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Abstract 

Chemostratigraphy is an important tool for correlating layered sedimentary rock 

successions. Preserved/near primary carbon isotope signatures in marine carbonates can 

provide high-resolution profiles for sedimentary sequences supplementing the need for 

distinguishing fossils from different depositional environments and those lacking fossil 

materials. 

The Global Boundary Stratotype Section and Point (GSSP) of the Cambrian‒

Ordovician boundary is located at Green Point in the Green Point Formation of the Cow 

Head Group in western Newfoundland, Canada. To reconstruct a continuous and high-

resolution chemostratigraphy from the Cambrian‒Ordovician boundary to the Furongian 

Series Stage 10, we included the δ13C results of the Green Point Formation covering the 

Ordovician GSSP interval (Azmy et al., 2014). 

The Green Point Formation through the base of Ordovician GSSP consists of 

alternating dark gray to black shale and thin ribbon limestone rhythmites, with few fossils. 

The samples are micritic limestone, dolomitic limestone, and dolostone. They were 

determined to be in primary to near-primary condition based on multiple screening tests. 

Cathodoluminescence screening reveals dull to bright luminescence of the samples 

indicative of good preservation for many of them. The δ13Ccarb and δ18O values of the Green 

Point carbonates range from -6.44‰ to +0.33‰ (VPDB) and from -8.63‰ to -5.67‰ 

(VPDB), respectively, with poor correlation. Mn/Sr ratios range from 0.63 to 9.82, with no 

correlation to δ13Ccarb, but with ratios supporting the near primary nature of the δ13C values. 

Carbon isotope compositions of the Green Point Formation below the Ordovician 

GSSP fluctuate but remaine essentially invariantly negative. The δ13C values reveal a 
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negative excursion at and below the Cambrian‒Ordovician boundary, which may correlate 

with the Top of Cambrian Carbon Isotope Excursion (TOCE) and its significant negative 

excursion. A nadir of -6.44 ‰ at the base of the Eoconodontus conodont zone marks the 

proposed GSSP for the base of the Furongian Series Stage 10. The lower excursion may be 

correlated with the Hellnmaria-Red Tops Boundary (HERB) carbon isotope excursion 

found in sequences in the United States of America, Australia, and north China. Without 

an adequate record of conodonts, high-resolution chemostratigraphic trends of carbon 

isotope compositions facilitate the correlation of intercontinental and intracontinental 

sequences. 

 

Key words: Ordovician GSSP, carbon isotope values, Cambrian‒Ordovician, 
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Chapter 1 

Introduction 

           In 1999, the Ordovician Global Boundary Stratotype Section and Point (GSSP) was 

located in the Green Point section (western Newfoundland, Canada) by the International 

Working Group on the Cambrian‒Ordovician Boundary (COBWG) after investigating it 

for 25 years (Figure 1; Cooper et al., 2001). The Green Point section satisfied the criteria 

required of global boundary stratotype sections, such as: 1) continuity of sedimentation 

through the boundary interval, 2) completeness of exposure, 3) adequate thickness of 

exposure, 4) abundance and diversity of well-preserved fossils, 5) favourable facies for 

development of widespread reliable and time-significant correlation horizons, 6) freedom 

of structural complication, metamorphism, and other alteration, 7) free of unconformities, 

8) amenability to magnetostratigraphy and geochronometry, and 9) accessibility (Barnes, 

1988). Compared with other GSSP candidate sections, such as the Lawson Cove section in 

North America, the Black Mountain section in Australia, and the Dayangcha section in 

north China, the Green Point section is under-investigated for geochemistry with only 

informal and unpublished carbon isotope research done (Azmy et al., 2014; Cooper et al., 

2001).  

        Chemostratigraphy can record general chemical changes of sea water and variation of 

sea level that can affect a wide area and coeval deposition would record the same variations. 

Therefore, chemostratigraphy is a useful tool for correlating and subdividing global rock 

sequences. Since carbon is the most important element in calcium carbonate, the 

preserved/near primary stable carbon isotope signature in marine carbonates can provide 
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high-resolution profiles for sedimentary sequences eliminating the need for distinguishing 

fossils from different depositional environments (Azmy et al., 2014).  

        The strata of the Cambrian‒Ordovician boundary belong to the Martin Point Member, 

Green Point Formation, Cow Head Group that consists of green shale and ribbon limestone 

with scarce fossils. Therefore, carbon isotopes from whole rock is a better proxy than 

brachiopods and conodonts which are widely used in Paleozoic strata, but are rarely 

preserved in the Green Point section (James and Steven, 1986; Brand et al., 2011). In fact, 

the inorganic-carbonate carbon-isotope composition has received more attention than the 

organic carbon isotope one (e.g., Ripperdan et al., 1992; Terfelt et al., 2014). At Green 

Point of western Newfoundland, Azmy et al. (2014) build an inorganic carbon isotope 

profile of the Ordovician GSSP interval, and we will continue Azmy et al’s work and build 

a high-resolution δ13Ccarb profile from the Cambrian‒Ordovician boundary to the bottom 

of the Cambrian System Furongian Series Stage 10, and correlate the Green Point interval 

with other sections covering the Cambrian‒Ordovician boundary interval around the world. 
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Figure 1. Location of the Ordovician GSSP in western Newfoundland, Canada (modified from 

Azmy et al., 2014) 
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Chapter 2  

Geological Setting 

2.1 Sedimentology 

        The strata of the Cambrian‒Ordovician boundary belong to the Martin Point Member 

of the Green Point Formation of the Cow Head Group (James and Steven, 1986).  Thirty 

years ago, James and Steven (1986) did a comprehensive investigation of the stratigraphy 

and a local correlation of the Cambrian‒Ordovician Cow Head Group in western 

Newfoundland. Here is a short summary: 

        The Cow Head Group is exposed widely in western Newfoundland and sediments 

accumulated on the platform during transgression of the eastern Laurentian margin (Figure 

2) around 570‒550 Ma years ago (James and Steven, 1986). The group spans around 70 

million years from the late Middle Cambrian to early Middle Ordovician and consists of a 

300‒500 m thick sequence of carbonate and shale (James and Stevens, 1986). The Cow 

Head Group is exposed as a klippe overlying Middle Ordovician red shale and 

volcanogenic sandstone (James, 1981; Suchecki and Hubert, 1984; Williams et al. 1985). 

The facies and lithologies of the Cow Head Group vary from location to location and two 

major contemporaneous formations are recognized. The coarse-grained, conglomerate 

forms the Shallow Bay Formation, whereas the fined-grained shale is the Green Point 

Formation (James and Stevens, 1986). 

       The Green Point Formation at the base of the slope represents the most distal part of 

the carbonate apron with shale, ribbon limestone and scarce conglomerate (Cooper et al., 

2001; James and Stevens, 1986). The upper unit, St. Paul’s Member consists mostly of red 

shale. The middle Broom Point Member consists of ribbon limestone and conglomerate. 
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The basal Martin Point Member varies from 100 to 150 m is green and black shale, with 

thin buff-weathering siltstone and layers or packages of ribbon limestone and a few thin 

layers of conglomerate (James and Stevens, 1986; Figure 4).  

