain-

ing anonymity. WSN applications that need privacy can select among the proposed

techniques based on the required level of anonymity with respect to delay, delivery

ratio, and overhead.

Previous literature does not provide validation models of the performance in

terms of anonymity. Therefore, all proposed techniques were tested under compre-

hensive analytical models (Visualization, Neural Network, and Steganography) to con-

firm that they provide a high level of anonymity. The simulations indicate that CAD

provides the best performance in terms of average delay and delivery ratio while guar-

anteeing the delivery of the event within a certain delay constraint. However, EDAD

outperforms other techniques with respect to overhead. The well-known FitProbRate

technique was tested under the proposed neural network model. The results demon-

strate that it performs poorly, especially when the number of real packets increases.

An enhanced version of FitProbRate was also developed and compared to the

original one. The results show that the proposed technique greatly reduces the num-

ber of operations required to determine if a specific sequence follows an exponential

distribution. Moreover, a comprehensive comparison between EDADP1, EDADP2,
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and FitProbRate was conducted that focuses on the average delay, anonymity level,

average processing time, Anderson-Darling test, and polluted scenarios. Results indi-

cate that EDADP1 and EDADP2 outperform the FitProbRate scheme overall. The

results confirm the high level of anonymity, efficient average processing time, and

reasonable average delay produced by the proposed techniques.

In the future work, other classifiers will be considered for the global adversary

model such as Deep Neural Networks and Support Vector Machine (SVM ). A more

sophisticated global adversary model that is capable of utilizing parallelism will also

be examined. In addition, an implementation of different routing protocols to show

the impact of these on the proposed techniques’ performance. Lastly, testing the

scalability of the proposed techniques by using larger networks will be attempted.
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[20] A. Milenković, C. Otto, and E. Jovanov, “Wireless sensor networks for personal

health monitoring: Issues and an implementation,” Computer communications,

vol. 29, no. 13, pp. 2521–2533, 2006.

[21] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Com-

puter networks, vol. 52, no. 12, pp. 2292–2330, 2008.

[22] S. Pirbhulal, H. Zhang, W. Wu, and Y.-T. Zhang, “A comparative study of

fuzzy vault based security methods for wirless body sensor networks,” in the

10th IEEE International Conference on Sensing Technology (ICST), 2016, pp.

1–6.

99



[23] P. Belsis and G. Pantziou, “Protecting anonymity in wireless medical monitor-

ing environments,” in Proceedings of the 4th ACM International Conference on

PErvasive Technologies Related to Assistive Environments, 2011, p. 55.

[24] J. B. Hughes, P. Lazaridis, I. Glover, and A. Ball, “A survey of link qual-

ity properties related to transmission power control protocols in wireless sen-

sor networks,” in the 23rd IEEE International Conference on Automation and

Computing (ICAC), 2017, pp. 1–5.

[25] G.-A. L. Zodi, G. P. Hancke, G. P. Hancke, and A. B. Bagula, “Enhanced

centroid localization of wireless sensor nodes using linear and neighbor weight-

ing mechanisms,” in Proceedings of the 9th ACM International Conference on

Ubiquitous Information Management and Communication, 2015, p. 43.

[26] F. Alfayez, “A wireless sensor network system for border security and crossing

detection,” Ph.D. dissertation, Manchester Metropolitan University, 2015.

[27] T. Azzabi, H. Farhat, and N. Sahli, “A survey on wireless sensor networks

security issues and military specificities,” in IEEE International Conference on

Advanced Systems and Electric Technologies (IC ASET), 2017, pp. 66–72.

[28] P. Pancholi and A. S. Yadav, “Energy efficient density-based k clusters for wire-

less sensor networks,” in the 7th IEEE Power India International Conference

(PIICON), 2016, pp. 1–6.

[29] K. K. Gagneja, “Secure communication scheme for wireless sensor networks to

maintain anonymity,” in IEEE International Conference on Computing, Net-

working and Communications (ICNC), 2015, pp. 1142–1147.

[30] R. D. Shinganjude and D. P. Theng, “Inspecting the ways of source anonymity

in wireless sensor network,” in the 4th International Conference on Communi-

cation Systems and Network Technologies (CSNT), 2014, pp. 705–707.

100



[31] R. V. Steiner and E. Lupu, “Attestation in wireless sensor networks: A survey,”

ACM Computing Surveys (CSUR), vol. 49, no. 3, p. 51, 2016.

[32] M. Guerrero-Zapata, R. Zilan, J. M. Barceló-Ordinas, K. Bicakci, and B. Tavli,
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