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Abstract: Silicon is regarded as one of the most promising anode materials for 

lithium-ion batteries due to its large electric capacity. However, silicon experiences 

large volumetric change during battery cycling which can lead to fracture and failure 

of lithium-ion batteries. The lithium concentration and anode material phase change 

have direct influence on hydrostatic stress and damage evolution. High pressure 

gradient around crack tips causes mass flux of lithium ions which increases the 

lithium-ion concentration in these regions. Therefore, it is essential to describe the 

physics of the problem by solving fully coupled mechanical-diffusion equations. In 

this study, these equations are solved using peridynamics in conjunction with newly 

introduced peridynamic differential operator concept used to convert partial 

differential equation into peridynamic form for the diffusion equation. After 

validating the developed framework, the capability of the current approach is 

demonstrated by considering a thin electrode plate with multiple pre-existing cracks 

oriented in different directions. It is shown that peridynamics can successfully predict 

the crack propagation process during the lithiation process.   

Keywords: Lithium-ion battery; fracture analysis; peridynamics; phase change; 

pressure gradient effect 

Nomenclature   

CCM Classic Continuum Mechanics 

FEM Finite Element Method 

PD Peridynamics 

C Current concentration 

Cavg Average concentration of two material points (mol/m
3
) 

Cmax Maximum lithium ion concentration 

E Elastic modulus or Young's modulus (N/m
2
) 

Gc Critical energy release rate (N/m) 



	

Hx Horizon of material point x 

K Fracture toughness (Pa·m
0.5

) 

M Molecular mobility (m
2
J

-1
s

-1
) 

NA Avogadro’s constant 

T Absolute temperature 

Ω Partial molar volume (m
3
mol

-1
) 

b(x,t) Body force density of x at time t (N/m
3
) 

c Mechanical bond constant (N/m
6
) 

dVx' Volume of material particle x' inside the horizon of x (m
3
) 

f Pairwise force density (N/m
6
) 

h Thickness of electrode plate (m) 

kB Boltzmann constant (JK
-1

) 

s Bond stretch 

sc Critical bond stretch 

ü(x,t) Acceleration of x at time t (m/s
2
) 

u(x,t) Displacement of x at time t (m) 

u(x',t) Displacement of x' at time t (m) 

α Coefficient of expansion 

δ Horizon size (m) 

η Relative displacement of two material particles (m) 

µ(t,ξ) Failure parameter of bond at time t 

ν Poisson’s Ratio 

ξ Relative position of two material points (m) 

ρ Mass density (Kg/m
3
) 

σ  Cauchy stress (Pa) 

σ
~  Hydrostatic stress (Pa) 



	

0
σ  First Piola-Kirchoff stress (Pa) 

xx
σ  Normal stress along x direction 

yy
σ  Normal stress along y direction 

xy
σ ,

yx
σ  Shear stress in x-y plane 

φ(x,t) Damage of material point x at time t 

 

1.! Introduction 

Performance of lithium-ion batteries mainly depends on material properties of anode, 

cathode and electrolyte. Several metals and compounds are selected as anode material 

such as cobalt, nickel, manganese and iron phosphate due to their performances in 

terms of thermal stability, capacity, conductivity and safety [1]. Silicon is also found 

to be one of the most promising anode materials in lithium-ion batteries due to its high 

theoretical charging capacity (3600 ~ 4200mAHg-1) [2, 3]. However, as lithium ions 

diffuse into silicon particles, the silicon particles experience a large volume expansion 

up to around 400% [2, 4].  Frequent cycling of the lithium ion battery leads to stress 

misdistribution, degradation and delamination of the battery components which can 

significantly affect the battery performance. 

Many studies were conducted on fracture analysis of silicon based anode. Liu et al. [5] 

developed a thin silicon film model to investigate the lithiation induced tensile stress 

and surface cracking by analytical and finite element methods. They observed a 

compression-traction transition zone located at lithiated and unlithiated material 

interface. Large volumetric expansion, plastic deformation and slow charging rate are 

the main factors which build up this transition zone and lead to cracks and fracture. 

