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The two- and three-dimensional spatio-temporal dynamics of a falling, electrified leaky

dielectric film are studied. The method of weighted residuals is used to derive high-order

models that account for both inertia as well as second-order electrostatic effects. The

models are validated against both linear theory and direct numerical simulations of the

Navier-Stokes equations. It is shown that a simplified model offers a rapid computational

option at the cost of a minimal decrease in accuracy. This model is then used to perform a

parametric study in three dimensions.

DOI: 10.1103/PhysRevFluids.2.063701

I. INTRODUCTION

Electrohydrodynamically driven flows have a wide variety of practical applications that stem from

the ability to use an electric field to control the behavior of a fluid. For example, it is well known

that the interfacial area of a film is closely linked to heat and mass transfer rates [1,2]. Enhancing

these transfer rates is central to a range of engineering applications including falling film reactors

and distillation columns [3,4]. Control strategies using electric fields also allow for patterning at

the micro- and nanoscale in thin polymeric films, which can be used to create systems such as

solar panels, fuel cell electrodes, micro-electronic devices, and self-cleaning surfaces [5–7]. This

electric-fields–based control also finds applications in other situations involving a particulate phase

(an example of this is the suppression of the so-called “coffee-stain effect” in evaporating sessile

drops [8,9]).

Due to their relevance to industrial applications, it is no surprise that electrohydrodynamic

(and the closely related magnetohydrodynamic) flows have been investigated quite extensively

experimentally, starting with Gilbert’s 1600 work De Magnete. Early work on electrohydrodynamics

primarily focused on perfect conductors and perfect dielectrics [10], but this changed with the work

of Allan and Mason [11], who began to study leaky dielectrics: poorly conducting fluids. In order

to study such leaky dielectrics, we will use the most common model applied in the literature, the

Taylor-Melcher leaky dielectric model.

In planar geometries extensive investigations have been carried out both in linear [12] and

nonlinear [13–16] regimes. This has included work on the full leaky dielectric formulation [17,18]

as well as the simpler situations where both regions have large conductivities [19], or indeed where

one region is a perfect conductor [20]. Notably, given a permittivity ratio ǫR and a conductivity ratio
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FIG. 1. Schematic representation of the flow showing a film flowing vertically down, subjected to an electric

field imposed across electrodes separated by a distance d .

σR between the two regions, the two dimensionless groupings (1 − σR/ǫR) and (1 − σ 2
R/ǫR) have

previously been shown to be critical to determining whether the electric field is linearly stabilizing

or destabilizing [19,21]. In the present work, we will derive low-order models for electrified films

by assuming that the characteristic length of a wave is large relative to the film thickness: the

long-wave approximation; this allows a dramatic simplification of the Navier-Stokes equations. One

option is to solve order-by-order to eliminate the cross-stream co-ordinate [20]; this technique is

referred to here as the gradient expansion approach [22]. However, in the presence of inertia such an

expansion is known to produce an unphysical “blowup” phenomenon [23,24] even when capillarity

is incorporated: the interfacial thickness can become infinite in finite time. In order to resolve

this blowup, a variety of approaches have been suggested, including a Padé approximant-based

regularization of the Benney equation [25] or the application of the Kármán-Polhausen technique

to the leading-order contributions to the long-wave equations. However, all such approaches have

been found to be lacking in accuracy [26], especially far from instability threshold.

The method of weighted residuals [27] has resolved the aforementioned shortcomings. The

technique is essentially a separation of variables approach together with an elegant weighting

selection during the computation of the requisite residuals (and, indeed, this has been shown to be

optimal in a certain sense [27,28]). The method results in a coupled system of four partial differential

equations for the height, flux, and two subsidiary fields which measure the departure of the streamwise

velocity profile from the parabolic Nusselt one. The model, even when extended to three dimensions

[22], leads to no unphysical blowup, and the results of direct numerical simulations are well matched

even into regimes where inertia becomes significant (i.e., the so-called “drag-inertia” regime [22]).

The model itself is lengthy, but Scheid et al. [22] demonstrate an alternative method by a Padé

regularization technique that retains the second-order accuracy exhibited by the full model, while

still only requiring two coupled equations, albeit at the expense of accuracy at higher values of

the Reynolds number [29]. We show here that the method of weighted residuals may be extended to

be used for long-wave models incorporating electric fields, with a resultant increase in accuracy.

The rest of this paper is organized as follows. We begin by giving the governing equations in Sec. II.

We then reduce the governing equations to a low-order nonlinear model by use of the long-wave

approximation together with the method of weighted residuals in Sec. III. The two-dimensional

version of the model is validated via comparison against full linear theory and direct numerical

simulations of the Navier-Stokes equations in Sec. IV. The model is simulated in three dimensions

to perform a large-scale parametric study in Sec. V. Finally, we provide our conclusions in Sec. VI.

II. PROBLEM FORMULATION

We consider a film flowing down a vertical electrode, bounded by an inviscid gas phase and a

parallel electrode, as shown in Fig. 1. An electric field is induced in both phases due to a voltage

difference across the electrodes, which are held at a fixed distance d. The problem is governed

by the Navier-Stokes equations for the hydrodynamics, together with Laplace’s equation for the

potential fields, complemented by appropriate boundary conditions [17,30]. We nondimensionalize
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according to

u = V û, x = H x̂, p =
V μ

H
p̂, t =

H

V
t̂, q =

ǫ0φb

H
q̂, φ = φbφ̂, (1)

where x = (x,y) are the usual Cartesian coordinates with x directed down the film-bounding

electrode and y normal to it; u = (u,v) is the velocity vector in the fluid, p is the pressure, t is time,

q is the local charge accumulation on the interface; φA,F are the potential fields in the liquid and gas

regions respectively; H is the undisturbed film thickness; μ is the viscosity of the fluid; V = ρgH 2/μ

is a characteristic velocity with ρ the (constant) density of the fluid; ǫ0 is the permittivity of free space;

φb is the (constant) potential of the outer electrode (with the potential at the inner electrode held at

φF = 0 without loss of generality). The usual dimensionless relative permittivities of the liquid and

gas regions are given respectively by ǫF and ǫA. For the moment we work purely in two dimensions,

neglecting the z direction.