    

Figure 2. Location of the Ordovician GSSP on the Paleomap (modified from Scotese, 2002, 

PALEOMAP Project, http://www.scotese.com). 

         

        The spike designating the Cambrian–Ordovician boundary is located within Bed 23 

which is the lowest bed of the Broom Point Member at Green Point (Cooper et al., 2001). 

Therefore, the beds below the Ordovician GSSP belong to the Martin Point Member 

(Figures 3, 4). The Martin Point Member at Green Point was measured and described in 

detail by James and Steven (1986). It consists of green shale, siltstone, ribbon limestone, 

lime mudstone, and minor conglomerate (Figure 4). Our samples were obtained from 

limestone layers of Beds 17 to 3(c) (Figures 3, 5). 

http://www.scotese.com)./
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Figure 3. Map of Green Point, western Newfoundland, Canada showing the distribution of outcrops 

of the beds that bracket the Cambrian‒Ordovician boundary interval (modified from Cooper et al., 

2001). 
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2.2 Paleontology and Biostratigraphy 

        During the Cambrian, trilobites were common and distinguishable fossils extremely 

useful for worldwide biostratigraphic correlation (Palmer, 1977). The FAD First 

appearance datum) of Lotagnostus americanus was approved by the ISCS in 2004 as a 

potential indicator for the base of the Furongian Series Stage 10 (Babcock, 2005). Most 

Cambrian trilobites of the Cow Head Group are found in conglomerates or shallow-water 

limestones of the Shallow Bay Formation (James and Steven, 1986). At Green Point, 

trilobite fossils are rarely found in the deep-water Green Point Formation. Therefore, 

trilobites cannot be used to correlate Cambrian‒Ordovician sections.  

        In the late Cambrian, however, conodonts are reliable for correlating carbonate 

sequences (Table 1; Azmy et al., 2014; Cooper et al., 2001; Terfelt et al., 2012). The FAD 

of Iapetognathus fluctivagus marks the Ordovician GSSP within Bed 23 at Green Point 

(Cooper et al., 2001). The strata under the Cambrian‒Ordovician boundary span the 

Cordylodus intermedius to Eoconodontus notchpeakensis biozones, but there is no 

conodont record under the E. notchpeakensis biozone.  

        E. notchpeakensis can be easily recognized by its two-element apparatus (Landing et 

al. 2010; Terfelt et al., 2012). The FAD of the conodont E. notchpeakensis at the onset of 

the HERB excursion is the proposed GSSP for the base of Cambrian Stage 10 (Landing et 

al., 2010, 2011, Miller et al., 2011, 2015), which is easily recognizable across Laurentia, 

east and west Gondwana, central Asia and Baltica (Landing et al. 2011; Terfelt et al., 2012). 

At Green Point, it is difficult to subdivide and correlate sections for the lack of fossils. In 

contrast, carbon isotope chemostratigraphy is a valuable and important tool that can 

compensate for this lack of suitable fossil material (Azmy et al., 2014).  
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Table 1. Correlation of conodont biozones for the Cambrian–Ordovician interval on Laurentia with 

North and South China (modified from Azmy et al., 2014; based on Cooper et al., 2001; Terfelt et 

al., 2012). 

 

 

         

 

 

 

 



 

9 

Chapter 3  

Methods 

         Ninety-six samples were collected from Beds 3(c) to 17 below the Cambrian‒

Ordovician boundary (49° 40’ 51” N; 57° 57’ 36” W) at Green Point, western 

Newfoundland. The samples are taken from laminated limestone to avoid allochthonous 

clasts (Figures 4.1, 4.2).  

        The carbonate samples were split into three parts using a rock saw, and two thin 

sections were made for each sample. The first thin section of the first split was used for 

petrographic analyses with a polarizing microscope. They were cut to a thickness of 30 µm 

and half of each was stained with Alizarin Red-S and potassium ferricyanide solution 

(Dickson, 1966; Lindholm and Finkelman, 1972). The second set of thin sections was cut 

to a thickness of 50 µm and used for cathodoluminescence (CL) observations. The Nuclide 

3 LM Cathode Luminoscope was operated with an average 10.98 kV accelerating voltage 

and 0.82 mA current (Brock University).  

        The powder for trace element and stable isotope analyses was drilled from the fine 

grained limestone on the mirror-image slab of the CL thin section using a dental drill. It 

was guided by petrographic and CL observations to avoid recrystallization, cementation 

and other contaminants. For each sample, one or more spots were chosen for drilling and 

around 20 mg of powder was weighed out to four decimal places with a Sartorius balance 

and subsequently stored in a 10 mL clean tube. 7.3 mL of 2.1 % (v/v)  distilled HNO3 was 

added into each tube for digesting the powder with a Hamilton MicroLAB 600 Series 

diluter. After more than 12 hours each sample solution was filtered to remove the insoluble 

residue. Clean sample solutions were used to analyze for Ca, Mg, Mn, Sr, and Fe content 
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using the Varian SpectrAA 400P atomic absorption spectrometer at Brock University. The 

carrier gas for the Sr test was nitrous oxide, whereas for all the others we used acetylene. 

All elemental results were normalized to a 100 % carbonate basis (cf. Brand and Veizer, 

1980). The reproducibility (accuracy and precision) of the results was monitored by the 

analysis of NIST standard reference material NBS 633 (N=103) throughout the chemical 

analyses. The percent reproducibility was 2.12 % for Ca, 1.76 % for Mg, 3.03 % for Sr, 

4.7 % for Mn, and 5.25 % for Fe with respect to certified NBS values.  

        For stable carbon and oxygen isotope analyses, the experiments were carried out on a 

Thermo-Finnigan DELTA V GasBench II coupled to a TF DELTA V isotope ratio mass 

spectrometer at Memorial University of Newfoundland. The powders were reacted with 

100% orthophosphoric acid at 70°C. Uncertainty of the analyses was better than 0.1 ‰ (2σ) 

of NBS 19. The stable carbon and oxygen isotope compositions are expressed in the 

conventional δ13C and δ18O notations relative to Vienna Pee Dee Belemnite (VPDB). 
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Figure 4.1 Stratigraphic framework of Bed 15 to 18 below the Cambrian–Ordovician boundary at 

Green Point, western Newfoundland, Canada. It details bed numbers and measured positions of 

investigated samples and the conodont zonation scheme (modified from Cooper et al., 2001; 

James and Steven, 1986). 
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Figure 4.2 Stratigraphic framework of Bed 3(c) to 14 below the Cambrian–Ordovician boundary 

at Green Point, western Newfoundland, Canada. It depicts bed numbers and measured positions 

of investigated samples, and the conodont zonation scheme (modified from Cooper et al., 2001; 

James and Steven, 1986). 
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Chapter 4  

Results 

4.1 Petrography  

        At Green Point, our carbonate samples are dominantly limestone that stained red 

(Figure 5). Tiny carbonate particles were produced in great abundance and accumulated on 

the bottom of the sea floor wherever turbulence was insufficient to put them in suspension 

and currents were too weak to carry them away.  

