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MICROSATELLITE FORMATION FLYING USING PULSED PLASMA
THRUSTER AND SOLAR SAILING AT EARTH MOON L4

Junquan Li∗, Steve Greenland†, Craig Clark‡, and Mark A. Post§

This paper presents a deep space formation flying mission using microsatellites
with pulsed plasma thrusters and solar sails as propulsion systems. The circular
restricted three body problem with consideration of solar gravitation was used
as the equation of motion. Formation flying near Earth Moon triangular libration
points uses short period trajectories as relative references. Simulation results using
a nonaffine control strategy are provided to demonstrate the effectiveness of the
proposed propulsion systems for formation flying near triangular libration points.

INTRODUCTION

The libration points are the equilibrium solutions of the classical circular restricted three body

problem (see Reference 1). Libration point missions can provide unobstructed views of deep space

and celestial bodies (see Reference 2). Most libration point missions have been deployed at the

Sun Earth L1 (ISEE-3, WIND, SOHO, ACE, TRIANA) or L2 points (MAP, WSO, PLANK, GAIA,

JSWT, Constellation X) (see Reference 3). The reasons for choosing these points are based on the

mission requirements, or avoidance of the higher costs and engineering challenges associated with

travelling longer distances to reach the other libration points in the Sun Earth. The collinear libration

point of the Earth Moon system is suitable for space based observation missions due to the fact that

the Sun, Earth and Moon are always behind the spacecraft with half of the celestial sphere available

at all times. Also, the thermal stability of this region is favorable for non-cryogenic missions such

as visible light telescopes. The collinear points is far enough away from Earth to avoid the effects of

the atmosphere and space debris and close enough to allow a constant communications geometry.

The triangular libration points (L4 and L5) are the locations of small bodies in the solar system (see

Reference 4). L4 and L5 of the Earth Moon system were considered for the use of space colonies

(see Reference 5). Communication between the triangular points to the Earth or between two trian-

gular points can form a space VLBI (very long baseline interferometry) array and can enhance the

accuracy of astronomical observations. Missions to the triangular libration points in the Sun Earth

Moon system and even other libration points in the Solar system will become feasible in the near

future making use of the stable properties near the triangular libration points. With recent renewed

efforts to return to the Moon, it is likely that these points will be used for lunar mission support pur-

poses. In the circular restricted three body problem, motion about these points is bounded, making
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Figure 1. Circular Restricted Three body Problem at System Barycenter

them ideal locations for a variety of applications, including imaging interferometery and communi-

cation relay satellites. Satellite formation flying involves two or more spacecraft flying in particular

configurations and working cooperatively towards achieving mission goals (see Reference 6). The

successful miniaturization of satellite subsystems now makes microsatellites suitable candidates for

many future missions (see Reference 7). Linear and nonlinear methods have been used for deep

space spacecraft formation keeping and formation maneuvering (see References 8 and 9). In this

paper, we present the mission concept of a 50 kg class microsatellite using a pulsed plasma thruster

and solar sail with closed loop nonlinear control algorithms for microsatellite formation flying con-

trol near the Earth Moon L4 point. Simulation results for formation flying of this microsatellite with

nonlinear control algorithms to maintain natural formation trajectories will be presented.

EARTH MOON TRIANGULAR LIBRATION POINT ORBITS

Circular Restricted Three Body Problem

In celestial mechanics, the motion of three point masses with the influence of their gravitational

attraction, assuming the primary and secondary body are on circular orbits, is known as the circular

restricted three body problem (see Figure 1). The rotating coordinate frame has the origin in the

barycenter of Earth and Moon (see Reference 10). The distance between Earth and Moon is R. The

distances between Earth, Moon and the barycenter are R1 and R2. The distances between Earth,

Moon and the spacecraft are r1 and r2. The mass of the Earth, Moon and Spacecraft are M1, M2,

and m respectively. By defining a reference frame that rotates with the primaries, it is possible to

determine five equilibrium solutions, known as libration or Lagrange points. A spacecraft placed at

one of these locations can theoretically remain stationary with respect to the two primary bodies,

Earth and Moon. The libration points L1, L2 and L3 are collinear with the Earth Moon line while

the L4 and L5 points form an equilateral triangle with Earth Moon line. ρ = M2

M1+M2
. For Earth

Moon system, ρ = 0.012151.
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The equations of motion of the spacecraft in the barycenter frame can now be expressed as

ẍ− 2ẏ − x = −(1− ρ)(x− ρ)

r3
1

− ρ(x+ 1− ρ)

r3
2

(1)