We now suppress the hat decoration. The equations describing the system are as described by

Craster and Matar [17] and references therein. The dimensionless Navier-Stokes equations are given

by

Re(ut + uux + vuy) = 1 − px + uxx + uyy, (2)

Re(vt + uvx + vvy) = −py + vxx + vyy, (3)

ux + vy = 0, (4)

where Re =
ρV H

μ
is the Reynolds number, subject to the normal and tangential stress conditions at

the interface, y = h, respectively given by

(
1 + h2

x

)(
p −

κ

Ca

)
=

2

1 + h2
x

[
vy + h2

xux − hx(vx + uy)
]

−Eb

[
1

2

(
φ2

x − φ2
y

)(
h2

x − 1
)
− 2hxφxφy

]A

F

, (5)

(
1 − h2

x

)
(uy + vx) + 2hx(vy − ux) = −Eb

(
1 + h2

x

)1/2
(φx + hxφy)q, (6)

where Ca = V μ/γ and Eb =
ǫ0φ

2
b

μV
are the hydrodynamic capillary number and dimensionless electric

field strength, governing the relative significance of viscosity to surface tension, and electrotatic

effects, respectively, κ = −hxx/(1 + h2
x)3/2 is the curvature, and [·]AF represents the jump in the

quantity across the interface.

The potentials are governed by Laplace’s equation

φA,F xx + φA,F yy = 0 (7)

subject to the equipotentials at the upper and lower electrodes,

φF |0 = 0, φA|d = 1, (8)

the appropriate interfacial conditions evaluated at y = h: continuity of potential,

φF = φA, (9)

the Gauss condition,

−q = [ǫA,F (φy − hxφx)]AF , (10)

and the surface charge evolution equation,
(
1 + h2

x

)
qt + (u + vhx)qx − q

(
h2

xux − hxuy − hxvx + vy

)

=
(
1 + h2

x

)1/2
[�A,F (φAy − hxφAx)]AF , (11)
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where �A,F = σA,F H/ǫ0φbV are the dimensionless conductivities of the liquid and gas regions

respectively, and ·|y0
represents evaluation of the respective quantity at the position y = y0. Finally,

the kinematic equation is imposed at y = h:

ht + uhx = v or ht + fx = 0, (12)

where f =
∫ h

0
u dy is the streamwise flux.

The system supports a steady, basic solution, denoted by overbars, with no x variation, v = v̄ = 0,

h = h̄ = 1. The electrostatic problem is governed by

φA,F yy = 0, φF |0 = 0, φA|d = 1, φF |1 = φA|1, �F φF y |1 = �AφAy |1,

giving

φ̄F =
�Ay

�A − �F (1 − d)
, φ̄A =

�A + �F (y − 1)

�A − �F (d − 1)
⇒ −q̄ =

ǫA�F − ǫF �A

�A + �F (d − 1)
.

The streamwise velocity u satisfies

uyy = 1, uy |1 = 0, u|0 = 0 ⇒ u = y −
y2

2
.

III. LONG-WAVE MODELING

We begin by deriving the electrostatically modified boundary layer equations. The long-wave

substitution x = ǫ−1x̃ is applied and balancing terms in the kinematic condition (12) suggests making

the additional substitutions t = ǫ−1 t̃ and v = ǫṽ. Dropping the tilde decorations, the Navier-Stokes

equations become

Re(ǫut + ǫuux + ǫvuy) = −ǫpx + ǫ2uxx + uyy + 1, (13)

Re(ǫ2vt + ǫ2uvx + ǫ2vvy) = −py + ǫ3vxx + ǫvyy, (14)

ux + vy = 0. (15)

The normal stress condition becomes

(
1 + ǫ2h2

x

)(
p +

ǫ2hxx

Ca

)
=

2

1 + ǫ2h2
x

[
ǫvy + ǫ3h2

xux − ǫhx(uy + ǫ2vx)
]

+Eb

{
ǫA,F

[
1

2

(
ǫ2φ2

x − φ2
y

)(
− 1 + ǫ2h2

x

)
− 2ǫ2hxφxφy

]}A

F

. (16)

The tangential stress condition is given by

(
ǫ2h2

x − 1
)
(uy + ǫ2vx) + 2ǫ2hx(ux − vy) = ǫEb

(
1 + ǫ2h2

x

)1/2
(φx + hxφy)q; (17)

this may be reduced to

uy = −ǫEbE
T + ǫ2[4hxux − vx] + O(ǫ3), (18)

where

ET = (φx + hxφy)q. (19)

The charge evolution equation (11) rescales to give

ǫ[qt + (u|hq)x] + ǫ2hx

[
�AφAx − �F φF x

]
= �AφAy − �F φF y . (20)

In order to produce a boundary-layer equation from (13) that is accurate at second order, we need

an expression for p which is correct up to first-order. We assume that Ca = O(ǫ2), so we make the

063701-4
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TABLE I. List of all models used.

Model name Governing equations Linearized form

Full model (2)–(12) (77)–(84)

Regularized, first-order electrostatics (36), (75), (29), (30) (85), (86)

Regularized, second-order electrostatics (36), (75), (23), (32)–(34) Appendix A

Simplified, first-order electrostatics (36), (76), (29), (30)

Simplified, second-order electrostatics (36), (76), (23), (32)–(34)

substitution Ca = ǫ2C̃a with C̃a = O(1) [although we note that as the models are second-order, the

capillary terms would be retained for C̃a as large as O(ǫ−1)]. We assume Eb = O(1). We truncate

(14) at first order and drop the tilde decoration to give

py = ǫvyy + O(ǫ2). (21)

This is integrated from y to h subject to (16), truncated at first order, given by

p|h = −
hxx

C̃a
+ EbE

N + 2ǫ(vy − hxuy)|h + O(ǫ2), (22)

where

EN =
{
ǫA,F

[
1
2

(
1 − ǫ2h2

x

)(
φ2

y − ǫ2φ2
x

)
− ǫ22hxφxφy

]}A
F
. (23)

This gives

p(y) = −
hxx

C̃a
+ EbE

N − ǫ(ux + ux |h) + O(ǫ2), (24)

where we have made use of the continuity equation as well as the fact that uy |h = O(ǫ ). Substituting

(24) into (13) gives

ǫ Re(ut + uux + vuy) = uyy + 2ǫ2uxx + 1 + ǫ
hxxx

Ca
+ ǫEN

x + ǫ2∂x(ux |h) + O(ǫ3). (25)

This is complemented by no-slip and no-penetration, the kinematic equation (12), and the tangential

stress equation (18). Equations (25) and (18) are now solved by use of the method of weighted

residuals. We begin by solving the electrostatic part of the problem in Sec. III A. We then solve the

hydrodynamic part of the problem in Sec. III B. A summary of all the models is given in Table I.