 

Figure 5. Photomicrograph of sample GP H66 (under plane-polarized light). 

 

        Rhombohedra of dolomite and ferroan dolomite were noted in some samples. Twelve 

samples are dolomitic limestone in which rhombic dolomite grains deposited without being 

stained (Figure 6). In three samples, the matrix was replaced by ferroan dolomite which 

stained blue with potassium ferricyanide solution (Figure 7). The euhedral dolomite 
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crystals can be easily distinguished from the anhedral calcite and angular quartz sand. At 

Green Point, rhombic dolomite crystals have a turbid center surrounded by a clearer rim. 

They usually contain minute calcite inclusions which stained red. In dolomitic limestones, 

crystals composed chiefly of dolomite and quartz are in irregular contact with the calcitic 

matrix. The dolomite and quartz occur in laminated beds that alternate with others 

consisting solely of calcite. Alternating laminations of dolomite and calcite perhaps are 

caused by changing physicochemical conditions in the depositional environment favouring 

early dolomitization of some layers and not of others. Dolomite contains angular quartz 

sand grains inherited from original calcarenites whose textures have been obliterated by 

dolomitization; in some of these rocks the quartz grains are deposited in cross-laminae, 

indicating that limestone deposition was affected by currents.  

        Pressure solution and recrystallization were noted in some samples. Sample GP H51 

contains enlarged and bend calcite grains growing upwards (Figure 8). In sample GP L70, 

quartz replaced the calcite that was deposited as coarse sand (Figure 9). The micritic 

limestone samples (e.g., GP H66) also show an upgrade trend in a few of samples (Figure 

10). Some samples show layers which were formed by algae and quartz (Figures 11, 12).  

Fifteen samples show pyrite that are scattered or banded in the samples (Figure 13). 
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Figure 6. Photomicrographs of sample GP H18 (dolomitic limestone): (A) under plane-polarized 

light; (B) under cross-polarized light. The calcite crystals are partially replaced by dolomite crystals.  
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Figure 7. Photomicrographs of sample GP H5 (ferroan dolomite): (A) under plane-polarized light; 

(B) under cross-polarized light. It is completely dolomitized by ferroan dolomite with some angular 

quartz sand. 
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Figure 8. Photomicrographs of sample GP H51: (A) under plane-polarized light; (B) under cross-

polarized light. Bent calcite sand shows signs of pressure solution (dark bands). 
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Figure 9. Photomicrographs of sample GP H70; (A) under plane-polarized light; (B) under cross-

polarized light. It shows quartz replacement.  

B 
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Figure 10. Photomicrograph of sample GP H66 (under cross-polarized light). It shows aggrading 

calcite grains. 

 

Figure 11. Photomicrograph of sample GP H17 (under plane-polarized light). It shows algae layers. 
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Figure 12. Photomicrograph of sample GP H77 (under cross-polarized light). It shows one quartz 

layer. 

 

Figure 13. Photomicrograph of sample GP H17 (under cross-polarized light). The black patch in 

the middle is a pyrite grain. 
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4.2 Cathodoluminescence 

        Cathodoluminescence aids in the evaluation of the preservation status of carbonates. 

Dull cathodoluminescence, in general, indicates relative good preservation of geochemical 

signatures and bright cathodoluminescence may be caused by post-depositional diagenesis 

(Machel and Burton, 1991). In this research, 13 samples show dull cathodoluminescence 

(Figure 14). Sixty-six samples have dull red cathodoluminescence (Figure 15) and 29 

samples have bright red-orange luminescence (Figure 16).  

   

Figure 14. Cathodoluminescence of sample GP H6. It shows dull cathodoluminescence. 

    

Figure 15. Cathodoluminescence of sample GP H55. It shows dull red cathodoluminescence. 
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Figure 16. Cathodoluminescence of sample GP H23. It shows bright cathodoluminescence. 

   

Figure 17. Cathodoluminescence of sample GP H17. Pyrite does not luminescence.  

   

Figure 18. Cathodoluminescence of sample GP H25. The clasts have two different sources. 
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       Some samples contain pyrite and as expected it does not luminesce (Figure 17). The 

pyrite may be scattered throughout the matrix or form layers within the carbonates. They 

also appear within algal layers that exhibit dull cathodoluminescence. Other samples 

contain clasts collapsed from shallow places that show different cathodoluminescence from 

the matrix (Figure 18). For trace element analysis, the powder of samples was always 

drilled from matrix avoiding acquisition from other sources such fracture and void-filling 

cement, weathered rinds, infilling and replacement materials.  
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4.3 Trace Elements 

        The trace element contents of the carbonate samples from the Green Point Section are 

tabulated in Appendix 1, and trends and distributions are illustrated in Figures 19‒22. 

Based on petrographic evaluation, samples can be divided into three groups (Table 2). 

Calcium content decreases from limestone to dolostone, while Mg, Mn, and Fe contents 

increase with increasing dolomite concentration. Dolostone has low and stable Sr 

concentration, while limestone and dolomitic limestone contain, on average, more Sr. The 

Mn/Sr ratios are lower than 10 in all samples and the average Mn/Sr ratio also increases 

with increasing dolomite content (Figure 22). 

Table 2. Chemical features of samples 

Groups  
δ13C δ18O Ca Mg Sr Mn Fe Mn/Sr 

‰ ‰ ppm ppm ppm ppm ppm  

Limestone 

N 83 83 94 94 94 94 94 94 

Ave -2.31 -7.60 390818 4182 298 611 2746 2.23 

Min -6.44 -8.63 385780 1715 144 226 658 0.63 

Max 0.33 -6.92 393285 9220 953 2015 8663 9.82 

Dolomitic-

limestone 

N 12 12 12 12 12 12 12 12 

Ave -2.88 -7.38 327750 67251 295 994 23241 3.60 

Min -4.82 -8.55 290646 13890 213 598 3918 1.25 

Max -1.52 -6.86 381110 104354 478 1596 38151 5.83 

Dolostone 

N 3 3 3 3 3 3 3 3 

Ave -1.97 -6.47 273707 121293 242 1383 27334 5.68 

Min -2.12 -6.91 270146 114327 222 1047 12801 4.72 

Max -1.77 -5.67 280673 124854 262 1644 38351 6.28 

 (N= number of samples; Ave: average value; Min: minimum value; Max: maximum value) 

 

        The Fe content of limestone is lower than 10,000 ppm. The dolomitic limestone and 

dolostone have high Fe with averages of 23,241 and 27,334 ppm, respectively. In general, 

the Mn content of dolomitic limestone and dolomite are higher than in limestone. The Fe 

content shows no clear correlation with Mn content in all samples (Figure 19). 
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Figure 19. Scatter diagram showing the correlation of Mn with Fe. 

