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a b s t r a c t 

The performance of parallel implicit Large Eddy Simulations (iLES) is investigated in conjunction with 

high-order weighted essentially non-oscillatory schemes up to 11th-order of accuracy. Simulations were 

performed for the Taylor Green Vortex and supersonic turbulent boundary layer flows on High Perfor- 

mance Computing (HPC) facilities. The present iLES are highly scalable achieving performance of approx- 

imately 93% and 68% on 1536 and 6144 cores, respectively, for simulations on a mesh of approximately 

1.07 billion cells. The study also shows that high-order iLES attain accuracy similar to strict Direct Nu- 

merical Simulation (DNS) but at a reduced computational cost. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Implicit Large Eddy Simulations (iLES) originated from the ob- 

servations made in [1] that the embedded dissipation of a certain 

class of numerical methods can be used in lieu of the explicit Sub- 

Grid Scale (SGS) models. Modified Equation Analysis (MEA) was 

developed [2] aiming at determining the stability of a difference 

equation by examining the truncation errors. Such an analysis was 

performed for the truncation error of certain schemes, e.g., [3–9] ) 

leading to a better understanding of the implicit sub-grid dissi- 

pation. In iLES, the Navier–Stokes Equations (NSE) are discretised 

using high-resolution methods without involving a low-pass filter- 

ing operation, which leads to SGS terms that require additional 

modelling. Instead, only the (implicit) de facto filtering introduced 

through the finite volume integration of the NSE over the mesh 

cells is utilised in conjunction with non-linear numerical schemes 

that adhere to a number of principles; see [10,11] , and reviews 

[9,12,13] . It has been shown [7] that iLES methods need to be care- 

fully designed, optimised, and validated for the particular differen- 

tial equation to be solved. Direct MEA of high-resolution schemes 

for NSE is difficult to be performed, thus understanding of the nu- 

merical properties of these methods to date still relies on perform- 

ing computational experiments. 

The use of iLES in free and wall-bounded flows has been justi- 

fied by several authors [14,15] , while a validation of the approach 

through theoretical analysis has been presented by Margolin et al. 

[8] . In incompressible flows, it is possible to develop an optimised 
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stencil with regards to numerical dissipation [16] , however, in the 

case of compressible flows the numerical method should be mono- 

tonic with respect to the thermodynamic quantities. Poggie et al. 

[17] and Ritos et al. [18] applied compressible iLES to study Turbu- 

lent Boundary Layer (TBL) flows and showed that iLES can achieve 

close to strict DNS (see page 4 for definition of strict DNS) accuracy 

on significantly coarser meshes. Despite iLES (and similarly classi- 

cal LES) being computationally less demanding than DNS, it still re- 

quires significant computational resources for simulating near-wall 

turbulence at high Reynolds numbers. 

To date, there has been no systematic attempt to investigate the 

parallel scalability of different high-order compressible iLES meth- 

ods in free and wall-bounded flows. The aim of this study is to 

present results regarding the accuracy, efficiency and parallel scal- 

ability of high-order iLES with reference to the Taylor Green Vortex 

(TGV) and supersonic TBL flows. 

2. Numerical methods and flow cases 

We have employed iLES in the framework of the CFD code 

CNS3D [12,15] . The Navier–Stokes equations are solved by using 

a finite volume Godunov-type method for the convective terms, 

which comprises the HLLC approximate Riemann solver [13,19] and 

two high-resolution schemes. The Monotone Upstream-centered 

Scheme for Conservation Laws (MUSCL) with second-order piece- 

wise linear monotonised central limiter [20] (labelled as M2), 

and the Weighted-Essentially Non-Oscillatory (WENO) ninth-order 

scheme [21] (labelled as W9). Furthermore, in order to exam- 

ine the parallel scalability of high-order iLES, simulations were 

also performed using an eleventh-order WENO scheme (labelled as 

W11). 
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Table 1 

Simulation parameters: u ∞ , T ∞ , M, P ∞ , ρ∞ , and μ∞ are the freestream 

velocity, temperature, Mach number, pressure, density and viscosity, 

respectively. T w is the wall temperature, I is the turbulence intensity 

at the inlet and Re L is the Reynolds number based on the freestream 

properties of air and the plate length, L . 

L u ∞ T ∞ M P ∞ 

0.061 m 588 m/s 170 K 2.25 23.8 kPa 

ρ∞ T w / T ∞ μ∞ I Re L 
0.488 kg/m 3 1.9 1 . 167 × 10 −5 Pa s 3% 1.5 ×10 6 

The viscous terms are discretised using a second-order cen- 

tral scheme. The solution is advanced in time using a five-stage 

(fourth-order accurate) optimal strong-stability-preserving Runge–

Kutta method [22] . Further numerical details are provided in 

[15] and references therein. 