ÿ + 2ẋ− y = −(1− ρ)y

r3
1

− ρy

r3
2

(2)

z̈ = −(1− ρ)z

r3
1

− ρz

r3
2

(3)

where

r1 =
√

(x− ρ)2 + y2 + z2 (4)

r2 =
√

(x+ 1− ρ)2 + y2 + z2 (5)

At the equilibrium points, for Z components, the velocity and acceleration relative the two larger

bodies are zero. For triangular equilibrium points, the Y component does not equal zero. Solving

the above equation, the equilibrium points can be written as XL1 = −0.8369, XL2 = −1.1560,

XL3 = 1.005, XL4,5
= ρ− 0.5 and YL4,5

= ±
√
3/2 (see Reference 11).

The linearized motion of Equations (1) to (3) and the stability analysis of the L4 points are well

studied by Wiesel and Wie (see References 12 and 13). The natural motion about L4 can be

conceptualized as the long and short period motions. In the Earth Moon system, the long motions

and short motions are 92 and 28 days (see Reference 10).

The general solution for the triangular point orbits can be written as

x = A1cos(s1t) + E1sin(s1t) +A2cos(s2t) + E2sin(s2t)

y = Â1cos(s1t) + Ê1sin(s1t) + Â2cos(s2t) + Ê2sin(s2t) (6)

z = z0cos(sit) +
ż0
si
sin(sit)

where A1,2, Â1,2, E1,2, and Ê1,2 are related to the mass parameter ρ, the initial states and con-

stants. The parameters s1 = 0.297931, and s2 = 0.954587.

x0 = A1 +A2

y0 = Â1 + Â2

ẋ0 = E1s1 + E2s2 (7)

ẏ0 = Ê1s1 + Ê2s2

where

Â1 = ϑi [2siEi − 2.598(ρ− 0.5)Ai]

Ê1 = −ϑi [2siAi + 2.598(ρ− 0.5)Ei] (8)

ϑi = 1/si
2 + 9/4

The solution to the equations of motion is based on the linearized equations of motion of the

CR3BP and therefore is only valid in the vicinity of the associated libration points. In a realistic
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Figure 2. Trajectory at L4 Short Period Motion 200 Orbits without Solar Gravitation
and Without Active Control

system, the eccentricity and third body perturbations should be taken into account. Also, the pertur-

bations in the trajectory will make the libration point orbits unstable. For station keeping problems,

Gomez and Howell considered the multiple shooting station keeping strategy and the reconstruction

of a nominal orbit (see References 14 and 15). Lei and Xu used a three order solution to replace

Equation 6 and also transformed the station keeping to a nonlinear optimization programming prob-

lem (see Reference 16). Zhang and Hou studied the transfer orbits to a short period orbit around the

triangular libration points in the Earth Moon System (see Reference 4).

Microsatellites can be launched into an Earth parking orbit with an altitude of about 200 km

or 400 km. The drift duration in the parking orbit can be freely chosen, as in the Gaia mission,

which allows to select a launch time to minimizing the effort for the insertion manoeuvrings (see

Reference 17). Moon gravity assist can be used (see Reference 18). The first part of the maneuver

is to transfer the microsatellite from the parking orbit to perilune. The second part is to transfer the

microsatellite from the perilune to the nominal orbit. A microsatellite without control is assumed

to be placed into L4 short periodic orbit in 200 orbits shown in Figure 2 in this paper. If solar

gravitation is be considered, this satellite will follow the trajectory in 200 orbits shown in Figure 3.

Circular Three Body Problem with Solar Gravitation Modeling

The bicircular four body problem is a simplified version of the circular restricted three body

problem with the consideration of solar gravitation and eccentricity (see Reference 19). In this

paper, solar gravitation is considered instead of eccentricity. Tapley and Lewallen were the first

group to study the Sun’s influence on spacecraft motion near the Earth Moon Libration points (see

Reference 20). The reference frames used to develop the nonlinear equations of motion are shown

in Figure 4 (see Reference 20). The mass of Earth, Moon, Spacecraft and Sun are denoted as m1 ,

m2, m3 and m4. The distances between Earth, Moon and Sun to the libration point are r1, r2 and

4
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Figure 3. Trajectory at L4 Short Period Motion 200 Orbits with Solar Gravitation
and Without Active Control

r3. The gravitation constants of Earth, Moon and Sun are denoted as µ1 , µ2 and µ3. The inertial

reference frame I−XY Z is located at the the mass centre, or barycenter, of the two primaries. The

