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Abstract 

Since the heating furnace system has emanated it has faced the problem of high power consumption, colossal amount of 

time to heat the substances and the vulnerability of getting exploded thus the objective of the paper is to achieve a system 

for same with less power consumption, whit time to heat the substances and making it safe from explosion.

Using the mathematical way of modeling the dynamic critical systems the heating furnace is being modeled by using the 

damping, spring and mass elements. The integer order model of the system is being achieved by the Laplace transform and 

fractional order model for the same is obtained using the Grunwald-Letnikov formula. The Cohen-Coon tuning technique is 

being amalgamated with the Nelder-Mead, Interior-Point, Active-Set and Sequential Quadratic Programming optimization 

techniques respectively so as to design the FOPID controller for heating furnace.

When the feedback systems were being formed then the outputs demonstrated that the system now consists the  properties 

of less power consumption, less time to heat the substances along with less overshoot. Earlier the integer order model had 

the settling time (time taken to heat the substance), steady state error (power consumption) and overshoot (explosion) 

of 1500 seconds, 50% and 0% respectively. When the PID controller was designed for the same using Cohen-Coon tuning 

technique and forming a feedback system it had setting time of around 800 sec. and also the steady state error was brought 

to 0% but the overshoot went up to 35%. Therefore FOPID controller is being designed using the concocted technique 

that is the amalgamation of tuning technique and optimization techniques and forming and feedback system with FOM of 

 heating furnace, the system yielded steady state error as 0%, where the settling time have been reduced to 300 seconds 

and overshoot between 7%-12%.

Using the concocted technique that is the amalgamation of Cohen-Coon tuning technique with the optimization tuning 

techniques the FOPID controller was being formed for the FOM of the heating furnace which is being kept in feedback so 

as to form a system. Thus systems formed ameliorated the settling time i.e. time taken to heat the substance, the overshoot 

i.e. the vulnerability of getting exploded also remains low and the steady state error i.e. power consumption is also reduced 

drastically. 
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1. Introduction

It is fascinating to note that almost 90% of the modern 

controllers being used today are the Proportional Integral 

Derivative (PID) controller or the modiied Proportional 

Integral Derivative (PID) controller. 

Proportion Integral Derivative (PID) controller is the 

controller which is of the integer order and it is being 

utilized widely in the ield of industry. he controller 

appeared in the year 1939 and from that point forward it 

has stayed crucial in view of its execution. Since most of 

the Proportional Integral Derivative (PID) controllers are 

balanced nearby, a wide range of sorts of tuning principles 

have been proposed in the literature. Utilizing the tuning 

standards, sensitive and calibrating of Proportion Integral 

Derivative (PID) controllers can be made on site. Likewise, 
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programmed tuning techniques have been created and a 

percentage of the Proportional Integral Derivative (PID) 

controller may have online programmed tuning capacities. 

Adjusted types of Proportion Integral Derivative (PID) 

control, for example, I-PD control and multi degrees of 

freedom Proportion Integral Derivative (PID) control are 

right now being used in industry. Numerous pragmatic 

systems for bump less changing (from manual opera-

tion to programmed operation) and increase booking 

are economically accessible. he handiness of Proportion 

Integral Derivative (PID) controls lie in their general per-

tinence to most control frameworks. Speciically, when 

the scientiic model of the plant is not known and in 

this way investigative outlines strategies can’t be utilized, 

Proportional Integral Derivative (PID) controls ends up 

being generally helpful. In the ield of procedure control 

frameworks, it is surely understood that the fundamental 

and the modiied Proportional Integral Derivative (PID) 

control strategies have demonstrated their helpfulness in 

giving palatable control, in spite of the fact that in numer-

ous given circumstances they may not give ideal control. 

