
Properties and Algorithms of the
(n, k)-Arrangement Graphs and

Augmented Cubes

Nafiseh Motevallibashi
Department of Computer Science

Submitted in partial fulfilment

of the requirements for the degree of

Master of Science

Faculty of Mathematics and Science

Brock University
St. Catharines, Ontario

©Nafiseh Motevallibashi, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brock University Digital Repository

https://core.ac.uk/display/146505563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The (n, k)-arrangement graph was first introduced in 1992 as a generalization of the

star graph topology. Choosing an arrangement topology is more efficient in compari-

son with a star graph as we can have a closer number of nodes to what is needed. Also

it has other advantages such as a lower degree and a smaller diameter, depending on

k. In this thesis we investigate the problem of finding k(n− k) disjoint paths from a

source node to k(n−k) target nodes in an (n, k)-arrangement interconnection network

such that no path has length more than diameter+(n−k)+2, where diameter is the

maximum length of shortest path between any two nodes in the graph. These disjoint

paths are built by routing to all neighbors of the source node and fixing specific ele-

ments in each of the k positions of the node representation in an (n, k)-arrangement

graph. Moreover, a simple routing is presented for finding n disjoint paths between

two nodes which are located in different sub-graphs. The lengths are no more than

d(t, s) + 4, for d(t, s) being the shortest path length between two nodes s and t. This

routing algorithm needs O(n2) time to find all n these paths.

In addition to arrangement graphs, we also study augmented cubes, first intro-

duced in 2002, a desirable variation of the hypercube. An augmented cube of dimen-

sion n has a higher degree and a lower diameter in comparison with the hypercube.

We introduce an O(n3) algorithm for finding disjoint shortest paths from a single

source node to 2n− 1 different target nodes.

i

Acknowledgement

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Ke Qiu

for his unfailing support, patience and encouragement through my studies. The door

of Dr. Qiu office was always open whenever I had a question or I ran into a trouble.

He led me in the right direction and allowed this thesis be my own work. I could not

have imagined having a better supervisor and mentor for my master study.

Besides my supervisor, I would also like to thank the rest of my thesis commit-

tee: Dr. Michael Winter, Dr. Sheridan Houghton, and Dr. Eddie Cheng for their

encouragement and insightful comments.

I am grateful to all my fellow graduate students.

Last but not least, I must express my very deep gratitude to my amazing parents,

to my brothers and sisters, and to my best friends for the love, constant support and

encouragement through my years of study and writing this thesis. This accomplish-

ment would not have been possible without them. Thank you.

N.M

ii

Contents

Abstract i

Acknowledgement ii

1 Introduction 1

1.1 Introduction . 1

1.2 Classification of Computer Architecture 3

1.3 Shared Memory Parallel Computers 4

1.4 Interconnection Networks . 7

1.4.1 Definitions . 7

1.4.2 Complete Graph . 10

1.4.3 Linear Array and Ring . 10

1.4.4 Mesh and Torus . 11

1.4.5 Hypercube . 12

1.4.6 Cube Connected Cycles . 14

1.4.7 Star Graph . 15

1.4.8 Arrangement Graph . 17

1.4.9 Augmented Cube . 18

1.5 Evaluating Parallel Algorithms . 19

1.5.1 Running Time . 20

1.5.2 Number of Processors . 21

iii

CONTENTS iv

1.5.3 Cost . 21

1.6 Organization of the Thesis . 21

2 Literature Review

Arrangement Graph 23

2.1 Introduction . 23

2.2 Properties . 24

2.2.1 Cycle Structure for Permutation 25

2.2.2 Routing and Shortest Length Path 25

2.2.3 Hierarchical Structure . 27

3 Literature Review

Augmented Cubes 29

3.1 Introduction . 29

3.2 Properties . 29

3.2.1 Hierarchical structure . 30

3.2.2 Path and Distance . 31

3.2.3 Routing Algorithm through Shortest Path 32

4 One to Many Disjoint Paths

Arrangement Graph 35

4.1 Introduction . 35

4.2 Finding n− 1 or n Disjoint Paths Between Two Nodes 36

4.3 Finding Disjoint Paths from a Source to k(n− k) Targets 42

4.3.1 Example . 52

5 Proposed Algorithm

Augmented Cubes 55

5.1 Introduction . 55

CONTENTS v

5.2 Finding Disjoint Shortest Paths in the Hypercube 56

5.3 Finding 2n− 1 Disjoint Shortest Paths in AQn 62

5.3.1 Proposed Algorithm . 64

5.3.2 Performance . 66

5.3.3 Example . 67

6 Conclusion 77

Bibliography 82

List of Figures

1.1 Sequential Computer . 2

1.2 Parallel Random Access Machine . 5

1.3 Read access to memory in PRAM: (a) Exclusive; (b) Concurrent. . . 6

1.4 Write access to memory in PRAM: (a) Exclusive; (b) Concurrent. . . 6

1.5 Interconnection network parallel computer. 8

1.6 A complete network for N = 5 . 11

1.7 Linear array interconnection network. 11

1.8 Mesh interconnection network . 12

1.9 (a) 0-cube; (b) 1-cube; (c) 2-cube; (d) 3-cube; (a) 4-cube 13

1.10 3D cube connected cycle . 15

1.11 4-star interconnection network . 16

1.12 (4, 2)-arrangement graph . 18

1.13 Three augmented cubes AQ1, AQ2 and AQ3 19

3.1 Associate weights with the edges in AQ10 33

4.1 4 disjoint paths in an A5,1 . 36

4.2 4 disjoint paths in an A4,2 . 39

4.3 Finding n disjoint paths in the An,k for 1 < k < n 41

vi

List of Tables

1.1 Interconnection networks and some of their parameters 20

vii

List of Algorithms

1 Routing Algorithm for Qn . 14

2 Routing Algorithm for Sn . 17

3 Routing Algorithm for AQn . 33

4 Routing Algorithm for 2n− 1 target nodes in an AQn 65

viii

Chapter 1

Introduction

1.1 Introduction

Among all the ideas generated by computer science over last 40 years, none has mu-

tated the field as has parallel computation. Basically all aspects of computing were

affected, and new concepts were achieved. From computer architecture to operat-

ing systems, from programming languages and compilers to databases and artificial

intelligence, and from numerical to combinatorial computing, every branch of the

discipline is undergoing a revival. In theoretical as well as in practical circles, a de-

gree of movement is being experienced since the beginning of the computing era, the

most noticeable effect was felt at the foundation of computer science, to be specific,

design and analysis of algorithms. Just when the traditional study of algorithms was

reaching to a stable state, the parallel computation revolution led to a new era of the

field which is expected to continue for a long time.

Two reasons are usually given for studying this area: First, sequential computers

(single processors) that perform one operation at a time, are quickly reaching a physi-

cal limit. This limit is imposed by the speed of light in a vacuum. Moreover, the time

taken to obtain a solution is unacceptably slow. The sequence of instructions is the

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Sequential Computer

program, which causes the processor to reach the solution for a certain problem. The

sequence of data is an instance of that problem. The control unit at each step brings

out one instruction that operates on a datum (such as a pair of numbers) received

from the memory unit. The instruction may be some arithmetic or logical operation

on the datum and then the processor puts the result back into memory, consider-

ing that the processor has a small local memory, consisting of a constant number

of fixed-size registers, to perform its computations. The processor is also connected

to an input unit and output unit for communicating with the outside world. That

is the procedure of computing the result in a sequential (or serial, or conventional)

computer, Fig. 1.1.

A parallel computer solves a problem by utilizing several processors. A problem

is broken into a number of subproblems. All of these subproblems are solved simulta-

neously, each on a different processor. In doing so, processors may communicate with

one another to exchange partial results. Finally, the results are combined to produce

an answer to the original problem.

The second reason for studying parallel computers is that they sometimes allow

problems to be solved that otherwise are impossible to reach sequentially even without

CHAPTER 1. INTRODUCTION 3

considering taken time. There is however a third persuading reason for studying

parallel computation: Conceptually employing several processors to work together

on a given computation terminates in a totally new paradigm in computer problem

solving. It offers precious techniques for the design and analysis of algorithms.

Parallel computers are classified into two major categories, namely, shared-memory

parallel machines and interconnection networks, depending on how the processors

communicate with each other.

In this chapter, we first introduce the classification of computer architectures.

Then we explain two major computational models, shared-memory machines and

interconnection networks, as well as introducing some well-known examples of the

latter, since in this thesis the studies are done for two important interconnection

networks, the (n, k)-arrangement graphs and augmented cubes. At the end of this

chapter we discuss the parameters used to measure and analyze parallel algorithms in

order to understand their efficiency. Finally, we give an overview and the organization

of this thesis.

1.2 Classification of Computer Architecture

Different methods are proposed to characterize parallel computer architectures. In

[13] computers are categorized into following four classifications according to the

interaction between instruction streams and data streams.

1. SISD - Single Instruction, Single Data Stream

This organization uses no parallelism in either instruction or data stream. So

it is the most conventional computing equipment.

2. SIMD - Single Instruction, Multiple Data Stream

This type of organization has multiple processors that are controlled by a central

control unit. Each processor has its own memory unit. The same instruction

CHAPTER 1. INTRODUCTION 4

is applied by each processor on its data. All the major parallel models in this

thesis are from this class of computers.

3. MISD - Multiple Instruction, Single Data Stream

Here each processor has its own control unit and one common memory unit is

shared among all processors. In these kind of computers a bunch of instructions

are applied in parallel on the same data.

4. MIMD - Multiple Instruction, Multiple Data Stream

This includes organizations known as “multiprocessor”. Here, multiple proces-

sors execute different instructions on different data streams at the same time.

This makes MIMD computer the most powerful ones among these four classifi-

cations.

SIMD and MIMD machines can be a member of the shared-memory family or of

the interconnection network family.

1.3 Shared Memory Parallel Computers

Parallel random access machine (PRAM) is one model of parallel computation, shown

in Fig.1.2. There exist N identical processors. In principle, N is an arbitrary large but

finite number. These are connected to a single shared memory with M locations. M

is unbounded in principle. The processors use this memory for their communication.

A memory access unit (MAU) allows the processors to gain access to memory. Any

pair of processors wishing to exchange data can do so through the shared memory.

One processor writes its datum in a given memory location, which is then read by

the other processors.

Four classifications based on different ways for the processors to gain access to

memory for reading and writing are as follows:

CHAPTER 1. INTRODUCTION 5

Figure 1.2: Parallel Random Access Machine

Exclusive Read(ER) In this form of memory access, just one processor can read

from a memory location at a time, as shown in Fig1.3(a).

Concurrent Read(CR) In this form of memory access, two or more processors can

read from the same memory location at the same time, as shown in Fig1.3(b).

Exclusive Write(EW) In this form of memory access, just a single processor can

write into a memory location at a time, as shown in Fig1.4(a).

Concurrent Write(CW) In this form of memory access, two or more processors

can write into the same memory location at the same time, as shown in Fig1.4(b).

CHAPTER 1. INTRODUCTION 6

Figure 1.3: Read access to memory in PRAM: (a) Exclusive; (b) Concurrent.

Figure 1.4: Write access to memory in PRAM: (a) Exclusive; (b) Concurrent.

CHAPTER 1. INTRODUCTION 7

By having these options, we can get four different types of PRAM computers as

follows:

1. Exclusive Read, Exclusive Write (EREW)

2. Exclusive Read, Concurrent Write (ERCW)

3. Concurrent Read, Exclusive Write (CREW)

4. Concurrent Read, Concurrent Write (CRCW)

1.4 Interconnection Networks

Processors can also communicate directly through the links connecting them to each

other. In this architecture there are M locations of memory distributed among N

processors instead of one shared memory, Fig.1.5. Two processors that are connected

by one link are called neighbors. If the link is a two-way communication link, data can

be exchanged at the same time between these processors. Trees, meshes, hypercubes,

and star graphs are popular interconnection networks.

Since interconnection networks are represented by undirected graphs G = (V,E),

we can use their properties and parameters to evaluate and analyze the network. In

the following section we will review some definitions of graph theory terminologies that

are going to be used in this thesis. We follow the definitions for graphs given in [11].

It should be mentioned that the terms “processor” and “node” and “vertex”, “edge”

and “link”, “interconnection network” and “graph” will be used interchangeably.

1.4.1 Definitions

Definition 1. A directed graph (or digraph) G is a pair (V,E), where V is a finite

set and E is a binary relation on V . The set V is called the vertex set of G, and

its elements are called vertices (or nodes). The set E is called the edge set of G and

CHAPTER 1. INTRODUCTION 8

Figure 1.5: Interconnection network parallel computer.

its elements are called edges (links). An edge from node u in V to node v in V is

represented as an ordered pair (u, v).

Definition 2. In an undirected graph G = (V,E), the edge set E consists of

unordered pairs of vertices, rather than ordered pairs. Therefore, edges (u, v) and

(v, u) are the same edge. In this case, we say that u and v are neighbors.

For graph G = (V,E), we sometimes use V (G) to denote the vertex set of G and

E(G) to denote the edge set of G.

All graphs considered in this thesis are undirected.

Definition 3. The degree of node v ∈ V in a graph G, is the number of neighbors

of v. The degree of a graph is said to be the maximum of all node degrees.

Definition 4. A graph G = (V,E) is called regular when all the nodes in G have

the same degree. When n is the degree of each node (the degree of the graph), we call

the graph n-regular.