X axis points towards to the vernal equinox of date. Y lies in the Earth Moon orbit plane. The Z
axis points to the direction of the angular velocity vector for the Earth Moon configuration. Also,

the L4 libration point frame L4 − X̃Ỹ Z̃ is similar to the I −XY Z frame, except that the origin is

shifted to the L4 point. The X̃ axis lies along the Earth Moon line, and Ỹ lies in the Earth Moon

Orbit plane. Z̃ coincides with the Z axis. Ω is the angular velocity of the Earth Moon mass center

around the Sun. R1, R2 and R3 are the distances from the Earth, Moon, and Sun to the Earth Moon

mass center. i is the inclination of the Earth Moon orbit plane to the ecliptic. Ψ and θ are the angular

positions of the Sun and the Earth Moon Line with respect to the vernal equinox. Ψ is measured in

the ecliptic (Ψ = Ωt+Ψ0). Ω = 1.99092e− 7 rad/s. θ is measured in the Earth Moon orbit plane

(θ = ωt+ θ0). ω = 2.665075637e− 6 rad/s. X̃p and Ỹp are coordinates of the libration points.

The equations of motion with the Earth, Moon and Sun gravitation forces expressed in the I −
XY Z frame, are

ẍ− 2nẏ − n2(X̃p + x) = −µ1(X̃p + x−R1)

r3
1

− µ2[X̃p + x+R2]

r3
2

− µ3[x− x3]

r3
2

− (x3 + X̃p)Ω
2

ÿ + 2nẋ− n2(Ỹp + y) = −µ1(Ỹp + y)

r3
1

− µ2(Ỹp + y)

r3
2

− µ3(y − y3)

r3
3

− (y3 + Ỹp)Ω
2 (9)

z̈ = −µ1z

r3
1

− µz

r3
2

− µ3(z − z3)

r3
3

− z3Ω
2
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Figure 4. Three Dimensional Illustration of the Coordinate Systems and Microsatel-
lites Formation Flying Geometry

where

x3 = R3(cosΨconθ + cosisinΨsinθ)− X̃p

y3 = −R3(cosΨsinθ − cosisinΨsinθ)− Ỹp (10)

z3 = R3sinΨsini

SPACECRAFT WITH SOLAR SAIL PROPULSION SYSTEM

The spacecraft propulsion system is responsible for providing thrust. Current L1 and L2 missions

usually use a hydrazine fuel based propulsion system. The development of a solar radiation pressure

propulsion system has been recently made possible due to advancements in material technology.

This innovative technique has the potential to become a viable alternative to chemical propulsion

for space mission applications.

Solar Radiation Pressure Model

Solar Radiation Pressure propulsion is based on Newton’s third law (see Reference 21). When

light reflects off of a surface, the momentum carried by photons will be transferred to the surface.

A perfectly reflective surface can almost double the momentum transfer. Solar Radiation Pressure

(SRP) imparts a small amount of force on the sail surface; about 1×10−6 N/m2 at Earth radii. Solar

sailing is the concept of using solar radiation pressure to generate useful thrust. In order to harness

SRP, solar sails are typically conceived as large area thin films supported by an ultra-lightweight

structure. The net solar radiation pressure force is a function of the area of the solar sail and its
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orientation. A non-perfectly reflecting solar sail model can be written as

F⃗SRP =
β(1− ρ)

r2s
(r̂s · n̂){ρrsr̂s + [ρrd(r̂s · n̂) + ρa]n̂} (11)

The optical parameters for the non-perfectly reflecting behaviour of the solar sail are the reflec-

tion coefficient ρs, the specular reflection factor s, the front side εf and back side εb emission

coefficients, and the front side Bf and back side Bb non-Lambertian coefficients. rs is the in-

coming sun vector. n is the normal vector to the sunline. ρrs = 1

2
(1 − sρs). ρrd = sρs.

ρa = 1

2

[

Bf (1− s)ρS + (1− ρs)
εfBf−εbBb

εf+εb

]

. The solar sail lightness number is

β =
2p0
µs

A

m
(12)

where µs is the solar gravitational parameter, A is the sail reference area and m is the satellite mass.

The solar radiation pressure model can be written as

f⃗SRP = (Q0 + q)(r̂s · n̂){ρrsr̂s + [ρrd(r̂s · n̂) + ρa]n̂} (13)

where the solar sail characteristic acceleration is given by

Q0 =
2p0A

m
(14)

The variable q is additional control input that represents the variation of the solar sail characteristic

acceleration. This is accomplished by varying the solar sail surface area.

