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Abstract—Localization of a viewer’s region of interest (ROI) on
eye gaze signal trajectories acquired by eye trackers is a widely
used approach in scene analysis, image compression, and quality
of experience assessment. In this paper, we propose a novel
clustering approach for ROI estimation from potentially noisy
raw eye gaze data, based on signal processing on graphs. The
clustering approach adapts graph signal processing (GSP)-based
classification by first cleverly selecting a starting data sample,
and then classifying the remaining samples. Furthermore, Graph
Fourier Transform is used to adjust GSP parameters on-the-
fly to maximise accuracy. Experimental results show competitive
clustering accuracy of our proposed scheme compared to Density-
based spatial clustering of applications with noise (DB-SCAN),
Distance-Threshold Identification (I-DT), and Mean-Shift on
publicly available Shape Dataset and the potential of estimating
ROI accurately on true eye tracker data1.

I. INTRODUCTION

When an image or scene is viewed, the eye gaze tends to

pause on small regions within the image, called fixation areas.

On average, fixations last for around 200 ms during the reading

of linguistic text, and 350 ms during the viewing of a scene

[1]. Existing approaches for detecting Region of Interest (ROI)

in the viewed image first represent the centre of a fixation

area as a fixation point [2], and then use clustering to group

these fixation points from all fixation areas into spatial regions,

identified as ROI. Various clustering approaches have been

used to detect ROI, such as k-means and distance threshold

[3], [4], Density-based spatial clustering of applications with

noise (DB-SCAN) [5], Distance-Threshold Identification (I-

DT) [6] and Mean-shift [7]. The gaze data, acquired by

commercial eye trackers, is normally affected by high level

of measurement noise and contains missing data due to eye

blinks and occasional head movements. This motivates the use

of Graph Signal Processing (GSP), an emerging field used to

represent irregular data structures on graphs [8], [9], for robust

gaze data clustering.

GSP is proposed for dataset classification in [10], where

each dataset sample is associated with a graph vertex. The

underlying graph is then designed to capture dependency

between the data samples, by connecting samples/vertices

that are highly correlated with high-weight edges. GSP-based

classification is competitive to other machine learning based

classification approaches, such as Support Vector Machines,

when the data samples are noisy and/or training dataset is of
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poor quality or size, since GSP generates a graph based on

intuition instead of relying on training (see [11]). GSP-based

classification is used for image and text classification [10],

energy disaggregation [12], motion classification [13], and

many other signal/image processing tasks (see [9], [12], [14]

and references therein). In [14] the GSP-based classification is

extended to clustering for energy disaggregation by searching

for vertices that have high similarities and grouping them into

a cluster.

To identify ROI from noisy eye tracker data, in this paper,

we first pre-process the eye tracker measurements, comprising

the time-stamped eye gaze locations in the viewed image, by

filtering the data to ensure convergence to locations of higher

density, similarly to [7], and then cleverly choosing a data

sample as a starting point for clustering. Then we propose a

GSP-based iterative clustering method, for spatial clustering

of pre-processed eye tracker data to detect ROI. Clustering is

performed on the graph, where each graph vertex is associated

to one spatial gaze measurement, that defines horizontal and

vertical position of the gaze, and weights of the edges reflect

spatial correlation between the measurements.

Note that, we focus on detection of ROI in still images,

where an ROI is a group of gaze measurement spatially con-

centrated regardless of the time information [7]. Having this

in mind, and due to GSP’s resilience to noise, we bypass the

traditional step of first finding time-dependent fixation points

prior to ROI detection, making the proposed method robust

to timing jitter and synchronization problems. Moreover, the

method is inherently robust to measurement noise and eye

blinks, and no denoising or data cleaning steps, common for

eye tracker data processing, are needed.

Section II describes the proposed method, including pre-

processing, selection of the starting point for iterative clus-

tering, the proposed GSP-based clustering algorithm, and

autonomously optimizing clustering parameters. Section III

presents experimental results of the proposed clustering al-

gorithm on a public dataset and captured eye tracker data,

benchmarked using three state-of-the-art clustering methods

for ROI detection. The last section concludes and highlights

future work.