A. Electrostatics

We will solve for the electrostatic potentials up to second-order using a separation of variables

approach in line with the method of weighted residuals. We will see in Sec. IV A 4 that it is suitable to

take the high conductivity limit, neglecting the left-hand side of the charge evolution equation (20).

As a result the computed model will not contain an additional evolution equation for the charge.

Then the potentials satisfy

φA,F yy + ǫ2φA,F xx = 0, φF |0 = 0, φA|d = 1, φF |h = φA|h, (26)

(
φAy − ǫ2hxφAx

)∣∣
h

= σR

(
φF y − ǫ2hxφF x

)∣∣
h
, (27)

where σR = �F /�A = σF /σA is the conductivity ratio. To leading order, this gives

φA,F yy = 0, φF |0 = 0, φA|d = 1, φAy |h = σRφF y |h, φA|h = φF |h, (28)
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whose solution is given by φF = cF y and φA = 1 + cA(y − d) where

cA =
σR

h − σR(h − d)
, cF =

1

h − σR(h − d)
. (29)

Then the functions EN and ET are given by

EN = 1
2

(
ǫAc2

A − ǫF c2
F

)
+ O(ǫ2), ET = (ǫF cF − ǫAcA)(cF h)x + O(ǫ2). (30)

As we only need EN and ET correct to O(ǫ ) for a second-order calculation for h alone (and not

φA,F ), this is, in fact, sufficient. However, we are interested in retaining second-order accuracy for

the electric fields. So we pose

φF = cF y + ǫ2dF y3, φA = 1 + cA(y − d) + ǫ2dA(y − d)3, (31)

where the polynomials have been selected to satisfy the equipotentials at the inner and outer

electrodes. Mandating that Laplace’s equation be satisfied up to O(ǫ2), we find that
cA,F xx

6
+ dA,F = 0.

Then the continuity of potential and current at the interface become two ODEs defining the electric

fields up to second order, respectively,

cF h − ǫ2 cF xx

6
h3 = 1 + cA(h − d) − ǫ2 cAxx

6
(h − d)3, (32)

σR

[
cF −

1

2
(cF xh

2)x

]
= cA −

1

2
[cAx(h − d)2]x . (33)

We now use the full second-order expression for ET given by

ET =
[
ǫF

(
φF y − ǫ2hxφF x

)
− ǫA

(
φAy − ǫ2hxφAx

)]
[φF |h]x . (34)

We also use the full expression (23) for EN
x . This technically contains the term [ǫA,F ǫ4h2

xφ
2
x]

A

F
,

which is formally of higher order than the rest of the terms. However, keeping the term actually

affords for a more compact expression for EN and improves accuracy at negligible computational

cost, and so we retain it.

B. Hydrodynamics

1. Leading-order model

At leading order, the model is governed by

uyy + 1 = 0 + O(ǫ), (35)

ht + fx = 0, (36)

where we have assumed that Re = O(1), so that ǫRe ≪ 1. This is subject to the no-slip condition,

and the leading-order of (18), uy |h = 0. This gives u = (hy − y2/2) to leading order so that the

evolution equation is given by

ht = −(h3/3)x + O(ǫ ). (37)

2. First-order model

At first order, the problem is expressed by

ǫ Re(ut + uux + vuy) = uyy + 1 + ǫ

[
hxxx

Ca
+ EbE

N
x

]
, (38)
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subject to the no-slip boundary condition, as well as the tangential stress condition (18) curtailed at

first order, given respectively by

u|0 = 0, uy |h = −ǫEbE
T . (39)

Thus we must solve for u, using the knowledge that, by continuity, v = −
∫ h

0
ux dy. The basic idea

is to expand u on a set of test functions. To simplify the problem we use the reduced coordinate

ŷ = y/h(x,t) to transform the problem from one on the interval [0,h] to one on the interval [0,1].

To satisfy the Dirichlet condition at the wall, we posit that

u(x,y,t) = a0(x,t)f0(ŷ) + ǫ

N∑

j=1

aj (x,t)fj (ŷ), (40)

with fj (0) = 0 ∀ j . In particular, we select the polynomials as our test functions with f0(ŷ) =

ŷ − ŷ2/2 [so that the leading-order solution is u = h2f0(ŷ)] and fj (y) = yj+1 for j � 1.

This gives us N + 1 unknowns: a0, . . . ,aN . To solve this we can now simply substitute the

candidate solution (40) into the momentum equation (38) and, with the help of boundary conditions

(39), cancel polynomials to find an evolution equation relating a0 and h, eliminating all other

variables. This is complemented by the kinematic condition (36) and calculation of an explicit

relation between f and a0:

f =

∫ h

0

u dy = a0h

∫ 1

0

(ŷ − ŷ2/2) dŷ + ǫh

N∑

j=1

aj (x,t)

∫ 1

0

fj (ŷ) dŷ (41)

=
a0h

3
+ ǫ

N∑

j=1

ajh

j + 2
. (42)

This gives a solution that shall be used shortly for validation. However, at second order this procedure

is laborious, and so it shall be necessary to use the method of weighted residuals; we therefore

illustrate this now. We integrate the momentum equation (38), curtailed at first order, with respect

to y using a weighted average, with weight functions wj (y), to obtain residuals

Rj =

∫ h

0

wj (ŷ)

[
ǫ Re(ut + uux + vuy) − uyy − 1 − ǫ

hxxx

Ca
− ǫEbE

N
x

]
dy. (43)

These now form solvability conditions: setting Rj = 0 ∀ j produces the requisite evolution

equations. As explained by Ruyer-Quil and Manneville [28] and Ruyer-Quil et al. [31] any weighting

scheme will converge towards the same equation given sufficient residuals. However, here we proceed

explicitly as a judicious choice of weighting functions can greatly simplify the calculations to be

performed.