Mathematically the Proportional Integral Derivative 

(PID) controller using diferential equation is1,23,

  (1)

Where,

K
p
 designates the gain of Proportional, K

i
 designates 

the gain of Integral, K
d
 designates the gain of Derivative, e 

designates the Error, t designates the Instantaneous time 

and τ designates the variable of integration that takes on 

the values from time 0 to the present t. 

he transfer function of Equation (1) is2,23,

  (2)

Here, we are using the FOPID controller which has been 

derived from the Proportional Integral Derivative (PID) 

controller by just converting it into fractional order from 

the integer order which was irst being proposed in 1999 

by Igor Podlubny. In addition, the incentive behind the 

utilization of FOPID is that it is very easy to design the 

controller for systems with higher order by using the tech-

niques of modeling based on regression and also because 

it has the iso-damping property which makes possible the 

variation over wide range of operating point for a singular 

controller. here are numerous other grounds which are 

liable for the utilization of FOPID controller and they are 

the hetiness from the high frequency noise as well as for 

the gain variation of the plant, the absence of the steady 

state error and it contains both the phase and gain margin 

and also the gain and phase cross over frequency.

he FOPID controller can further be deined 

 numerically using diferential Equation as,

  (3)

And the transfer function of the Equation (3) is given 

as,

  (4)

{λ, μ} in Equation (4) designates the Diferential-

integral’s order for FOPID controller3.

Optimization also termed as enhancement is the 

 system of making the things more lawless, powerful and 

productive in order to yield the best result. he various 

techniques of optimization are Nelder-Mead, Active-Set, 

Interior-Point, SQP (Sequential Quadratic Programming) 

etc23. Numerically it can be explained as the system of 

expansion and contraction of the target capacity relying 

upon various decision variables under an arrangement of 

limitations. he optimization technique has been used so 

as to ind and achieve the inest results so as to design 

the most accurate FOPID controller that gives the inest 

 output and assists the plant to enhance its performance4.

Since the classical calculus cannot solve the equations 

with fractional order therefore the fractional calculus 

has been used extensively here. Basically the fractional 

calculus is numerical computation that scrutinizes the 

likelihood of accepting the real and complex number 

powers of operator of diferentiation. 

2.  Modeling of Heating Furnace 
Dynamically

he modeling that has been approximated for the heating 

furnace rivets amount of input that varies with time and 

is in fact the fuel mass gas low rate and also the pressure 

inside the furnace which is the output value.

he modeling of heating furnace dynamically rivets 

the mass, energy and the momentum balances23. It also 

rivets the heat transfer from the hot lue hot gas to water, 

lue gas low from the boiler model and steam model5. 

As we know for any physical system the total force is 

equal to the summation of individual forces exerted by 

mass (m), damping (b) and spring (k) element23.

Numerically we can deduce the same as23,
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  (5)

In the Equation (4) acceleration is signiied as a, 

 velocity is signiied as v and displacement is signiied as 

x23.

herefore the diferential equation of Equation (4) is,

  (6)

It must be accounted that for designing a network 

based PID the above equation or model is a rough process 

behavior description6,23.

herefore, the diferential equation of the heating 

 furnace using the above equation becomes23,

  (7)

he Laplace transfer function of Equation (6) which 

gives the Integer Order Model (IOM) as23,

 G
I
(s) =  (8)

‘s’ in Equation (8) signiies the Laplace operator7,23.

Where, the mass denoted by ‘m’ is 73043, the  damping 

denoted by ‘d’ is 4893 and the spring denoted by ‘k’ 

is 1.93 23.

From Figure 1 it can be very well said that when the 

heating furnace is being modeled in integer order then 

overshoot is 0%, the steady state error is around 50% and 

the settling time is 1500 seconds.

3.  A Precis on Fractional Order 
Calculus

Fractional order calculus is a mathematical concept 

that has been in existence from 300 years ago. It is the 

 mathematical concept that has proved itself better as 

compared to the integer order methods. 

he deinition of the fractional order calculus is as 

 follows:

According to Lacroix8,

  (9)

According to Liouville9,
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According to Riemann-Liouville10, 

  (11)

According to Grunwald-Letnikov, which is being used 

widely is,

  (12)

Where,

  (13)

Which is called the Euler’s gamma function11.

he fractional order derivatives and integrals 

 properties are as follows:

f (t) being a logical function of t then the fractional •	

derivative of f (t) which is 
0

 is an analytical 

function of z and α.