The first flow case considered here is the TGV in a triple- 

periodic cubic domain of length 2 π (m). A series of meshes was 

used: 32 3 , 64 3 , 128 3 , 256 3 and 512 3 evenly-spaced computational 

cells. The flow is initialised by solenoidal velocity profile, 

u 0 = U 0 sin (kx ) cos (ky ) cos (kz) , 

v 0 = −U 0 cos (kx ) sin (ky ) cos (kz) , 

w 0 = 0 , 

(1) 

and the pressure is obtained by solving the Poisson equation: 

P 0 = P ∞ + 
1 

16 
ρ0 U 

2 
0 [2 + cos (2 kz)] · [ cos (2 kx ) + cos (2 ky )] , (2) 

where the wavenumber k = 1 . An ideal gas equation of state is 

used and the Mach number, U 0 / 
√ 

γ P 0 /ρ0 , is 0.08. The results are 

presented in terms of non-dimensional units; distance x ∗ = kx and 

time t ∗ = kU 0 t . 

The second flow case considered here is a supersonic turbu- 

lent flow over a flat plate at Mach number M = 2 . 25 and Reynolds 

number of 1.5 ×10 6 based on the freestream properties for air and 

the length of the plate, L ; see also Table 1 . 

Periodic boundary conditions are used in the spanwise direction 

(z). In the wall-normal direction (y) a no-slip isothermal wall at 

temperature T w = 323 K is imposed. Supersonic outflow conditions 

are applied at the outlet, while far-field conditions are applied on 

the upper boundary opposite to the wall. 

A synthetic turbulent inflow boundary condition is used to pro- 

duce a freestream flow with a superimposed random turbulence. 

The synthetic turbulent inflow boundary condition is based on 

the digital filter (DF) method [18,23–25] . According to DF, instead 

of using a white-noise random perturbation at the inlet, energy 

modes within the Kolmogorov inertial range scaling with k −5 / 3 

, where k is the wavenumber, are introduced into the turbulent 

boundary layer. A cutoff at the maximum frequency of 50 MHz 

is applied since the finest mesh would under-resolve higher fre- 

quency values. The turbulence intensity at the inlet ( I ) is set as 

±3% of the intensity of the freestream velocity. This perturbation 

has been found to be sufficient to trigger bypass transition and tur- 

bulence downstream (see Fig. 1 ). 

iLES have been performed on fine meshes but still coarser than 

DNS [17,26] . We employed four meshes with the coarsest and 

finest meshes containing ∼4.5 million and ∼100 million cells, re- 

spectively. For the calculation of the mesh spacing �y the con- 

ventional inner variable scaling method �y + = u τ�y/νw is used, 
where u τ = 

√ 
τw /ρw is the friction velocity; νw , τw and ρw are 

the wall viscosity, shear stress and density, respectively. Typical 

mesh resolution recommendations for LES lie in the range of 50 < 

�x + < 150 and 15 < �z + < 40 , and for DNS in the range of 10 < 

�x + < 20 and 5 < �z + < 10 [17,27,28] . For wall-resolved LES and 

DNS the near-wall spacing should be �y + < 1 . A strict definition 

Table 2 

Boundary layer properties, including previous DNS and experimen- 

tal studies. The compressible form of the momentum thickness ( θ ) 

has been used in the definition of Re θ and Re δ2 . Re τ is the Reynolds 

number based on the friction velocity u τ and the boundary layer 

thickness δ. Re δ2 is based on θ and the near-wall viscosity μw . 

H = δ∗/θ is the shape factor, where δ∗ is the displacement thick- 

ness of compressible flow. 

Re θ Re τ Re δ2 H M 

W9 2170.0 414.0 1280.6 3.56 2.25 

M2 1593.8 344.6 940.5 3.72 2.25 

DNS [26] 2377.0 497.0 1516.0 2.98 2.0 

strict DNS [17] - - 20 0 0.0 - 2.25 

Exp [29] 5100.0 1080.0 3100.0 2.00 2.28 

for DNS mesh spacing requires �x + ≤ 1 and �y + ≤ 1 . The mesh 

spacing used in this study is in the range of 9 . 06 < �x + < 27 . 14 , 

0 . 497 < �y + < 1 . 22 and 8 . 53 < �z + < 24 . 95 , where the smallest 

values correspond to the finest mesh. Based on the above analy- 

sis, the present iLES on the finest mesh can be considered as an 

under-resolved DNS. 