We first notice that, for the model to be consistent at O(ǫ), all x and t derivatives of aj may

clearly be ignored for j � 1. Therefore, writing the residuals as

∫ h

0

wj (ŷ)[ǫ Re(ut + uux + wuy) − uyy] dy =

[
1 + ǫ

hxxx

Ca
+ ǫEbE

N
x

] ∫ 1

0

wj (ŷ) dŷ, (44)

it is clear that at leading order, the degree of the inertial terms is at most 4 (due to products and

derivatives of a0f0). Other terms may enter only via the term uyy indicating that it is sufficient to

introduce monomials up to degree 6, so that N = 5. To further simplify matters, consider this term

a little more closely: double integration by parts gives

∫ h

0

wj

(
y

h

)
uyy dy =

[
uy wj

(
y

h

)]h

0

−
1

h

[
uw′

j

(
y

h

)]
+

1

h2

∫ h

0

uw′′
j

(
y

h

)
dy. (45)
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Consider this for the case j = 0: as u|0 = 0,
∫ h

0
u dy = f and uy |h = −ǫEbE

T , this is independent

of aj for j > 0 under the conditions

w0(0) = 0, w′
0(1) = 0, w′′

0 = const. (46)

This suggests taking w′′
0 = −1 so that w0(ŷ) = ŷ − ŷ2/2. As noted elsewhere, this means that the

optimal choice is to take the first weight function to be the first test function, i.e., exactly the

Galerkin method, reflecting the fact that the friction operator ∂yy is self-adjoint under the requisite

boundary conditions. Thus, it suffices to compute only the first residual R0 as it does not contain

terms involving aj for j � 1, giving

Reft = Re

(
17

7

f

h
fx +

9

7

f 2

h2
hx

)
+

5

6
h −

5

2

f

h2
+

5

6

h

Ca
hxxx + Eb

[
−

5

4
ET +

5

6
hEN

x

]
. (47)

3. Second-order model

In order to extend the model to incorporate all second-order terms, we follow a multistep process.

First, we determine how many independent fields are required to prescribe u at first order. This is

then used to write u in its simplest form, and thereby to pose an appropriate second-order form for

u. A judicious choice of weighting polynomials is then used again to determine evolution equations

for the required fields. So we begin by evaluating explicit expressions for the aj , 1 � j � 5. This is

done by substitution of (40) into (38) and cancellation of polynomials, giving

a1 = −
Eb

2
h ET −

1

2
Re hft −

3

5
h Re ∂x

(
f 2

h

)
, (48)

a2 = Re

(
1

2
hft + ffx

)
, a3 = −

1

8
fth −

3

4

f 2

h
hx, (49)

a4 = −
3

40
Re h6∂x

(
f 2

h6

)
, a5 =

Re

80
h6∂x

(
f 2

h6

)
. (50)

Now, a4 = −6a5, a2 = −4a3 + 40a5 and a1 = 4a3 − 48a5 + EbhET /2. By (42), it is seen that

a0 =
3f

h
−

[
−

Eb

2
hET +

8

5
a3 −

144

7
a5

]
. (51)

Thus u may be seen to be

u =
3f

h
f0(ŷ) + EbhET f̃1(ŷ) + a3f̃3(ŷ) + a5f̃5(ŷ), (52)

where f̃1 = 3
4
ŷ2 − 1

2
ŷ, f̃3 = ŷ4 − 4ŷ3 + 24

5
ŷ2 − 8

5
ŷ, and f̃5 = ŷ6 − 6ŷ5 + 40ŷ3 − 408

7
ŷ2 + 144

7
ŷ.

Thus, where naïvely it might be expected that u requires six fields to prescribe it, we can see that in

fact only four are required: f/h,a3,a5, and hET . For the purposes of the weighted residual method,

it is best to proceed to an orthogonalized set of polynomials. With this in mind, a set of three

orthogonal polynomials are constructed from f0,f̃1,f̃3, and f̃5, normalized so that the coefficient of

ŷ in each instance is unity. To complete the set, an additional polynomial including the contribution

of f̃1 is incorporated to give the same polynomials as in Ruyer-Quil et al. [31]:

F0(ŷ) = ŷ −
ŷ2

2
, (53)

F1(ŷ) = ŷ +
17

6
ŷ2 +

7

3

ŷ3

−

7

12
ŷ4, (54)

F2(ŷ) = ŷ −
13

2
ŷ2 +

57

4
ŷ3 −

111

8
ŷ4 +

99

16
ŷ5 −

33

32
ŷ6, (55)

F3(ŷ) = ŷ −
531

62
ŷ2 +

2871

124
ŷ3 −

6369

248
ŷ4 +

29601

2480
ŷ5 −

9867

4960
ŷ6. (56)
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With respect to this basis, u may be expanded as

u =
3

h
[f − ǫ(s1 − s2 − s3)]F0(ŷ) + 45ǫ

s1

h
F1(ŷ) + 210ǫ

s2

h
F2(ŷ) + 434ǫ

s3

h
F3(ŷ), (57)

formed such that the relation f =
∫ h

0
u dy is preserved.

Next, the new value of N must be determined. Consideration of the inertial terms suggests that

additional orthogonal polynomials up to degree 10 (N = 9) are required. Thus, u may be expanded

as

u =
3

h

⎛
⎝f − ǫ

3∑

j=1

sj − ǫ2

9∑

j=4

cj sj

⎞
⎠F0(ŷ) + 45ǫ

s1

h
F1(ŷ) + 210ǫ

s2

h
F2(ŷ)

+
434

h
ǫ

⎡
⎣s3 − ǫ

9∑

j=4

dj sj (x,t)

⎤
⎦Fj (ŷ) + ǫ2

9∑

j=4

sj

h
Fj (ŷ). (58)

It turns out that neither the constants cj , dj nor the values of the sj for 4 � j � 9 need ever be

calculated explicitly. First, it is clear that given values of dj , the values of cj may be selected so that∫ h

0
u dy = f . The values of dj shall be selected shortly, in such a way that the weighted residual

procedure need never calculate the values of the sj .

The set Fi,0 � i � 3 is closed with respect to the operations required in evaluating the residuals.

Thus, by prescribed orthogonality, no additional polynomials are required. Therefore the residuals

Rj =

∫ 1

0

Fj (ŷ)

{
ǫ Re(ut + uux + wuy) − uyy − 2ǫ2uzz (59)

− 1 − ǫ

[
hxxx

Ca
+ EbE

N
x

]
− ǫ2∂x(ux |h)

}
(60)

may be evaluated for 0 � j � 3. This is complemented by the full second-order tangential stress

condition (18).

The only term by which the sj , 4 � j � 9 may enter is the uyy . So let us calculate explicitly:

∫ h

0

Fj (y/h)uyy dy (61)

= [Fj (y/h)uy]h0 −

[
F ′

j (y/h)u

h

]h

0

+

∫ h

0

F ′′
j (y/h)u

h2
dy (62)

= Fj (1)uy(h) − δ3j

F ′
3(1)u(h)

h
+

F ′′
j (0)f

h2
+

∫ h

0

[F ′′
j (y/h) − F ′′

j (0)]u

h2
dy. (63)

Now, u|0 = Fj (0) = F0(1) = F1(1) = F2(1) = 0. Using the tangential stress condition to evaluate

the first term on the final line, the terms dj and sj for 4 � j � 9 may now only enter via the term

δ3j
F ′

3(1)u(h)

h
, for j = 3. Therefore, we select the dj so that the coefficient of sj is 0 in Eq. (58) when

y = h (note that this is of course a constant independent of h, as required).