They also argued that the magnitude and profiles of tensile stress at the surface of 

lithiated section depends on volumetric misfit strain, yield stress and modulus of 

unlithiated section.  

Stamps and Huang [6] performed a mixed-mode fatigue evaluation of lithium-ion 

batteries by setting up a pre-cracked electrode model. They found that if a crack can 

propagate under certain loading when the length of a pre-existing crack is more than 

half size of the electrode width, the same loading will also cause propagation of a 

longer pre-existing crack in electrode. On the other hand, Ryu et al. [4] found that 

pressure gradient always occurs accompanied by a large volume expansion during 

normal cycling process and this will affect the process of lithium-ion diffusion in the 

electrode particles and crack evolution. Grantab and Shenoy [7] provided an 

investigation about pressure gradient factor on crack propagation in silicon nanowires. 

They used cohesive finite element method to model fracture in nanowires. In the early 



	

diffusion stage, since localised pressure around the crack tip is lower than surrounding 

nanowire surface region, large amount of lithium-ions moves into crack tip region 

which cause relatively large volume expansion and the stress around crack tip 

eventually reduces. On the other hand, Zuo and Zhao [8] used phase field method to 

study the stress evolution and crack propagation [8]. A series of damaged electrode 

models with different crack number and different crack orientations were considered 

to illustrate the evolution of fracture in an electrode. They indicated that pressure 

gradient factor depends on Young’s modulus, partial molar volume, concentration, 

Poisson’s ratio and the localised concentration around the crack tip region. Gao and 

Zhou [9] investigated the softening effects caused by lithiation induced fracture in 

electrode material. They developed a finite element framework and applied J-integral 

method to investigate the propagation of the crack tip. They also observed large 

amount of lithium-ion accumulation at the crack tip regions during charging process 

which causes a relaxation of hydrostatic stress.  

As an alternative approach to finite element method (FEM), peridynamics (PD) can be 

utilised. Peridynamic theory is a new continuum mechanics formulation introduced by 

Silling [19] to overcome the problems that Classical Continuum Mechanics 

encountered especially for predicting crack initiation and propagation. Peridynamic 

theory is based on integro-diffential equations and these equations do not contain any 

spatial derivatives. Since its introduction, there has been a rapid progress on 

peridynamics. Several novel approaches have been proposed for efficient numerical 

solution of peridynamic equations such as dual-horizon concept [20] and adaptive 

refinement [21]. The technique has been applied to many different material systems 

[22, 23] and extended for the analysis of multifield problems [24,25]. An extensive 

review on peridynamics can be found in Madenci and Oterkus [26]. 

In this study, peridynamic theory is used to investigate the fracture evolution in 

electrode plates of lithium ion batteries by considering pressure gradient and material 

phase change factors. Coupled field equations are expressed by using a combination 

of bond-based peridynamics [19] and peridynamic differential operator concept [10] 

to represent the relationships between the lithium ion concentration, hydrostatic stress 

and mechanical deformation. Several numerical cases with different crack numbers 

and crack orientations are considered and analysed.  

2.! Coupled diffusion-mechanical deformation mechanism 

The general lithium diffusion phenomenon can be represented by using Fick’s Second 

Law [28]. Since silicon is selected as anode material for lithium ion battery in this 

study, there is a large amount of volume change during lithiation and delithiation 

processes. Therefore, the stress induced by volume change during battery cycling 

should not be ignored. The stress components, σ ij , can be expressed as [8]  
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where Ω is the partial molar volume of silicon, ui is the displacement, Cmax is the 

maximum lithium concentration in the plate and C is the current normalised 

concentration. As lithiation proceeds in the electrode, local stresses will increase at 

high geometrical singularity region such as crack tips. Due to the pressure-gradient, 

large amount of lithium ions move into these regions which will lead to relatively 

large volume expansion and increase of lithium ion concentration. By considering 

these factors, the general Fick’s Second Law should be modified as [8] 
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where M is molecular mobility, kB is Boltzmann constant, T is absolute temperature, 

NA is Avogadro’s constant and σ~ is the hydrostatic stress.  