If α = n (n is any integer) then •	
0

 produces the 

similar result as that of the traditional diferentiation 

having order of n.

If α = 0 then •	
0

 is an identity operator.
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Figure 1. Step response of the Equation (8) or IOM.
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 0  
(14)

he diferentiation and integration of fractional order •	
are said to be linear operations10,

 0  
(15) 

he semi group property or the additive index law,•	

 0 0
=

0 0
=

0
 (16) 

Which is being held under some sensible limitations 

on f (t).

Derivatives which are of fractional order has the 

 commutation with derivative of integer order which is as 

follows12,

 
 a a a

 (17)

Where for t = a, f (k) (a) = 0 for k = {0, 1,…n-1}. he given 

equation shows that  and 
a

 are commuted 13.

4. Cohen-Coon Tuning Technique

Cohen-Coon tuning technique is primarily used to 

 vanquish the slow, steady state response which takes 

place in the Ziegler-Nichols tuning technique11. his tech-

nique is generally utilized for the systems with irst order 

or models having time delay as the controller does not 

 spontaneously responds to the disturbances.

It is an oline method that is when it is at steady 

state then a step change can be introduced at the input. 

Ater this on the basis of the time constant and the time 

delay the output can be calculated and the initial control 

 parameters can be found out using the response11.

To get minimum ofset and standard decay ratio there 

are an arrangement of pre-decided settings for the Cohen-

Coon tuning technique,

Where, P is the percentage in the input, N is  percentage 

change of output/ τ, L is τ
dead

 and R is . We 

can use K
o
 in place of .

he procedure of the tuning technique is as follows:

Wait for the complete procedure till the steady state is •	
attained.

Step change is to be introduced at the input.•	
Approximate irst order constant with time constant •	
τ

 
which is delayed by τ

dead 
units which is based on the 

output, from the time the step input was introduced. 

By recording the following time instances the value of 

τ and τ
dead

 can be found, t
0
 signiies the input step start 

up point, t
2
 signiies the half point time and t

3
 signiies 

the time at 63.2%.

Calculate the process parameters τ, τ•	
dead

 and K
o
 by 

 utilizing the assessment done at t
0
, t

2
, t

3
, A and B.

On the basis of τ, τ•	
dead

 and K
0
 the parameters of 

 controller can be found. 

he advantages of the Cohen – Coon method are that the 

time of reaction of the closed loop is quick or fast and this 

technique can be utilized in the systems along with time 

delay.

Whereas the disadvantages of this technique are that 

it can only be utilized for the irst order systems which 

involve large process delay, it is an oline technique, 

closed loop systems are unstable and the approximated 

value of τ, τ
dead

 and K
0
 might not be compulsorily accurate 

for diferent systems14.

From Table 1 it can be derived that using various 

 formulae the tuning parameters i.e. proportional gain K
p
, 

integral gain K
i
 and derivative gain K

d
 can be obtained spe-

ciically when the Cohen-Coon technique is being used. 

When the Equation (8) which is the Integer Order 

Model (IOM) of the heating furnace is placed in a closed 

loop along with the PID controller which is tuned using the 

Cohen-Coon tuning technique as shown in the Figure 2 then 

the step response that we get is shown in Figure 3.

From Figure 3 it can be said that the settling time 

 drastically reduced and also the steady state error 

also reduced to 0% but at the same time the overshoot 

increased a lot which is certainly not acceptable and all 

these happened when the PID controller was used.

5.  Nelder-Mead Optimization 
Technique

Nelder-Mead optimization technique is also called the 

Downhill simplex technique or the amoeba technique 

Table 1. Calculation of K
p
, K

i
 and K

d
14

K
p

K
i

K
d

PID (P/NL)∗(1.33+(R/4)) L∗(30+3R)/(9+20R) 0.5τ
dead

PI (P/NL)∗(0.9+(R/12)) L∗(30+3R)/(9+20R) 4L/(11+2R)