The TBL properties are presented in Table 2 . To enable the com- 

parison of the present results with other publications, various def- 

initions of the Reynolds number have been employed based on the 

momentum thickness, the friction velocity, and the near-wall vis- 

cosity. The flow statistics are computed by averaging in time over 

three flow cycles and, spatially, in the spanwise direction. The sta- 

tistical convergence of the simulations based on the standard error 

of the mean is less than 2%. 

3. Results 

3.1. TGV 

Instantaneous visualisations of the TGV at t ∗ = 15 ( Fig. 2 ) show 

the dominance of disorganised vortices in the decaying worm- 

vortex flow regime. The results were obtained using the ninth- 

order WENO scheme on 64 3 , 128 3 , 256 3 and 512 3 meshes. The 

snapshots of the flow are based on the Q -criterion, which defines a 

vortex as a continuous fluid region with a positive second invariant 

of the velocity gradient [30] , i.e. Q > 0. All renderings are performed 

at the same level ( Q = 1 ) and are coloured with the velocity mag- 

nitude. 

The results on 256 3 and 512 3 meshes are very similar with re- 

spect to the turbulent structures resolved. The kinetic energy rate 

of dissipation, ε1 , and pressure dilation-based dissipation rate, ε2 , 

are shown in Fig. 3 . The kinetic energy rate of dissipation is calcu- 

lated by ε 1 = −d E k /d t, where 

E k = 
1 

ρ0 V 

∫ 
1 

2 
ρu · u dV (3) 

is the volumetric-averaged kinetic energy. The simulations are 

nearly grid converged with respect to ε1 and agree with other 

published results [31,32] (not shown here). The pressure dilatation- 

based dissipation rate is defined by 

ε 2 = −
1 

ρ0 V 

∫ 

p∇ · u dV. (4) 

ε2 measures the effect of compressibility on the dissipation of tur- 

bulent energy and takes small values for low Mach flows. 

A widely used performance metric for assessing parallel com- 

putations is the speedup: 

S n = 
T re f 

T n 
, (5) 

where T n is the execution time on n cores and T ref is the execution 

time on a reference number of processors, usually equal to a single 
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(a) (b)

Fig. 1. Iso-surfaces of Q -criterion, coloured by Mach number, for (a) M2 and (b) W9 iLES simulations; the computational domain has been truncated. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article). 

(a) mesh = 643 (b) mesh = 1283

(c) mesh = 2563 (d) mesh = 5123

Fig. 2. Iso-surfaces of Q -criterion ( Q = 1 ) coloured by velocity magnitude at t ∗ = 15 . The 32 3 mesh is not shown as no structure is visible at this level of Q . All shown TGV 

simulations are with W9. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 

core or to the number of cores in a computational node of the HPC 

facility used. For the TGV simulations on meshes up to 512 3 cells, 

12 cores were used as reference; one HPC node has two Intel Xeon 

X5650 processors with 6 cores each. The ideal speedup of paral- 

lel computations would be equal to n / n ref , but this efficiency is not 

possible due the communication overhead between the computa- 

tional cores and the idle time of computational nodes associated 

with load balancing. Fig. 4 a shows the parallel speedup for the 

TGV case using the ninth-order iLES, achieving 77% speed-up using 

480 cores. Furthermore, for scalability purposes the parallel per- 

formance of the eleventh-order WENO iLES on 6144 cores for the 

1024 3 simulation is shown; a Cray HPC facility compromising two 

Intel E5-2697v2 processors with 12 cores each was used. The refer- 

ence execution time was obtained on 192 cores. The parallel per- 

formance of the 1024 3 simulation is approximately 93% and 68% 

on 1536 and 6144 cores, respectively. The parallel performance of 

the second-order iLES is not shown because it involves less calcu- 

lations for the same mesh size and as a consequence the scalability 

will always be worse when comparing to higher order iLES. 

3.2. TBL 

The second flow case is a supersonic TBL for which DNS re- 

sults and experimental data at similar Mach numbers are available. 
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Fig. 3. TGV case: (a) Kinetic energy dissipation rate ( ε1 ) and (b) pressure dilatation-based dissipation rate ( ε2 ). The results on the 512 
3 mesh are in close agreement with 

previously published results [31,32] (not shown here). The y-axis in (b) is stretched by a factor of 10 compared to (a). 

Fig. 4. Parallel scaling of (a) 9th- and (b) 11th-order iLES for the TGV case on 128 3 and 1024 3 meshes, respectively. 