 

Figure 20. Scatter diagram showing the correlation of Sr with Fe. 
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Figure 21. Scatter diagram showing the correlation of Sr with Mg, and a potentially high Sr 

aragonite precursor for the dolomite.  

 

Figure 22. Scatter diagram showing the correlation of Mn/Sr ratios with Mg. The Mg and Mn/Sr 

ratios show a clear positive correlation with increasing dolomite composition.    
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        The Sr content of most of samples range from 200 to 400 ppm. Two samples have 

higher Sr content (> 800 ppm), which should be used with caution. The Sr content of 

dolostone and dolomitic limestone are more concentrated than limestone (Figure 21).  

        With the increase of dolomite, the Mg content rises, too. The Mg contents of 

limestone are between 1715 to 9220 ppm. As for dolomitic limestone, the Mg is between 

13,890 to 104,354 ppm, whereas the Mg content of dolostone samples can reach 124,854 

ppm. The correlation between Sr and Mg is poor in limestone, but it is obvious and 

negative in dolomitic limestone (R2=0.5198; Figure 21). 
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4.4 Stable Carbon and Oxygen Isotopes 

        Stable carbon and oxygen isotope compositions of the Green Point section carbonates 

are listed in Appendix 1 and illustrated in Figures 23‒26. The δ13C values ranges from -

6.44‰ to +0.33‰, with an average of -2.37‰. The δ13C values of the limestone samples 

are much more dispersed than those of the dolomitic limestone. The δ13C values of 

dolostone are around -2‰. The δ18O values are more concentrated than δ13C values that 

vary from -8.63‰ to -5.67‰, and the average value is -7.54‰. The δ18O values of 

dolostone are more positive than those of the limestone and dolomitic limestone. There is 

no obvious correlation between δ13C and δ18O values (Figure 23). 

 

Figure 23. Plot of δ13C and δ18O values. The carbon isotope values are more scattered than the 

oxygen isotope ones.  
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        The δ13C values show no correlation with Mn/Sr ratios (Figure 24). The Mn/Sr ratio 

increases with dolomitization, and all the Mn/Sr ratios are lower than 8.0 except for one 

sample. The δ13C values show no correlation with Mg content in limestone samples, either. 

However, dolomitization increases Mg content (Figure 25). The dolomitic samples also 

have high Fe content and relatively high carbon isotope values (Figure 26). 

 

Figure 24. Plot of δ13C values and Mn/Sr ratios. 
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Figure 25. Plot of δ13C values and Mg. 

 

Figure 26.  Plot of δ13C values and Fe. 
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4.5 Chemostratigraphy 

        Based on sample horizon, we built stable carbon isotope profiles for the Green Point 

section (Figure 27; the top eighty-two results are from Azmy et al., 2014). It records the 

change of stable carbon isotope values from the top of the Furongian Series of the Cambrian 

to the Tremadocian of the Ordovician. 

        Stable carbon isotope compositions below the Ordovician GSSP fluctuate but remain 

essentially invariantly negative. Carbon isotope values fluctuate at the bottom of the 

succession. There is a significant negative carbon isotope excursion between 85 m and 90 

m, with a nadir of -6.44 ‰. Carbon isotope values fluctuate between -5 ‰ to -3 ‰ within 

the next 7m. Then, carbon isotope values increase to around 0 ‰ at around 111 m and 

subsequently decrease to -4.8 ‰ at around 123 m. Then, the δ13C values fluctuate between 

-3 ‰ to +1 ‰ over the next 35 m.  There is a big negative stable carbon isotope excursion 

associated with the Ordovician GSSP, with a nadir of -4.7 ‰. After the Cambrian‒

Ordovician boundary δ13C values rapidly increase to +0.6 ‰ (Figure 27).  
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Figure 27. Carbon isotope chemostratigraphy of the Green Point section carbonates. 
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Chapter 5  

Discussion 

 5.1 Evaluation of Sample Preservation 

        The carbon isotopes of whole rock may be used as proxy of original seawater carbon 

composition (Kaufman and Knoll, 1995; Brand et al., 2011). However, diagenesis can 

change the texture, mineralogy and original chemistry of carbonate and then the δ13Ccarb 

values may reflect the composition of the diagenetic fluid instead of the original and 

ambient seawater (Brand and Veizer, 1980, 1981). Therefore, carbonate samples should 

pass screening tests evaluating their post-depositional diagenesis and alternation before 

reconstructing carbon isotope profiles (cf., Brand et al., 2011). The earliest diagenetic 

alteration of carbonate may occur right after deposition when the carbonate was exposed 

to the marine water in which it formed and associated organisms may change the uppermost 

parts of the deposits (e.g., Swart, 2015). During the burial process and after uplift and 

exposure to vadose meteoric solutions, the original deposits may stay in a different 

chemical environment where further diagenesis may take place (e.g., Chilingar et al., 1967; 

Brand and Veizer, 1980; Williams et al., 1985). 

        The first method of testing for diagenesis is to evaluate the texture of the samples. 

Textural alternation usually occurs during transformation from a metastable phase to a 

more stable one (Brand and Veizer, 1980). During diagenesis, the content of sparry calcite 

increases because calcite spar as cement was precipitated in void spaces from pore fluids 

during the cementation process, and fine-grained calcite was converted to coarser-grained 

mosaic calcite by neomorphism (Williams et al., 1985). At Green Point, however, most of 

the examined samples are micritic limestone. Graded bedding and quartz replacement are 
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observed in a few samples. Although calcite spar precipitated as cement in fractures, 

fractures are not common in the samples from Green Point. Based on petrographic 

evaluation, most of the samples are micrite showing insignificant recrystallization and 

cement is not widely observed indicating, overall, relatively good preservation of the whole 

rock material. 

        Dull cathodoluminescence may indicate relative good preservation, whereas bright 

luminescence results from post-depostional alternation (e.g., Rush and Chafetz, 1990; 

Machel and Burton, 1991). However, cathodoluminescence in carbonates can be activated 

by high concentrations of Mn and quenched by high concentrations of Fe (Machel and 

Burton, 1991). Therefore, altered carbonate may have dull luminescence because of high 

concentration of Fe and well preserved samples may show bright luminescence due to high 

Mn content (Rush and Chafetz, 1990). Accordingly, cathodoluminescence observation by 

itself is insufficient for evaluating the preservation status of carbonate samples. Indeed, it 

should be complemented by additional screening tests (Brand et al., 2011; Azmy et al., 

2014). At Green Point, samples show dull, dull-red, and bright-red-orange 

cathodoluminescence. As is shown in Table 3, 13 samples show dull cathodoluminescence 

containing high Fe and Mn content. 66 samples illustrate dull-red cathodoluminescence 

with less Fe and Mn contents compared with dull samples. The Fe content in bright-red-

orange group is the lowest but Mn concentration is higher than the dull-red group. 