II. PROPOSED METHOD

A. System Overview

Let N be the total number of samples from eye tracker

gaze data, and (x,y) = {(x1, y1), ..., (xN , yN )} be the spatial

locations of the samples in the viewed image. The objective

is to group samples into clusters m ∈ {1, . . . ,M}, where

M is the total number of clusters which is unknown. Let

c = {c1, . . . , cN} where ci = m if sample (xi, yi) belongs

to cluster m.

Fig. 1 shows the block diagram of the proposed GSP-

based clustering method. First, similarly to [7], we perform

preprocessing by shifting the input eye gaze data to make

all samples move simultaneously towards locations of higher

density (Section II-B). Then, one sample is cleverly chosen as

the starting point to clustering (Section II-C). Next, a binary

GSP-based classification is performed, similarly to [10] and

[14], to classify all data samples into one of two classes:

belonging to the same class as the starting point or not (Section

II-C). All samples classified to the class of the starting point

form Cluster m =1, and are removed from the dataset, a new

starting point is chosen, m is incremented, and the process is

repeated until no samples remain unclustered.

The cluster accuracy a (Section II-E), is then used to

evaluate the quality of the formed clusters. If the accuracy

improved compared to the previous iteration, then the under-

lying graph used for GSP processing is adjusted, the clustering

labels are reset and the process is repeated until accuracy

cannot be further improved.

Eye gaze data

shifting

initialise a,∆a, σ,m = 1, δ = −0.05

choose starting point

binary GSP-based classification
reset all

labels;

reduce σ

m = m+ 1

remove all samples of Cluster

m from the dataset: number

of remaining samples>0?

clustering accuracy evaluation:

(∆a ≥ 0 or ∆a ≤ δ)?

cluster labels c for eye gaze data

yes

no

yes

no

Fig. 1. The proposed GSP-based clustering algorithm.

The pseudocode of the proposed method is shown in

Algorithm 1.The following subsections provide a detailed

description of each step.

B. Shifting Samples

Before clustering, a preprocessing operation, shifting, is

performed to make clustering robust to outliers, e.g., sac-

cade points. This shifting step aims to move all samples to

higher density locations, making samples in each cluster more

compact. Let (x∗,y∗) = {(x∗

1, y
∗

1), ..., (x
∗

N , y∗N )} denote the

shifted data. For each sample (xi, yi), we define (x∗

i , y
∗

i ) as:

x∗

i =

∑b

n=1 xn

b
, (1)

y∗i =

∑b

n=1 yn
b

, (2)

where b is the number of most correlated neighbours to the

vertex vi, i.e., we take the b highest-weight connections to

vertex vi. Fig. 2 shows an example of the raw data samples

and pre-processed, shifted samples. It is clear that the shifted

points become more concentrated in each cluster.

Fig. 2. Comparison between shifted, preprocessed data and raw data.

C. Setting the Starting Point

Many ROI detection methods are based on randomly choos-

ing the starting point (see [7] and references therein); hence

bad initial positions (e.g., saccade points) will rapidly reduce

the clustering accuracy. We thus propose a method to refine

the initial, random selection of the starting point. Let (xs, ys)
be a randomly chosen starting point. The shifted starting point

x∗

s and y∗s is calculated and updated using (1), (2) and until the

difference between the points before and after shifting cannot

be reduced anymore. The refined starting point (x̂s, ŷs) is the

nearest sample to the final (x∗

s, y
∗

s ). Note that this way we

ensure high point density around the selected starting point,

hence the starting points is unlikely to be an outlier.

D. GSP-based Clustering

We use binary GSP-based classification to find samples

that belong to the same class as (x̂s, ŷs). We do this by first

constructing a graph G = (V,A), where for i = 2, . . . , N +1
each vertex vi ∈ V is associated with one data sample (x∗

i , y
∗

i ),
v1 is associated with (x̂s, ŷs), and A is the weighted adjacency

matrix of G [9]. As commonly done in the GSP literature [9],

each entry Ai,j of A, i.e., the edge weight between nodes vi



and vj , is defined using Euclidean distance with a Gaussian

kernel:

Ai,j = exp

{

−
(x∗

i − x∗

j )
2 + (y∗i − y∗j )

2

σ2

}

, (3)

where σ is a scaling factor. Next, a graph Laplacian is defined

as follows:

L = D−A, (4)

where D is a degree matrix and Dk,k =
∑N

j=1 Aj,k.