The reflectivity, area mass ratio, sail surface and sail orientation can be used as the solar sail

control inputs. Typical solar sail designs will be composed of aluminized mylar or Kapton film

supported by an underlying lightweight truss. Reference 22 uses an electrochromic material on

the solar sail and PID control for L1 artificial Lagrange points mission. This electrochromic ma-

terial was tested on IKAROS mission (see Reference 23). Mingotti and McInnes also used the

electrochromic material for a Femto Spacecraft (see Reference 24). In order to utilize solar radia-

tion pressure force to control a spacecraft, the orientation of the solar sail needs to be continuously

changed to generate the required control accelerations (see Reference 25). The constantly changing

spacecraft orientation during formation keeping may interfere with mission pointing requirements.

The development of the proposed SRP formation control strategy does not require drastic changes

to existing libration point spacecraft (Gaia). The solar sail for the microsatellite formation flying at

L4 in this paper will use the models in Figures 5 or 7. The proposed sail can use the model in Figure

5. The variable sail reflectivity and sail orientation can be combined for fine control. There are high

reflectivity materials which will exploit the solar radiation pressure to produce a propulsive thrust

and electrochromic materials which will be used to modulate the thrust without varying the sail at-

titude (shown in Figure 6). There are also flexible thin film solar cells on the sail which will be used

to provide the electric power for the payload and the electrochromic material. Another possibility

is to use the model shown in Figure 7 (similar to the model used in Reference 26 which is currently

under development at Clyde Space). The advantage of this solar sail is to use the controllable sail

surface which is less difficult to control than electrochromic materials. The variable sail surface and

sail orientation can be combined for fine control.

7



Figure 5. Flat Solar Sail Propulsion Systems for Microsatellite Formation Flying

Figure 6. Solar Sail Model using High Reflectivity Material, Electrochromic Material
and Thin Solar Cells

Figure 7. Four Triangular Sail Propulsion Systems for Microsatellite Formation Flying
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Figure 8. Microsatellite with Flat Solar Sailing at L4 Earth Moon System

Solar Radiation Pressure in the Sun/Earth Moon System

In the classical CR3BP there are only five libration points. Using solar radiation pressure, the

libration point locations become a function of the sail reflectivity number and orientation. The

constant acceleration from a solar sail can be used to generate artificial libration points in the Earth

Moon three body problem. This is achieved by directing the thrust due to solar radiation pressure in

the anti-sun direction thereby adding to the centripetal force in the rotating Earth Moon frame (see

References 25 and 27). Figure 8 show the proposed solar sailing microsatellite at L4 in the Earth

Moon System. In Figure 8, γ is the angle between d̂3 and n̂. α1 and α2 are the pitch and yaw angles

of the solar sail. If the sail surface is assumed to be ideal (see References 28 and 29), the solar

radiation pressure model Equation (13) can be written as

f⃗SRP = (
2pA

m
+ q)(d̂3 · n̂)

2
n̂ (15)

The acceleration of x, y and z can be written as

xSRP = (
2pA

m
+ q)κ(cosα1)

3(cosα2)
3

ySRP = (
2pA

m
+ q)κ(cosα1)

3(cosα2)
2sinα2 (16)

zSRP = (
2pA

m
+ q)κ(cosα1)

2(cosα2)
3sinα1

where κ includes the inverse square acceleration dependency as the distance from the sun varies

(see Reference 29).
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Figure 9. Schematic Showing the vector Quantities in the Relative Equation of Motion

FORMATION FLYING

Many researchers have studied the Libration point formation flying due to the many benefits

these missions offer. The success of these missions is tied to the ability of the control system to

regulate the trajectory of the formation spacecraft. Follower spacecraft are controlled using solar

radiation pressure on a sail and a pulsed plasma thruster. Both the leader and follower spacecraft

were assumed identical in solar sail area and mass. The leader spacecraft followed a predetermined

unperturbed reference trajectory. Large baseline formations with separation distances of 1 to 25 km

were utilized. The equations of motion developed in the previous sections describe the motion of

one spacecraft at the Earth Moon L4 point. The follower reference trajectory is specified according

to mission objectives.