P (P/NL)∗(1+(R/3))
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which is used to ind the minimum and maximum of an 

objective function in various dimensional spaces23. he 

Nelder–Mead method is a technique which is a heuris-

tic search method that can coincide to non-stationary 

points. However, it is easy to use and will coincide for a 

large class of problems23. he Nelder–Mead optimization 

method was proposed by John Nelder and Roger Mead in 

year 1965. he procedure uses the concept of a simplex 

(postulation of notion of triangle or tetrahedron to arbi-

trary dimensions) which is a special polytope (geometric 

objects having lat sides) type with N + 1 vertices at n 

dimensions23. Illustrations of simplices are, a tetrahedron 

in three-dimensional space, a triangle on a plane, a line 

segment on a line, etc. 

he diferent operations in Nelder-Mead optimization 

method are23, 

Taking a function f (x), x א Rn which is to be  minimized 

in which the current points are x
1
, x

2 
……. x

n+1
23.

Order: On the basis of values at the vertices, f (x•	
1
) ≤ f 

(x
2
) ≤ …………. ≤ f (x

n+1
)23.

Calculate the centroid of all points (x•	
0
) except x

n+1
23.

Relection: Calculate x•	
r 

= x
0
+ α (x

0
 – x

n+1
)23. If the 

relected point is not better than the best and is  better 

than the second worst, that is, f (x
1
) ≤ f (x

r
) < f (x

n
)23. 

Ater this by replacing the worst point x
n+1

 with 

relected point x
r
 to get a new simplex and go to the 

irst step23.

Expansion: If we have the best relected part then f •	
(x

r
) < f (x

1
), then solve the expanded point x

e
= x

0
+γ 

(x
0
-x

n+1
)23. If the relected point is not better than 

expanded point, that is, [f (x
e
)<f (x

r
)] then either by 

substituting the worst point x
n+1

 by expanded point x
e
 

to get new simplex and then go to the irst step or by 

replacing the worst point x
n+1

 by relected point x
r
 to 

obtain or get a new simplex and then go back to the 

irst step23.

Else if the relected point is not better than second •	
worst then move to the ith step23.

Contraction: Here we know that f (x•	
r
) ≥ f (x

n
)23, 

 contracted point is to be evaluated x
c
= x

0
+ρ (x

0
-x

n+1
), if 

f (x
c
) < f (x

n+1
) that is the contracted point is  better than 

the worst point then by substituting the worst point 

x
n+1

 with contracted point x
c
 to procure a new simplex 

and then go to irst step or proceed to sixth step23. 

Reduction: Substitute the point with x•	
i
= x

1
+σ (x

i
-x

1
) 

for all i א {2, ……. ,n+1}23, then go to the irst step.

It must be noted that the standard values for α, σ, ρ, γ 

are 1, ½, -1/2, 2 respectively. In relection the highest 

 valued vertex is x
n+1

 at the relection of which a lower 

value can be found in the opposite face which is formed 

by all vertices x
i
 except x

i+1
. In expansion we can ind 

fascinating values along the direction from x
0
 to x

r
 only 

if the x
r
 which is the relection point is new nadir along 

vertices. In  contraction it can be expected that a superior 

value will be inside the simplex which is being formed 

by the vertices x
i
 only if f (x

r
) > f (x

n
). In reduction to 

ind a simpler landscape we contract towards the lowest 

point when the case of contracting away from the largest 

point increases f arises and which for a minimum non-

singular cannot  happen properly. Indeed initial simplex 

is important as the Nelder-Mead can get easily stuck as 

too small inceptive simplex can escort to local search, 

Figure 2. Closed loop with PID controller and the heating 

furnace (plant). 
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Figure 3. Step response obtained when the Equation (8) 

which is the Integer Order Model (IOM) of the heating 

furnace is placed in a closed loop along with the PID 

controller.
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therefore the simplex should be dependent on the type 

or nature of problem15.