Starting from m = 1, we assume x̂s and ŷs belong to

Cluster m and classify the remaining N samples as belonging

to Cluster m or not. In particular, we initialize an (N + 1)-
length vector ̺ as graph signal: ̺ = [ς sm]⊤, where ς = 1 is

associated with starting point (x̂s, ŷs), s
m is an N -length row

vector initialised as all zeros.

Similar to [12], we adopt a Laplacian regularizer ̺⊤L̺
to measure the variation in signal sm with respect to the

underlying graph, with the objective to find an sm∗ that

minimizes the variation in the graph signal. The optimization

problem

sm
∗ = argmin

sm
||̺⊤L̺||22 (5)

has the following closed-form solution [15], [16], [17]:

sm
∗ = −L

#
2:N+1,2:N+1ςL

⊤

1,2:N+1, (6)

where L
#
2:N+1,2:N+1 is the pseudo-inverse of L2:N+1,2:N+1,

and sm∗ ∈ [0, 1]. If smi
∗ is close to 1 (based on a heuristically

set distance threshold), we designate that (x∗

i , y
∗

i ) belongs to

the same cluster m as (x̂s, ŷs), which we label as ci = m.

Next, we remove all clustered points, increment m and

repeat the procedure starting with selecting a new starting

point (Sec. II-C) until all samples are labelled with a cluster

number. Finally, the clusters that contain small fraction of

samples, where the fraction parameter is denoted as α, are

assumed to be outliers and all grouped to Cluster 0. The cluster

with coordinate (0, 0) is also labelled as 0 since it contains all

lost data caused by eye blinks and noise.

E. Self Parameter Tuning

Initial testing shows large dependency of the accuracy of the

results on the scaling factor σ defined in (3) that weights the

relationship between the data samples. Large σ leads to large

Ai,j indicating high correlation between the samples i and

j, which would result in many sample points being clustered

together. Low σ has the opposite effect: small clusters would

be formed comprising only highly correlated samples.

Since the best σ, that is, the one that maximizes accuracy, is

signal dependent, we propose a method for finding the optimal

σ based on the signal samples. First, σ is set to be a very high

value, which leads to rough clustering (i.e., a small number

of large clusters) for the giving dataset. After all samples are

labelled following the procedure from the previous subsection,

we define a graph signal for Cluster m, gm as:

gmi = 1(ci == m). (7)

where 1 is an indicator function that returns 1 if the condition

is true and 0 otherwise. We then calculate the graph Laplacian

LG, which is symmetric, thus the signal value decomposition

(SVD) of LG is given by [18]:

LG = UΛU⊤, (8)

where Λ is a diagonal matrix with {λ0, λ1, . . . , λN−1} as

eigenvalues of LG on the diagonal, and U is a set of

eigenvectors. The Graph Fourier Transform (GFT) of gm is

then given by:

ĝm = U⊤gm. (9)

The eigenvalues of LG act as the graph frequencies and

corresponding eigenvectors act as the graph harmonics [19],

[20], [21]. Small λ’s carry information about low frequency

components of the signal, while high frequencies (details)

are carried by large λ’s. Motivated by the fact that high

energy in the high frequencies indicate bad cluster quality,

we estimate the frequency content of ĝmi as follows. Let

f = (λ0 + λN−1)/2 and j∗ = argminj |f − λj |, then λi

for i ≤ j∗ would carry information about energy content in

the lower half of the frequency spectrum.

Let rm be the ratio of the total number of low/high fre-

quency components in ĝm that are above/below a heuristically

set threshold γ a i.e.,

rm =

∑N

i=j∗+1

(

1(|ĝmi | > γ)
)

∑j∗

i=1

(

1(|ĝmi | > γ)
)

. (10)

rm > τ indicates a good cluster, where τ is a chosen

parameter. If not, all samples in this cluster are considered

as incorrectly clustered. In addition, the samples with cluster

label equal to 0 are also counted as incorrect samples. The

estimated clustering accuracy is calculated as:

a = 1−
κ

N
, (11)

where κ is the total number of incorrectly clustered samples

that is given by:

κ =

N
∑

i=1

(

1(x∗

i = 0 & y∗i = 0)
)

+
N
∑

i=1

M
∑

m=1

(

1
(

(ci = m) & (

∑N

i=1

(

1(ci = m)
)

N
≤ α)

)

)

+

N
∑

i=1

M
∑

m=1

(

1
(

(ci = m) & (rm ≤ τ)
)

)

,

(12)

where the first line captures all samples in Cluster 0, the

second line includes clusters that have very low number of

samples (below α), and the third line comes from all clusters

that give rm < τ . The scaling factor σ is reduced by small

decrements until there is no improvement in a anymore.