Explicit computation using symbolic algebra gives the full second-order model, comprising

evolution equations for each of h, f , s1, s2, and s3. This full model is rather lengthy and may be

inferred from Ref. [32]. Hence, we do not state it here, and instead seek a reduced model.

4. Reduced model

In the evolution equation for f , terms involving s1, s2, and s3 only appear at O(ǫ) and higher.

Therefore, we seek explicit expressions for s1, s2, and s3 in terms of h and f and their derivatives.
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This is done by curtailing the evolution equations for s1, s2, and s3 at O(ǫ) and solving:

s1 = 1
40

Ebh
2ET + Re 1

210
h2ft + Re 74

5775
f h fx − Re 19

1925
f 2hx, (64)

s2 = − 299
53 760

Ebh
2ET − Re 2

17 325
h fx + Re 2

5775
f 2hx, (65)

s3 = 5
3584

Ebh
2ET . (66)

These may now be substituted into residual R0 to obtain the simplified model:

ht = −fx, (67)

ǫReft =
5

6
h −

5

2

f

h2
− ǫRe

17

7

f

h
fx + ǫRe

9

7

f 2

h2
hx − ǫ2 9

2h
fxhx

+ ǫ24
f

h2
h2

x + ǫ2 9

2
fxx − ǫ26

f

h
hxx + ǫ

5

6

hxxxh

Ca

+ ǫ
5

6
EbhEN

x − ǫ
5

4
EbE

T + Ine[h,f ] + Ele[h,f,ET ], (68)

where the terms Ine[h,f ] and Ele[h,f,ET ] are complicated second-order terms accounting for the

effects of inertia and electrostatics respectively. By the use of leading-order equivalences such as

f = h3/3, the former may be reduced to Ine[h,f ] = − ǫ2Re
630

h7h2
x [22]. The latter is given by

Ele[h,f,ET ] = ǫ2Re Eb

(
1

48
h2ET

t + 19
336

hET fx + 5
112

f ET hx + 15
224

f hET
x

)
. (69)

In order to cope with the term ET
t we note that

∂ET

∂t
=

∂ET

∂h

∂h

∂t
+ O(ǫ ) = −h2hx

∂ET

∂h
+ O(ǫ ) = −h2 ∂ET

∂x
+ O(ǫ ). (70)

Then we can write

Ele[h,f,ET ] =
ǫ2Re Eb

672

(
20h3hxE

T + h4ET
x

)
+ O(ǫ3)

= ǫ2Re Eb

(
5

56
f hxE

T +
1

224
f hET

x

)
+ O(ǫ3). (71)

5. Regularized reduced model

The system (67) and (68) represents a reduced model. However, it is expected to suffer from

unphysical blowup due to the effect of the highly nonlinear terms in Ine[h,f ] [22]. Similarly, the

high order of the nonlinearities in the second-order electrostatic terms in Ele[h,f,ET ] (71) risks

them violating the assumption that they are asymptotically smaller than the first-order terms as seen

in an analogous thermal situation by Scheid et al. [32] (and indeed there the relevant terms were

identified as the cause of unphysical behavior of the governing equations). We therefore pursue the

standard regularization procedure [22,32]. We consider the inertial part of the residuals, the rest of

the formula being contained in the term F , thus

ǫ

R
(1),Re
0︷ ︸︸ ︷

Re

[
ft +

17

7

f

h
fx −

9

7

f 2

h2
hx

]
+ ǫ2

R
(2),Re
0︷ ︸︸ ︷

Re

[
h7h2

x

630
− Eb

(
5

56
f hxE

T +
1

224
f hET

x

)]
= F . (72)
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This is rewritten as ǫR
(1),Re
0 + ǫ2R

(2),Re
0 = G (ǫR

(1),Re
0 ), so that the system may be re-expressed as

ǫR
(1),Re
0 = G −1F . Using first-order equivalences, this suggests

G = 1 + ǫ
R

(1),Re
0

R
(2),Re
0

(73)

= 1 + ǫ

h7h2
x

630
− Eb

(
5

56
f hxE

T + 1
224

f hET
x

)

− 1
3
h4hx

+ O(ǫ2)

= 1 + ǫ

[
−

f hx

70
+ Eb

(
5

56

ET

h
+

1

224

ET
x

hx

)]
+ O(ǫ2). (74)

Note, however, that while h can never be 0 (as we do not consider exact touchdown), hx can (and

indeed must on periodic domains) attain a value of 0. Thus the term
ET

x

hx
is not in fact included in the

regularization procedure. Thus we are led to the equation

ǫ Re ft = ǫRe

(
9

7

f 2

h2
hx −

17

7

f

h
fx

)
+

{
1 + ǫ

(
−

f hx

70
+ Eb

5

56

ET

h

)}−1

×

[
5

6
h −

5

2

f

h2
+ ǫ

(
5

6

hxxxh

Ca
+

5

6
EbhEN

x −
5

4
EbE

T

)

+ ǫ2

(
4

f

h2
h2

x +
9

2
fxx −

9

2

1

h
fxhx − 6

f

h
hxx

)
+ ǫ2 Re Eb

224
f hET

x

]
. (75)

This is relatively simple to validate: the hydrodynamic portion of the model here only differs from

the electrostatically passive case of Scheid et al. [22] by virtue of the incorporation of additional

stress at the interface, both normal and tangential. Although the stress is from a different source,

this is analogous to the situation of Scheid et al. [32], to which our model may be compared under

the replacement of the tangential stress term M∂xθ ↔ EbE
T , and the incorporation of the normal

stress hxxx → hxxx + EbE
N
x .

We note that Scheid et al. [22] see little to no numerical advantage to using the regularized model

over simply neglecting the second-order inertial effects. This is interesting as, unlike the regularized

model, this is no longer accurate at second order for Reynolds numbers of order unity. Thus for

comparison we also consider the simplified model

ǫ Re ft = ǫRe

(
9

7

f 2

h2
hx −

17

7

f

h
fx

)
+

[
5

6
h −

5

2

f

h2
+ ǫ

(
5

6

hxxxh

Ca
+

5

6
EbhEN

x −
5

4
EbE

T

)

+ ǫ2

(
4

f

h2
h2

x +
9

2
fxx −

9

2

1

h
fxhx − 6

f

h
hxx

)]
. (76)

This model does, however, retain the second-order viscous dispersion effects, as given on the

second line, which cause a wave number dependence of wave speeds. This has been noted as being

particularly important for the prediction of capillary ripples, which is crucial to pulse interaction

theories [33].