Once the lithium-ions diffuse into the anode plate, the anode material transforms from 

pure silicon to lithiated silicon (LixSi). Normally, the material properties of anode 

plate, such as elastic modulus and fracture toughness, will decrease depending on the 

state of lithiation. Hence, the silicon lithiation process is also known as material 

softening process [11]. Zhang et al. [12] have a detailed investigation about silicon 

lithiation on battery electrode. They found that silicon experiences partial and fully 

lithiation processes. The partially liathiated silicon (LixSi) layer lies between fully 

lithiated silicon (Li15Si4) and pure Silicon regions. However, in this study, since the 

thickness of this transition layer is very thin compared to the anode geometry, this 

interface layer is not taken into consideration. 

3.! Peridynamic theory 

For the numerical solution of the problem, peridynamic theory [13] was utilised. 

Peridynamics is a new continuum mechanics formulation and it is very suitable to 

predict fracture initiation and propagation due to its mathematical structure. It is also 

advantageous to solve moving boundary problems as in the lithiation process 

considered in this study which is difficult to handle by using traditional techniques 

due to necessity of remeshing, etc. Due to its non-local characteristic [14], each 

material point can build up interactions with other material points within a certain 

distance δ (as shown in Fig.1). For material points outside this domain, it is assumed 

the interactions are too weak so that they can be ignored. Hence, all material points 

inside the domain build up the horizon (Hx) of the material point x. Each interaction 

can be considered as a bond and the equation of motion of each material point can be 

written according to Newton’s Second Law as 



	

 

ρ!!u x,t( ) = f u ′x ,t( )− u x,t( ), ′x − x( )dV ′x + b x,t( )
Hx
∫                              (3) 

 

Figure 1. Horizon of material point x 

where b refers to the body force density and f is the pairwise force of each bond. 

According to bond-based peridynamic formulation used in this study, the bond force 

depends on the relative position and relative displacement of material points 

associated with this bond. 

The relative position of material points, x  and ′x , can be expressed from the original 

coordinates of these points as 

ξ = ′x − x           (4) 

and the relative displacement can be calculated as 

η = u ′x ,t( )− u x,t( )          (5) 

Hence, the stretch of a bond can be defined as 

ξ

ξηξ −+
=s           (6) 

The pairwise force for bond-based peridynamics can be expressed as [17] 

f =
ξ +η

ξ +η
c s −αCavg( )µ t,ξ( )         (7) 

where α is the coefficient of expansion and Cavg represents the average lithium-ion 

concentration of material points x  and ′x , µ is the failure parameter and c is the bond 

constant. For two-dimensional problems and based on plane stress assumption, the 

bond constant can be related to Elastic modulus, E as 

3

9

δπh

E
c =

! ! ! ! ! ! ! ! ! ! (8)!



	

where h is the thickness of the plate. Note that for bond-based peridynamics, 

Poisson’s ratio is constant and equal to 	ν =1/3  for plane stress condition. 

For an elastic brittle material, it can be assumed that once a bond exceeds a critical 

stretch value, sc after deformation, it will break and cannot recover. The critical 

stretch in peridynamic theory can be related to critical strain energy release rate. For 

two dimensional problems and based on plane stress assumption, critical stretch can 

be expressed in terms of critical strain energy release rate as 

s
c
=
2

3

πG
c

Eδ
          (9) 

The failure condition of each bond can be represented by a failure parameter as 
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1
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Once a bond breaks, the mechanical load acting on material point x will be 

redistributed on remaining bonds within its horizon and mechanical condition of this 

point will change. The local damage of the material point x can be defined as 

ϕ x,t( ) = 1−
µ t,ξ( )dV ′x

H
x

∫
dV ′x

H
x

∫
        (11) 

Local damage is the percentage of broken bonds associated with material point x. 

Local damage varies from 0 to 1 where 0 represents undamaged and 1 refers to fully 

damaged material point.  