Therefore, cathodoluminescence of the carbonate samples at Green Point are basically 

dominated by contents of Fe and Mn that cannot be used as an equivocal indicator of 

preservation of samples. 
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        Trace elemental ions such as Mg2+, Mn2+, Sr2+, and Fe2+ can be incorporated into 

carbonate minerals in several ways, but only substitution for Ca2+ in the CaCO3 lattice can 

be utilized for quantitative studies (Brand and Veizer, 1980; Veizer, 1983). Meteoric water 

contains less Sr2+, but more Mn2+ and Fe2+. δ18O and probably δ13Ccarb values in meteoric 

water are more negative than those of seawater. Therefore, the diagenetic process would 

lead to enrichment of Mn2+ and Fe2+ and depletion of Sr2+, 18O, and 13C in the diagenetic 

product. In contrast, the Mg2+ content can either increase or decrease depending on the 

original carbonate mineral (Brand and Veizer, 1980). Therefore, the changes of trace 

elements are important tracers because they can reflect the degree of post-depositional 

diagenesis and carbonate alteration.   

Table 3. Chemical features of the three cathodoluminescence groups 

      

         Both Sr and Mn are sensitive elements of post-depositional diagenesis. Sr2+ is easily 

leached from the carbonate lattice by meteoric water, while Mn2+ can be easily absorbed 

from diagenetic water into the carbonate lattice during post-depositional diagenesis (e.g., 

Brand and Veizer, 1980; Gilleaudeau and Kah, 2013). Since Sr and Mn elements have 

Group  Fe ppm Mn ppm Mn/Sr δ13C ‰ δ18O ‰ 

Dull 

N 13 13 13 12 12 

Ave  26016  1105 4.23 -2.59  -7.00  

Min 4131 443 1.07 -4.01 -7.87 

Max 38351 1644 6.28 -1.52 -5.67 

Dull-red 

N 66 66 66 59 59 

Ave  3309 530 1.82 -2.27 -7.66 

Min 704 226 0.63 -6.01 -8.63 

Max 14657 1496 3.51 +0.33 -6.92 

Bright-red-

orange 

N 29 29 29 27 27 

Ave 2124 802 3.15 -2.5 -7.5 

Min 658 396 1.51 -6.44 -8.00 

Max 419 2015 9.82 -0.64 -6.98 
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opposite directional components with post-depositional diagenesis, the Mn/Sr ratio is a 

suitable geochemical proxy to evaluate the degree of alteration of marine carbonates 

(Kaufman and Knoll, 1995). The isotopic composition can represent the original 

sedimentary environment if the Mn/Sr ratio is lower than 3 and the diagenetic effect is 

considered negligible if the Mn/Sr ratio is less than 10 (Kaufman and Knoll, 1995). At 

Green Point, Mn/Sr ratios of samples are all less than 10, and 72 of them are less than 3, 

indicating that the carbonate are indeed well preserved. Moreover, Mn and Sr are poorly 

correlated (R2=0.006). Consequently, this suggests that near-primary stable carbon isotope 

compositions are preserved in our samples. 

        In contrast, the oxygen isotope composition is much more sensitive in carbonates than 

carbon isotopes which are rock-buffered, because of the high water-rock ratios in meteoric 

diagenesis (e.g., Brand and Veizer, 1981; Banner and Hanson,1990; Knauth and Kennedy, 

2009). The diagenetic fluids that fill the pores of rocks are enriched in 16O, and will lower 

the δ18O values of the carbonate during diagenesis (e.g., Jacobsen and Kaufman, 1999; 

Knauth and Kennedy, 2009). Generally, samples that were affected by post-sedimentary 

diagenesis would have more negative δ18O values, and if the δ18O values are lower than -

10 ‰, the carbonate might have been altered (Kaufman and Knoll,1995; Lang et al., 2016). 

In this research, δ18O values of all the samples range from -5.67 ‰ to -8.63 ‰ and they do 

not show significant correlation with δ13Ccarb values (Figure 23). 

        Carbon isotope values in carbonate sediment and rock may not closely reflect the 

depositional environment as they can react with meteoric pore water during diagenesis 

leading to positive or negative variations (Walter et al. 1993; Hu and Burdige 2007). The 

stable carbon isotope values of dolomitic limestone and dolostone have a narrower range 
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than of the limestone indicating dolomite was deposited in a shallow marine environment 

and subsequently influenced by meteoric water. However, the carbon isotope values show 

poor correlation with oxygen isotope values, Fe, Mn, Sr, and Mn/Sr all indicating good 

preservation of the carbonates at Green Point.  

        In summary, diagenesis of the limestone is negligible based on poor correlation of 

trace elements and stable isotopes. δ13C signatures are considered reliable to reconstruct 

carbon isotope profile recording the original chemical features of seawater in the Late 

Cambrian sediments at Green Point. However, dolomitic limestone and dolostone may 

have altered in the shallow environment and suffered from more post-depositional 

alternation because of the slight correlation between trace elements and stable isotopes. 

Therefore, the carbon isotope values of dolomitic limestone and dolostone should be used 

with caution in chemostratigraphic reconstructions.   
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5.2 Stable Carbon Isotope Chemostratigraphy 

        Ripperdan (1992) found that sea level, conodont biozones and inorganic carbon 

isotope values changed synchronously within the Cambrian‒Ordovician interval at Black 

Mountain, Australia. At the Green Point section, the carbon isotope values fluctuate 

through the whole section and they do not show clear correlation with conodont zones 

(Figure 27). During the Furongian Series of the late Cambrian in Australia, three sea level 

events are recorded in the sequence, and they all correspond to decreases in carbon isotope 

values (Ripperdan et al., 1992; Miller et al., 2015). At Green Point, the strata under the 

Cambrian‒Ordovician boundary were deposited continuously in deep water and with no 

evidence of any significant stratigraphic breaks (Barnes, 1988). However, carbon isotope 

values decrease concomitantly with three regressions. The Red Tops Lowstand, the first 

regression event, is located at the base of E. notchpeakensis which corresponds to a large 

negative carbon isotope excursion (Miller et al., 2015). The Lange Ranch regression 

corresponds to the base of the C. proavus Zone that in turn corresponds to the middle 

carbon isotope excursion in the Green Point Section where δ13C values drop from -0.8 ‰ 

to -4.8 ‰ (Ripperdan et al., 1992). The last regression event was the Basal House Lowstand 

that is marked by the beginning of the C. intermedius Zone, with δ13C values decreasing 

from around 0 ‰ to -4.3 ‰ below the Ordovician GSSP (Azmy et al., 2014; Miller et al., 

2015).  