Algorithm 1: Proposed GSP-based spatial clustering.

Input: (x,y);
Output: c;

1 set x∗

i via (1), y∗i via (2), a = 0, ∆a = 0, σ = 20,

β = 0.99, τ = 5, b = 10, δ = −0.05, α = 0.03 ;

2 while ∆a ≥ 0 or ∆a ≤ δ do

3 set σ = σ − 1, m = 1, c = 0;

4 while number of remaining samples > 0 do

5 randomly set (xs, ys);
6 compute (x̂s, ŷs) as in Sec. II-C.;

7 compute A, L with (x̂s, ŷs), (x
∗,y∗), (3), (4);

8 compute sm∗ via (6);

9 set c(find smi
∗ > β) = m, m = m+ 1;

10 remove from the dataset samples i with

smi
∗ > β;

11 compute ∆a via (10), (11), (12);

12 return c;

III. EXPERIMENTAL RESULTS

In this section, we first validate the proposed spatial clus-

tering algorithm on a public clustering dataset with known

ground-truth labels, and show how the proposed clustering

algorithm compares with DB-SCAN, I-DT and Mean-shift

algorithms. Then we present the results with true eye tracker

data to compare the accuracies of the four aforementioned

methods in detecting ROI. Table I shows all parameters used

for the proposed method in all experiments, which were

heuristically obtained and are used for all datasets.

TABLE I
PARAMETER SETTINGS FOR THE PROPOSED METHOD USED IN ALL THE

EXPERIMENTS.

symbol parameter setting
b neighbouring samples 10
τ cluster quality 5
σ scaling factor for A initially set 20
α sample fraction 0.03
β labelling threshold 0.99
δ accuracy difference threshold -0.05

γ frequency response 1

2
max {| ˆgm

i
|}

A. Results with Shape Dataset

The four algorithms are first tested on the public Shape

dataset [22], which is often used to assess accuracy of spatial

clustering methods. The images in this dataset are scatter

diagrams with labels, indicating the cluster index for each

point, where the points close to each other are assigned to

the same cluster.

Table II shows the clustering results of the four methods

on the Shape dataset. The accuracy is measured as a ratio of

the number of correctly clustered samples to the total number

of samples. In DB-SCAN, the minimum number of points

required to form a cluster and the number of neighbourhood

samples of a point are denoted as ǫ and ζ, respectively. The

distance threshold in I-DT is denoted as η. The distance

threshold and the number of neighbourhood samples of a point

TABLE II
CLUSTERING ACCURACY OF THE PROPOSED METHOD, DB-SCAN, I-DT

AND MEAN-SHIFT WITHOUT PREPROCESSING.

Proposed DB-SCAN I-DT Mean-shift

parameter
Self-adaptable ǫ = 2

η = 5
σs = 7

σ ζ = 14 ρ = 10

R15 0.89 0.53 0.13 0.20
D31 0.76 0.06 0.30 0.35
Aggregation 0.79 0.88 0.87 0.89
Toy 0.30 0.91 0.46 0.48
Compound 0.84 0.90 0.69 0.78
Pathbased 0.80 0.85 0.67 0.66
Flame 0.95 0.35 0.95 0.91
Mean 0.76 0.64 0.58 0.61

in Mean-shift are denoted as σs and ρ, respectively. Parameters

in DB-SCAN, I-DT and Mean-shift are tuned and fixed using

a greedy search scheme to get best performance for the whole

dataset. The proposed approach can self tune itself to find the

best parameters for each image pattern.

The performance of DB-SCAN on some images, such as

Compound, is good. There are many individual points that

are isolated in Compound dataset.They are all clustered as

a single cluster in ground truth which DB-SCAN consider

them as noise. However, since DB-SCAN is a density-based

spatial clustering, it cannot adapt well to different point density

characteristics of the images, leading to poor performance in

some cases. I-DT is a distance-based method, where results

are highly influenced by the size of clusters in the image. In

Mean-shift all points are repetitively moved until converged

to positions with high density [7]. Then, a distance threshold

is applied to cluster the shifted points, while the size of the

clusters is depended on σs. Thus, the overall performance is

poor due to variations in cluster sizes across the images.