CHAPTER 1. INTRODUCTION 9

Definition 5. A path of length k between nodes u and v in a graph G = (V,E) is

a sequence < u0, u1, ..., uk > of vertices such that u = u0, v = uk, and (ui−1, ui) ∈ E

for i = 1, 2, ..., k. The length of the path is the number of edges in the path. A path is

simple if all vertices in the path are distinct.

All paths discussed in the thesis are simple paths.

Definition 6. The distance between node u and node v is the length of a shortest

path between u and v.

Definition 7. The diameter of the graph is the maximum distance between any two

nodes u, v ∈ V of a graph G.

A network with a small diameter is more desirable than one with a large one, since

the time for passing on a message between two processors depends on the distance

between them in a graph [2].

Definition 8. An isomorphism from a graph G to a graph H is a bijection f :

V (G) → V (H) such that (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(H). G is

isomorphic to H if there is an isomorphism from G to H. An automorphism of a

graph is an isomorphism from G to G.

Definition 9. A graph is node-symmetric (edge-symmetric) if for every pair

of nodes u, v ∈ V (edges e, f ∈ E(G)), there is an automorphism that maps u to v (e

to f).

This means that in a symmetric graph, if you look at the whole graph from any

node (edge) of V (G) (E(G)) it will be exactly the same graph.

One important consequence of the vertex symmetry is that a structure embedded

in one part of the network can be easily transformed into another part of the network

without loosing its efficiency. Also routing and broad casting algorithms can be

designed much easier due to same accessibility between nodes in these kind of graphs.

CHAPTER 1. INTRODUCTION 10

This characteristic is used in proposed algorithms in this thesis. A special class of

graphs, namely the Cayley Graphs are all vertex and edge symmetric [1], [19].

Definition 10. A graph G is called f- fault tolerant when the removal of f or less

nodes does not make the graph disconnected. The fault tolerance of a graph G is the

largest value for f that G is f -fault tolerant.

This property indicates the maximum number of faulty or blocked nodes that can

exist in a graph, but the network is still able to continue.

Definition 11. A bipartite graph is a graph whose nodes can be divided into two

distinct sets V1 and V2 in a way that there is no edge between the nodes of each set.

Each edge connects a node from one set, V1 to a node from the other set, V2.

There exist many interconnection networks, each performing better than the other

ones under specific conditions. We will review some well known interconnection net-

works in the rest of this section.

1.4.2 Complete Graph

One way for N processors to be connected is to use two-way link for connecting each

pair of processors, Fig.1.6 shows such a graph which is called a complete network.

Therefore, the numbers of links in this network are N(N − 1)/2 making it impossible

in practice since the number of links that can be physically connected to a processor

is limited. Also implementation of such a network would be so expensive because of

the total number of links. So we are more interested in more reasonable graphs.

1.4.3 Linear Array and Ring

A linear array is a simple topology. Here N processors are interconnected in a one

dimensional array. So each processor has 2 neighbors, except the end processors which

CHAPTER 1. INTRODUCTION 11

Figure 1.6: A complete network for N = 5

Figure 1.7: Linear array interconnection network.

have only one neighbor. A linear array is shown in Fig.1.7. A ring of processors is

a special case of linear array where the first and the last one are connected to each

other.

1.4.4 Mesh and Torus

The corresponding undirected graph of the mesh interconnection network is a two-

dimensional array. The neighbors of processor Pi,j, which is located in row i and

column j, will be Pi−1,j, Pi+1,j, Pi,j−1 and Pi,j+1, except for the processors on the

boundary rows and columns. Each processor has 4 neighbors expect the ones on the

boundary rows and columns. Thus the degree of mesh is 4. Fig.1.8 shows a 4 × 4

mesh, the row and column indices are shown in the graph. A Torus is a special case

of mesh where the first and the last one in each row and column are connected to

CHAPTER 1. INTRODUCTION 12

Figure 1.8: Mesh interconnection network

each other.

1.4.5 Hypercube

An n dimensional hypercube, Qn, also known as n-cube graph is an undirected graph

consisting of K = 2n vertices labeled from 0 to 2n − 1 and such that there is an edge

between any two vertices if and only if the binary representations of their labels differ

by one and only one bit. Thus, each node has n links connected to n neighbors.

The first important property of the n-cube is that it can be constructed recursively

from lower dimensional cubes. The Hamming distance, or minimum distance, between

to nodes p and q is equal to the number of different bits in their binary representations.

It is straight forward to see that the diameter of the n-cube is n. Other topologies

such as rings, meshes and trees can be mapped into hypercube. It also has some

other attractive properties, including regularity, node symmetric, edge symmetric,

CHAPTER 1. INTRODUCTION 13

Figure 1.9: (a) 0-cube; (b) 1-cube; (c) 2-cube; (d) 3-cube; (a) 4-cube

small diameter and strong connectivity [18]. Fig.1.9 shows n-cubes for n = 0, 1, 2, 3

and 4. It shows that a 4-cube is made up of two disjoint 3-cubes, i.e. a left 3-cube

(consisting of eight nodes whose first bits are all 0’s) and a right 3-cube (consisting

of eight nodes whose first bits are all 1’s). These two 3-cubes are connected by eight

cross links. The operation of splitting an n-cube into two (n−1)-cube such that their

nodes are in a one-to-one correspondence is called tearing. Tearing an n-cube into

two (n− 1)-subcubes can be done in n different ways [27].

Node-to-Node Communication in the Hypercube

A functional routing algorithm for sending a message from a source node to a desti-

nation node in the hypercube is presented in [29] by Tzeng and Wei. This routing

algorithm always finds the shortest paths for sending messages. During routing a tag

is also carried along with a message that is the relative address of the current node

and destination node. The relative address of two nodes is the bitwise Exclusive-OR

CHAPTER 1. INTRODUCTION 14

of their addresses, p ⊕ q. Also in this algorithm numbers are assigned to the edges.

An edge connecting two nodes that are different in the i-th bit position is considered

to have link number i (starting from left to right consider the first bit as bit 1). For

example, the link between nodes 1010 and 1110 has number 2. Here we describe a

procedure for transmitting a message between two nodes in the hypercube. This is

going to be used further in this thesis for designing an algorithm for augmented cubes.

Algorithm 1 Routing Algorithm for Qn

Finding a shortest path from a source node, s, to a destination node, t;

•tag ←− s⊕ t

1. If tag = 0

• STOP; the message has reached t

2. Else

• Starting from left bit to right one of tag:

• Let i be the bit number of the first 1 in tag

• Send the message on link i and set bit i in tag to zero

1.4.6 Cube Connected Cycles

Despite being a popular architecture, the hypercube has one major disadvantage

that the node degree grows linearly with the hypercube dimension. Consequently,

the hypercube is not an appropriate choice for very large scale integration, VLSI

implementation. Preparata and Vuillemin [25] introduced the cube-connected cycle

(CCC) architecture as a substitutive architecture.

A CCC is obtained by replacing each node in an n-cube by a cycle of n nodes.

Each node will be labeled with a pair (i, w), where w is an n-bit binary address that

denotes the cycle of the node and i is the dimension of the node (0 ≤ i ≤ n−1). Two

CHAPTER 1. INTRODUCTION 15

Figure 1.10: 3D cube connected cycle

nodes (i, w) and (i′, w′) are linked by an edge in the CCC if and only if either:

1. w = w′ and i− i′ ≡ ±1 mod n, or

2. i = i′ and w differs from w′ in precisely the i-th bit.

As an example a 3-dimensional cube connected cycle (3-CCC) is shown in Fig.1.10.

Edges of the first type are called cycle edges in cycle w, while edges of the second

type are referred to as hypercube edges in dimension i [28].

The CCC not only preserves all the attractive features of the hypercube, such as

small diameter and symmetry, but also has fewer links and constant node degree 3,

making it ideal for VLSI implementation [25].

1.4.7 Star Graph

In a star graph, Sn, of dimension n, there are n! nodes where each node is a permu-

tation of symbols 1, 2, ..., n. Two permutations are connected if one can be obtained

from the other by swapping its symbols at positions 1 and i, 2 ≤ i ≤ n.

Sn can be decomposed into n sub-stars Sn−1, namely, Sn−1(i), 1 ≤ i ≤ n where all

the vertices have i for their last symbol in their binary representation [2]. Sn−1(i) is

an (n− 1)-star defined on symbols in {1, 2, ..., n} − {i}. S4 in Fig.1.11 contains four

3-stars, by fixing 1, 2, 3, 4 as their last symbols.

CHAPTER 1. INTRODUCTION 16

Figure 1.11: 4-star interconnection network

The star graph is an attractive alternative to the hypercube and compares fa-

vorably with it in several aspects. Also, it is known that the star graph is both

vertex-symmetric and edge-symmetric [7].

Node-to-Node Disjoint Paths in the Star graph

In [26] an O(n2)-time algorithm is presented for finding n−1 disjoint paths in the star

interconnection network with path lengths no more than d(s, t) + 4, where d(s, t) is

the shortest path length between node s and node t. Each one of n− 1 disjoint paths

is located in a different sub-star which proves that these paths are certainly disjoint.

Also by using a simple routing within each sub-star the proof of path lengths is also

presented in [26]. In the following procedure, routing is started from an arbitrary

node, labeled by source node, to reach to the identity node, which is called destination.

This procedure is described bellow since it is used in this thesis.

CHAPTER 1. INTRODUCTION 17

Algorithm 2 Routing Algorithm for Sn
Finding n− 1 node disjoint paths from a source node, s, to a destination node, t;

1. Routing source node to its n− 1 neighbors, in no more than two steps

• These nodes are located in n− 1 sub-star Sn−1(i)

2. Routing each of n − 1 neighbors, u(i), to n − 1 nodes with distance 2 from

destination through a shortest path following rules:

• If u1(i) = 1, move it to any position not occupied by the correct symbol

• If u1(i) = x 6= 1, move it to its correct position

3. Routing each of n− 1 nodes to the identity node, in two steps

There are many other interconnection networks such as the hyperstar [20], [3],

[30], the (n, k)-star graph [9], the alternating group graphs [17], [5], [4], [23], (n, k)-

arrangement graphs, and augmented cubes.

1.4.8 Arrangement Graph

As mentioned earlier the star graph is an attractive alternative to the n-cube with

noteworthy advantages such as: a lower degree and a smaller diameter. However,

the star graph has one major weakness corresponding to its numbers of nodes. For

instance the smallest star graph with at least 8K nodes is an 8-star graph with

roughly 40K nodes. Consequently, because of the large gap between n! and (n+ 1)!,

one may face the choice of either too few or too many available nodes [9]. Day and

Tripiathi [12] proposed the arrangement graph as a solution for this difficulty. This

interconnection topology contains star graph and holds on all the nice characteristics

of the star graph such as node and edge symmetry, hierarchical structure and simple

shortest path routing. An (n, k)-arrangement graph, An,k (1 ≤ k ≤ n− 1), is a graph

CHAPTER 1. INTRODUCTION 18

Figure 1.12: (4, 2)-arrangement graph

with all the k-permutations of n as vertices where two k-permutations are adjacent

if they agree in exactly k − 1 positions. It is a regular graph of degree k(n− k) with

n!/(n− k)! number of nodes and diameter b3
2
kc. Fig1.12 illustrates an A4,2.

The (n, n − 1)-arrangement graph is isomorphic to the n-star, and the (n, 1)-

arrangement graph is isomorphic to the complete graph with n nodes. The number

of nodes in an arrangement graphs gives us more choices in the number of nodes other

than the number of the nodes in the star graph. For example an arrangement graph

of with at least 8K nodes can be obtained for each of the combinations (n = 8, k = 6)

and (n = 9, k = 5). The first combination yields a degree of 12 and a diameter of 9 ,

and the second combination yields a degree of 20 and a diameter of 7.

1.4.9 Augmented Cube

Many different variations of hypercubes have been studied to enhance the efficiency

of hypercubes. Chudum and Sunitha [10], used two permutations of vertex set of

n-dimensional hypercube, to join a vertex from one copy of the graph, to the vertices

of the other copy, with the same dimension. The result is a study on augmented

cube. They have proposed different definitions for augmented cube, here we present

CHAPTER 1. INTRODUCTION 19

Figure 1.13: Three augmented cubes AQ1, AQ2 and AQ3

a simple one.

The augmented cube, AQn, of dimension n, has 2n nodes. These vertices are

labeled with n-bit binary strings. Two nodes, p = p1p2p3...pn and q = q1q2q3...qn, are

connected if and only if there exists an integer l, 1 ≤ l ≤ n such that either:

1. Their binary representations only differ in bit l

2. Their binary representations are exactly the same for the first l − 1 bits, and

for l ≤ i ≤ n the binary representation of one node is the complement of the

other one.

The graphs shown in Fig.1.13 are AQ1, AQ2 and AQ3, respectively.

Since the main focus on this thesis is on the (n, k)-arrangement graphs and aug-

mented cubes, their characteristics and related algorithms are discussed in detail fur-

ther in this thesis.

Table 1.1 lists topologies we described earlier and some of their important prop-

erties.

1.5 Evaluating Parallel Algorithms

Different factors are considered to evaluate an algorithm as a good one. The most

important ones are the algorithm’s running time, number of processors, and its cost.