        The negative carbon isotope excursion at the top of the Cordylodus intermedius Zone 

marks the Cambrian‒Ordovician boundary (Azmy et al., 2014). In the lower part of the C. 

proavus Zone, there is a negative carbon isotope excursion with a decrease to -4.8 ‰. This 

excursion is termed the Top of the Cambrian Excursion (TOCE; Zhu el al., 2006). At the 
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base of the Eoconodontus notchpeakensis Zone, there is another big negative excursion 

followed by a smaller negative excursion.  Ripperdan (2002) named this large negative 

carbon isotope excursion the Hellnmaria-Red Tops Boundary (HERB) carbon isotope 

excursion. Moreover, Landing (2010, 2011) confirmed that the HERB carbon isotope 

excursion is lower than the TOCE and corresponds to the FAD of Eoconodontus 

notchpeakensis (Figure 28).   
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5.3 Correlation 

        The GSSP of the Cambrian‒Ordovician boundary was located at Green Point, western 

Newfoundland, Canada by the International Working Group on the Cambrian‒Ordovician 

Boundary (COBWG) in 1999 and approved by the International Subcommission on 

Ordovician Stratigraphy (ISOS), the Commission on Stratigraphy, and by the International 

Union of Geological Sciences in the following year (Cooper et al., 2001). During its 25 

years of investigation, the COBWG inspected many candidate sections in different 

countries, such as Kazakhstan, China, Australia, Scandinavia, Britain and North America. 

From this work, many papers were published and some of them also reported stable carbon 

isotope results.  

        Table 4 illustrates the sections where the HERB carbon isotope excursion has been 

found. Although strata were deposited in different environments of different depths, the 

amplitude of the HERB carbon isotope excursion is also different. The HERB carbon 

isotope excursion always shows up in the Eoconodontus Zone or below the Cordylodus 

proavus Zone (Figure 28). In inorganic records, the HERB carbon isotope excursion at 

Quebrada De La Flecha in Argentina was found without a conodont record and its nadir is 

-5.6 ‰ (Sial et al., 2008). The section at Baltica in Sweden has an organic carbon isotope 

record, and the nadir of the carbon isotope excursion is -30.5 ‰ and was also found without 

a conodont record (Terfelt et al., 2014). Hence, the HERB carbon isotope excursion can be 

found in both organic and inorganic carbon isotope records and in sections with/without 

substantiating conodont records. 
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Table 4. The sections were the HERB carbon isotope excursion was found (?: the location of HERB carbon isotope excursion is not sure). 

No. Location  Country 

Source 

Materi

al 

Nadir of 

δ13C ‰ 
Conodont Zone Source 

1 Black Mountain Australia carb -3.5 Middle of Econodontus Ripperdan et al., 1992 

2 Dayangcha North China carb -0.5 Base of Eoconodontus Ripperdan et al., 1993 

3 Lawson Cove U.S.A. carb -1.5 Base of Eoconodontus 
Ripperdan and Miller, 

1995; Miller et al., 2006 

4 
Green Point 

(Ordovician GSSP) 
Canada carb No record  Cooper et al., 2001 

5 Cerro La Silla Argentina carb -2.5 Below Cordylodus proavus Buggisch et al., 2003 

6 Quebrada De La Flecha Argentina carb -5.6 No Conodont record Sial et al., 2008 

7 Kalpin China carb -2? No Conodont record Jing et al., 2008 

8 Kulyumbe River Siberia carb -1? Below Cordylodus proavus Kouchinsky et al., 2008 

9 Sneakover Pass U.S.A. carb -1.0 
Middle of Eoconodontus 

notchpeakensis 
Miller et al., 2011 

10 Sevier Lake Corral U.S.A. carb -0.8 
Top of Eoconodontus 

notchpeakensis 
Miller et al., 2011 

11 Quebrada De Juan Pobre Argentina carb -1.9 No Conodont record Sial et al., 2013 

12 Baltica  Sweden org -30.5 No Conodont record Terfelt et al., 2014 



 

42 

 

 

Figure 28. HERB carbon isotope excursion correlates with other sections covering the Cambrian‒

Ordovician interval: (A) Green Point section at western Newfoundland, Canada covering the 

Ordovician GSSP and Cambrian‒Ordovician interval; (B) section at Lawson Cove, the United 

States of America (Ripperdan and Miller, 1995; modified from Miller et al., 2006); (C) section at 

Black Mountain, Australia (modified from Ripperdan et al., 1992); (D) section in Dayangcha, 

China (modified from Ripperdan et al., 1993). 
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Chapter 6  

Conclusions 

       The carbonate samples below the Cambrian‒Ordovician boundary are micritic or near-

micritic limestone with minor dolomitic limestone and dolostone. They are determined to 

be in primary to near-primary conditions based on multiple screening tests, and stable 

carbon isotopes are deemed a reliable chemostratigraphic proxy.  

        Carbon isotope compositions below the Ordovician GSSP at Green Point, 

Newfoundland, Canada have fluctuated but remained essentially invariantly negative. They 

do not synchronously change with conodont biozones. However, the δ13Ccarb values reveal 

the TOCE in the uppermost Furongian series Stage 10, and the HERB carbon isotope 

excursion, with a nadir of -6.44 ‰, at the base of the Eoconodontus notchpeakensis Zone. 

        Carbon isotope chemostratigraphy may facilitate the correlation of intercontinental 

and intracontinental sequences. A large negative carbon isotope excursion found below the 

Cambrian‒Ordovician boundary at Green Point, Newfoundland correlates well with the 

HERB carbon isotope excursion in the United States of America, Australia, Siberia, 

Argentina, and North China. Moreover, this correlation is achieved without an adequate 

record of conodonts, and thus carbon isotope chemostratigraphy can refine global 

stratigraphic correlations. 
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Appendix 

Appendix 1 Trace element and isotopic compositions of Green Point samples including cathodoluminescence and petrography. 

Sample ID Bed Depth* 

Mean 

δ13CVPDB 

of Peaks 

Mean 

δ18OVPDB 

of Peaks 

Ca Mg Sr Mn Fe Mn/Sr Cathodoluminescence Petrography 

  m ‰ ‰ ppm ppm ppm ppm ppm    

GP H1 3(c) 70.50 -3 -7.64 392236 2764 205 2015 1966 9.82  Bright-orange Limestone 

GP H2 3(c) 71.10 -3.05 -7.94 390785 4215 312 1096 4947 3.51  Dull-red Limestone 

GP H3 3(c) 72.30 -3.36 -8.03 388637 6363 342 660 6929 1.93  Dull-red Limestone 

GP H4 4 73.20 -2.13 -7.5 290646 104354 291 1596 25437 5.49  Dull Dolomitic limestone 

GP H5 5 73.95 -1.77 -6.83 270302 124698 242 1458 38351 6.03  Dull Dolostone 

GP H6 5 74.65 -2.02 -6.91 280673 114327 262 1644 30850 6.28  Dull Dolostone 

GP H7 5 75.50 -1.52 -7.12 302059 92941 285 1288 22436 4.52  Dull Dolomitic limestone 