Equations of Motion

This section presents the equations of motion of the dynamics of a follower spacecraft relative

to a leader spacecraft. The formation dynamics in the CR3BP are formulated using two sets of

Equations (9)-(10) for the leader and follower spacecraft (shown in Figure 9). The dynamics of

the follower spacecraft relative to the leader satellite is expressed as ¨⃗ρ = ¨⃗ρF − ¨⃗rL. Redefining the

coordinates [ x y z ]T as relative coordinates (ie. x = xF − xL, y = yF − yL, z = zF − zL)

gives the CR3BP Spacecraft Formation Flying (SFF) equations of motion

ẍ− 2ẏ − x =− µ1

[

x

d3
1F

+ [x1 − xL]

(

1

d3
1F

− 1

d3
1L

)]

− µ2

[

x

d3
2F

+ [x2 − xL]

(

1

d3
2F

− 1

d3
2L

)]

(17)

− µ3

[

x

d3
3F

+ [x3 − xL]

(

1

d3
3F

− 1

d3
3L

)]

+ fx
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ÿ + 2ẋ− y =− µ1

[

y

d3
1F

+ [y1 − yL]

(

1

d3
1F

− 1

d3
1L

)]

− µ2

[

y

d3
2F

+ [y2 − yL]

(

1

d3
2F

− 1

d3
2L

)]

(18)

− µ3

[

y

d3
3F

+ [y3 − yL]

(

1

d3
3F

− 1

d3
3L

)]

+ fy

z̈ =− µ1

[

z

d3
1F

+ zL

(

1

d3
1F

− 1

d3
1L

)]

− µ2

[

z

d3
2F

+ zL

(

1

d3
2F

− 1

d3
2L

)]

(19)

− µ3

[

z

d3
3F

+ [z3 − zL]

(

1

d3
3F

− 1

d3
3L

)]

+ fz

fx, fy, and fz are the control inputs provided by x, y, z thrusters or solar sails. In this paper, Pulsed

Plasma Thrusters (PPT) will be installed on the x, y and z axes for SFF (see Reference 30). In

order to save fuel, y and z thrusters can be turned off. The x axis PPT thruster and the control of sail

pitch and yaw angles will be able to provide the thrust needed for SFF. If the x axis thruster fails,

the control of sail area, pitch and yaw angles will be able to provide thrust for SFF. The x1, x2, y1
and y2 are given as

x1 = −(X̃p −R1)

x2 = −(X̃p +R2) (20)

y1 = y2 = −Ỹp

The relative distances between the leader and follower spacecraft with respect to Earth, Moon and

Sun can be specified

d1L =

√

(xL − x1)
2 + (yL − x1)

2 + zL2

d1F =

√

(xL + x− x1)
2 + (yL + y − y1)

2 + (zL + z)2

d2L =

√

(xL − x2)
2 + (yL − y2)

2 + (zL)
2

(21)

d2F =

√

(xL + x− x2)
2 + (yL + y − y2)

2 + (zL + z)2

d3L =

√

(xL − x3)
2 + (yL − y3)

2 + (zL − z3)
2

d3F =

√

(xL + x− x3)
2 + (yL + y − y3)

2 + (zL + z − z3)
2

Reference Trajectory

The configuration of the spacecraft formation is directly related to the scientific objectives of the

mission. It may be possible to use natural motions as candidate trajectories for some applications in

the future, for this future mission study, the trajectories are based on the solution of the linearized

equations of motion for SFF in the CR3BP. The leader spacecraft reference motion’s period is

selected to be equal to that of the short period at L4. The relative reference trajectory can be written

based on Equation 6 (see Figure 10).

11
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Figure 10. Leader Reference Trajectory Short Period Motions at Earth Moon L4

xd = (A1F −A1L)cos(s1t) + (E1F − E1L)sin(s1t) + (A2F −A2L)cos(s2t) (22)

+ (E1F − E1L)sin(s2t)

yd = (Â1F − Â1L)cos(s1t) + (Ê1F − Ê1L)sin(s1t) + (Â2F − Â2L)cos(s2t) (23)

+ (Ê2F − Ê2L)sin(s2t)

zd = (z0F − z0L)cos(sit) +
(ż0F − ż0L)

si
sin(sit) (24)

DESIGN OF NONAFFINE CONTROL LAWS

The theoretical basis for developing the nonlinear control algorithms for the nonlinear non-

affine mathematical model using solar radiaton pressure is shown in this section(see References 31

and 32). The methods to decompose the original nonaffine system into an affine one in the control

part and a nonaffine part representing generalized modeling errors are the mean value theorem, the

Taylor series expansion and the contraction mapping method (see References 33, 34 and 35).