For measuring the speed of an algorithm the total number of steps executed by

an algorithm is used. We will always consider the worst case for problems, as in this

CHAPTER 1. INTRODUCTION 20

Table 1.1: Interconnection networks and some of their parameters

Network Number of Nodes Degree Diameter

Complete Graph n n− 1 1
Linear Array n 2 n− 1

Ring n 2 bn/2c
Mesh (m ∗ n) mn 4 (m− 1) + (n− 1)
Torus (m ∗ n) mn 4 b(m+ n)/2c

Hypercube 2n n n
Cube Connected Cycles n2n 3 2n+ bn/2c − 2 for n ≥ 4

Star Graph n! n− 1 b3(n− 1)/2c

Arrangement Graph n!/(n− k)! k(n− k) b3
2
kc

Augmented Cube Graph 2n 2n− 1 dn/2e

case we will have the maximum number of steps. A parallel algorithm usually has

two types of elementary steps:

1. Computational step: which is a basic arithmetic or logical operation performed

on one or two data, such as adding and comparing.

2. Routing step: which is moving a datum of constant size from one processor to

another. This replacement will occur through shared memory or a direct link

between these two processors.

Generally, computational step require a constant number of time units, while

replacing a datum depends on the distance between the processors.

1.5.1 Running Time

This is the time starting from when the first processor begins doing the first operation

till the last processor finishes producing the result. The running time is measured

by counting the number of elementary steps done by an algorithm to solve the most

difficult case of a problem. For a problem of size n, the worst case running time of

parallel algorithm would be represented by t(n).

CHAPTER 1. INTRODUCTION 21

1.5.2 Number of Processors

Several reasons are given in [2] for considering this number in analysis of an algorithm.

Briefly, we are interested in systems with fewer processors, in a case that the running

time and type of parallel computer used, are the same. The reason is that the more

processors used, the more expensive computers will be. For a problem of size n, the

number of processors needed by an algorithm would be represented by p(n).

1.5.3 Cost

The cost of an algorithm, c(n), is the product of time consumed in the worst case

and the number of processors it uses. That is, c(n) = t(n)× p(n).

The factor to find out if a parallel algorithm is beneficial to use, comparing with

the sequential algorithms is called efficiency . Consider t1 as the worst case running

time of the best and fastest sequential algorithm that exists for a given problem. The

cost of the parallel algorithm for solving the same problem would be p(n)× t(n), and

its efficiency is:

E(1, p) =
t1

p(n)× t(n)

We have following cases for evaluating the efficiency:

1. If E(1, p) < 1, then the parallel algorithm’s cost is not optimal.

2. If E(1, p) = 1, then the parallel algorithm’s cost is optimal.

3. If E(1, p) > 1, then there is a faster sequential algorithm by simulating the

parallel one.

1.6 Organization of the Thesis

Different interconnection networks have been proposed before and there are still new

networks being proposed. These new networks are mostly the improved form of the

CHAPTER 1. INTRODUCTION 22

previous ones. For example, the augmented cube is one of the improved versions of

the hypercube network.

There are different routing paradigms for networks. In this thesis, our focus is

on the bounded disjoint paths paradigms. For example, how should we find the

maximum number of disjoint paths between a source node and a set of destination

nodes such that no two paths share a common node except the source? Under which

conditions are those disjoint paths bounded?

This thesis proposes a proof that there are disjoint paths between one source node

and k(n − k) target nodes in the (n, k)-arrangement graph. Also an algorithm is

presented for finding 2n − 1 disjoint shortest paths in an augmented cube. Chapter

2 and Chapter 3 provide literature reviews of these two graphs. In Chapter 4, we

prove that there are k(n − k) disjoint paths between the source node and k(n − k)

target nodes. The lengths of paths are no more than diameter + (n − k) + 2. Also

we present an optimal routing for finding n disjoint paths between 2 nodes in an

(n, k)-arrangement graph. Our algorithm runs in O(n2) time. In Chapter 5 we study

the problem of finding shortest and disjoint paths between a source node and 2n− 1

target nodes in an augmented cube. Our algorithm checks to see whether such paths

exist and in case they do, finds them, all in O(n3) time. Chapter 6 is dedicated to

conclusion and future work.

Chapter 2

Literature Review

Arrangement Graph

2.1 Introduction

The (n, k)-arrangement graph is proposed in 1992 [12] as a generalization of the star

graph topology. The (n, k)-arrangement graph has attracted lots of attentions as a

new topology of interconnection networks. The n-star has many appealing properties;

however, its major problem is a huge gap between the number of nodes in an n-star

and an (n+ 1)-star, i.e. there is a huge difference between n! and (n+ 1)! [22]. This

is the main reason why (n, k)-star graph [9] and (n, k)-arrangement graph [12] are

proposed, both as a generalization of the star graph. Compared with the n-star, the

(n, k)-arrangement graph is more flexible in degree and diameter.

In this chapter we provide a literature review of the (n, k)-arrangement graph and

a review on its already proven properties.

23

CHAPTER 2. LITERATURE REVIEW ARRANGEMENT GRAPH 24

2.2 Properties

Consider two integers n and k such that 1 ≤ k ≤ n − 1. Let [n] = {1, 2, ..., n}. A

k-permutation is p1p2...pk where pi ∈ [n].

Definition 12. The arrangement graph, An,k = (V,E) is an undirected graph with

all the k-permutations of [n] as vertices. Two k-permutations p = p1p2...pk and

q = q1q2...qk are directly connected by an edge to each other if they agree in exactly

k − 1 positions. That is:

V = {p1p2...pk|pi ∈ [n] and pi 6= pj for i 6= j}

and

E = {(p, q)|p, q ∈ V and for an i ∈ [k], pi 6= qi and pj = qj for all j 6= i}.

Definition 13. The connecting edge between the two permutations that differ in po-

sition i is called i-edge. Here, p and q are called i-adjacent.

Given a vertex p ∈ V , a vertex q obtained by swapping two symbols of p, cannot

be its neighbor since they are different in two positions. Thus, every neighbor for a

node is obtained by replacing one of its elements by an element other than any of its

elements [6].

For example in A6,3 the node p = 235 is connected to the nodes 135, 215, 231,

435, 245, 234, 635, 265, and 236.

Proposition 1. An,k is a regular graph with degree k(n − k) and n!/(n − k)! nodes

[12].

Theorem 1. An,k is vertex symmetric and edge symmetric [12].

Proof is given in [12].

Vertex symmetry in arrangement graphs simplifies the problem of routing between

two arbitrary nodes p and q to the problem of routing between an arbitrary node p

and the special identity node Ik = 12...k [21].

CHAPTER 2. LITERATURE REVIEW ARRANGEMENT GRAPH 25

2.2.1 Cycle Structure for Permutation

Here we are going to define a cycle representation for each node. A permutation of n

symbols can be viewed as a set of cycles in a way that each symbol’s desired position

is occupied by the next symbol. This cycle representation will be used in routing

algorithms.

Suppose that we have a permutation p = p1p2...pk. The set EXT(p) = [n] −

{p1, p2, ..., pk} is the n− k external elements of p from [n] which are not used in the

permutation p. Also the set INT(p) = {p1, p2, ..., pk} is the k internal elements of p

from [n] that are used in the permutation p. Identity node is a special node 12...k

denoted by Ik. External elements of identity node are called foreign elements. We

can always represent the nodes of an arrangement graph using a set of internal and

external cycles which contain only misplaced elements and should be of length at least

two. Also each external cycle contains exactly one foreign element. In the external

cycle, the first element will be a non-foreign element which does not appear in the

permutation p while the foreign element that appears in p will be written as the last

element [12].

Example. Consider the node p = 74253 of the A8,5 arrangement graph. The

cycle representation for this node will be C1 = (2, 4, 5, 3) and C2 = (1, 7). Cycle

C1 is an internal cycle since all its elements are internal, but cycle C2 is an external

one because of element 7 which is a foreign element. First cycle means that in this

permutation position 2 is held by 4, position 4 is held by 5, position 5 is held by 3,

and position 3 is held by 2. In second cycle position 1 is held by 7.

2.2.2 Routing and Shortest Length Path

As mentioned before, because of the vertex symmetry in arrangement graphs, routing

between any two nodes can be mapped to routing from an arbitrary node p to the

identity node. In this case, routing can be done by first writing cycle representation

CHAPTER 2. LITERATURE REVIEW ARRANGEMENT GRAPH 26

for node p and then correcting them one by one. Correcting a cycle means placing

each of its elements in its correct position [21]. By having the external cycle in a way

described earlier, it can be corrected by first moving its non-foreign external element

to its correct position held by next element, this procedure will be repeated until the

last element, a foreign element, is made external when it is replaced by the previous

element. Correction of an internal cycle requires to exchange the first element of the

cycle with an arbitrary external element, x. So, the first element is now an external

one and can be moved to its correct position which is occupied by the next element

of the cycle. We will continue this procedure until the last element of the cycle is

taken to its correct position making x external element again.

Example. Following the above procedure, the external cycle C2 = (1, 7) in A8,5

of the node p = 74253 is corrected as bellow:

74253→ 14253,

while the internal cycle C1 = (2, 4, 5, 3) of the node p′ = 14253 is corrected along the

path:

14253→ 14653→ 12653→ 12643→ 12645→ 12345.

Each underlined element shows the action at each step.

According to the above routing algorithm, an upper bound for distance between

an arbitrary node and the identity node is derived in [12]. Also it is shown that the

length of this path is minimum. Let C1, ..., Ce, Ce+1, ..., Ct be a cycle structure for a

node p = p1p2...pk in An,k, such that C1, ..., Ce are external cycles and the rest are

internal cycles. m, t, and e are defined as follows:

• m: total number of elements in these cycles

• t: total number of cycles

• e: number of external cycles

Lemma 1. The distance d(p, Ik) between p and Ik in An,k satisfies d(p, Ik) ≤ t+m−2e

CHAPTER 2. LITERATURE REVIEW ARRANGEMENT GRAPH 27

[12].

Proof. For correcting an external cycle with mi elements, mi−1 steps are required. So

for correcting all the external cycles we need to do (m1−1)+(m2−1)+...+(me−1) =

(m1 + m2 + ... + me) − e steps. Also number of steps for correcting an internal

cycle with mj elements would be mj + 1. Correction all the internal cycles needs

(me+1 +1)+(me+2 +1)+ ...+(mt+1) = (me+1 +me+2 + ...+mt)+(t−e). Therefore,

d(p, Ik) ≤ m1 +m2 + ...+me − e+me+1 +me+2 + ...+mt + t− e

= t+m− 2e, [12].

Theorem 2. The distance between p and Ik in An,k is d(p, Ik) = t+m− 2e [12].

The proof is given in [12].

Corollary 1. The diameter of An,k is b3
2
kc [12].

Proof. The proof given in [12] is as follows. By Theorem 2 the maximum distance in

an An,k is d(p, Ik) = t+m−2e. This equation can have its maximum value when there

is no foreign element in the cyclic representation of a node. So there is no external

cycle, e = 0. Also every two elements form an internal cycle, which means m = k

and t = bk/2c; therefore the diameter is b3
2
kc.

2.2.3 Hierarchical Structure

We know that there are n!/(n − k)! nodes in an An,k graph. If element i is fixed in

position j, for i and j, 1 ≤ i ≤ n, 1 ≤ j ≤ k, an An−1,k−1 sub-graph is formed with

(n−1)!/(n−k)! number of nodes. This sub-graph of An,k consisting of all nodes with

element i in position j is denoted by ij. The sub-graphs 1j, 2j, ..., nj form n disjoint

sets of vertices of An,k. This partitioning into n copies of An−1,k−1 can be done in k

different ways.

Also the partitioning can be done by fixing one element i to be in any k positions

to get i1, i2, ..., ik, and a set, i0, of all nodes that do not have i. Here we have k copies

CHAPTER 2. LITERATURE REVIEW ARRANGEMENT GRAPH 28

of An−1,k−1 and one copy of An−1,k. This partitioning can be done in n different ways

(1 ≤ i ≤ n) [12].

Theorem 3. An,k contains
(
k
a

)
n!

(n−a)! copies of An−a,k−a, for 1 ≤ a ≤ k − 1 [12].

Proof. A copy of An−a,k−a is obtained by fixing a elements out of k elements and

changing remained k− a elements. For selecting a positions out of k positions, there

exist
(
k
a

)
different ways. Also there are n!/(n− a)! ways for selecting a elements out

of n available elements to assign to these positions. Here order of elements should be

considered. Therefore, there are
(
k
a

)
n!

(n−a)! copies of An−a,k−a in An,k [12].

This property of an arrangement graph is going to be used in the proposed algo-

rithm for finding disjoint paths, while routing from an arbitrary node to Ik, later in

this thesis.

Chapter 3

Literature Review

Augmented Cubes

3.1 Introduction

It is well known that the hypercube is one of the most popular interconnection net-

works because of its noteworthy properties such as maximum connectivity and effec-

tive routing algorithms.

The augmented cube, AQn, is proposed by Choudum and Sunitha [10] as an im-

provement over the hypercube Qn, which owns more desirable properties than the

hypercube, besides keeping some beneficial properties of Qn. We know that Qn con-

tains cycles with even length, while AQn includes cycles of all lengths from 3 to 2n.

In [24] it has been proved that in AQn, between any two distinct vertices, there exist

paths of all length from their distance to 2n − 1 .

In this chapter some properties of the augmented cube are reviewed.

3.2 Properties

Let n be an integer such that n ≥ 1. The degree of a vertex v is denoted by deg(v).

