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Abstract—Machine-type communications and large-scale infor-
mation processing architectures are among key (r)evolutionary
enhancements of emerging fifth-generation (5G) mobile cellular
networks. Massive data acquisition and processing will make
5G network an ideal platform for large-scale system monitoring
and control with applications in future smart transportation,
connected industry, power grids, etc. In this work, we investigate
a capability of such a 5G network architecture to provide the
state estimate of an underlying linear system from the input
obtained via a large-scale deployment of measurement devices.
Assuming that the measurements are communicated via densely
deployed cloud radio access network (C-RAN), we formulate and
solve the problem of estimating the system state from the set of
signals collected at C-RAN base stations. Our solution, based on
the Gaussian Belief-Propagation (GBP) framework, allows for
large-scale and distributed deployment within the emerging 5G
information processing architectures. The presented numerical
study demonstrates the accuracy, convergence behavior and
scalability of the proposed GBP-based solution to the large-scale
state estimation problem.

I. INTRODUCTION

With transition towards fifth generation (5G), mobile cel-

lular networks are evolving into ubiquitous systems for data

acquisition and information processing suitable for monitoring

and control of large-scale systems. At the forefront of this evo-

lution is the transformation of radio access network (RAN) to

support massive-scale machine-type communications (MTC)

[1] and transformation of core network (CN) to support large-

scale centralized or distributed information processing through

Cloud-RAN (C-RAN) and Fog-RAN (F-RAN) architecture

[2], [3]. MTC services in 5G will offer both massive-scale

data acquisition from various machine-type devices through

massive MTC (mMTC) service, but also, provide ultra reliable

and low-latency communication (URLLC) service for mission-

critical applications [4]. Complemented with ultra-dense RAN

deployment and flexible and virtualized signal processing

architecture, novel 5G network services that are particularly

suitable for large-scale system monitoring and control of

various smart infrastructures are emerging [5].

In this work, we focus on a generic state estimation problem

placed in the context of a future 5G-inspired C-RAN-based

cellular network. We consider an underlying large-scale phys-

ical system characterized by the state vector s that contains

values of N system state variables. The state variables are

observed through the set of M measurements x of physical

quantities collected at the measurement devices spread across

the system. This paper considers linear system model in which

measured quantities are linear functions of the (sub)set of state

variables. Further, we assume measurements are wirelessly

communicated across C-RAN-based cellular network. In C-

RAN, a large number of spatially distributed remote radio

heads (RRH) constitutes an ultra-dense RAN infrastructure

that receives signals from densely populated MTC devices

(e.g., the measurement devices under consideration) [2]. The

signal vector y collected at RRHs is forwarded via backhaul

links to a central C-RAN location where it is fed into a

collection of base-band units (BBU) for signal detection and

recovery. In the standard C-RAN signal detection problem,

the goal is to recover the signal x transmitted by the set of

MTC devices from the signal y received at RRHs and gathered

centrally at BBUs [6] [7]. However, in this paper, focusing on

widely applicable linear system state estimation, we extend

this goal and investigate the problem of recovering the system

state s directly from the signal y collected across the C-RAN.

The problem we observe represents a concatenation of the

two well-studied problems: the linear system state estimation

problem (see, e.g., [8], for the case of power system state

estimation) and the problem of uplink signal detection in

C-RAN [6]. For the joint problem, it is straightforward to

derive (and implement at a central location) the standard

minimum mean-square error (MMSE) estimator, however,

such a solution comes with prohibitive O(N3)-complexity that

hinders its application for large-scale systems. By exploiting

inherent sparsity within both of the component problems, an

approximate MMSE solution for each problem can be obtained

using the tools from probabilistic graphical models, as recently

investigated for both (power system) state estimation [9]

and uplink signal detection in C-RANs [7]. In particular,

an instance of the Belief-Propagation (BP) algorithm, called

Gaussian BP (GBP) [10], can be applied to produce an

exact MMSE estimate with O(N)-complexity, thus scaling the

MMSE solution to large-scale system scenarios.

In this paper, we motivate, formulate and solve the linear

system state estimation problem considered jointly with the

signal detection problem in C-RAN-based cellular networks.

We cast the problem of estimating the system state s from the



received vector y into an equivalent maximum a-posteriori

(MAP) problem, and place it into the framework of a popular

class of probabilistic graphical model called factor graphs.

The state estimate ŝ is then derived as a solution of the GBP

algorithm applied over a specific bi-layer structure of the factor

graph. Throughout the paper, we use state estimation in power

systems with the measurements collected via 5G-inspired C-

RAN network as a running example. Our initial numerical

results demonstrate the viability of the proposed approach,

both in terms of accuracy and convergence.