GP H8 5 76.30 -2.67 -7.74 385872 9128 362 421 4239 1.16  Dull-red Limestone 

GP H9 5 77.20 -3.38 -7.44 391843 3157 323 548 1427 1.70  Bright-orange Limestone 

GP H10 5 77.75 -4.28 -8.03 390043 4957 306 412 2296 1.34  Dull-red Limestone 

GP H11 5 78.45 -2.22 -8.09 392109 2891 218 367 2639 1.69  Dull-red Limestone 

GP H12 5 79.80 -3.63 -7.5 391977 3023 382 359 873 0.94  Dull-red Limestone 

GP H13 7 81.10 -1.12 -7.35 391615 3385 323 291 1116 0.90  Dull-red Limestone 

GP H13 1 7 81.10   391382 3618 404 433 4131 1.07  Dull Limestone 
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Sample ID Bed Depth* 

Mean 

δ13CVPDB 

of Peaks 

Mean 

δ18OVPDB 

of Peaks 

Ca Mg Sr Mn Fe Mn/Sr Cathodoluminescence Petrography 

GP H14 8 82.50 -3.82 -7.96 389980 5020 387 455 5253 1.18  Dull-red Limestone 

GP H14 1 8 82.50   388867 6133 452 567 6055 1.25  Dull-red Limestone 

GP H15 8 83.10 -4.32 -7.96 389918 5082 382 588 3172 1.54  Dull-red Limestone 

GP H16 8 83.60 -5.52 -7.99 390687 4313 379 605 2292 1.60  Dull-red Limestone 

GP H17 9 84.90 -1.66 -8.63 388324 6676 514 585 8663 1.14  Dull-red Limestone 

GP H18 9 85.30 -2.07 -8.55 380261 14739 478 598 8243 1.25  Dull-red Dolomitic limestone 

GP H19 9 85.70 -1.78 -7.22 392013 2987 245 646 658 2.64  Bright-orange Limestone 

GP H20 9 86.90 -6.01 -7.51 392604 2396 285 572 1194 2.00  Dull-red Limestone 

GP H21 10 88.30 -5.61 -7.92 388889 6111 330 605 3494 1.83  Dull-red Limestone 

GP H22-1 10 89.20 -6.42 -7.96 390320 4680 323 621 2989 1.92  Bright-orange Limestone 

GP H22-2 10 89.20 -6.44 -7.95 390612 4388 309 600 2767 1.94  Bright-orange Limestone 

GP H23 10 89.80 -1.64 -7.66 392259 2741 307 846 1443 2.76  Bright-red Limestone 

GP H24 10 90.30 -2.13 -7.4 391806 3194 251 644 1514 2.56  Dull-red Limestone 

GP H25 11 91.30 -2.74 -7.4 390940 4060 240 866 2220 3.61  Bright-red Limestone 

GP H25-1 11 91.30   392804 2196 953 1496 3898 1.57  Dull-red Limestone 

GP H25-2 11 91.30   388590 6410 493 770 2301 1.56  Bright-orange Limestone 

GP H26 11 93.40 -1.82 -7.49 391384 3616 245 684 2361 2.79  Bright-red Limestone 

GP H26 1 11 93.40   390748 4252 355 803 2107 2.26  Bright-red Limestone 
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Sample ID Bed Depth* 

Mean 

δ13CVPDB 

of Peaks 

Mean 

δ18OVPDB 

of Peaks 

Ca Mg Sr Mn Fe Mn/Sr Cathodoluminescence Petrography 

GP H27 11 94.20 -0.71 -7.29 391132 3868 260 628 2437 2.42  Bright-red Limestone 

GP H28 11 95.00 -1.21 -7.38 391800 3200 234 664 1714 2.84  Bright-red Limestone 

GP H29 11 95.50 -4.82 -7.36 349307 45693 286 810 3918 2.83  Dull-red Dolomitic limestone 

GP H30 11 96.40 -3.4 -8.05 386121 8879 251 350 1927 1.40  Dull-red Limestone 

GP H31A 11 96.70 -2.71 -7.04 326202 68798 242 816 13488 3.38  Dull Dolomitic limestone 

GP H31B 11 96.70 -3.47 -7.01 320466 74534 275 1001 38151 3.64  Dull Dolomitic limestone 

GP H31B 1 11 96.70   393200 1800 893 563 2409 0.63  Dull-red Limestone 

GP H32 11 96.80 -1.72 -7.43 389783 5217 296 933 2030 3.15  Dull-red Limestone 

GP H33 11 97.40 -2.73 -7.56 390289 4711 277 342 1844 1.24  Dull-red Limestone 

GP H33 1 11 97.40   386590 8410 404 487 7511 1.21  Dull-red Limestone 

GP H34 11 97.70 -2.75 -7.42 391188 3812 275 226 704 0.82  Dull-red Limestone 

GP H35 11 97.90 -1.98 -7.32 391318 3682 244 415 1045 1.70  Dull-red Limestone 

GP H36 11 98.15 -4.01 -7.13 310345 84655 213 1072 35500 5.04  Dull Dolomitic limestone 

GP H37 11 98.30 -2.9 -6.87 292704 102296 222 1296 36523 5.83  Dull Dolomitic limestone 

GP H38 11 98.80 -2.12 -5.67 270146 124854 222 1047 12801 4.72  Dull Dolostone 

GP H39 11 99.20 -3.48 -6.86 324686 70314 276 988 21221 3.58  Dull Dolomitic limestone 

GP H40 11 99.40 -4.18 -7.8 389402 5598 334 423 3604 1.27  Dull-red Limestone 

GP H41 11 99.60 -2.68 -7.87 338635 56365 349 796 31806 2.28  Dull Dolomitic limestone 
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Sample ID Bed Depth* 

Mean 

δ13CVPDB 

of Peaks 

Mean 

δ18OVPDB 

of Peaks 

Ca Mg Sr Mn Fe Mn/Sr Cathodoluminescence Petrography 

GP H42 11 100.75 -1.92 -7.09 389380 5620 291 429 2423 1.47  Dull-red Limestone 

GP H43 11 100.90 -1.52 -7.14 389614 5386 251 393 3183 1.56  Dull-red Limestone 

GP H44 11 101.10 -2.74 -7.24 388614 6386 330 336 3583 1.02  Dull-red Limestone 

GP H45 11 101.50 -3.11 -7.62 391342 3658 254 360 2783 1.42  Dull-red Limestone 

GP H45 1 11 101.50   391188 3812 178 537 3109 3.02  Dull-red Limestone 

GP H46 11 101.70 -2 -7.27 390128 4872 348 422 1694 1.21  Dull-red Limestone 

GP H47 11 102.15 -3.61 -8 391403 3597 272 484 3369 1.78  Bright-red Limestone 

GP H48 11 102.35 -2.2 -7.31 391603 3397 267 573 1775 2.15  Bright-red Limestone 

GP H49 11 102.45 -2.22 -7.27 391814 3186 332 600 813 1.81  Dull-red Limestone 

GP H50 11 102.70 -3.94 -7.69 390406 4594 365 458 1651 1.25  Dull-red Limestone 

GP H51 11 102.90 -1.94 -7.46 391982 3018 286 491 1589 1.72  Dull-red Limestone 

GP H52 13 105.00 -3.28 -8.04 385780 9220 414 1074 5980 2.60  Dull-red Limestone 

GP H53 13 105.70 -2.53 -8.07 381110 13890 331 733 14657 2.22  Dull-red Dolomitic limestone 