29

CHAPTER 3. LITERATURE REVIEW AUGMENTED CUBES 30

3.2.1 Hierarchical structure

For n ≥ 2, AQn can be recursively constructed by two copies of AQn−1 which are

connected by 2n edges. These two copies of a lower dimension are divided based

on their first bits of their binary representations. They are denoted by AQ0
n−1 and

AQ1
n−1, such that in AQ0

n−1, all nodes’ binary representations start with 0 and in

AQ1
n−1, all all nodes’ binary representations start with 1.

Definition 14. Let V (AQ0
n−1) = {0p2p3...pn|pi = 0 or 1 for 2 ≤ i ≤ n} and

V (AQ1
n−1) = {1q2q3...qn|qi = 0 or 1 for 2 ≤ i ≤ n}. A vertex p = 0p2p3...pn is

connected to a vertex q = 1q2q3...qn if and only if either:

1. pi = qi for every i, 2 ≤ i ≤ n; (p, q) is called a hypercube edge or

2. pi = q̄i for every i, 2 ≤ i ≤ n; (p, q) is called a complement edge.

It is obvious that for n ≥ 2, deg(αp) = deg(p) + 2, for every vertex p ∈ AQn−1

and α ∈ {0, 1}.

Proposition 2. By having the recurrence relation for the degree of each node in AQn,

every vertex, αp ∈ AQn has degree of 2n − 1. So AQn is (2n − 1)-regular and has

(2n− 1)2n−1 edges [10].

Proposition 3. AQn has the following adjacency, properties proposed in [10]:

1. Two vertices p and q are adjacent if and only if p̄ and q̄ are adjacent.

2. If p ∈ AQ0
n−1 (or AQ1

n−1) is connected to q and z which are in AQ1
n−1 (respec-

tively, AQ0
n−1), then q and z are also connected to each other.

Theorem 4. For every n ≥ 1, AQn is vertex symmetric [10].

CHAPTER 3. LITERATURE REVIEW AUGMENTED CUBES 31

3.2.2 Path and Distance

Consider two vertices p, q ∈ AQn and suppose that p = αx, q = αy, where x, y ∈

AQn−1 and α ∈ {0, 1}. If P (x, y) is an (x, y)-path in AQn−1, then by adding α to each

of the vertices in this path, we have a (p, q)-path in AQα
n−1, indicated by Pα(αx, αy)

[10].

Proposition 4. Let p, q ∈ AQn, following properties are given in [10]:

1. If there is a path P (p, q) : (p =)a1, a2, ..., at(= q), then we have a path P̄ (p̄, q̄) :

(p̄ =)ā1, ā2, ..., āt(= q̄).

2. P (p, q) is a shortest path between p and q, if and only if P̄ (p̄, q̄) is a shortest

path for p̄ and q̄,.

3. d(p, q) = d(p̄, q̄).

Proof. The first item follows from Proposition 3, that if two nodes are adjacent, so

are their complements. The second and third items follow from the first one.

Theorem 5. Let p, q ∈ AQn, following properties are given in [10]:

1. If both p and q are located in the same sub-graph, AQ0
n−1 (or AQ1

n−1), then there

exists a shortest path between these two nodes in AQn with all its vertices in the

same sub-graph, AQ0
n−1 (respectively AQ1

n−1).

2. If p and q are located in different sub-graphs, p ∈ AQ0
n−1 and q ∈ AQ1

n−1, then

(i) there exists a shortest path between these two nodes in AQn with all its

vertices except p in AQ1
n−1. The second vertex of this path (the neighbor

of p) is either 1p2p3...pn or 1p̄2p̄3...p̄n, based on which one has the smaller

distance to p.

CHAPTER 3. LITERATURE REVIEW AUGMENTED CUBES 32

(ii) there exists a shortest path between these two nodes in AQn with all its

vertices except q in AQ0
n−1. The second vertex of this path (the neighbor

of q) is either 0q2q3...qn or 0q̄2q̄3...q̄n, based on which one has the smaller

distance to q.

Corollary 2. Suppose p, q ∈ AQn.

1. For n = 1, 2, d(p, q) = 1

2. For n ≥ 3,

d(p, q) =


d(p2p3...pn, q2q3...qn) if p1 = q1

1 +min{d(p2p3...pn, q2q3...qn), d(p2p3...pn, q̄2q̄3...q̄n)} if p1 6= q1

Theorem 6. The diameter of AQn is dn/2e for all n ≥ 1 [10].

Proposition 5. There are 2n − 1 node disjoint path between any two nodes p and

q ∈ AQn, for all n ≥ 4 [10].

3.2.3 Routing Algorithm through Shortest Path

For the routing algorithm in [10], weights are assigned to the edges of AQn as follows:

1. 2i− 1, if (p, q) is a hypercube edge with pi 6= qi, 1 ≤ i ≤ n

2. 2j, if (p, q) is a complement edge with pi = qi for every i,1 ≤ i ≤ j − 1 and

pi = q̄i for every i, j ≤ i ≤ n

Fig.3.1 shows an example for assigning weights to the edges in a path.

In [10] Theorem 5 is used to send a message through a shortest path from a source

node, s = s1s2...sn, to a destination, t = t1t2...tn in AQn. Three tasks, computing

a tag, scanning a tag and routing to the next vertex, are done by any “current”

CHAPTER 3. LITERATURE REVIEW AUGMENTED CUBES 33

Figure 3.1: Associate weights with the edges in AQ10

vertex, c = c1c2...cn while moving along a path. At each vertex c, tag is equal to

(c1 ⊕ t1, c2 ⊕ t2, ..., cn ⊕ tn).

Algorithm 3 Routing Algorithm for AQn

Finding a shortest path from a source node, s, to a destination node, t;

tag ←− s⊕ t

1. If tag = 00...0

• STOP; the message has reached t

2. Else do:

• Scan the tag from left to right for the least entry, tag(i) which is 1

• If tag(i+ 1) = 0 do:

– tag(i)←− 0,

– Transmit the message along the edge of weight 2i− 1

• Else do:

– tag(i)←− 0,

– tag(j)←− tag(j), i < j ≤ n,

– Transmit the message along the edge of weight 2i

Example. Following the above procedure, a routing path from 000000 to 101011

in AQ6 will be as follows:

000000
1−→ 100000

5−→ 101000
10−→ 101011.

CHAPTER 3. LITERATURE REVIEW AUGMENTED CUBES 34

The numbers above the arrows are weights of edges used for traveling from source

node to the destination node.

Comparing the algorithms of AQn and Qn, the only difference is that for any

current vertex of AQn, one more step is required to check tag(i+ 1) [10].

Chapter 4

One to Many Disjoint Paths

Arrangement Graph

4.1 Introduction

In this chapter first we show that by using the same approach used for the star graph

in [26], that is studied in the first chapter of this thesis, we can have n disjoint paths

between any two nodes, when 1 < k < n− 1.

Then we prove that there exist k(n− k) disjoint paths in the (n, k)-arrangement

graph from a source node to k(n − k) different target nodes. The number of these

node disjoint paths is equal to the degree of the graph. As mentioned before, due

to symmetry in arrangement graphs, routing between two arbitrary nodes can be

mapped to routing from the identity node to an arbitrary node.

35

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 36

Figure 4.1: 4 disjoint paths in an A5,1

4.2 Finding n−1 or n Disjoint Paths Between Two

Nodes

The arrangement graph is a family of undirected graphs that contains the star graph

family. For k = n − 1, the (n, n − 1)-arrangement graph is isomorphic to the n-star

and for k = 1, the (n, 1)-arrangement graph is isomorphic to the complete graph with

n nodes.

For 1 ≤ k ≤ n− 1 we consider following cases in order to find disjoint paths.

Case 1: k = 1

Here the graph is a complete graph with n nodes with degree n − 1. So the

maximum number of disjoint paths between two nodes would be n − 1. In this case

all nodes are directly connected to each other and distance between any two nodes

is equal to 1. So one path is a direct link between the source and the destination.

Other n − 2 disjoint paths can be found by first going to other n − 2 neighbors of

the source node and then routing to identity node through the direct link connecting

them to each other. Fig.4.1 shows four disjoint paths from node 4 to node 1 in an

A5,1. These four paths are specified by numbers 1, 2, 3, and 4.

Thus for Case 1, we have n− 1 disjoint paths where one path has length 1, while

n− 2 paths have length 2.

Case 2: k = n− 1

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 37

Here the graph is an n-star graph with n! nodes with degree n−1. So the maximum

number of disjoint paths between two nodes would be n − 1. In this case routing is

exactly the same as the star graph, so Algorithm 2 which is discussed in Chapter 1,

is used to find all n− 1 disjoint paths.

Thus for Case 2, we have n− 1 disjoint paths such that no path has length more

than d(s, t) + 4.

Case 3: 1 < k < n− 1

Here the (n, k)-arrangement graph has degree k(n − k) ≥ n for n ≥ 4. We

route to different sub-graphs for finding disjoint paths. By fixing each element of

[n] in the last position, we can have n sub-graphs, An−1,k−1. We use ∗i to show a

permutation whose last symbol is i, and ∗ represents any permutation of the k − 1

symbols in {1, 2, ..., n} − {i}. Therefore, we have n sub-graphs with nodes of the

forms ∗1, ∗2, ∗3, ..., ∗n respectively.

If d(t, Ik) = 1 there exists a j that is not in its correct position in t, i.e tj 6= j and

is replaced by an element from {k + 1, k + 2, ..., n}. One path is t → Ik with length

one by placing j in its correct position. Other k(n− k)− 1 paths are built by using

the disjoint cycles with length no more than 6.

k − 1 cycles of length 6, having the same external element as the source node,

(k+ a) where 1 ≤ a ≤ n− k, are as follows. We name them as cycles of the form (i):

123...(i− 1)i(i+ 1)...(j − 1)(k + a)(j + 1)...k →

123...(i− 1)j(i+ 1)...(j − 1)(k + a)(j + 1)...k →

123...(i− 1)j(i+ 1)...(j − 1)i(j + 1)...k →

123...(i− 1)(k + a)(i+ 1)...(j − 1)i(j + 1)...k →

123...(i− 1)(k + a)(i+ 1)...(j − 1)j(j + 1)...k →

123...k

In [22] it is proved that for 1 ≤ i < j ≤ k and any node p, any of its i-th neighbors

and any of its j-th neighbors form a cycle of length six. It is also proved that any two

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 38

cycles with distinct 1 ≤ i1, j1, i2, j2 ≤ k are disjoint except at p. In our case all k − 1

cycles are all disjoint except at p and Ik, since at first step of each routing a different

i is replaced by j, for all 1 ≤ i ≤ k, i 6= j. In the next step the foreign element is

replaced by this i, that cause any two 6-cycles be disjoint. Then the foreign element,

k + a, is fixed in ti till routing to Ik. Therefore, all the cycles are disjoint.

n − k − 1 cycles of length 3 are obtained by replacing (k + a) with other foreign

elements k + b, where 1 ≤ a, b ≤ n − k, b 6= a. We name them as cycles of the form

(ii):

123...(i− 1)i(i+ 1)...(j − 1)(k + a)(j + 1)...k →

123...(i− 1)i(i+ 1)...(j − 1)(k + b)(j + 1)...k →

123...(i− 1)i(i+ 1)...(j − 1)j(j + 1)...k →

for 1 ≤ i ≤ k, i 6= j.

These n− k− 1 cycles are all disjoint since in each of them (k+ a) is replaced by

a different foreign element.

The rest of the cycles have length 4 and they are obtained by placing each of the

other foreign elements in all ti’s, for 1 ≤ i ≤ k, i 6= j. We name them as cycles of the

form (iii):

123...(i− 1)i(i+ 1)...(j − 1)(k + a)(j + 1)...k →

123...(i− 1)(k + b)(i+ 1)...(j − 1)(k + a)(j + 1)...k →

123...(i− 1)(k + b)(i+ 1)...(j − 1)j(j + 1)...k →

123...(i− 1)i(i+ 1)...(j − 1)j(j + 1)...k →

These k(n − k) − (k − 1 + n − k − 1) − 1 cycles are also disjoint because each

foreign element is fixed in one specific position, ti, in each of the cycles. The cycles

are obviously disjoint when different foreign elements are fixed in the same position

ti during routing.

For A4,2, 4 disjoint paths from node 14 to identity node, 12, are shown in Fig.4.2.

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 39

Figure 4.2: 4 disjoint paths in an A4,2

Path number 1 is a shortest path with length 1, we just put 2 in its correct position

t2 . Path number 2 has length 2 which is of the form ii. Path number 3 has length

3 which is of the form iii. Path number 4 is the longest path, using a 6-cycle for

routing of the form i, so its length is 5.

If d(t, Ik) > 1, for finding n node disjoint paths we will route to n− 1 sub-graphs,

other than the one where t is located in. These disjoint paths all go to identity

node from its n different neighbors. Let t = t1t2...tk. In no more than two steps,

by changing the k-th element of t, it is routed to n − 1 sub-graphs having elements

{1, 2, ..., n} − {tk} in their last position. Now in each of these n sub-graphs routing

will resume as follows:

Case 1: position k 6= k

The node is located in an An−1,k−1 = xk with element x ∈ {1, 2, ..., n} − {k} for its

last element of its nodes. The path is determined by correcting its cycles, which is

done by an O(n) liner time greedy algorithm, to find the shortest route to either of

the following nodes:

• 123...x, a neighbor of Ik, when k < x ≤ n

• 123...(j − 1)(k + a)(j + 1)...x, a node that is two steps away from Ik, when

x = j, 1 ≤ j ≤ k and 1 ≤ a ≤ n− k

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 40

These routings are all within An−1,k−1 = xk.