6.  Active-Set Optimization 
Technique

In constrained optimization, the general point is to 

change the issue into a less demanding sub-problem 

that can then be understood and utilized as the prem-

ise of an iterative procedure. A normal for a huge class 

of right on time routines is the interpretation of the 

compelled issue to an essential unconstrained issue 

by utilizing a penalty function for limitations that are 

close or past the imperative limit. Along these lines 

the compelled issue is settled utilizing a grouping of 

parameterized unconstrained advancements, which in 

the (arrangement’s utmost) focalize to the constrained 

problem. hese routines are currently considered mod-

erately wasteful and have been supplanted by systems 

that have concentrated on the arrangement of the 

Karush-Kuhn-Tucker (KKT) mathematical statements. 

he KKT comparisons are important conditions for 

optimality for a constrained improvement problem. On 

the of chance that the issue or problem is a purported 

raised programming issue, that is,  and , i = 

1,….,m, are convex function, then the KKT mathemati-

cal statements are both important and  adequate for a 

global solution point23.

Taking a general problem23, 

  (18)

herefore, the KKT equation can be given as23,

  (19)

  (20)

  (21)

he Equation (19) depicts a crossing out of the  gradient 

between the active constraints and the objective function 

at the point of solution23. For the gradients to be wiped 

out, Lagrange multipliers  are impor-

tant to balance the deviations in objective function’s and 

constraint gradient’s magnitude23. Since only active con-

straints are incorporated into this crossing out operation, 

inactive constraints must not be incorporated into this 

operation, as the given Lagrange multipliers equivalent to 

0. his is expressed veriiably in the Equations (20) and 

(21) which are the KKT equations23. 

he solution of the KKT mathematical  statements 

shapes the premise to non-linear programming 

 calculations. hese calculations endeavor to regis-

ter the Lagrange multipliers speciically. Constrained 

quasi-Newton procedure ensures super-linear accu-

mulating so as to meet second order data in regards to 

the KKT Equations utilizing a quasi-Newton updat-

ing method. hese systems are generally alluded to as 

Sequential Quadratic Programming (SQP) techniques, 

since a quadratic programming sub-problem is solved 

at every major iteration (also called constrained variable 

metric routines, iterative quadratic programming and 

recursive quadratic programming). he active-set opti-

mization technique or algorithm is not an algorithm of 

 large-scale16.

7.  Interior Point Optimization 
Technique

Interior point optimization technique is the method or 

procedure that helps to evaluate both linear and non-lin-

ear problems of convex optimization23. It is also termed as 

barrier technique or method23. he interior point way to 

deal with constrained minimization is to unravel a suc-

cession of estimated minimization issues. he genuine 

problem is23,

  (22)

he estimated problem for every μ = 0 is,

 

  (23)

here are same numbers of slack variables s
i
 as there 

are disparity requirements in g23. he s
i
 are limited to be 

positive to keep ln (s
i
) limited23. As μ declines to zero, the 

minimum of f
μ

 ought to approach the minimum of f. he 

included logarithmic term is termed as barrier function23. 

he rough problem Equation (22) is an arrangement of 

correspondence compelled problem. hese are simpler 

to solve than the original imbalance compelled problem 

Equation (23)23.
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To solve the rough problem, the algorithm utilizes 

one of two principle sorts of ventures at each and every 

reiteration, they are, the irst one is the immediate stride 

in (x, s)23. his stride endeavors to comprehend the 

KKT (Karush-Kun-Tucker) mathematical statements 

for the rough issue by means of a direct estimation23. 

his is likewise called the Newton step and the second 

principle is the conjugate gradient step that utilizes a 

trust region23. Naturally the algorithm irst endeavors to 

a direct or immediate step. In the event that it cannot 

then it endeavors the conjugate gradient step. One situ-

ation where it does not take an immediate or direct step 

is the point at which the estimated issue is not locally 

convex to the current emphasize23. At every reiteration 

the algorithm diminishes a legitimacy function, for 

example23,

he parameter may increment with reiteration  number 

keeping in mind the goal to constrain the arrangement 

towards attainability. In the event that an endeavored step 

does not diminish the legitimacy work, the algorithm 

rejects the endeavored step and endeavors another step17.

8.  Sequential Quadratic 
Programming (SQP) 
Optimization Technique

SQP technique speaks to the best in class in non-linear 

programming techniques23. For example Schittkowski has 

actualized and tested a form of that outlanks each other 

tested technique as far as proiciency, precision and rate of 

successful elucidations over countless issues23.