IV. TWO-DIMENSIONAL VALIDATION

A. Validation using linear stability analysis

1. Exact linear solution

Introduction of a stream function and linearization gives an Orr-Sommerfeld system

Re(ikU + σ )
(
d2

y − k2
)
ψ − Re Uyy ikψ =

(
d2

y − k2
)2

ψ, (77)

where u = U + δũ,v = δṽ, with (ũ,ṽ) = (ψy,−ikψ)exp(σ t + ikx).
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The perturbations to the electrostatic potentials are governed by

φ̃A,F
yy − k2φ̃A,F = 0, φ̃F |0 = 0, φ̃A|d = 0,

which gives

φ̃F = c̃F sinh(ky), φ̃A = c̃A sinh[k(y − d)]. (78)

The continuity (9) and Gauss (10) conditions expanded about h = 1 + δh̃ give

(�A − �F )

�A − �F (1 − d)
h̃ + c̃F sinh(k) = c̃A sinh[k(1 − d)], (79)

−q̃ = ǫAc̃Ak cosh[k(1 − d)] − ǫF c̃F k cosh(k), (80)

respectively. Linearization of (11) and decomposition into normal modes results in

(σ + ikU )q̃ + ikq̄(Uy h̃ + ψy) = �Ac̃Ak cosh[k(1 − d]) − �F c̃F k cosh(k), (81)

while the kinematic, no-slip, and impermeability conditions become

(σ + ikU )h̃ = −ikψ, ψ(1) = ψ ′(1) = 0. (82)

The normal (5) and tangential (6) stress conditions become

i

k
{k2ψy − ψyyy + Re[(σ + ikU )ψy − ikUyψ]}

=
k2h̃

Ca
+ 2(−ikψy − ikh̃Ūy)Eb

[
ǫA

(
φ̄A

y φ̃A
y

)
− ǫF

(
φ̄F

y φ̃F
y

)]
, (83)

Uyy h̃ + ψyy + k2ψ = −q̄
[
ikc̃F sinh(k) + ikh̃φ̄F

y

]
. (84)

We thus have a fourth order ODE for ψ (77) plus four additional unknowns, c̃A, c̃F , h̃, and q̃.

Thus eight boundary conditions are required; these are given by (79)–(84). This is thus a closed

problem which is solved using the Chebyshev-Tau algorithm.

2. Weighted residual, leading-order electrostatics

In order to linearize the regularized model (36) and (75) with the leading-order expressions for

the electric fields (29) and (30), we set h = 1 + ǫh̃eσ t+ikz, q = 1
3

+ ǫq̃eσ t+ikz. Then we find that

{
Re σ +

9

2
k2 + iRe

17

21
k +

5

2

]
q̃ =

5

2
− i

1

Ca

5

6
k3 + 2k2 + i Re

1

7
k + iEb

5

6

(σR − 1)
(
ǫAσ 2

R − ǫF

)

[1 + σR(d − 1)]3
k

+Eb

d(840i + Rek)σR(ǫAσR − ǫF )

672[1 + σR(d − 1])3
k

}
h̃, (85)

σ h̃ + ikq̃ = 0, (86)

where the two electrostatic terms, multiplied by Eb, correspond to the normal and tangential

components of the electrostatic stress, respectively.

3. Weighted residual, second-order electrostatics

In order to linearize the regularized second-order electrostatic model (36) and (75) with the full

second-order form for the electric fields (23) and (32)–(34), we set

(h,q,cF ,cA) =

(
1,

1

3
,

1

1 + σR(d − 1)
,

σR

1 + σR(d − 1)

)
+ ǫ(h̃,q̃,c̃F ,c̃A)eσ t+ikz. (87)

Linearization gives the matrix problem in Appendix A.
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FIG. 2. Comparison of the predictions of linear stability for Re = 5,d = 2,Eb = 2. Neutral stability surfaces

are plotted according to (a) Orr-Sommerfeld with full charge evolution equation, (b) Orr-Sommerfeld with high

conductivity approximation, (c) regularized model—leading-order electrostatics: (36), (75), (29), and (30),

(d) regularized model—full second-order electrostatics: (36), (75), (23), and (32)–(34).

4. Linear stability comparison

We compare the linear stability calculations in Secs. IV A 2 and IV A 3 to two variants of the

Orr-Sommerfeld calculations: one where we have used the full linearized form of the charge evolution

equation (81), and one where we have taken the high conductivity limit by neglecting the left-hand-

side of this equation. In the former case we have taken �A = 106,�F = σR × �A to emulate

high conductivities of the correct ratio. The results are given in Fig. 2. The two Orr-Sommerfeld

calculations (a) and (b) of course agree exceptionally well. This is as expected as the left-hand-side of

(11) is negligible for large conductivities. In combination with previous numerical evidence [17,30]

we now make exclusive use of the high conductivity approximation, neglecting the left-hand-side of

(20) as in Sec. III A.

The agreement between the Orr-Sommerfeld solutions and the weighted residual solutions is

quite strong in large regions of parameter space, especially where the disturbances lie in the
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FIG. 3. Comparison of the nonlinear predictions of the different models for Re = 15,Ca = 0.1,d = 6,

ǫA = 1,Eb = 30,L = 60. Top: integral square difference of the interfacial shapes vint(h1,h2) (88); bottom:

interface shapes at t = 1000. (a), (c): ǫF = 2,σR = 0.5; (b), (d): ǫF = 0.5,σR = 2, solid thick line: DNS, thin

lines: regularized models, thick lines: simplified models, dotted lines: second-order electrostatics (32)–(34),

dashed lines: first-order electrostatics (29) and (30).

long-wave regime. However, for example, for �F ∼ 2 and ǫF > 10 we find that the range of unstable

wave numbers is exclusively in the region k > 1 for the Orr-Sommerfeld calculations (a) and (b).

Unsurprisingly, in this situation, these models, which are based on long-wave approximations, do

not provide such accurate agreement, as seen in panels (c) and (d).

B. Validation via nonlinear direct numerical simulations

1. Transient comparison of interfacial shapes

We perform time-dependent computations of the different models, all on periodic domains with

centered finite differences in space. Direct numerical simulations are performed by rescaling the

computational domains of both phases into rectangles. For the lower liquid region the rescaling Y =

y/h is used, while for the upper gas region the rescaling Z = (y − h)/(d − h) so that 0 � Y,Z � 1.