It is difficult to invert nonaffine nonlinearities to obtain the inverting control input. Fuzzy logic

Systems or neural networks are used to approximate the desired feedback control input (see Refer-

ence 36). First, a control method which can account for the nonaffine SRP control inputs is devel-

oped. The concept behind this method is to differentiate the nonlinear state equations once so that

the resultant augmented equations are linear in U̇ and use this as the new control input. Based on the

Equations (16)-(19), the lower order states are defined as x̄1 ∈ R
6×1 = [ x y z ẋ ẏ ż ]T , the higher

order states x̄2 ∈ R
3×1 = [ ẍ ÿ z̈ ]T , the full state vector X ∈ R

9×1 = [ x̄1 x̄2 ]
T , and the reference

trajectory Xd ∈ R
9×1 = [ x̄d1 x̄d2 ]T . ˙̄x1 ∈ R

6×1 = [ ẋ ẏ ż ẍ ÿ z̈ ]T . ˙̄x2 ∈ R
3×1 = [

...
x

...
y ...

z ]T .

12



Using Equations (16)-(19), the nonaffine nonlinear system can be written as

x̄2 = P1(x̄2) +G(U) (25)

For the purpose of control law development, rewrite nonaffine equations by the mean value theo-

rem and Equation (25) as affine system, so

˙̄x2 = Ṗ1(x̄2) + J(U)U̇ (26)

[

˙̄x1
˙̄x2

]

=

[

Ǎ11 Ǎ12

Ǎ21 Ǎ22

] [

x̄1
x̄2

]

+

[

B̌[P (x̄2) +G(U) + Fd1]

Ṗ (x̄2) + Fd2

]

+

[

06×3

J(U)

]

U̇ (27)

where P (x̄2) ∈ R
3×1 is the nonlinear portion of the dynamics, G(U) ∈ R

3×1 is the SRP acceler-

ation, J(U) ∈ R
3×1 = ∂G(U)/∂U , and B = [ 03×3 I3×3 ]T . Also, the higher and lower order

disturbances are Fd1 ∈ R
6×1 and Fd2 ∈ R

3×1 respectively.

The nonlinear term P (x̄2) represents the gravitational acceleration due to the Earth, Moon and

Sun.

P (x̄2) =





−µ1P11 − µ2P12 − µ3P13

−µ1P21 − µ2P22 − µ3P23

−µ1P31 − µ2P32 − µ3P33





P11 =
x

((xL + x− x1)
2 + (yL + y − y1)

2 + (zL + z)2)3/2

+ [x1 − xL]
1

((xL + x− x1)
2 + (yL + y − y1)

2 + (zL + z)2)3/2
(28)

− [x1 − xL]
1

((xL − x1)
2 + (yL − x1)

2 + zL2)3/2

P12 =
x

((xL + x− x2)
2 + (yL + y − y2)

2 + (zL + z)2)3/2

+ [x2 − xL]
1

((xL + x− x2)
2 + (yL + y − y2)

2 + (zL + z)2)3/2
(29)

− [x2 − xL]
1

((xL − x2)
2 + (yL − y2)

2 + (zL)
2)3/2

P13 =
x

((xL + x− x3)
2 + (yL + y − y3)

2 + (zL + z − z3)
2)3/2

+ [x3 − xL]
1

((xL + x− x3)
2 + (yL + y − y3)

2 + (zL + z − z3)
2)3/2

(30)

− [x3 − xL]
1

((xL − x3)
2 + (yL − y3)

2 + (zL − z3)
2)3/2
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P21 =
y

((xL + x− x1)
2 + (yL + y − y1)

2 + (zL + z)2)3/2

+ [y1 − yL]
1

((xL + x− x1)
2 + (yL + y − y1)

2 + (zL + z)2)3/2
(31)

− [y1 − yL]
1

((xL − x1)
2 + (yL − x1)

2 + zL2)3/2

P22 =
y

((xL + x− x2)
2 + (yL + y − y2)

2 + (zL + z)2)3/2

+ [y2 − yL]
1

((xL + x− x2)
2 + (yL + y − y2)

2 + (zL + z)2)3/2
(32)

− [y2 − yL]
1

((xL − x2)
2 + (yL − y2)

2 + (zL)
2)3/2

P23 =
y

((xL + x− x3)
2 + (yL + y − y3)

2 + (zL + z − z3)
2)3/2

+ [y3 − yL]
1

((xL + x− x3)
2 + (yL + y − y3)

2 + (zL + z − z3)
2)3/2

(33)

− [y3 − yL]
1

((xL − x3)
2 + (yL − y3)

2 + (zL − z3)
2)3/2

P31 =
z

((xL + x− x1)
2 + (yL + y − y1)

2 + (zL + z)2)3/2

+ zL
1

((xL + x− x1)
2 + (yL + y − y1)