In view of the work of Biggs, Han and Powell and the 

technique permits us to irmly imitate Newton’s strategy 

for compelled improvement pretty much as is inished 

unconstrained optimization. At every signiicant empha-

sis, a guess is made of the Hessian of the Langrangian 

function utilizing a semi Newton overhauling system23. 

his is then used to create a quadratic program sub 

 problem whose arrangement is utilized to shape the quest 

course for a line seek technique23. A review of SQP is 

found in Fletcher, Gill et al., Powell and Schittkowski23. 

Taking the Equations (18), (19), (20) and (21)15, the 

principal initiative is the detailing of a quadratic pro-

gramming sub problem in light of a quadratic estimation 

of the Lagrangian function23. 

  (24)

We abridge the Equation (18) by assuming that bound 

constraints have been communicated as inequality con-

straints23. We achieve the quadratic programming sub 

problem by the non-linear constraints23. he SQP is 

implemented using three stages which are, the updating 

the Hessian matrix, the quadratic programming solution 

and the line search and merit function18. 

9.  Designing of FOPID for 
the Heating Furnace using 
Optimization Technique

he Integer Order Model (IOM) of heating furnace, which 

we already equated in section (2) and we got the Equation 

(8), which is23,

G
I
(s) = 

Now, by using the Grunwald-Letnikov Equation (12) 

for fractional calculus which is given as23,

When the Integer Order Model (IOM) is being solved 

using the Grunwald-Letnikov equation given above then 

we get the Fractional Order Model (FOM) of heating 

 furnace which comes out to be19,23,

 G
F
(s) =  (25)

When the Equation (25) which is the Fractional Order 

Model (FOM) of the heating furnace is placed in a closed 

loop along with the PID controller which is tuned using 

the Cohen-Coon tuning technique as shown in the 

Figure 2 then the step response that we get is shown in 

Figure 4.

When PID controller for FOM of the heating furnace 

was designed to improve the performance of heating fur-

nace then of course the settling time and steady state error 

improved but overshoot came out to be high, which can 

be deduced from Figure 4. 

he Equation for FOPDT (irst order plus dead time) 

is given as,
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values came out to be 151.412, 0.803807 and 4241.46 

 respectively.

Ater the discussed process we use the Nelder-

Mead, interior-point, active-set and SQP optimization 

 techniques so as to ind the values of λ and μ and also the 

optimized values of K
p
, K

i
 and K

d
 which are being listed in 

the Table 2 given below.

Now by using the values of Table 2 and the Equation (4) 

we design the FOPID controller by forming its  equation.

Using the values of Nelder-Mead (NM) optimization 

from Table 2 we get the FOPID controller Equation as,

  (28)

Now, by using the values of Active-Set (AS) 

 optimization from table we get the FOPID controller 

Equation as,

  (29)

Now by using the values of Interior-Point (IP) 

 optimization from Table 2 we get the FOPID controller 

Equation as,

  (30)

  (26) 

Where, K is referred to as the gain, L is referred as time 

delay and T is referred as the time constant20.

hen, by inding out the step response of the transfer 

function of the plant (heating furnace) we ind out the 

value of K, L and T.

Where,  and 

Where, T
1
 and T

2
 are the time instances in seconds 

taken from the step response obtained having a particular 

steady state gain21.

So, the FOPDT model for the plant which is the 

 heating furnace comes out to be,

 G
FOPDT

(s) =  (27)

he comparison of Equation (27) and Equation (25) is 

shown in the Figure 5 and form which it can be deduced 

that both are almost the same in performance factor.

Where the value of K, L and T we get from Equation 

(27) are 0.404272, 72.464 and 3421.93 respectively.

he initial values of K
p
, K

i
 and K

d
 are being found 

out using the Cohen-Coon tuning technique whose 
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Figure 4. Step response obtained when the Equation 

(25) which is the Fractional Order Model (FOM) of the 

heating furnace is placed in a closed loop along with the PID 

controller.

Figure 5. FOPDT identiication, comparison between the 

original and the identiied one which appears to be perfect.