As mentioned earlier, the lithium-ion concentration depends on the hydrostatic stress, 

 
!σ . For two dimensional problems and based on plane stress assumption, hydrostatic 

stress of a material point x can be calculated as [15] 
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where F is the deformation gradient and J is defined as 

J = det F( )           (14) 



	

The stress definitions are not directly used in peridynamics. However, they can be 

related to peridynamic parameters. Therefore, the first Piola-Kirchoff stress, σ
0
, can 

be calculated as [18] 

σ
0
= f ⊗ ′x − x( )dV ′x

Hx
∫         (15) 

Moreover, the deformation gradient, F, can also be defined in peridynamic framework 

as [18] 

F =
2

πhδ 2

1

ξ
2
ξ +η( )⊗ξ dV ′x

H
x

∫        (16) 

By recalling Eqs. (1) and (2), the mechanical stresses depend on the displacement 

gradients and lithium-ion concentration, while the concentration change rate depends 

on the hydrostatic stress gradient and lithium-ion concentration gradient. In this study, 

the peridynamic form of partial differential equation given in Eq. (2) is obtained by 

using peridynamic differential operator method developed by Madenci et al. [10]. 

4.! Peridynamic differential operator approach 

Similar to traditional finite differential schemes, peridynamic differential operator can 

be derived from Taylor Series [10] 
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Eq. (17) is a two dimensional second order form of Taylor Series and R represents the 

remainder terms which is small enough to be neglected. f is a function which depends 

on the problem considered. Moving the first term on the right hand side of Eq. (17) to 

the left hand side, multiplying each term with a peridynamic function ( )ξ21

2

pp
g  (with 

p1, p2 = 0, 1, 2 except p1 = p2 = 0) and integrating throughout the horizon, Eq. (17) 

will take a new form of 
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The orthogonality property of the peridynamic function can be written as [10] 
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where δ  is the Kronecker delta. By utilising Eq. (19), partial derivatives can be 

expressed in peridynamic form as 
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The peridynamic functions ( )ξ21

2

pp
g  in Eq. (20) can be constructed by polynomials 

which contain a weight function ω  and unknown coefficients a as [10] 
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The unknown coefficient matrix components a depends on a peridynamic shape 

matrix A and coefficient matrix b with a relationship given as 
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in which q1 and q2 should not be zero at the same time.  

The peridynamic shape matrix A depends on the weight functions ω  and components 

of the relative position of interacting material points associated with a bond, ξ
1
,ξ
2

. 

The relationship between these parameters is given as 
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The coefficient matrix b can be constructed as 
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and the weight function is given as 
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For two dimensional problems, the peridynamic shape matrix A can be written based 

on Eq. (23) as 
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The unknown coefficient matrix a can be expressed as 
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According to Eq. (24), the known coefficient matrix b can be calculated as 
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After expanding the summation term in Eq. (22), the relationship between the 

elements of the shape coefficient matrix A, unknown coefficient matrix a and known 

coefficient matrix b can be expressed as: 
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Solving the system of equations given in Eqs. (29a-e), the unknown coefficient matrix 

a can be obtained as 

a[ ]=

2
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0 0
9
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     (30) 

Substituting Eq. (30) into Eq. (21), the peridynamic functions can be calculated as  

g
2

10 ξ( ) =
2

πh ξ δ 2
cosθ                    (31a) 

g
2

01 ξ( ) =
2

πh ξ δ 2
sinθ                    (31b) 

g
2

20 ξ( ) =
9

πh ξ δ 3
cos

2θ −
3

πh ξ δ 3
sin

2θ                (31c) 

g
2

02 ξ( ) = −
3

πh ξ δ 3
cos

2θ +
9

πh ξ δ 3
sin

2θ                 (31d) 

g
2

11 ξ( ) =
12

πh ξ δ 3
cosθ sinθ                   (31e) 

where θ  is the angle between the bond and the horizontal axis. By substituting Eqs. 

(31a-e) into Eqs. (20), the two dimensional partial derivatives in both first and second 

order can be calculated. Therefore, the general Fick’s Second Law given in Eq. (2) 

can be written in peridynamic form as 
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(32) 

Finally, flow chart for the entire solution process of coupled peridynamic equation of 

motion given in Eq. (3) and peridynamic differential operator based diffusion 

equation given in Eq. (32) is depicted in Fig. (2). 