An implicit second-order Newton-Raphson time-stepping method is used to simultaneously solve

the coupled equations for the electric fields, the fluid velocities, and the pressure in the liquid region,

as well as for the electric field in the gas region. The regularized (75) and simplified (76) models

are solved, both for the leading-order electrostatic model (29) and (30), and for the second-order

electrostatics (23) and (32)–(34). For the leading-order electrostatic models the electric fields are

known as explicit functions of the interfacial shape h, and so an explicit Runge-Kutta-45 solver

is used. For the second-order methods the fields are only known implicitly, and so an implicit

solver using the trapezoidal rule in time is used. All simulations have been compared against linear

theory providing excellent agreement. Mesh and time-step refinement have been checked to ensure

convergence.
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FIG. 4. Comparison of computed equipotential lines for Re = 15,Ca = 0.1,d = 6,ǫA = 1,ǫF = 0.5,

σR = 2,Eb = 30. Thick line: interfacial shape extracted from direct numerical simulation for right-hand case

of Fig. 3. Thin, solid line: full solution as given by direct numerical simulations; thin dashed line: leading-order

model (29) and (30); thin dotted line: second-order model (32)–(34). Lines plotted correspond to equipotentials

of φ = 0.02,0.07,0.12, . . . ,0.97. While the upper electrode is at y = 6 we only plot up to y = 3, with an upper

equipotential of φ = 0.57.

In order to compare the output of the respective models, we use the metric

vint(h1,h2) = min
xc

∫ L

0

|h1(x) − h2(x + xc)|2 dx, (88)

where xc ∈ [0,L) and the domain is periodic, and h1 and h2 are the interfacial shapes we wish to

compare. This is the integral square difference minimised over periodic translation, chosen because it

reflects the level of agreement between interfacial shapes, in which we are predominantly interested.

Interpolation is used to ensure subgridpoint matching accuracy.

We compare each reduced order model to the output of the direct numerical simulations using

vint(hi,hDNS) in Fig. 3, where hi is the interfacial shape of each low-order model, and hDNS

is the output of the direct numerical simulations. Previous studies [19,30] have shown that the

critical governing parameters for the stability of the system are the ratios of the permittivities and

conductivities. We therefore choose a representative set of parameters where inertia is important

(Re = 15) and surface tension is significant (Ca = 0.1), but where the effect of the electric fields

should be at least as strong as either of these effects (Eb = 30). We then fix ǫA = 1 so that varying

ǫF is effectively changing the permittivity ratio, and select parameter sets from two opposite sides of

the range, where ǫF = 2 and σR = 0.5, and where ǫF = 0.5 and σR = 2. The distance of the outer

electrode d = 6 has been chosen primarily to be outside the typical heights of the observed waves;

we will investigate it in more detail in Sec. V. We find that in fact the simplified models provide better

accuracy than the regularized models. This may initially seem surprising as the regularized model

is formally second-order accurate, whereas the simplified model is not. However, the regularization

procedure is somewhat ad hoc. Furthermore, this finding is in line with those of Scheid et al. [22].

This is significant as the majority of the derivations in Secs. III B 3–III B 5 become superfluous if

one only wishes to derive the simplified model [34], dramatically simplifying the process.

We also find that the second-order electrostatic solutions typically provide better agreement, and

indeed we investigate this in more detail in Sec. IV B 2. However, the cost of solving the additional

boundary value problem is likely to be prohibitive, especially in three dimensions. We also note
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FIG. 5. Results of a three-dimensional parametric study with Re = 15,Ca = 0.1,d = 6,ǫA = 1,Eb = 30.

Variation of ‖h‖2 and surface area with ǫF and σR are shown in (a) and (b), respectively.

that, even in the left-hand figure where the second-order electrostatic model appears to perform

significantly better, the absolute value of vint is still actually rather small: the solution is quite

accurate. We therefore elect to use the simplified model with the leading-order electrostatics for our

three-dimensional computations in Sec. V.

2. Comparison of predicted electrostatic potentials

We wish to compare the accuracy of the potential fields predicted by the leading-order (29) and

(30) and second-order (32)–(34) theories. In the high conductivity limit, these are functions purely

of the interfacial position h. Therefore, we take the traveling wave produced by the direct numerical

simulations for ǫF = 0.5, σR = 2 in the previous section and use this to compute potential fields.
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FIG. 6. Surface plot of the interface computed through a transient, three-dimensional simulation with

Re = 15,Ca = 0.1,d = 6,ǫA = 1,Eb = 30,ǫR = 0.5,σR = 2, and t = 500.

This profile is chosen as it contains the largest gradients of the interfaces produced and will provide

the stiffest test of the low-order models. The results are plotted in Fig. 4.

As expected, all models demonstrate a discontinuous jump in gradients at the interface due to

the charge accumulated there (10). Away from the peak and capillary ripples all the methods agree

quite well. However, in these regions where the gradients are the steepest, it is noticeable that the

second-order method (dotted line) provides better agreement with the direct numerical solution

(solid line).

Of particular note is the behavior very close to the capillary ripples themselves. For the direct

numerical simulation of the full Laplace equation the oscillations exhibited by the interface are only

mirrored in the equipotentials exceptionally close to the interface; farther away the equipotentials are

monotonic in the gas regions (up to the peak of the wave). This behavior is imitated somewhat by the

second-order solution, but the leading-order solution exhibits oscillations throughout the domain.

V. THREE-DIMENSIONAL PARAMETRIC STUDY

The simplicity, accuracy, and speed of computation of the simplified model with the leading-order

electrostatics (36), (76), (29), and (30) allows us to perform large-scale numerical computations to

discern the fully nonlinear behavior of fluids under the effect of electric fields. Therefore, we

extend the simplified model (76) together with the leading-order electrostatics (29) and (30) to

three dimensions in the natural way, as in Scheid et al. [22] or Scheid et al. [32]. We give the

equations in Appendix B. This is then computed using a standard Runge-Kutta-45 solver in time

together with centered finite differences on a doubly periodic domain in space. The mesh and

temporal error parameters were varied to ensure convergence. Comparisons with linear theory and

the one-dimensional models were used for validation. We compute both the two-norm and the total

surface area, respectively

‖h‖2 =

∫∫
h2 dx dz, SA =

∫∫ √
1 + h2

x + h2
z dx dz. (89)
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FIG. 7. Surface area variation with electrode distance 4 � d � 8. Re=15,Ca=0.1,d =6,ǫA =1,Eb =30.

Upper line, dashed: ǫF = 0.5,σR = 2; lower line, dotted: ǫF = 2,σR = 0.5.