2 + (zL + z)2)3/2
(34)

− zL
1

((xL − x1)
2 + (yL − x1)

2 + zL2)3/2

P32 =
z

((xL + x− x2)
2 + (yL + y − y2)

2 + (zL + z)2)3/2

+ zL
1

((xL + x− x2)
2 + (yL + y − y2)

2 + (zL + z)2)3/2
(35)

− zL
1

((xL − x2)
2 + (yL − y2)

2 + (zL)
2)3/2

P33 =
z

((xL + x− x3)
2 + (yL + y − y3)

2 + (zL + z − z3)
2)3/2

+ [z3 − zL]
1

((xL + x− x3)
2 + (yL + y − y3)

2 + (zL + z − z3)
2)3/2

(36)

− [z3 − zL]
1

((xL − x3)
2 + (yL − y3)

2 + (zL − z3)
2)3/2
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G(U) =







(2pAm + q)κ(cosα1)
3(cosα2)

3

(2pAm + q)κ(cosα1)
3(cosα2)

2sinα2

(2pAm + q)κ(cosα1)
2(cosα2)

3sinα1






(37)

where Ǎ11 = 03×3 and Ǎ12 = I3×3.

Ǎ21 =





1 0 0
0 1 0
0 0 0



 (38)

Ǎ22 =





0 2 0
−2 0 0
0 0 0



 (39)

B̌ =

[

03×3

I3×3

]

(40)

Note that the control input U ∈ R
3×1 = [ q ϕ α ]T does not appear linearly in Equations (17-19).

To develop a control law for this system, the order of the system is increased and U̇ is used as the

actual control input. The desired reference trajectory Xd ∈ R
9×1 can be expressed as

[

˙̄xd1
˙̄xd2

]

=

[

Ǎd
11 Ǎd

12

Ǎd
21 Ǎd

22

] [

x̄1
d

x̄2
d

]

(41)

The error dynamics of the system can be formulated using Equations (27) and (41) as

[

Ṡ

S̈

]

=

[

Ǎ11 Ǎ12

Ǎ21 Ǎ22

] [

S

Ṡ

]

+

[

0
¯̌A21x̄1

d + ¯̌A22x̄2
d

]

+ (42)

[

B̌[P (x̄2) +G(U)]

Ṗ (x̄2)

]

+

[

06×3

J(U)

]

U̇

where ¯̌A21 = Ǎ21 − Ǎd
21 and ¯̌A22 = Ǎ22 − Ǎd

22. The tracking error e ∈ R
6×1 = X − Xd is

composed of the lower order tracking error (S = ė+ K̄e) and the higher order tracking error Ṡ.

K̄ =





k1 0 0 k4 0 0
0 k2 0 0 k5 0
0 0 k3 0 0 k6



 (43)

Nonaffine system using Solar Sail

The control law using solar sails were developed where all three control inputs U = [ q ϕ α ]T

are available. The error dynamics for this case are expressed as Equation (42).
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To complete the control design, a description of possible disturbances is included. The distur-

bance is assumed to be unknown and bounded. The sliding manifold can be written

σ ∈ R
3×1 = Ṡ + K̂S (44)

where σ̇ = S̈ + K̂Ṡ.

The Jacobian for this case is

J(U) =







c3α1
c3α2

−3(2pAm + q)κc3α1
c2α2

sα2
−3(2pAm + q)κc2α1

c3α2
sα1

c3α1
c2α2

sα2
(2pAm + q)κ(−2c3α1

cα2
s2α2

+ c3α1
c3α2

) −3(2pAm + q)κc2α1
c2α2

sα2
sα1

c2α1
c2α2

sα1
−2(2pAm + q)κc2α1

cα2
sα1

sα2
(2pAm + q)κ(−2cα1

c2α2
s2α1

+ c3α1
c2α2

)







(45)

The control law is

U̇ =





q̇

ϕ̇
α̇



 = −J(U)−1
[

ησ + K̂Ṡ + Ǎ21x̄1 + Ǎ22x̄2 + Ṗ (x̄2)− ˙̄x2
d
]

(46)

where η is a positive definite gain matrix

η =





ηx 0 0
0 ηy 0
0 0 ηz



 (47)

If Fd1 and Fd2 are not zero, the use of the above control law will not be able to provide good

performance. The function Ṗ (x̄2) + Fd2 can be replaced with the function P̄ (x̄2). The fuzzy logic

system was chosen due to its universal approximation property. For an input vector X , which is

constructed of the measured states, the reference model outputs and the pseudo-control signal, the

output of the fuzzy logic system, is given by

P̄ (X) = W T ζ (48)

where W is the output weighting matrix. The optimal output weighting can be given by