GP H54 13 106.50 -2.81 -8.27 391604 3396 332 690 5091 2.08  Dull-red Limestone 

GP H55 15 110.00 -2.16 -8.27 392092 2908 181 442 6236 2.44  Dull-red Limestone 

GP H56 15 110.50 -1.26 -8.02 391206 3794 314 486 4983 1.55  Dull-red Limestone 

GP H57 15 110.70 -0.57 -7.7 390966 4034 357 391 5224 1.10  Dull-red Limestone 

GP H58 15 110.80 -0.3 -7.9 391442 3558 327 399 4125 1.22  Dull-red Limestone 
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Sample ID Bed Depth* 

Mean 

δ13CVPDB 

of Peaks 

Mean 

δ18OVPDB 

of Peaks 

Ca Mg Sr Mn Fe Mn/Sr Cathodoluminescence Petrography 

GP H59 15 111.10 -0.11 -7.81 391944 3056 306 366 3305 1.20  Dull-red Limestone 

GP H60 15 111.30 0 -7.67 390703 4297 277 305 2307 1.10  Dull-red Limestone 

GP H61 15 111.50 -0.53 -8.02 391232 3768 316 295 2107 0.93  Dull-red Limestone 

GP H62 15 111.80 -0.67 -7.69 391045 3955 318 498 4525 1.56  Dull-red Limestone 

GP H64 15 112.40 -1 -7.66 391430 3570 346 657 4685 1.90  Dull-red Limestone 

GP H65 15 112.80 -1.52 -7.46 391489 3511 298 843 3262 2.83  Dull-red Limestone 

GP H66 15 113.20 -2.75 -7.61 390558 4442 317 947 1855 2.99  Bright-orange Limestone 

GP H67 16 113.30 -3.06 -7.37 391109 3891 311 1006 1722 3.23  Bright-red Limestone 

GP H68 16 114.00 -1.28 -7.76 388415 6585 280 738 2501 2.63  Bright-red Limestone 

GP H69 16 114.30 -2.91 -8.34 389701 5299 229 686 5453 2.99  Dull-red Limestone 

GP H70 16 114.90 -0.89 -7.28 391829 3171 267 453 1034 1.69  Dull-red Limestone 

GP H71 16 115.00 -0.95 -7.35 392112 2888 270 425 818 1.57  Dull-red Limestone 

GP L72 16 116.00 -1 -7.3 391926 3074 257 558 936 2.17  Dull-red Limestone 

GP L73 16 116.30 -0.8 -7.38 391237 3763 263 396 2158 1.51  Bright-red Limestone 

GP L74 16 118.30 -2.3 -7.28 391441 3559 249 1076 1518 4.33  Bright-red Limestone 

GP L75 16 119.25 -2.38 -7.8 391634 3366 316 829 2140 2.62  Bright-red Limestone 

GP L76 16  -1.88 -7.73 391042 3958 294 428 1338 1.46  Dull-red Limestone 

GP L77 16 121.30 -3.21 -7.66 391041 3959 279 635 1698 2.28  Bright-red Limestone 
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Sample ID Bed Depth* 

Mean 

δ13CVPDB 

of Peaks 

Mean 

δ18OVPDB 

of Peaks 

Ca Mg Sr Mn Fe Mn/Sr Cathodoluminescence Petrography 

GP L78 16 122.20 -1.65 -7.6 392029 2971 267 419 2867 1.57  Dull-red Limestone 

GP L79 16 123.20 -3.78 -8.06 388602 6398 254 807 6011 3.18  Dull-red Limestone 

GP L79 1 16 123.20   393285 1715 227 637 2150 2.81  Dull-red Limestone 

GP L79 2 16 123.20   392983 2017 201 623 2387 3.10  Dull-red Limestone 

GP L80 16 124.15 -4.8 -7.53 391249 3751 229 885 1063 3.86  Bright-red Limestone 

GP L81 17 125.00 -1.78 -7.52 391985 3015 226 501 1488 2.22  Bright-red Limestone 

GP L82 17 125.60 -2.46 -7.66 390678 4322 257 1328 4195 5.16  Bright-red Limestone 

GP L83 17 126.60 -1.9 -7.31 389873 5127 231 1570 3036 6.80  Bright-red Limestone 

GP L84 17 128.75 -2.31 -7.57 390672 4328 229 846 2638 3.69  Bright-red Limestone 

GP L85 17 129.50 -2.06 -7.68 391845 3155 229 571 1574 2.50  Dull-red Limestone 

GP L86 17 130.10 -1.14 -7.19 391716 3284 223 266 1225 1.19  Dull-red Limestone 

GP L87 17 130.35 -2.2 -7.34 391942 3058 194 425 2371 2.19  Dull-red Limestone 

GP L88 17 131.80 -1.73 -7.2 391738 3262 208 555 3017 2.67  Bright-orange Limestone 

GP L88 1 17 131.80   392409 2591 301 922 762 3.06  Dull Limestone 

GP L89 17 133.00 -1.09 -7.14 387532 7468 191 729 2040 3.82  Bright-red Limestone 

GP L90 17 134.80 -1.5 -7.36 390972 4028 221 511 3384 2.31  Dull-red Limestone 

GP L91 17 135.60 -1.46 -7.37 391918 3082 190 412 2466 2.17  Dull-red Limestone 

GP L92 17 137.35 -0.76 -7.12 392066 2934 156 519 1475 3.32  Dull-red Limestone 
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Sample ID Bed Depth* 

Mean 

δ13CVPDB 

of Peaks 

Mean 

δ18OVPDB 

of Peaks 

Ca Mg Sr Mn Fe Mn/Sr Cathodoluminescence Petrography 

GP L93 17 137.50 -2.29 -7.19 316573 78427 292 929 27515 3.18  Dull Dolomitic limestone 

GP L94 17 138.25 -0.19 -7.19 392414 2586 146 348 910 2.38  Dull-red Limestone 

GP L95 17 139.35 -0.64 -6.98 392176 2824 144 468 1004 3.26  Bright-orange Limestone 

GP L96 17 144.90 -2.56 -7.48 388456 6544 180 559 1974 3.11  Dull-red Limestone 

GP L97 18 145.45 +0.33 -6.92 391842 3158 159 286 904 1.80  Dull-red Limestone 

*Depth is estimated based on measurements from James & Stevens, 1986. 

 