 

 

 

 

 

 

 

 

 

 

 



	

 

Figure 2. Flow chart for the solution process 

 

 

 

 

 



	

5.! Validation study 

 

Figure 3. Two-dimensional square plate specimen 

In order to validate the peridynamic differential operator approach used in this study, 

a two-dimensional thin square plate is considered as shown in Fig. (3). Since damage 

is not considered in this example, the effect of mechanical field on concentration field 

will be insignificant. Therefore, only the effect of concentration field on mechanical 

field is taken into account. The plate is initially free from lithium ions. Therefore, 

initial lithium ion concentration of the plate is C0 (0 mol/m
3
). Then, the plate is 

subjected to a maximum lithium ion concentration, Cmax (0.15 mol/m
3
), along its 

external boundaries. The plate is free from any displacement constraints. An 

imaginary material, A, is considered for simplicity and material properties are given in 

Table 1. Since the plate geometry and loading condition are symmetric, only a quarter 

of the plate is modelled as shown in red contour in Fig. (3). Plane stress assumption is 

utilized and boundary conditions are imposed by introducing a fictitious region with a 

thickness equivalent to the horizon size. Dynamic analysis is performed using a time 

step size of 7.3x10
-8

 s and the analysis is run for 20000 time steps. Peridynamic 

results are compared against finite element solutions obtained using a commercially 

available software, ANSYS. As shown in Fig. (4), both concentration and 

displacement results from PD and FEM analyses yield similar results which verifies 

the combined peridynamics and peridynamic differential operator approach used 

throughout this study. 

 

 

 

 



	

Table 1. Material properties for validation case 

Material 
Elastic 

modulus(GPa) 

Poisson's 

ratio 

Coefficient 

of expansion 

(m
3
/mol) 

Density(kg/m
3
) 

Diffusivity 

(m
2
/s) 

A 200 
3

1
 6

1050
−

×  1 1000 

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 4. Comparison of PD results against FEM results: (a) Lithium ion 

concentration distribution by FEM (b) Lithium ion concentration distribution by PD 

(c) Displacement in x direction by FEM (d) Displacement in x direction by PD (e) 

Displacement in y direction by FEM (f) Displacement in y direction by PD. 



	

6.! Numerical studies 

To demonstrate the capability of the current approach, a square silicon plate is 

selected to represent the anode plate of the lithium ion battery based on the study 

considered by Zuo and Zhao [8]. Both pure silicon and lithiated silicon are regarded 

as brittle materials. Concentration values are normalised by maximum concentration. 

The thickness of the specimen plate is negligible compared with boundary length. 

Therefore, plane stress assumption is utilised in order to simplify the numerical 

simulation. The square specimen is free from lithium-ions at its initial state (see Fig. 

5). The silicon specimen is subjected to maximum lithium-ion concentration on all of 

its boundaries by introducing a fictitious region with a thickness of horizon size along 

its boundaries [29]. The plate is free from any displacement constraints. Geometrical 

and material information are summarised in Table 2. Note that bond-based 

peridynamics is used in this study which enforces a constraint condition on Poisson’s 

ratio, i.e.  	ν =1/3 , which is higher than the actual Poisson’s ratio values given for 

silicon and lithiated silicon. For the cases which are considered in this study, the 

effect of Poisson’s ratio on the fracture pattern is not significant. However, if required, 

actual Poisson’s ratio values can be specified using ordinary state based peridynamic 

formulation for the equation of motion [27]. 

 

Figure 5. Pre-cracked square electrode plate specimen 

 

 

 

 

 

 



	

Table 2. Geometrical and material parameters  

L  Length of the specimen 1µm 

silicon
E  Elastic constant of silicon 80GPa  

415
SiLi

E  Elastic constant of amorphous Li15Si4 41GPa  

silicon
ν  Poisson's ratio of silicon 22.0  

415
SiLi

ν  Poisson’s ratio of silicon 24.0  

Ω  Partial molar volume 136
105.8

−−
× molm  

M  Molecular mobility 112
500

−−
sJm  

B
k  Boltzmann constant 123

1038.1
−−

⋅× KJ  

T  Absolute temperature 300K  

A
N  Avogadro's constant 123

1002.6
−

× mol  

Sic
s
_

 Critical strain for silicon 04.0  

s
c_ Li15Si4

 