Table 2. Values of K
p
, K

i
, K

d
, λ and μ found using the 

optimization techniques

Parameters NM AS IP SQP

K
P

100 88.418 99.908 100

K
i

0.61134 99.999 99.888 100

λ 0.99967 0.34319 0.34772 0.34865

K
d

99.998 99.996 98.41 100

μ 0.010014 0.01 0.010138 0.01
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 (36)

10. Result

10.1  he Diferent Responses when 

Nelder-Mead Optimization Technique 

Values are used

From Figure 7 the step response achieved when the 

Equation (28) is put into the FOPID controller block and 

the Equation (25) is put into the plant block of Figure 6 

and it exhibits overshoot of 12%, settling time of 1000 sec. 

and steady state error of 0%. 

In Figure 8 the root locus obtained when the Equation 

(28) is put into the FOPID controller block and the 

Equation (25) is put into the plant block of Figure 6, this 

has been plotted to observe the stability of the system. 

Since all the zeroes lie at the second quadrant thus the 

system is stable.

he stability obtained when the Equation (28) is put 

into the FOPID controller block and the Equation (25) 

is put into the plant block of Figure 6, where the sys-

tem came out to be stable with K = 1, q = 0.01, err = 

1.1481e-10 and apol = 0.0281 which can be observed in 

Figure 9. 

he bode plot achieved when the Equation (28) is put 

into the FOPID controller block and the Equation (25) 

is put into the plant block of Figure 6, bode plot being 

obtained both in phase and magnitude can be depicted 

from Figure 10.

Now by using the values of SQP optimization from 

Table 2 we get the FOPID controller Equation as,

  (31)

When the Equation (28) is put into the FOPID 

 controller block and the Equation (25) is put into the plant 

block of Figure 6 then the output that is obtained is22,

  

  
 (32)

When the Equation (29) is put into the FOPID 

 controller block and the Equation (25) is put into the plant 

block of Figure 6 then the output that is obtained is,

  

  (34)

When the Equation (30) is put into the FOPID 

 controller block and the Equation (25) is put into the plant 

block of Figure 6 then the output that is obtained is,

 

 (35)

When the Equation (31) is put into the FOPID 

 controller block and the Equation (25) is put into the plant 

block of Figure 6 then the output that is obtained is,

  

Figure 6. Closed loop with FOPID controller and the 

heating furnace (plant).
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Figure 7. Step response for Equation (32).
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10.2  he Diferent Responses when  Active-

Set Optimization Technique Values are 

used

Figure 11 shows the step response achieved when the 

Equation (29) is put into the FOPID controller block and 

the Equation (25) is put into the plant block of Figure 6, 

in which settling time came out to be 300 sec., overshoot 

of 15% and steady state error of 0%.

Figure 12 shows the root locus obtained when the 

Equation (29) is put into the FOPID controller block and 

the Equation (25) is put into the plant block of Figure 6 in 

which the zeroes lie in the second quadrant which allows 

the system to be stable.
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Figure 8. Root locus plot for Equation (32).
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Figure 9. Stability graph for Equation (32).
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Figure 10. Bode plot for Equation (32).
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Figure 11. he step response of Equation (33).
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Figure 12. he root locus plot for Equation (33).
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Figure 13. he stability graph of Equation (33).
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Figure 14. he bode plot for Equation (33).
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Figure 15. he step response for Equation (34).

Figure 13 shows the stability obtained when the 

Equation (29) is put into the FOPID controller block and 

the Equation (25) is put into the plant block of Figure 6, 

where the system came out to be stable with K = 1, q = 

0.01, err = 838e-10 and apol = 0.0236.

Figure 14 is the bode plot obtained when the Equation 

(29) is put into the FOPID controller block and the 

Equation (25) is put into the plant block of Figure 6, both 

in magnitude and phase. 

10.3  he Diferent Responses when 

Interior-Point Optimization Technique 

Values are used

Figure 15 is the step response achieved when the Equation 

(30) is put into the FOPID controller block and the 

Equation (25) is put into the plant block of Figure 6, in 

which the settling time is 300 seconds, overshoot of 15% 

and steady state error of 0%.