For some images, the ground-truth clusters are connected

with consecutive points. In GSP-based clustering, these clus-

ters will be treated as piecewise smooth signals since the

weight is defined based on the distance between samples, and

thus these clusters are incorrectly merged into the same cluster.

Shift pre-processing can move these connecting points closer

to their closest high density centres, disconnecting in this way

the clusters, and leading to more effective clustering.

Table III shows the results of our proposed GSP-based

clustering method compared with DB-SCAN, I-DT and Mean-

Shift after shift preprocessing is applied on the images prior

to running all 4 clustering algorithms. We again use a greedy

search scheme to get the optimal parameters for all competing

schemes. Overall performance for all methods except Mean-

shift has improved compared to clustering the raw data without

pre-processing. This proves that the shift preprocessing can

significantly improve the clustering accuracy. For Mean-shift,

the preprocessing does not improve the performance, since

the effect of the proposed shift preprocessing is similar to

the operation that is already done in the Mean-shift. Indeed,

Mean-shift uses the weighted mean of nearby points based on

the kernel function to make the samples compact.

B. Results on the Eye Tracker Dataset

The algorithms are also tested on true eye tracker data

recorded by Eye Tribe [23] at sampling rate of 30Hz, to



TABLE III
CLUSTERING ACCURACY OF THE PROPOSED METHOD, DB-SCAN, I-DT

AND MEAN-SHIFT WITH PREPROCESSING.

Proposed DB-SCAN I-DT Mean-shift

parameter
Self-adaptable ǫ = 1

η = 5
σs = 7

σ ζ = 5 ρ = 10

R15 0.99 0.53 0.52 0.20
D31 0.93 0.23 0.48 0.35
Aggregation 0.95 0.97 0.64 0.90
Toy 0.93 0.90 0.33 0.47
Compound 0.73 0.86 0.92 0.79
Pathbased 0.77 0.73 0.63 0.68
Flame 0.98 0.93 0.97 0.91
Mean 0.90 0.74 0.64 0.61

assess the accuracy of the methods in detecting ROI in the

viewed images. Experiments are performed in a laboratory

with moderate artificial light conditions, which remain un-

changed for the duration of all trials. Ten subjects participated

in the experimens, aged between 25 and 45 years old, both

male and female, all with normal vision. The subjects were

sitting in front of a DELL P2414 screen with a resolution

of 1920x1080 pixels, at about 70 cm distance from the eye

tracker, which is located under the screen. Calibration was

performed using OGAMA [24] calibration process, whereby

subjects are asked to follow a coloured dot moving in the

corners and centre of the screen. This calibration process was

included before each trial. Note that OGAMA is an open

source software for recording and analyzing eye gaze and

mouse data for experiments with screen based slide show

stimuli. OGAMA does not generate ROI information.

Two different experiments are set. In Experiment 1, four

objects are displayed on a blank white-coloured background

and shown to viewers for 5 seconds. Two slides are shown:

1) A white/Blank background image with four words

sparsely distributed.

2) A white/Blank background image with four small

coloured icons spread out across the slide.

The viewers are asked to focus their attention on the four

objects, one at the time. Hence, the clustering algorithms

should result in four distinct clusters each pointing to one

object. Examples of the ROI identification with the proposed

approach overlapped with the displayed image is shown in

Fig. 3. The ellipses are drawn to emphasise all samples of a

cluster to make the visual clustering results clearer.

(a) Slide1. (b) Slide2.

Fig. 3. ROI estimation validation in Experiment 1 for Subject 2 with (a)
words distributed, (b) icons distributed (Enlarge slightly in colour).

The comparison results between the four methods are shown

in Table IV, where CD is the number of correctly detected

ROIs and ID stands for the number of incorrectly detected

ROIs. Both CD and ID are averaged over all subjects.

CD = 20 if all ROIs are detected correctly. An ROI is

correctly detected if at least half of the samples in the resulting

cluster overlap with the target object, and there are no other

clusters that overlap with the target.

One can see from the table, that the proposed method leads

to the highest CD and lowest ID indicating the highest ac-

curacy. Generally, all methods perform well, since the objects

are clear, the background is white, and the objects are far away

from one another. In order to test the ROI detection accuracy

in a more challenging scene, we set Experiment 2.