Critical strain for amorphous Li15Si4 0.035 

max
C  Maximum concentration 34

1018.1
−

× molm  

 

6.1. Coupled analysis for a single crack case 

In this case study, an initial crack which has a length equivalent to 20% of the length 

of the specimen plate lies horizontally in the central region. Initial damage is shown in 

Fig. (6a). As lithiation progresses, material at the boundary region of the specimen 

will expand first. Due to mechanical deformation, compressive stresses form at the 

boundary region which leads to tension stresses at the central part of the plate. Since 

crack is located at the central region, stresses concentrate at two crack tip regions 

which eventually increases the hydrostatic stress (Fig. 6d). According to Eq. (2), high 

pressure gradient at crack tip regions is one of the main motivations of lithium-ion 

enrichment. Therefore, as shown in Fig. (6c), the concentration of lithium-ions at 

crack tip regions is higher than the surrounding regions. Hence, the material of the 

particles in these regions will transform from pure silicon to lithiated silicon and 

experience a large volume expansion as described in Eq. (1). As mentioned earlier, 

once the bond of a particle exceeds the critical value, it will be broken and the 

interaction will never recover. Large amount of bonds around crack tips are broken 

after the deformation which leads to crack propagation as shown in Fig. (6b). 



	

(a) (b) 

(c) (d)() 

Figure 6. Results for an electrode plate with a single crack: (a) Initial damage (b) 

Damage after deformation (c) Lithium ion concentration (d) Hydrostatic stress  

6.2. Coupled analysis for multiple crack cases 

Due to unexpected factors such as manufacturing quality and damage occurance 

during transportation, electrodes may have multiple pre-existing cracks. Hence, single 

crack may not be sufficient for describing the condition of damage in a battery 

electrode. In these case studies, an electrode plate with multiple cracks with different 

orientations are investigated. 

6.2.1. Twin horizontal cracks 

A pair of cracks which are parallel to each other lie horizontally at the centre of a 

plate as shown in Fig. (7a). These cracks have the same length equivalent to 10% of 

the length of the specimen plate. Distance between these two cracks is 5% of the plate 

width. As lithiation progresses, the hydrostatic stress and lithium ion concentration 

increase at the crack tips. Once peridynamic bonds reach the critical stretch value, 

they will be broken and crack will propagate. As shown in Fig. (7b), upper crack 

propagates in upward direction and lower crack propagates in downward direction. 

Besides, according to Fig. (7d), high hydrostatic stress also exists for particles 

between these twin cracks, which means two cracks have a potential to merge into one 

large crack.  



	

(a) (b) 

(c) (d) 

Figure 7. Results for an electrode plate with twin cracks: (a) Initial damage (b) 

Damage after deformation (c) Lithium ion concentration (d) Hydrostatic stress 

6.2.2. Perpendicular and oblique crack cases 

In the following case, two perpendicular cracks are located at the central region of 

specimen plate as shown in Fig. (8a). The length of the horizontal crack is 12% of the 

plate length and the size of the vertical crack is 10% of the plate length. The distance 

between the horizontal crack and upper tip of the vertical crack is 10% of the plate 

length. Once stretch of bonds reach critical value during lithiation process, the 

horizontal crack propagates upward first and then downward while the vertical crack 

simply propagates along the original crack path as shown in Fig. (8b). High 

hydrostatic stress lies at the crack tips and between the orthogonal cracks. These two 

cracks have a potential to merge into a large “T” shape crack. For more general 

situation, these two cracks can be arranged with an arbitrary angle as shown in Fig. 

(9a). Once these cracks merge with each other, the hydrostatic stress of the particles 

between cracks reduces as shown in Fig. (9d). 