Case 2: position k = k

The node has k in its last position which means it is located in the same sub-graph

as identity node. A path is determined by routing to p, a neighbor of Ik whose

pj = (k+ b) 6= j for a 1 ≤ j < k and 1 ≤ b ≤ n− k, b 6= a. Again following the greedy

algorithm takes O(n) time and all nodes of this path is within An−1,k−1 = kk.

This procedure is illustrated in Fig.4.3 for an An,k and t = ∗k which means it is

located in the same sub-graph as identity node. Exterior dotted lines show routings

to n−1 sub-graphs with elements {1, 2, ..., n}−{k} in their last position. Dotted lines

inside the sub-graphs, show routings to n nodes with distance 2 or 1 to identity node.

Solid lines between sub-graphs show one step, which is replacing k in the last position

of the nodes. n − k of these nodes are routed to identity node. The remained ones

are routed to k different nodes in the same sub-graph as identity node with distance

1 to identity node. These nodes are also routed to the Ik in one step by correcting

its i-th position i, 1 ≤ i < k.

If t is located in a sub-graph other than the one with k as its nodes last element,

the procedure would be the same, except the dotted lines between sub-graphs will

be from the sub-graph having t to other n− 1 sub-graphs. The routings inside each

sub-graph and the steps after that are all same as this case.

Routing in sub-graphs would result paths with a same length as d(t, Ik). Let

p = p1p2...pk and q = (k + a)23...1. Cyclic representation of q is C1 = (k, 1, (k + a))

then qq−1 = Ik where q−1 is shown with a cycle C−11 = ((k+a), 1, k). In general (k+a)

is placed in i−th position and i is placed in the last position, 12..(i−1)(k+a)(i+1)..i.

Since d(p, q) = d(pq−1, Ik), pq
−1 will fix two elements in positions i and k. Now

comparing p and pq−1, k − 2 positions remain to be fixed. Suppose in the cyclic

representation of p there were t cycles with e external ones, containing m elements in

total. For pq−1, i will be considered as k and (k + a) will be considered as i.

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 41

Figure 4.3: Finding n disjoint paths
in the An,k for 1 < k < n

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 42

If the (k + a) is used in permutation of p but not in i-th position, in the cyclic

representation the number of external cycles and the number of elements will be

reduced by one. So we have d(pq−1, Ik) = (t− 1) + (m− 1)− 2(e− 1) = t+m− 2e =

d(p, Ik).

If it is already in i-th place, the total number of elements will be reduced by

two as well as deduction in number of external cycles and total number of cycles,

d(pq−1, Ik) = (t− 1) + (m− 2)− 2(e− 1) = t+m− 2e− 1 = d(p, Ik)− 1.

If the (k + a) is not used in permutation of p, one external cycle will be added

and the total number of elements will be one more as well, so we have, d(pq−1, Ik) =

(t+ 1) + (m+ 1)− 2(e+ 1) = t+m− 2e = d(p, Ik).

The fact that the greedy algorithm is applied in different An−1,k−1 guarantees that

these paths are disjoint.

Now by replacing the proper element in the last position, and position j for the node

in the same sub-graph as identity node, we will have all n disjoint paths with lengths

no more than d(t, Ik) + 2.

Consequently, we have n disjoint paths where no path has length more than

d(p, Ik) + 4.

In all cases, the time complexity is O(n2) since O(n) time is needed to route to

different nodes in n different sub-graphs. Then the O(n) linear-time greedy algorithm

is applied to route to the identity node.

4.3 Finding Disjoint Paths from a Source to k(n−k)

Targets

As discussed in previous chapters, the (n, k)-arrangement graph, 1 < k < n− 1, is a

regular graph with degree k(n− k). Here we present a proof that there exist disjoint

paths from a single source node to k(n − k) targets. This theorem always holds for

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 43

(k − 1)! > n− k. If (k − 1)! ≤ n− k, targets cannot have only non-foreign elements

since k! is less than k(n − k). In this case routings have to include Case 2 and/or

Case 4.1 besides other cases.

Theorem 7. When T is a set of k(n−k) distinct nodes in An,k, where 1 < k < n−1,

and Ik /∈ T , there are k(n− k) node disjoint paths from Ik to each of the nodes in T .

Furthermore, all paths have length no more than diameter+ (n− k) + 2, diameter is

considered as the maximum distance between any two nodes in the graph.

Proof. First we route to all k(n− k) neighbors of the source node, replacing each of

the k symbols of Ik with one of the n−k foreign symbols, k+ 1, k+ 2, ..., n. We mark

them as the new sources, s1, s2, ..., sk(n−k).

Now we pair each source with a target node, considering the minimum distance

and comparing position of the foreign element in new sources and targets.. This can

be done by having minimum distances from each source to each target in a k(n− k)

by k(n − k) matrix. First the lowest number in this matrix is specified, we name it

min. We select one min and pair its corresponding source and target according to

the following cases:

• If there is just one min in whole matrix, we select it.

• If more than one line have min:

– We select the one in a line containing just one min.

– If each line has min in two or more positions, the line containing less than

the other lines is selected.

∗ We select the one from this line such that its column contains no other

min or less than the other columns.

• If we have more than one option with equal situations, the foreign element and

its position in the source is compared with the targets. The target that has a

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 44

same foreign element in a same position as this source is selected.

• If all options are the same, one of them is chosen randomly.

We use an example to illustrate each step. Considering A9,7, we can have 7(9 −

7) = 14 disjoint paths from Ik to 14 different target nodes given in bellow matrix.

Procedure starts by routing to 14 neighbors of Ik, considering these as new sources.

Minimum distance from each source to each target is found. Results are given bellow.

MinimumDistance =

For paring a source and a target, the minimum number in the whole matrix is

specified. Here 6 is the lowest number in this matrix. There are nine sources having

distance 6 with some targets. Two of these sources have only one 6 in their line, these

two sources are 6351794 and 6351492. Both of these lines have distance 6 to a same

target node 1234597, so one of them is chosen randomly. This procedure is done for

paring all sources and target nodes. Results are as follows:

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 45

MinimumDistance(1234597, 6351794) = 6

MinimumDistance(1234568, 6351798) = 6

MinimumDistance(1284567, 6381792) = 6

MinimumDistance(1834567, 6851792) = 6

MinimumDistance(1234867, 6351892) = 6

MinimumDistance(1934567, 6354792) = 6

MinimumDistance(8234567, 8351792) = 7

MinimumDistance(1238567, 6358792) = 7

MinimumDistance(1234587, 6351782) = 7

MinimumDistance(1294567, 6451792) = 8

MinimumDistance(1234569, 6351492) = 8

MinimumDistance(1234967, 6341792) = 8

MinimumDistance(9234567, 4351792) = 8

MinimumDistance(1239567, 6351742) = 8

For each si its foreign element is kept in the same position during routing. We

have following cases:

Case 1. If the target has just non-foreign element, we will have upto k(n − k)

node disjoint paths in our routing according to (k)!−1 number of different nodes with

permutations of non-foreign elements. These paths are disjoint since each path has

one foreign element in one of the k positions, it is internal for this path, which makes

it different from all other paths. Here all cycles are corrected and at last step the

non-foreign element is placed in the string, which its position is taken by the foreign

element during routing.

The length of path is equal to minimum distance selected from the matrix, d(si, tj)

for each i, j that are paired. In this case there is one external cycle and l internal

ones, 0 ≤ l. During the correction of the cycles, the foreign element, x, remains in

the same position and routing is continued with the next cycle. If there is no internal

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 46

cycle routing is terminated with making the foreign element an external one. Let ai

be the non-foreign element which is external for si. We start correcting an external

cycle C1 = (ai, a12, a13, ..., a1m1 , x), but x is not corrected. The procedure continues

with correcting internal cycles and a1m1 is considered as an external element. When

cycles are all corrected we have a1m1 as an external element. All along the path x is

in a fixed position which makes this path distinct from all other paths. Now, after

correcting all cycles, x is replaced by a1m1 . So no extra step is done during routing

and the length of the path is equal to d(si, tj).

In our example routing for (1239567, 6351742) is done by Case 1 since the target

node contains only non-foreign elements. The foreign element is fixed in its position

during routing and is corrected at last step. 4 is the non-foreign element which is

external for this source node. We start correcting the external cycle C1 = (4, 6, 1, 9)

except 9. After correcting this cycle, 1 is external and we use it for correcting the

internal cycle C2 = (2, 7, 5, 3). After correcting the internal cycle 1 is again an external

element. Only one step is remained which was skipped before. We should replace 9

by 1.

1239567 → 1239547 → 6239547 → 6139547 → 6139542 → 6139742 → 6159742 →

6359742→ 6351742.

The length of this path is 8 which is equal to the shortest path between these two

nodes. One step is done at the beginning for routing to this new source, 1234567→

1239567. So the length of path from identity node to this target is 8 + 1 = 9.

Case 2. There is only one foreign element which is in the same position as in

its paired source. Routing contains external and/or internal cycles. Again let ai be

the non-foreign element which is external for si. If there is no external cycle ai is

considered as an external element for correcting internal cycles. If there is an external

cycle only ai can be its first element and its last element is considered as an external

element for internal cycles. The length of the path here again is equal to d(si, tj).

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 47

Two routings (1234587, 6351782) and (1234597, 6351794) of our example are done

by this case. The position of the only foreign element is the same in each of these

pairs. Both of the routings contain external and internal cycles, and 6 is the external

element for both of them. The first one has the external cycle C1 = (6, 1, 4) and the

internal cycle C2 = (2, 7, 5, 3). The routing begins with correction of the external

cycle and its last element is considered as an external element to correct the internal

cycle as follows:

1234587 → 6234587 → 6231587 → 6431587 → 6431582 → 6431782 → 6451782 →

6351782.

The second routing with one external cycle C1 = (6, 1, 4, 7, 5, 3, 2) will be done fol-

lowing the same procedure:

1234597→ 6234597→ 6231597→ 6231594→ 6231794→ 6251794→ 6351794.

The length of the path for routing from the identity node to first one is 7+1 = 8. The

length of the second path is also calculated in a same way which is equal to 6+1 = 7.

Case 3. There is only one foreign element in a target which is not in the same

position as in its paired source or the foreign element in si is not the one in target,

the same procedure as Case 1 is done and at the end in one step the foreign element is

placed in the right position. The only difference with the routing in Case 1 is that If

the foreign element was in the middle of an external cycle, when it is met, the routing

is continued with correcting the next cycle and after correcting all cycles, correction of

the cycle containing the foreign element is proceed with the next element of the foreign

element till the last element of the cycle. At last with no more than two steps, we will

reach to a node with all non-foreign elements and the non-foreign external element in

the position of the foreign element. For internal cycles we can shift the elements till

the foreign element becomes the last element in this cycle. Then the foreign element

is put in its correct position. These are again node disjoint paths, since Case 1 shows

that there exist disjoint paths from identity node to at most k(n− k) different nodes

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 48

which only have non-foreign elements in their representations. If the foreign element

is the last element of the cyclic representation of the target node, no more step is

needed in addition to corrections of internal and/or external cycles. Hence the length

of the path is d(si, tj). If the foreign element is not in the last two elements of the

external cycle, the length of the path is d(si, tj) + 2.

Following Case 3 we can find the disjoint paths for each of following pairs in our

example.

(9234567, 4351792)

(1294567, 6451792)

(1234569, 6351492)

(1234967, 6341792)

(1934567, 6354792)

Each source has only one foreign element that is not in the same position as the target

it is paired with. By the same procedure as Case 1, each source node is routed to a

node with all non-foreign elements and the only foreign element, which is used during

the routing, is placed in its correct position at last step.

For the first pair, the external cycle is C1 = (1, 4, 9, 6) and the internal cycle is

C2 = (5, 3, 2, 7).

9234567 → 9231567 → 9231467 → 9251467 → 9351467 → 9351462 → 9351762 →

4351762→ 4351792.

Routing for next 3 pairs are as follows:

1294567 → 1294537 → 6294537 → 6291537 → 6491537 → 6491532 → 6491732 →

6451732→ 6451792

1234569 → 1234579 → 6234579 → 6231579 → 6231479 → 6251479 → 6351479 →

6351472→ 6351492

1234967 → 1234957 → 6234957 → 6231957 → 6241957 → 6341957 → 6341952 →

6341752→ 6341792

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 49

The cyclic representation for the last pair in this case contains only one external

cycle C1 = (2, 7, 5, 3, 9, 6, 1). Here 9, the foreign element, is in the middle of the cycle.

So, we consider the cycle without 9. By making 1 an external element, we use it to

correct 3 and 9. First 3 is replaced by 1, then 3 is placed in its correct position. At

last 9 is placed in its correct position and 1 is made an external again.

1934567→ 1934562→ 1934762→ 1954762→ 1954732→ 6954732→ 6954712→

6354712→ 6354792

Correction of this cycle needs 2 more steps which will cause a path with length

d(1934567, 6354792) + 2 = 6 + 2 = 8. So the length of the path from the identity

node to this target is 8 + 1 = 9. The length of other paths is equal to d(si, ti) + 1 for

each si and ti that are paired.

Case 4. If there are more than one foreign element in a target, the foreign element

in its paired new source is fixed from beginning of routing as in Case 1. Consider z as

the number of foreign elements and x as a foreign element used in routing. Whether

this foreign element is in a correct position or not, we have one of the following cases:

Case 4.1. If the foreign element x is in its correct position, i, it is routed

to a node with k − 1 non-foreigns, including internals for the target and non-foreign

external ones, and also a foreign element in its correct positions. Then the remaining

foreign elements are replaced one by one in a sequence that resulting node is not met

before.