W ∗ = arg min
W∈ϖ̄P

sup
X∈Dx

∣

∣

∣
P̂ − P̄

∣

∣

∣
(49)

The weighting function can be written as

Ẇ = βζσ (50)

ζ is a vector of sigmoid activation functions. The N Gaussian membership functions are µWi(σi)
(i = 1−N ).
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ζ =

∏N
i=1

µWi(σi)
∑P

l=1

∏N
i=1

µWi(σi)
(51)

P̂ − P̄ (W ∗) = ϖP (52)

where ϖP is the approximation error and bounded in the compact set Ux.
∥

∥ϖP

∥

∥ ≤ ϖ̄P . Ap-

proximation errors can be reduced by increasing the number of fuzzy rules.

The control law can be rewritten as

U̇ =





q̇

ϕ̇
α̇



 = −J(U)−1
[

ησ + K̂Ṡ + Ǎ21x̄1 + Ǎ22x̄2 +W T ζ − ˙̄x2
d
]

(53)

Stability Analysis

In this section, the stability of the control law using solar sails will be analyzed.

Theorem 1: For the system model in Equation (27), if the weighted tracking error is specified as

Equations (44) and (43), and the SRP control law is specified as Equations (50) and (53), then the

system tracking error e(t) will converge to zero.

Proof: W̄ to represent the fuzzy parameter errors is defined, where W̄ = W ∗−W . ˙̄W = Ẇ ∗−Ẇ .

In order to establish the stability of the control laws, the candidate Lyapunov function is considered

V (S) =
1

2
σTσ +

1

2β
W̄ T W̄ (54)

and it’s corresponding derivative is

V̇ (S) = σT σ̇ +
1

β
W̄ T ˙̄W (55)

= σT
[

K̂Ṡ + S̈
]

+
1

β
W̄ T ˙̄W

= σT
[

K̂Ṡ + Ǎ21x̄1 + Ǎ22x̄2 + Ṗ (X) + J(U)U̇ + ˙̄x2
d
]

+
1

β
W̄ T ˙̄W

We can use the adaptive control law Equation (50) and the control law Equation (53):

V̇ (σ) = −σT ησ + ϖ̄P (56)

which is negative definite. This indicates that V is a non-increasing Lyapunov function in σ-space.

This implies that as t → ∞, V (t) = V∞. Thus σ ∈ L∞. Defining λmin(η) can be established

that as the minimum eigenvalue of the positive definite matrix η.

V̇ ≤ −λmin(η)∥σ∥2 + ϖ̄P (57)

Similar to Theorem 1, σ ∈ L2 is obtained. σ̇ ∈ L∞ and σ ∈ L2

∩

L∞ is deduced. Using Barbalat’s

lemma, it can be shown that σ → 0 as t → ∞. Therefore, control law as specified by Equation (53)

ensures asymptotic convergence of the position and velocity tracking errors.
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Figure 11. Simulation Results with the Proposed Control Algorithm

RESULTS

To study the effectiveness of the developed SRP formation keeping control laws, the control

inputs of Equation (53), and the reference trajectories are numerically simulated using the full non-

linear model. The system parameters used in this study are listed in Table 1.

Table 1. Reference System Parameters

Parameter Value

A 150 [m2]

m1 5.98× 1024 [kg]

m2 7.35× 1022[kg]

m3 1.99× 1030[kg]
m4 50 [kg]
µ1 0.987891
µ2 0.012151
µ3 328900.48

ρs, s, εf , εb, Bf , Bb 0.88, 0.94, 0.05, 0.55, 0.79, 0.55

The control angles are subject to the conditions |α1| < π/2 and |α2| < π/2. The performance of

the proposed SRP L4 formation keeping control strategy is examined (shown in Figure 11).

SUMMARY

Microsatellite formation flying mission located in the vicinity of the L4 libration point was stud-

ied. The system was comprised of a leader and follower spacecraft using Pulsed Plasma Thrusters

and Solar Sails. CR3BP equations were used along with a solar gravitation model. A proposed

nonaffine controller was developed based on the nonlinear equations of motion to account for the

nonaffine structure of the solar radiation pressure model control inputs. A control law that drives

18



the system states to the sliding manifold thereby forcing the plant to follow the desired reference

trajectory was then formulated based on Lyapunov theory. Numerical results show that the proposed

control method was able to maintain the desired formation.
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