	

(a) (b) 

(c) (d) 

Figure 8. Results for an electrode plate with perpendicular cracks: (a) Initial damage 

(b) Damage after deformation (c) Lithium ion concentration (d) Hydrostatic stress 

(a) (b) 

(c) (d) 



	

Figure 9. Results for an electrode plate with oblique cracks: (a) Initial damage (b) 

Damage after deformation (c) Lithium ion concentration (d) Hydrostatic stress 

6.2.3. Triple horizontal crack case 

Cracks in battery electrode may have arbitrary arrangements in terms of crack 

numbers and crack orientations. In this case, a triple crack damage situation is under 

investigation. Cracks with the same length equivalent to 10% of the plate length 

located at the central plate region are shown in Fig. (10a). Since cracks are located 

close to each other, particles between cracks have fewer interactions with 

neighbouring particles within their horizons. Therefore, the stiffnesses of these 

particles are relatively weaker. Hence, propagation of some cracks is led by 

neighbouring cracks. Central crack propagates towards neighbouring cracks from both 

crack tips and merges all three cracks into one crack as shown in Fig. (10b). Then, the 

propagation of outer crack tips continues horizontally along its initial crack path. High 

hydrostatic stresses exist at outer crack tips and the stresses at inner crack tips reduce 

since cracks already merge with each other as shown in Fig. (10d). 

(a) (b) 

(c) (d) 

Figure 10. Results for an electrode plate with triple cracks: (a) Initial damage (b) 

Damage after deformation (c) Lithium ion concentration (d) Hydrostatic stress  

6.3. Coupled analysis for randomly oriented multiple crack case 

After certain cycling processes, lithium ion battery electrodes may accumulate large 

number of cracks. The size and orientation of these cracks depend on the structural 

design of the battery electrode plate [16]. In order to simulate the effect of damage on 



	

electrode plate after several cycling process, coupled field diffusion analysis for 

battery electrode with randomly oriented multiple crack cases are under investigation 

in this section. Two damage situations with six cracks and eleven cracks were chosen 

as shown in Fig. (11a) and Fig. (12a). All cracks have the same crack length 

equivalent to 10% of the specimen length and they are randomly oriented at the 

central plate region. As lithium-ions diffuse into crack tip regions, hydrostatic stress 

increases dramatically at the crack tips, especially at the outer crack tips. Meanwhile, 

some cracks start to propagate and merge with neighbouring cracks. Once small 

cracks merge into a large crack, hydrostatic stress at crack tip regions reduce which 

may be the reason that the remaining small cracks stop propagating. In other words, 

the newly formed large crack prevents small cracks to propagate. On the other hand, 

outer crack tips will not be affected by other cracks and propagate along their crack 

paths toward high concentration region.  

(a) (b) 

(c) (d) 

Figure 11. Results for an electrode plate with six randomly oriented cracks: (a) Initial 

damage (b) Damage after deformation (c) Lithium ion concentration (d) Hydrostatic 

stress 



	

(a) (b) 

(c) (d) 

Figure 12. Result for an electrode plate with eleven randomly oriented cracks: (a) 

Initial damage (b) Damage after deformation (c) Lithium ion concentration (d) 

Hydrostatic stress 

7.! Conclusion 

In this study, a new continuum mechanics formulation, peridynamics, in conjunction 

with the newly developed peridynamic differential operator approach is utilised to 

analyse the fracture and failure analysis of lithium-ion battery plates with pre-existing 

cracks. According to the numerical results, high hydrostatic stress at the crack tip is 

the main motivation of crack propagation and it is reflected on bond breakage in 

peridynamic theory. Besides, phase change from pure silicon and lithiated silicon 

during the lithiation process also affects crack propagation. As hydrostatic stress 

increases at the crack tip region, lithium-ion concentration increases as well and leads 

to higher concentration value at the crack tip regions. Although lithium-ion battery 

electrode may have various damage situations, cracks normally propagate through 

particles with weak stiffness and high hydrostatic stress. Hence, for multi-crack 

situations, some of the cracks merge into a larger crack first and then propagate from 

outer crack tips. Due to the crack merging process, high hydrostatic stress at some of 

the crack tips reduces and this may arrest remaining cracks. 

As a summary, peridynamic theory can provide a good estimation of damage 

evolution in lithium ion battery plates. It is possible to obtain information about crack 

propagation without remeshing and using sophisticated damage criteria.  By using 



	

peridynamics, we can have a better understanding on failure mechanisms in lithium 

ion batteries. 
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