Fig. 5. Comparison of iLES with DNS and experimental data. (a) van Driest velocity profile (b) normal Reynolds stress. Strict DNS results [17] are included only in (b) because 

for the velocity profiles the results perfectly agree with the available DNS data of Pirozzoli et al. [26] . “LR” denotes a lower resolution mesh containing approximately 1/3 of 

the size of the fine mesh. 

Comparisons with DNS and/or experiments are presented for the 

van Driest velocity profile, u VD , and normal Reynolds stress, τ uu 

( Fig. 5 ). The van Driest velocity profile is given by 

u V D = 

∫ u + 

0 

√ 
ρ

ρw 
du + , (6) 

where the superscript ‘ + ’ denotes wall scalling, u + = u/u τ . Previ- 

ous publications [26,33] have shown that for adiabatic walls a sat- 

isfactory agreement of the velocity data is expected in near-wall 

region. Small variations are expected for different Reynolds num- 

ber and the present iLES are in agreement with the DNS of Piroz- 

zoli et al. [26] . The ninth-order iLES is also in excellent agreement 

with the experimental data [29] . The second-order iLES, conducted 

on the same mesh resolution, shows significant deviation from the 

reference DNS and experiments. Performing the ninth-order iLES 

on 1/3 mesh resolution shows that mesh convergence is achieved, 

hence the high-order iLES reliably attain high accuracy on a rela- 

tively coarse mesh. 

In respect of τ uu , the second-order iLES significantly over- 

estimate the Reynolds normal stress, especially in the peak region 

of the buffer zone. The ninth-order iLES show very good agreement 

with the DNS results up to about y + ≈ 20 , where the Reynolds 

similarity holds [34] . Further away from the wall it is typical to 

observe a strong dependence on Reynolds number for results pre- 

sented in inner scaling coordinates. This explains the differences in 

the results in the logarithmic region due to the differences in the 

local Reynolds number. 
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Fig. 6. iLES speed-up for the 9th-order WENO scheme for the supersonic TBL case. 

Table 3 

Performance of second and ninth order iLES vs DNS [17,26] . 

Method Computational cost Error 1 Error 2 

Strict DNS ∼25 (years) 0.0% 0.0% 

DNS 117 (days) 0.0% 6.5% 

iLES W9 24 (days) 1.0% 6.3% 

iLES M2 10 (days) 8.5% 23.7% 

iLES W9 - LR 7 (days) 3.1% 8.1% 

For the TBL case the speedup is calculated with reference to 36 

cores (3 computational nodes with two Intel Xeon X5650 proces- 

sors each node). The 36 cores reference was imposed due to the 

size of the fine mesh ( ∼100 million cells). The parallel speedup is 

shown in Fig. 6 . The ninth-order iLES provide a computational ef- 

ficiency of 86% of the ideal efficiency, utilising 720 computational 

cores. 

Table 3 shows the performance of low and high order iLES 

with reference to strict DNS [17] . For the DNS performance we 

have used the results of Pirozzoli et al. [26] , where a mesh ap- 

proximately 27 times coarser than the strict definition of DNS was 

utilised. The reported errors are averaged values calculated in the 

near-wall region, y + ≤ 30 , where “Error1” and “Error2” refer to 

relative difference from the reference van Driest velocity profile 

and normal wall stress, respectively. The computational cost has 

been calculated based on the assumption that simulations are per- 

formed on 240 cores. The computational cost for DNS are estima- 

tions based on the mesh size and number of cores found in the 

relevant publications. The results show that high-order iLES can at- 

tain high accuracy at a reduced computational cost, cf. iLES W9-LR 

with the rest of the results. 

4. Conclusions 

The accuracy, parallel scalability and efficiency of iLES were ex- 

amined for different turbulent flow cases. A mesh convergence 

study was presented for the TGV case achieving nearly mesh inde- 

pendent results for the two finest meshes. The present high-order 

iLES exhibit high parallel efficiencies for simulations performed up 

to 6144 cores on a Cray HPC facility and for meshes containing up 

to 1.07 billion cells. 

The first and second order statistics obtained from high-order 

iLES of a supersonic TBL flow are in excellent agreement with pre- 

vious numerical and experimental data. iLES can achieve high ac- 

curacy in the near-wall region that is directly comparable to the 

results of strict DNS at a reduced computational cost. A combina- 

tion of high-order iLES with relatively coarse meshes provides a 

more pragmatic approach than using a second order method on a 

significantly finer mesh. 
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