The length of path is at most d(si, tj)+(z−1). During routing no foreign element,

other than the first one, is used. If i, which is replaced by x, is an internal element

for the target we have z external cycles, if not each foreign external element forms an

external cycle. So the routing starts with external cycle with ai as its first element.

Then correction of internal cycles begins. After correcting internal cycles, correction

of external cycles begins from their second element, since we do not want to replace

any foreign element yet. The last element of each external cycle (which is a non-

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 50

foreign one) is considered as an external element for correcting next external cycle

from its second element. At last, all external elements are placed in their correct

positions, so z − 1 extra steps are done while correcting external cycles.

In our example the routings for remained targets are calculated by Case 4.1.

(1234568, 6351798)

(8234567, 8351792)

(1238567, 6358792)

(1284567, 6381792)

(1834567, 6851792)

(1234867, 6351892)

In each of these sources there is a foreign element which is in its correct position

comparing to its paired target node. So during routing this foreign element is fixed in

its position and at last step the other foreign element is replaced. Routing for the first

pair in this case, (1234568, 6351798), is done by two external cycles C1 = (9, 6, 1, 4),

C2 = (7, 5, 3, 2). One external cycle is formed by one foreign element and the other

one is formed by 7, which is a non-foreign element but it is replaced by 8 in 1234568.

So routing will start by correcting C2 then C1 from its second element. At last the 9

is put in its correct position.

1234568 → 1234768 → 1254768 → 1354768 → 1354728 → 6354728 → 6351728 →

6351798

Rest of the paths are as follows:

8234567 → 8231567 → 8431567 → 8431562 → 8431762 → 8451762 → 8351762 →

8351792

1238567 → 1238547 → 6238547 → 6138547 → 6138542 → 6138742 → 6158742 →

6358742→ 6358792

1284567 → 1384567 → 1384562 → 1384762 → 1384752 → 6384752 → 6381752 →

6381792

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 51

1834567 → 1834562 → 1834762 → 1854762 → 1854732 → 6854732 → 6851732 →

6851792

1234867 → 1254867 → 1354867 → 1354862 → 1354872 → 6354872 → 6351872 →

6351892.

In this case length of the paths is one more than the minimum distance for each pair,

since there is only one other foreign element that should be replaced. The length of

the longest path in this part is 7 + 1 = 8. So with 9 steps identity node is routed to

this target node.

Case 4.2. If the foreign element x is not in its correct position or target node

does not have x, first we route to a node with all non-foreign elements, as in Case

1 then start replacing foreign elements in a sequence that resulted node is not met

before.

The length of path here is at most d(si, tj) + z. As in the Case 1, no other foreign

element is used during routing and if i = ai is an internal element we have z external

cycles, if not each foreign element forms an external cycle. So the routing starts

with the external cycle with ai as its first element. After correcting internal cycles,

correction of external cycles begins from their second element, since we do not want

to replace any foreign element yet. Last element of each external cycle (which is

a non-foreign one) is considered as an external element for correcting next external

cycle from its second element. At last, x is replaced by an external non-foreign one.

During routing x remains in a fixed position and procedure continues with its next

element. Same as Case 3 by no more than two steps we reach to a node with all

non-foreign elements. All external elements are placed in their correct positions, so

(z − 1) + 2 = z + 1 extra steps are done during the procedure to reach the target.

If x is not a target’s element, it must be a last element of an external cycle which is

replaced by a non-foreign element when all cycles are corrected, except replacing the

foreign elements. Then z foreign elements through z steps are replaced to reach the

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 52

target.

Since sequences of all non-foreign elements are unique in each of these routings

and only one foreign element has been used for each, all paths are node disjoint.

The maximum value of distance between two arbitrary nodes is equal to diameter of

the graph, so we will consider diameter = b3/2kc as the maximum for d(si, tj). Also

one step should be added to all distances since we start routing from fist neighbors

of identity node. So length of longest path is b3/2kc+ z + 1 + 1 where z ≤ n− k.

In our example the length of the longest path in all cases is 9. This is less than

the worst case which is 8 + 2 + 2 = 12.

4.3.1 Example

Example. Suppose that in A5,3, we want to find 3(5−3) = 6 disjoint paths from the

identity node to six targets.

t1 = 314, t2 = 514, t3 = 234, t4 = 254, t5 = 213, t6 = 215.

First we route to all 6 neighbors of the identity node:

s1 = 124, s2 = 125, s3 = 143, s4 = 153, s5 = 423, s6 = 523.

Now we should calculate distance between any source and target to pair them

based on the minimum distance and position of its foreign element.

MinimumDistance =

314 514 234 254 213 215

124 2 2 2 2 4 4

125 3 3 3 3 4 3

143 4 3 4 3 2 3

153 3 4 3 2 2 3

423 4 3 4 3 2 3

523 3 2 3 4 2 3

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 53

Now we start selecting the lowest distance from matrix, when a source and a target

are paired, related row and column will be omitted. Bellow are 6 pairs based on the

procedure:

MinimumDistance(143, 213) = 2

MinimumDistance(153, 254) = 2

MinimumDistance(523, 514) = 2

MinimumDistance(124, 314) = 2

MinimumDistance(125, 215) = 3

MinimumDistance(423, 234) = 4

The routing procedure for each pair is as follows:

143→ 243→ 213, Case 2

153→ 253→ 254, Case 4.1

523→ 513→ 514, Case 4.1

124→ 324→ 314, Case 2

125→ 135→ 235→ 215, Case 2

423→ 421→ 431→ 231→ 234, Case 3

By adding 1 to each path, the length of paths from the source node to target nodes

will be calculated. Here paths has no collision and each node has been used once.

Length of the longest path is 4 + 1 = 5 ≤ 4 + 1 + 2 = 7 and Theorem 7 holds.

Example. In a (4, 2)-arrangement graph we want to find disjoint paths from

source to 4 target nodes

t1 = 21, t2 = 31, t3 = 42, t4 = 43.

We go over the procedure. First we find all the neighbors of the identity node.

s1 = 13, s2 = 14, s3 = 32, s4 = 42.

And then we build a 4× 4 matrix for pairing them:

CHAPTER 4. ONE TO MANY DISJOINT PATHSARRANGEMENT GRAPH 54

MinimumDistance =

21 31 42 43

13 2 3 2 1

14 2 2 2 2

32 2 1 1 2

42 2 2 0 1

These are paired as bellow:

MinimumDistance(42, 42) = 0

MinimumDistance(32, 31) = 1

MinimumDistance(14, 21) = 2

MinimumDistance(13, 43) = 1

Paths are as follows:

42 (this node is a neighbor of source and a target)

32→ 31, Case 2

14→ 24→ 21, Case 1

13→ 43, Case 4.1

And the length of the longest path here is equal to 2 + 1 = 3 ≤ 3 + 2 + 2 = 7.

Chapter 5

Proposed Algorithm

Augmented Cubes

5.1 Introduction

In this chapter, we present an algorithm for finding disjoint shortest paths from a

source node to 2n − 1 targets in an augmented cube. The number of these paths is

maximum since it is equal to the degree of the graph. As mentioned in Chapter 3

we can safely map the source node to the identity node, and then specify all target

nodes based on this mapping. Thus routings will be from a special node 0n to 2n− 1

other nodes. More formally, it can be stated as follows:

Given a source node and 2n − 1 target nodes in an n−dimensional augmented

cube, do there exist 2n − 1 shortest and disjoint paths from source to all of these

targets?

First we explain our approach in detail then present and discuss a polynomial

algorithm.

55

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 56

5.2 Finding Disjoint Shortest Paths in the Hyper-

cube

The problem of finding the maximum number of disjoint and shortest paths have

been studied on the hypercube in [8]. The hypercube is a similar structure to the

augmented cube. So we will review the result for the hypercube first.

Definition 15. A permutation of the elements of a finite set is called an order-

ing. Suppose P and Q are two sets ordered as OP = (p1, p2, p3, ..., pk) and OQ =

(q1, q2, q3, ..., ql) where k = |P | and l = |Q|. We say that OP and OQ are disjoint if

{p1, p2, p3, ..., pi} 6= {q1, q2, q3, ..., qi}

for 1 ≤ i ≤ min(k, l) unless i = |P | = |Q|.

For a permutation P = [p1, p2, p3, ..., pn], we use the following notations which are

defined in [14]:

• [Pk] = [p1, p2, p3, ..., pk], the k elements of P in the same order,

• {Pk} = [p1, p2, p3, ..., pk], the set of the first k elements in P .

Example. If P = [3, 1, 4, 2] then [P3] = [3, 1, 4] and {P3} = {1, 3, 4}.

Definition 16. A node v = v1v2v3...vn, vi ∈ {0, 1} in an n-cube is presented by

X = {i|vi = 1, 1 ≤ i ≤ n}. In other words, X is the set of all dimensions (bits) in v

that are 1.

Example. In a 4-hypercube, the set representation of three nodes are given

bellow:

v1 = 0011 X1 = {3, 4}

v2 = 0101 X2 = {2, 4}

v3 = 1110 X3 = {1, 2, 3}

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 57

Definition 17. A path in an n-cube in the form of < 0n, v1, v2, ..., vn−1 > can be

shown as a permutation P = [p1, p2, p3, ..., pn] such that {Pk} = Xk, where Xk is the

set representation of vk.

Example. In a 4-hypercube, a path from s = 0000 to t = 1111 can be represented

as follows:

< 0000, 0010, 0110, 1110, 1111 >⇐⇒ P = [3, 2, 1, 4].

An ordering of a binary representation of a node is a shortest path from source

node to this node since its length is equal to the number of 1s in the binary represen-

tation. At each step a dimension with a 1 is corrected by going to a node that has 1

in this dimension.

Definition 18. Let (P1, P2, P3, ..., Pm) be a collection of subset of a set P = {p1, p2, p3,

..., pn}, m ≤ n. An ordered set of distinct elements [pi1 , pi2 , ..., pim] is called a system

of distinct representatives (SDR) if pij ∈ Pj, for 1 ≤ j ≤ m.

For example, if P = {1, 2, 3, 4} and P1 = {1, 2}, P2 = {3}, and P3 = {2, 3} then

[1, 3, 2] is an SDR for P1, P2, and P3. But if we change P2 and P3 to P2 = {1} and

P3 = {2} there does not exist an SDR for them. It is obvious that it is not always

possible to find an SDR for some sets.

In [8] it is shown that an SDR of (P1, P2, ..., Pm) corresponds to a matching of size

m of the bipartite graph where the partite sets are P and {P1, P2, ..., Pm} such that

there is an edge from p ∈ P to Pi iff p ∈ Pi. The well-known Halls Theorem [15] gives

the iff condition for the existence of an SDR for a collection of finite sets.

Theorem 8. A collection of nonempty finite sets P1, P2, ..., Pn has an SDR iff for

any 1 ≤ i1 < i2 < ... < ik ≤ n, | ∪kj=1 Pij | ≥ k [15].

For the previous example there is no SDR since |P1 ∪ P2 ∪ P3| = 2 � 3.

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 58

For n target nodes in an n-cube with 2n nodes:

t1 = t11t12...t1n,

t2 = t21t22...t2n,

.

.

.

tn = tn1tn2...tnn

they correspond to n sets T1, T2, ..., Tn which are defined as follows. If tij = 1, then

we include j in set Ti, which means we include the numbers corresponding to the bits

of ti that are 1 in set Ti. It is shown in [14] that a necessary and sufficient condition

for the existence of n disjoint shortest paths in the n-cube is that there exists an SDR

for binary representation of n target nodes.

Theorem 9. For any collection of nonempty finite sets T1, T2, ..., Ts , in which all

singletons are distinct, there is a disjoint ordering if and only if a SDR exists for the

collection.

For example, for nodes

t1 = 0110

t2 = 1000

t3 = 0111

t4 = 1001,

we have

T1 = {2, 3}

T2 = {1}

T3 = {2, 3, 4}

T4 = {1, 4}.

One SDR for the four sets is [2, 1, 3, 4].

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 59

The binary representations of the n nodes can be viewed as the adjacency matrix of

a bipartite graph and the condition that an SDR exists means that Halls condition [15]

is satisfied, i.e., n disjoint shortest paths exist if and only if there exists a permutation

i1i2...in of symbols from {1, 2, ..., n} such that t1,i1 = t2,i2 = ... = tn,in = 1, namely,

there is a 1 on each row and each column in the adjacency matrix. For the above exam-

ple, it represents a bipartite graph G = ({A,B,C,D, a, b, c, d}, {(A, b), (A, c), (B, a),

(C, b), (C, c), (C, d), (D, a), (D, d)}). One possible solution is specified with bold font

bellow:

0 1 1 0

1 0 0 0

0 1 1 1

1 0 0 1

This particular solution is equivalent to a perfect matching of {(A, c), (B, a), (C, b),

(D, d)}. Note that the solution and thus the perfect matching problem is not unique.

Finding a maximum (perfect) matching for a bipartite graph with 2n vertices can be

done in O(n5/2) [16].

In [8] also an algorithm with O(n3) time complexity is presented to find all n

disjoint paths from a source to n target nodes in Qn. Briefly, the paths are found by

performing a row reduction, which can be done in O(n) time, on a matrix of binary

representations of the n nodes with an SDR. The reduction makes sure that no two

paths meet in a node during routing. The major steps of the algorithm are:

1. Check to see whether an SDR exists

2. If yes, find a disjoint ordering

The procedure for finding a disjoint ordering is given in [8].