Figure 16 demonstrates the step response achieved when 

the Equation (30) is put into the FOPID controller block 

and the Equation (25) is put into the plant block of Figure 6, 

in which all the zeroes lie in the second  quadrant and from 

which it can be depicted that the system is  stable.

Figure 17 shows the stability obtained when the 

Equation (30) is put into the FOPID controller block and 

the Equation (25) is put into the plant block of Figure 6, 

where the system came out to be stable with K = 1, q = 0.01, 

err = 9.9290e-10 and apol = 0.0236.

Figure 18 is the bode plot obtained when the Equation 

(30) is put into the FOPID controller block and the 

Equation (25) is put into the plant block of Figure 6, in 

both magnitude and phase.
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Figure 16. Root locus plot for Equation (34).
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Figure 17. Stability plot for Equation (34).
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Figure 18. Bode plot for Equation (34).
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Figure 19. he step response for Equation (35).
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Figure 20. Root locus plot for Equation (35).

10.4  he Diferent Responses when 

Interior-Point Optimization Technique 

values are used

Figure 19 shows the step response obtained when the 

Equation (31) is put into the FOPID controller block and 

the Equation (25) is put into the plant block of Figure 6, 

in which the settling time is 440 seconds, overshoot is 7% 

and steady state error is 0%.

Figure 20 shows the root locus obtained when the 

Equation (31) is put into the FOPID controller block and 

the Equation (25) is put into the plant block of Figure 6, 

in which all the poles lie on the second quadrant which is 

enough to term the system as stable.

Figure 21 is the bode plot obtained when the Equation 

(31) is put into the FOPID controller block and the 

Equation (25) is put into the plant block of Figure 6, which 

is both in magnitude and phase.

Figure 22 is the stability obtained when the Equation 

(31) is put into the FOPID controller block and the 

Equation (25) is put into the plant block of Figure 6, where 

the system came out to be stable with K = 1, q = 0.01, 

err = 9.5622e-10 and apol = 0.0236

11. Discussion

Palpably the transfer function of Integer Order Model 

abjures very poor response with a steady state error of 
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around 50%. When the PID controller was used then it 

exhibited the response with an overshoot of around 35% 

although steady state error becomes zero and settling time 

also decreases to 400 secs. herefore this PID is designed 

based on the Fractional Order Model of Transfer func-

tion. When Cohen-Coon method was applied to FOM 

for the tuning parameters (K
p
, K

i
 and K

d
), the inal system 

became stable with an exhibited overshoot of 16%, where 

as the settling time increased severely up to 1000 secs. 

herefore to improvise the response above mentioned 

optimization algorithms were used to tune the already 

tuned integer parameters (K
p
, K

i
 and K

d
) using Cohen 

Coon method and also to optimize the fractional order 

parameters (λ and μ). he commonly used Nelder-Mead 

optimization yielded a comparatively low overshoot 

of 12%, whereas the problem of high settling time still 

existed. herefore a new algorithm of optimization 

known as Interior Point was used for designing FOPID 

and it yielded a very nice settling time of 300 seconds 

but the overshoot still remained in a level of 15%. hen 

Active Sets optimization was used which also exhibited 

the similar response ass the previous one. Finally SQP 

optimization technique was used which decreased the 

overshoot of a minimum value of 7% where as the set-

tling time was around 440 secs. 

12. Conclusion

hus, we successfully deigned the PID controller with 

proper optimization of integer and fractional order ele-

ments, for heating furnace. he plots of time response 

attributes got to be proof that the FOM of heater gave 

relatively great reaction by utilizing conventional Cohen-

Coon tuning techniques too. Be that as it may, it displayed 

a high overshoot and additionally a languid reaction. As 

the overshoot in heater will make sudden high weight 

which may jeopardize the life of laborers and properties, 

this strategy was maintained a strategic distance from. 

While when all the optimization techniques were uti-

lized, they diminished the overshoot relatively to a lower 

scope of 15%. In any case, when fractional components 

of PID were streamlined utilizing SQP advancement, the 

framework showed a low overshoot furthermore a simi-

larly low settling time. Hence, it can be stated that when 

the  fractional elements are seemly tuned then the yield is 

more smooth and agile.
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