We seed the initial state with small amplitude random noise for a variety of values of ǫF and σR and

average these values over three runs up to t = 500. The resultant values are plotted in Fig. 5.

We find that increasing the conductivity ratio but decreasing the permittivity ratio results in an

increase in both the two-norm and the surface area, generally corresponding to a more disordered

interface. We give an example of such an interface in Fig. 6. The surface area of this represents an

increase of 1.4% over that of the flat state; this is a 39.5% greater increase in surface area than is

encountered in the electrostatically passive case. The magnitude of this increase is unsurprising;

asserting the expected order of the gradients gives
∫∫ √

1+ǫ2h2
x +ǫ2h2

z dx dz=
∫∫

1 dx dz+O(ǫ2).

The final parameter which we have not considered is the distance of the outer electrode d.

Physically, we anticipate with a reduced value of d, giving the same potential drop across a shorter

distance and thus a greater electric field strength, will result in an accentuation of the observed

physical behaviors. This corroborates the predictions of both linear and nonlinear theories. For

simplicity consider the simplified model with leading-order electrostatics (76), (29), and (30). We

find that d enters these equations solely via its contributions to the denominators in Eq. (29). Thus

we find that

EbE
N =

Eb

[h − σR(h − d)]2
t1(x,t), (90)

EbE
T =

Eb

[h − σR(h − d)2

[
hx −

hx(1 − σR)

h − σR(h − d)

]
t2(x,t), (91)

where t1 and t2 are independent of d. These forms are in line with our physical inferences: for

increasing d we have that EbE
N ∼ Eb/d

2, EbE
T ∼ Eb/d

3, so that the effect of the electric fields

is effectively weaker. We note, however, that for sufficiently large values of d, corresponding to the

outer electrode being far away, the slenderness approximation in the gas phase is no longer valid,

and thus this inference should be treated with caution.

In order to test this, we again take our characteristic values of ǫF = 0.5,σR = 2 and ǫF = 2,σR =

0.5 as characteristic destabilizing and stabilizing cases, respectively. We then compute the arc length

at t = 1000 for 4 � d � 8 for two-dimensional computations. The results are plotted in Fig. 7.

As anticipated, a lower value of d accentuates the effect that the electric field is having, be that

stabilizing or destabilizing.

VI. CONCLUSIONS

The behavior of a film falling down a vertical wall in the presence of an electric field has

been investigated. An asymptotic long-wave expansion combined with the method of weighted

residuals has been used to derive multiple models for the flow. The hydrodynamic component of the

problem has been reduced to two sets of model equations. One model corresponds to a simplified

model, neglecting second-order inertial effects. The other model was derived using a reduction and
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regularization procedure on the full five-equation second-order model to derive another two-equation

model, which is fully consistent at second order. We have also shown that a similar separation of

variables approach can be applied to the electrostatic problem, both at leading order and at second

order.

Comparisons with direct numerical simulations have shown that, despite the additional effort

involved, the regularized model is inferior to the simplified model by the metric defined in the

present work. The second-order electrostatic model has been shown to be more accurate, although

the leading-order model is satisfactory and offers substantial gains in terms of computational cost. The

resultant high-speed, high-accuracy simplified model together with the leading-order electrostatic

solution has been used to perform a parametric study of the three-dimensional problem. This has

shown that increasing the conductivity ratio and decreasing the permittivity ratio results in a more

disordered interface, corresponding to an increase in both the two-norm and the total surface area.
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APPENDIX A: REGULARIZED SECOND-ORDER ELECTROSTATIC LINEARIZATION

The linear stability problem can be posed as a matrix problem

A

⎛
⎜⎝

h̃

q̃

c̃F

c̃A

⎞
⎟⎠ = 0, (A1)

where

A =

⎛
⎜⎜⎝

σ ik 0 0
5
2

+ i Re
7

k + 2ηk2 − i 5
6

k2

Ca
+ qh − 5

2
− iRe 17

21
k − 9

2
ηk2 − Reσ qF qA

1−σR

1+σR (d−1)
0 1

6
(6 + k2) CA

0 0 1
2
(2 + k2)σR UA

⎞
⎟⎟⎠,

(A2)

where

qh =
(840i + Rek)(ǫAσR − ǫF )

672(1 + σR(d − 1))2
, (A3)

qF = −iEbǫF

5

12

(2 + k2)

1 + σR(d − 1)
− Eb

(840i + Rek)(6 + k2)(ǫF − ǫAσR)

4032[1 + σR(d − 1)]
, (A4)

qA = iEbǫAσR

5

12

[2 + (d − 1)2k2]

12[1 + σR(d − 1)]
, (A5)

CA =
1

6
(d − 1)[6 + (d − 1)2k2], (A6)

UA = −1 −
1

2
(d − 1)2k2. (A7)
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APPENDIX B: SIMPLIFIED THREE-DIMENSIONAL EQUATIONS

ht = −fx − gz, (B1)

Re ft = −
5

2

f

h2
+

5

6
h (B2)

+
5

6
h

hxxx + hxzz

Ca
+

5

6
hEbE

N
x −

5

4
EbE

T (B3)

+ Re

[
9

7

f 2hx

h2
−

17

7

ffx

h
−

8

7

fgz

h
−

9

7

gfz

h
+

9

7

fghz

h2

]
(B4)

+ 4
f h2

x

h2
−

9

2

fxhx

h
− 6

f hxx

h
+

9

2
fxx +

13

4

ghxhz

h2
−

fzhz

h
−

43

16

gxhz

h
(B5)

−
13

16

gzhx

h
+

3

4

f h2
z

h2
−

23

16

f hzz

h
−

73

16

ghxz

h
+ fzz +

7

2
gxz, (B6)

Re gt = −
5

2

g

h2
(B7)

+
5

6
h

hxzz + hzzz

Ca
+

5

6
hEbE

N
z −

5

4
EbE

T
⊥ (B8)

+ Re

[
9

7

g2hz

h2
−

17

7

ggz

h
−

8

7

gfx

h
−

9

7

fgx

h
+

9

7

fghx

h2

]
(B9)

+ 4
gh2

z

h2
−

9

2

gzhz

h
− 6

ghzz

h
+

9

2
gzz +

13

4

f hxhz

h2
−

hzgz

h
−

43

16

fzhx

h
(B10)

−
13

16

fxhz

h
+

3

4

gh2
x

h2
−

23

16

ghxx

h
−

73

16

f hxz

h
+ gzz +

7

2
fxz, (B11)

ET
⊥ = q(cF h)z. (B12)
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