Finding an SDR takes O(n5/2) time and finding a disjoint ordering for a given

SDR takes O(n3) time.

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 60

Example. Given five sets Ai, i = 1, 2, 3, 4, 5 whose matrix representation is as follows:

A1 : 1 1 0 0 0

A2 : 0 1 1 0 0

A3 : 1 1 1 0 0

A4 : 0 0 0 1 1

A5 : 0 0 1 1 1

with the bold ones as the SDR. Since A3 has the highest Hamming weight, we do the

reduction on A3. We first try the first 1 (from the left) and the resulting set is A2.

Then we try the third 1 and the resulting set is A1. We then switch the two 1’s in

the SDR in A1 and A3 and remove the second 1 in A3 to get:

A1 : 1 1 0 0 0

A2 : 0 1 1 0 0

A3 : 1 0 1 0 0

A4 : 0 0 0 1 1

A5 : 0 0 1 1 1

We now have a disjoint ordering as follows:

OA1 = ()

OA2 = ()

OA3 = (2)

OA4 = ()

OA5 = ()

The next set to reduce is A5. When the third 1 is removed, the resulting row becomes

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 61

A4. So we remove the fourth 1 to obtain:

A1 : 1 1 0 0 0

A2 : 0 1 1 0 0

A3 : 1 0 1 0 0

A4 : 0 0 0 1 1

A5 : 0 0 1 0 1

The disjoint ordering now becomes:

OA1 = ()

OA2 = ()

OA3 = (2)

OA4 = ()

OA5 = (4)

The next five reductions are straightforward and we will end up with:

A1 : 0 1 0 0 0

A2 : 0 0 1 0 0

A3 : 1 0 0 0 0

A4 : 0 0 0 1 0

A5 : 0 0 0 0 1

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 62

The disjoint ordering generated is:

OA1 = (2, 1)

OA2 = (3, 2)

OA3 = (1, 3, 2)

OA4 = (4, 5)

OA5 = (5, 3, 4)

5.3 Finding 2n− 1 Disjoint Shortest Paths in AQn

As we know, an augmented cube graph with dimension n, has 2n number of nodes.

Two nodes p and q are connected

• by a hypercube edge if their binary representations only differ at one place,

pl = q̄l and pi = qi ∀i 6= l, or

• by a complement edge if their binary representations are equal just for the first

l − 1 elements, pi = qi, 1 ≤ i ≤ l − 1 and pi = q̄i l ≤ i ≤ n.

The first step is to compute distances from the source node to all target nodes by

using just hypercube edges. The results of this step will be needed when the same

number of edges is needed to route to this node from the identity node by using

complement edges and hypercube edges simultaneously.

In the second step, the routing algorithm presented in Chapter 3, Algorithm 3, is

employed to determine weights of edges. We use a counter for the number of edges

in Algorithm 3, to represent the distance between this node to identity node. The

weights are in the from of 2i and 2i− 1 for 1 ≤ i ≤ n, so the range of weights would

be 1 ≤ weights ≤ 2n − 1. The weight cannot be equal to 2n since there is no bit

after the last position and if a transmission is needed here it will be done by an edge

weighting 2n− 1.

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 63

In the third step, for each node that has equal results calculated in Step 1 and

Step 2, the bit numbers of the 1s in the binary representation are saved.

In the fourth step a matrix is created. We are going to convert the set of weights

for each target node to a binary string of length 2n− 1 as follows: since the highest

weight is 2n− 1, a zero binary string with length of 2n− 1 is considered. The bits in

the columns i, for all i ∈ set of weights of edges resulted from Step 2, are changed to

1, starting from left to right. All other bits remain 0. This is done for all 2n−1 nodes.

These binary strings can be written as a matrix, so we will have a (2n− 1)× (2n− 1)

matrix.

For example a node p = 011101 inAQ6 has distance 2 to the identity node, d(011101, 000000) =

2. The set of weights, W , for routing to this node contains two edges with weights:

w1 = 2 × 2 = 4 and w2 = (2 × 5) − 1 = 9. Then we convert W = {4, 9} to a binary

string with length 2n− 1 which has 1 in the columns 4 and 9: 00010000100.

Step 5 checks if an SDR exists for this matrix or not. If there is an SDR, the

algorithm goes to step 7 and finds a disjoint ordering which results in disjoint shortest

path from the identity node to all target nodes. If there is no SDR for this matrix

the procedure continues to the next step.

Step 6.1 First we check even columns of this matrix. If all bits in an i-th column

are 0, for an even i (1 ≤ i ≤ 2n− 1), there is no SDR for this set so there cannot be

disjoint shortest paths from the source node to these target nodes and the algorithm

stops here. The reason for this is explained in next step.

Step 6.2. If this matrix does not have an even column with all zero bits we need

to convert the saved hypercube routings to 2n − 1 bit strings. We use the results

of Step 3 which are the bit numbers of the 1’s in the binary representations of the

nodes. Since only one bit is changed in each step, hypercube routing is the same as

augmented cube routing, but only using edges with odd weights computed by 2i− 1.

The result is a 2n − 1 binary string with 1 in odd columns. Thus if all bits in an

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 64

even columns of all augmented cube routings are zero, there will be no SDR for this

set of target nodes since hypercube routings also do not have a non-zero bit in any of

their even columns. Again, for each node that has a hypercube routing, a zero binary

string, 02n−1 is considered. We change the bits in columns 2i − 1 into 1, for all i’s

resulted from step 3.

Step 6.3. Now to check all possible combinations of the augmented cube routings

and the hypercube ones, the rows of matrix are changed as follows. For each node in

i-th row of matrix, 1 ≤ i ≤ 2n−1, which has both routings, we combine both routings

to have a binary string of length 2n − 1 with 1s in the columns where augmented

cube routing and hypercube routing are 1. This binary string is placed in i-th row of

the matrix.

Step 6.4. After updating the matrix, again we check the existence of an SDR for

this matrix.

Step 6.5. If there is no SDR, it means that there cannot be disjoint shortest paths

to these targets and our algorithm stops.

Step 6.6. If an SDR is found, the matrix is updated again. For lines with both

routings, the routing that contains the the 1 forming the SDR, is kept in this matrix

and the other one is deleted. If the 1 in the SDR is for both routings, it does not

matter which one is deleted and which one is remained in the matrix.

Finally this (2n− 1)× (2n− 1) matrix with an SDR will result in finding shortest

and disjoint paths to target nodes The whole process is the same as the one for

hypercube in [8].

5.3.1 Proposed Algorithm

In these section the algorithm described earlier is presented.

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 65

Algorithm 4 Routing Algorithm for 2n− 1 target nodes in an AQn

Finding 2n−1 node disjoint paths from a source node, s, to 2n−1 destination nodes,

t1, t2, t3..., t2n−1;

1. Compute distance to source node for all target nodes in hypercube

2. Compute weights of edges in augmented cube for routing to targets and dis-

tances to source node by using Algorithm 3

3. If hypercube distance is equal to augmented cube distance for a node

• save hypercube routing for this node (save i where bit number i is 1 in

binary representation of this node)

4. Create binary strings for all 2n− 1 augmented cube routings

5. Find SDR

6. If there is no SDR

6.1. If there is an even column with no 1, STOP

6.2. Else Create binary strings for the hypercube routings saved in Step 3

6.3. Update each row of the matrix

• For nodes having the same length augmented cube routing and hyper-

cube routing, combine them and update this row of matrix

6.4. Find SDR

6.5. If there is no SDR, STOP

6.6. Else

• For nodes with both routings, keep the one with the bit 1 used in the

SDR, delete the other one, and update this row of matrix

7. Perform reduction (same as hypercube)

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 66

5.3.2 Performance

The performance of each step of the proposed algorithm is as follows:

• Step 1. There are 2n − 1 target nodes with a binary representation of length

n. Going through all bits of one binary string for finding the bits which are 1

takes O(n) time. So the entire checking for all nodes can be done in O(n2).

• Step 2. In this step Algorithm 3 is done with an extra step, which is a counter

for the number of transmission, The Algorithm 3 again checks all n bits of the

binary representation of a node in O(n) time and transmit a message along an

edge in a constant time. The extra step only takes O(1) time. These are also

done for all target nodes so the total time of O(n2) is needed for doing this step.

• Step 3. Here, for all the nodes with the same distance from the identity node

using just hypercube edges or using hypercube and complement edges, the num-

ber of 1 bits in their binary representation are saved. The maximum number

of such these nodes can be 2n − 1. For these nodes , all n bits of their binary

strings are checked to find the 1 bits. So this step can also be done in O(n2)

time.

• Step 4. O(n2) time is needed to convert the 2n− 1 set of integer values to the

binary set representations of length 2n− 1.

• Step 5. As mentioned in [8] finding an SDR can be done in O(n5/2).

• Step 6.1. This step takes O(n2) time to check all even columns of the matrix.

• Step 6.2. For the bits which are 1 in the binary representation of a node,

hypercube traversing is the same as traversing in the augmented cube using

edges with odd weights computed by 2i− 1. Thus, the column numbers of the

bits which are 1 are converted to edges with odd weights calculated by 2i− 1.

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 67

This step is same as step 4 so O(n2) time is needed to convert the maximum

2n− 1 set of integer values to the set of binary representations of length 2n− 1.

• Step 6.3. Here also the time taken to update the matrix is of order O(n2). Since

for each node with both hypercube routing and augmented cube routing, we

should go through all 2n− 1 bits in its binary representation of both routings.

So O((2n− 1)× 2× (2n− 1)) = O(8n2) time is needed.

• Step 6.4. Same as step 5 existence of an SDR is checked which takes O(n5/2)

time.

• Step 6.6. Same as step 6.3 for each node with both hypercube routing and

augmented cube routing, we should go through all 2n − 1 bits in its binary

representation and change the bits of the routing which is not used. So this

step needs O((2n− 1)× (2n− 1)) = O(4n2) time.

• Step 7. The last step is the same procedure presented in [8] which is an O(n3)

algorithm.

Consequently our algorithm can be done in a total time of O(n3) which is a

polynomial in terms of dimension of the augmented cube.

5.3.3 Example

We end this chapter by providing examples to elaborate on each step of algorithm 4.

Example. In a 6-augmented cube, given eleven target nodes, t1, t2, t3, ..., t11,

whose binary representation is as follows:

t1 : 011010, t2 : 011110, t3 : 101011, t4 : 101110, t5 : 101111, t6 : 110100, t7 :

110110, t8 : 110111, t9 : 111010, t10 : 111101, t11 : 100111

As discussed in previous chapters this number of target nodes is the most possible

since 2× 6− 1 = 11.

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 68

Step 1. Considering nodes in a hypercube, Hamming weight of each node is cal-

culated, (Hamming weight of a node is equal to its distance from node 0n). Result of

this step is as follows:

H1 : 3

H2 : 4

H3 : 4

H4 : 4

H5 : 5

H6 : 3

H7 : 4

H8 : 5

H9 : 4

H10 : 5

H11 : 4

Step 2. In this step for each target node, a set of weights needed for routing to this

node from source node and number of weights in each set are created:

W1 : {4, 7, 11}, N1 : 3

W2 : {4, 11}, N2 : 2

W3 : {1, 5, 10}, N3 : 3

W4 : {1, 6, 11}, N4 : 3

W5 : {1, 6}, N5 : 2

W6 : {2, 5, 10}, N6 : 3

W7 : {2, 5, 11}, N7 : 3

W8 : {2, 5}, N8 : 2

W9 : {2, 7, 11}, N9 : 3

W10 : {2, 9}, N10 : 2

W11 : {1, 8}, N11 : 2

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 69

Step 3. Now Hi is compared with Ni for 1 ≤ i ≤ 11. If they are the same, a set is

built containing edges with odd weight 2i− 1 where i is the number of bits that are

1.

H1 = N1, in t1 : 011010, bit numbers 2, 3, 5 are 1. So weight of odd edges would be:

B1 : {3, 5, 9}

H2 6= N2

H3 6= N3

H4 6= N4

H5 6= N5

H6 = N6, in t6 : 110100 position of 1s are 1, 2, 4, so its set of weights would be:

B6 : {1, 3, 7}

H7 6= N7

H8 6= N8

H9 6= N9

H10 6= N10

H11 6= N11

Step 4. A binary string of length 2n− 1 is made for each of 2n− 1 target nodes in

this step. First consider a zero bit string, 02n−1, for all 2n− 1 target nodes. Then for

each ti, 1 ≤ i ≤ 2n − 1 change bit numbers wij of the binary string into 1 starting

from left, where wij ∈ Wi 1 ≤ j ≤ 2n − 1. This step forms a matrix with routing

sequences in a binary representation:

R1 : 00010010001, R2 : 00010000001, R3 : 10001000010, R4 : 10000100001, R5 : 10000100000, R6 :

01001000010, R7 : 01001000001, R8 : 01001000000, R9 : 01000010001, R10 : 01000000100, R11 :

10000001000

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 70

0 0 0 1 0 0 1 0 0 0 1

0 0 0 1 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 0 1 0

1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0 1 0

0 1 0 0 1 0 0 0 0 0 1

0 1 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 1

0 1 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 1 0 0 0

Step 5. There is no SDR for this matrix since all the bits in column 3 are zero.

Step 6.1. All even columns have atleast one non-zero bit and the only column with

all zero bits is column 3.