TABLE IV
COMPARISON OF THE ROI DETECTION RESULTS BETWEEN THE PROPOSED

METHOD, DB-SCAN, I-DT AND MEAN-SHIFT, FOR EXPERIMENT 1. CD
IS THE NUMBER OF CORRECTLY DETECTED ROIS AND ID IS THE

NUMBER OF INCORRECTLY DETECTED ROIS.

Proposed DB-SCAN I-DT Mean-shift
CD ID CD ID CD ID CD ID

Slide1 18 3 14 6 14 7 15 8
Slide2 19 2 15 5 16 7 13 6

In Experiment 2, 10 slides are shown to the subjects, all

full of icons (around 70) [25]:

1) Slide1. Blank background; 2 sec on each 4 target icons.

2) Slide2. Blank background; 5 sec on each 4 target icons.

3) Slide3. Blank background and the target icons are very

small (compared to other icons in the image).

4) Slide4. Blank background and the target icons are large.

5) Slide5. Blank background; and the whole slide is noisy.

6) Slide6. Nature image as background; 2 sec on each 4

target icons.

7) Slide7. Nature image as background; 5 sec on each 4

target icons.

8) Slide8. Nature image as background and the target icons

are very small.

9) Slide9. Nature image as background and the target icons

are very large.

10) Slide10. Nature image as background and the whole

slide is noisy.

The subjects are informed about the positions of the target

icons in the slides before the experiment. During the exper-

iment, the subjects are told to focus their attention on those

icons. The ROI will be the target icons that the subjects are

asked to focus on. The saccades while finding the target icons

are noise. The numerical comparison results are shown in

Table V. Figs. 4 and 5 show two examples obtained with the

proposed method.

If all ROIs are correctly detected and no redundant ROIs

are found, CD = 30 and ID = 0. Table V indicates that the

proposed GSP-based clustering method gives highly accurate

ROI detection results in all situations. The incorrectly detected

ROI are very few which shows the competitiveness of the

proposed method. DB-SCAN and I-DT cannot adapt to the

changes in the slides, producing often poor results. Only

considering the density or distance is the main reason why

DB-SCAN and I-DT cannot provide as good results as the



TABLE V
COMPARISON OF ROI DETECTION RESULTS BETWEEN THE PROPOSED

METHOD, DB-SCAN, I-DT AND MEAN-SHIFT, FOR EXPERIMENT 2. THE

RESULTS ARE AVERAGED OVER ALL SUBJECTS.

Proposed DB-SCAN I-DT Mean-shift
CD ID CD ID CD ID CD ID

Slide1 28 1 24 12 21 5 25 5
Slide2 29 2 25 10 22 10 22 8
Slide3 26 1 20 12 18 19 20 7
Slide4 27 4 21 9 17 21 15 25
Slide5 29 2 20 5 19 6 21 3
Slide6 27 3 18 11 22 10 19 6
Slide7 30 1 20 13 21 9 19 7
Slide8 28 2 15 11 19 11 17 9
Slide9 28 3 14 10 21 7 11 23
Slide10 26 2 22 7 21 9 21 9
Mean 27.8 2.1 19.9 10 20.1 10.7 19 10.2

proposed method. As for Mean-shift, the results are relatively

better than DB-SCAN and I-DT for most slides except Slides

4 and 9. The target icons in these two slides are much larger

than other icons. Therefore the size of ROIs are also relative

large. Mean-shift incorrectly breaks the ROI into more than

one cluster.

Fig. 4. ROI estimation validation for Subject3 and Slide9.

Fig. 5. ROI estimation validation for Subject3 and Slide10.

IV. CONCLUSION

This paper proposes a spatial clustering method for ROI

detection using the emerging concept of GSP. A shift prepro-

cessing approach is utilised to further improve the clustering

accuracy. Graph Fourier Transform is applied to evaluate the

cluster quality, and thereby adjust the GSP parameter. The

proposed method can provide highly accurate clustering results

on public shape clustering dataset. It also shows excellent ROI

detection performance for true eye tracker data in a range

of challenging scenes. Future work will consist of further

improving ROI detection accuracy by adding another term in

adjacency matrix definition and applying time in the graph

weight to detect fixation points.
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