Step 6.3. In this step the hypercube routings, B1 and B6, are converted into a bit

string with length 2n− 1.

R′1 : 00101000100 and R′6 : 10100010000

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 71

Each of these routings are combined with its related line in the matrix.

R1 0 0 1 1 1 0 1 0 1 0 1

R2 0 0 0 1 0 0 0 0 0 0 1

R3 1 0 0 0 1 0 0 0 0 1 0

R4 1 0 0 0 0 1 0 0 0 0 1

R5 1 0 0 0 0 1 0 0 0 0 0

R6 1 1 1 0 1 0 1 0 0 1 0

R7 0 1 0 0 1 0 0 0 0 0 1

R8 0 1 0 0 1 0 0 0 0 0 0

R9 0 1 0 0 0 0 1 0 0 0 1

R10 0 1 0 0 0 0 0 0 1 0 0

R11 1 0 0 0 0 0 0 1 0 0 0

Step 6.4. Bold elements in the above matrix form an SDR.

Step 6.6. In each line that contains both routings, the routing that its bit is used in

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 72

the SDR is kept and the other one is deleted. This would result in bellow matrix.

R1 0 0 1 0 1 0 0 0 1 0 0

R2 0 0 0 1 0 0 0 0 0 0 1

R3 1 0 0 0 1 0 0 0 0 1 0

R4 1 0 0 0 0 1 0 0 0 0 1

R5 1 0 0 0 0 1 0 0 0 0 0

R6 0 1 0 0 1 0 0 0 0 1 0

R7 0 1 0 0 1 0 0 0 0 0 1

R8 0 1 0 0 1 0 0 0 0 0 0

R9 0 1 0 0 0 0 1 0 0 0 1

R10 0 1 0 0 0 0 0 0 1 0 0

R11 1 0 0 0 0 0 0 1 0 0 0

Step 7. At last step the algorithm presented in [8] is applied on the matrix to

find the disjoint shortest paths.

Bold elements in the above matrix are forming an SDR for 2n−1 sets. Since H(R1) =

3, the reduction is done on R1. We first try the 1 in column 5 (from the left) and the

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 73

result is a unique set not equal to any other row. so this one is removed to get:

R1 0 0 1 0 0 0 0 0 1 0 0

R2 0 0 0 1 0 0 0 0 0 0 1

R3 1 0 0 0 1 0 0 0 0 1 0

R4 1 0 0 0 0 1 0 0 0 0 1

R5 1 0 0 0 0 1 0 0 0 0 0

R6 0 1 0 0 1 0 0 0 0 1 0

R7 0 1 0 0 1 0 0 0 0 0 1

R8 0 1 0 0 1 0 0 0 0 0 0

R9 0 1 0 0 0 0 1 0 0 0 1

R10 0 1 0 0 0 0 0 0 1 0 0

R11 1 0 0 0 0 0 0 1 0 0 0

We now have a disjoint ordering as follows:

OR1 = (5)

The next row to reduce is R3. We remove the first 1 to obtain:

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 74

R1 0 0 1 0 0 0 0 0 1 0 0

R2 0 0 0 1 0 0 0 0 0 0 1

R3 0 0 0 0 1 0 0 0 0 1 0

R4 1 0 0 0 0 1 0 0 0 0 1

R5 1 0 0 0 0 1 0 0 0 0 0

R6 0 1 0 0 1 0 0 0 0 1 0

R7 0 1 0 0 1 0 0 0 0 0 1

R8 0 1 0 0 1 0 0 0 0 0 0

R9 0 1 0 0 0 0 1 0 0 0 1

R10 0 1 0 0 0 0 0 0 1 0 0

R11 1 0 0 0 0 0 0 1 0 0 0

And the disjoint ordering now becomes:

OR1 = (5)

OR3 = (1)

All reductions are straightforward and we will end up with a matrix which only

has the 1s forming the SDR.

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 75

R1 0 0 1 0 0 0 0 0 0 0 0

R2 0 0 0 1 0 0 0 0 0 0 0

R3 0 0 0 0 0 0 0 0 0 1 0

R4 0 0 0 0 0 1 0 0 0 0 0

R5 1 0 0 0 0 0 0 0 0 0 0

R6 0 1 0 0 0 0 0 0 0 0 0

R7 0 1 0 0 0 0 0 0 0 0 1

R8 0 0 0 0 1 0 0 0 0 0 0

R9 0 0 0 0 0 0 1 0 0 0 0

R10 0 0 0 0 0 0 0 0 1 0 0

R11 0 0 0 0 0 0 0 1 0 0 0

The final disjoint ordering is:

OR1 = (3, 9, 5)

OR2 = (4, 11)

OR3 = (10, 5, 1)

OR4 = (6, 11, 1)

OR5 = (1, 6)

OR6 = (2, 10, 5)

OR7 = (11, 5, 2)

OR8 = (5, 2)

OR9 = (7, 11, 2)

OR10 = (9, 2)

OR11 = (8, 1)

It can be verified that nodes which are used in routings to all target nodes, are

only met once, which means that paths are disjoint. Since each row was a shortest

path to each target, so the results are disjoint and shortest paths to target nodes.

CHAPTER 5. PROPOSED ALGORITHM AUGMENTED CUBES 76

Example. In previous example if we change t11 to 111110, results are changed as

follows:

Step 1. H11 : 5

Step 2. W11 : {2, 11} N11 : 2

Step 3. H11 6= N11

Step 4. R11 : 01000000001

0 0 0 1 0 0 1 0 0 0 1

0 0 0 1 0 0 0 0 0 0 1

1 0 0 0 1 0 0 0 0 1 0

1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0 1 0

0 1 0 0 1 0 0 0 0 0 1

0 1 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 1

0 1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 1

As we can see in this matrix, all bits in column 8 are zero. Since it is an even column,

none of the hypercube routing of t1 and t6 has 1 in their 8-th column. This means

that we cannot have an SDR for these set of targets so there would be no disjoint

and shortest paths from source node to these eleven target nodes.

Chapter 6

Conclusion

In this thesis, we have studied the (n, k)-arrangement graph, an attractive alternative

to the n-star network. We found some useful topological properties of this graph.

An,k is a k(n − k)-regular graph. We proved there exists k(n − k) disjoint paths for

sending a message from a single source to k(n−k) targets with lengths no more than

diameter+(n−k)+2. For each of k(n−k) neighbors of the identity node, its foreign

element is fixed in its position during routing, which will result in finding disjoint

paths. Also we used a similar procedure presented in [26] for finding n disjoint paths

between two nodes, where 1 < k < n − 1. This routing paradigm takes O(n2) time

to find all n paths. The shortest distance between two nodes is shown by d(s, t) and

the length of n disjoint paths found in this thesis is at most d(s, t) + 4. Moreover,

a new variation of the hypercube called the augmented cubes, AQn, are studied as

well. The number of nodes and their structure in an augmented cube are the same

as the hypercube, but an AQn is a (2n − 1)-regular graph. For taking advantage of

this property, we have designed an algorithm to find shortest and disjoint paths for

sending a message from a single source node to the greatest possible number of target

nodes, which is 2n − 1. The proposed algorithm has time complexity of O(n3) that

is a polynomial in terms of the dimension of the graph.

77

CHAPTER 6. CONCLUSION 78

One of the future directions would be to see whether the k(n − k) paths in the

arrangement graph can have a constant bound. Clearly for finding k(n− k) disjoint

paths in an (n, k)-arrangement graph an algorithm can be designed. The first step is

to consider its time complexity and try to design an algorithm with reasonable time

taken to find results.

As for the augmented cube graph, the algorithm can be modified by reducing the

time taken to find all disjoint paths. Studies should be done to figure out if it is

possible to find these paths without checking the matrix for replacing a routing with

an alternative hypercube path, if there exists any.

Bibliography

[1] Sheldon B. Akers and Balakrishnan Krishnamurthy. A group-theoretic model

for symmetric interconnection networks. IEEE transactions on Computers,

38(4):555–566, 1989.

[2] Selim G Akl. Parallel computation: models and methods. Prentice-Hall, Inc.,

1997.

[3] Abdel-Elah Al-Ayyoub and Khaled Day. The hyperstar interconnection network.

Journal of Parallel and Distributed Computing, 48(2):175–199, 1998.

[4] Jeffe Boats, Lazaros Kikas, and John Olesik. An algebraic approach for finding

disjoint paths in the alternating group graph. Journal of Combinatorial Mathe-

matics and Combinatorial Computing, 64:109, 2008.

[5] Jou-Ming Chang, Jinn-Shyong Yang, Yue-Li Wang, and Yuwen Cheng. Pancon-

nectivity, fault-tolerant Hamiltonicity and Hamiltonian-connectivity in alternat-

ing group graphs. Networks, 44(4):302–310, 2004.

[6] Eddie Cheng, Jerrold W Grossman, Ke Qiu, and Zhizhang Shen. The number

of shortest paths in the arrangement graph. Information Sciences, 240:191–204,

2013.

[7] Eddie Cheng, Ke Qiu, and Zhi Zhang Shen. On disjoint shortest paths routing

in interconnection networks: A case study in the star graph, 2012.

79

BIBLIOGRAPHY 80

[8] Eddie Cheng, Ke Qiu, and Zhizhang Shen. A faster algorithm for finding disjoint

ordering of sets. International Journal of Networking and Computing, 3(2):182–

191, 2013.

[9] Wei-Kuo Chiang and Rong-Jaye Chen. The (n, k)-star graph: A generalized star

graph. Information Processing Letters, 56(5):259–264, 1995.

[10] Sheshayya A Choudum and V Sunitha. Augmented cubes. Networks, 40(2):71–

84, 2002.

[11] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to algorithms second edition, 2001.

[12] Khaled Day and Anand Tripathi. Arrangement graphs: a class of generalized

star graphs. Information Processing Letters, 42(5):235–241, 1992.

[13] Michael J Flynn. Some computer organizations and their effectiveness. IEEE

transactions on computers, 100(9):948–960, 1972.

[14] Shuhong Gao, Beth Novick, and Ke Qiu. From hall’s matching theorem to

optimal routing on hypercubes. Journal of Combinatorial Theory, Series B,

74(2):291–301, 1998.

[15] Philip Hall. On representatives of subsets. Journal of the London Mathematical

Society, 1(1):26–30, 1935.

[16] John E Hopkroft and Richard M Karp. An n5/2 algorithm for maximum matching

in bipartite graphs. SIAM J. Comput, 2:225–231, 1973.

[17] Jung-Sing Jwo, S Lakshmivarahan, and Sudarshan K Dhall. A new class of

interconnection networks based on the alternating group. Networks, 23(4):315–

326, 1993.

BIBLIOGRAPHY 81

[18] Cheng-Nan Lai. An optimal construction of node-disjoint shortest paths in hy-

percubes. In Proceedings of the 28 th Workshop on Combinatorial Mathematics

and Computation Theory, pages 245–253, 2011.

[19] Sivaramakrishnan Lakshmivarahan, Jung-Sing Jwo, and Sudarshan K. Dhall.

Symmetry in interconnection networks based on cayley graphs of permutation

groups: A survey. Parallel Computing, 19(4):361–407, 1993.

[20] Hyeong-Ok Lee, Jong-Seok Kim, Eunseuk Oh, and Hyeong-Seok Lim. Hyper-

star graph: A new interconnection network improving the network cost of the

hypercube. EurAsia-ICT 2002: Information and Communication Technology,

pages 858–865, 2002.

[21] Jingli Li, Yonghong Xiang, Manli Chen, and Yongheng Zhou. Broadcasting in

(n, k)-arrangement graph based on an optimal spanning tree. In Modelling &

Simulation, 2007. AMS’07. First Asia International Conference on, pages 193–

197. IEEE, 2007.

[22] Yifeng Li. Properties algorithms of the (n, k)−arrangement graphs. Master

Thesis, Department of Computer Science Brock University, 2009.

[23] Chin-Tsai Lin and Wen-Chuan Chiu. A routing scheme for constructing node-

to-node disjoint paths in alternating group graphs. In Proc. 19th Workshop on

Combinatorial Math. and Computat. Theory, pages 89–99, 2002.

[24] Meijie Ma, Guizhen Liu, and Jun-Ming Xu. Panconnectivity and edge-fault-

tolerant pancyclicity of augmented cubes. Parallel Computing, 33(1):36–42, 2007.

[25] Franco P Preparata and Jean Vuillemin. The cube-connected cycles: a versatile

network for parallel computation. Communications of the ACM, 24(5):300–309,

1981.

BIBLIOGRAPHY 82

[26] Ke Qiu and Selim G Akl. On node-to-node disjoint paths in the star intercon-

nection network. In IASTED PDCS, pages 731–735, 2005.

[27] Youcef Saad and Martin H Schultz. Topological properties of hypercubes. IEEE

Transactions on computers, 37(7):867–872, 1988.

[28] Jianping Song, Zifeng Hou, and Yuntao Shi. An optimal multicast algorithm for

cube-connected cycles. Journal of Computer Science and Technology, 15(6):572–

583, 2000.

[29] Nian-Feng Tzeng and Sizheng Wei. Enhanced hypercubes. IEEE Transactions

on Computers, 40(3):284–294, 1991.

[30] Fan Zhang, Ke Qiu, and Jong Seok Kim. Hyper-star graphs: Some topological

properties and an optimal neighbourhood broadcasting algorithm. Concurrency

and Computation: Practice and Experience, 27(16):4186–4193, 2015.