The paper is organized as follows. In Section II, we present

the joint state estimation and C-RAN uplink communication

system model. In Section III, this model is mapped into a

corresponding factor graph, and the state estimate is obtained

via GBP. Section IV provides numerical results of the proposed

GBP state estimator. The paper is concluded in Section V.

II. SYSTEM MODEL

We consider a generic state estimation problem where a

set of state variables s is estimated from a set of observed

noisy linear measurements x. However, unlike the traditional

setup where the measurements in x are assumed available at

a central node, here we assume they are transmitted via radio

access network (RAN) of a mobile cellular system based on

a cloud-RAN (C-RAN) architecture. The received signal y is

collected at a large-number of densely deployed remote radio

heads (RRHs) and jointly processed at the C-RAN base-band

units (BBUs). The problem we consider is that of estimating

the system state s from the received signal y.

Linear system measurements model: We consider a

system described via the set of N state variables s =
(s1, s2, . . . , sN )T ∈ C

N×1. The system is observed via a set

of M measurements x = (x1, x2, . . . , xM )T ∈ C
M×1. Each

measurement is a linear function of the state variables addi-

tionally corrupted by the additive noise, i.e., xi = ai · s+ ni,

1 ≤ i ≤ M , where ai = (ai,1, ai,2, . . . , ai,N ) ∈ C
1×N

is a vector of coefficients, while ni ∈ C is a complex

random variable. Overall, the system is represented via noisy

linear observation model x = A · s + n, where the matrix

A ∈ C
M×N contains vectors ai, 1 ≤ i ≤ M, as rows,

while n = (n1, n2, . . . , nM )T ∈ C
M×1 is a vector of additive

noise samples. We assume noise samples ni are independent

identically distributed (i.i.d.) Gaussian random variables with

variance σ2
ni

. For simplicity, we assume the measurement

noise variances are equal, i.e., σ2
ni

= σ2
n, 1 ≤ i ≤ M . In

other words, we have that n represents a complex Gaussian

random vector with zero means µn = 0 and the covariance

matrix Σn = σ2
nI ∈ C

M×M (I is an identity matrix).

C-RAN uplink communication model: In the standard

state estimation models, measurements are either assumed

available, or they are communicated to the central node, where

the state estimation problem is solved. Communication models

typically involve point-to-point communication links between

the measurement devices and the central node, affected by

communication impairments such as delays, packet losses,

limited bit rates, etc. In the cellular networks context, this

assumes reservation of uplink resources and subsequent non-

orthogonal transmission, which typically incurs significant

communication delays. Inspired by the recent evolution of

massive MTC and ultra-dense C-RAN architectures in upcom-

ing 5G mobile cellular networks, in this work, we consider

different grant-less and non-orthogonal communication model,

as we detail next. Note that the following C-RAN cellular

network model could provide ultra-low latency for the state

estimation application under consideration. In other words,

such an architecture could produce the system state estimate

at the central network node with the minimum delay after

the measurements are acquired, which is crucial for emerging

mission-critical 5G MTC use cases [11].

In the mobile cellular system under consideration, measure-

ments are collected by the measurement devices that we refer

to as MTC user equipment (MTC-UE). We consider uplink

transmission of M single-antenna MTC UEs towards L single-

antenna RRHs. We assume both MTC UEs and RRHs are

randomly and uniformly distributed across a given geographic

area (note that this placement model is somewhat refined in the

numerical results section). The signal x ∈ C
M×1, representing

the set of collected noisy measurements, is transmitted1 by M
MTC UEs, while the signal y = (y1, y2, . . . , yL) ∈ C

L×1

is received at L RRHs, where y = H · x + m. The matrix

H ∈ C
L×M represents the channel matrix, where hi,j rep-

resents a complex channel coefficient between the j-th MTC

UE and the i-th RRH, while m = (m1,m2, . . . ,mL) ∈ C
L

is a vector of additive noise samples. As for the measurement

process, for the communication process we also assume noise

samples mi are i.i.d. zero-mean Gaussian random variables

with variance σ2
m, i.e., the mean value and the covariance

matrix of m is given as µm = 0 and Σm = σ2
mI ∈ C

L×L,

respectively.

Linear system state estimation problem: From the re-

ceived signal y collected across RRHs, we are interested in

finding an estimate ŝ of the state vector s. In this paper, we

focus on the centralized C-RAN architecture, where all the

BBUs are collocated at the central C-RAN node. Thus, due to

availability of y at the central location, we consider centralized

algorithms for the state estimation problem. However, the

solution we propose in this paper is based on GBP framework,

thus it is easily adaptable to a distributed scenario that we refer

to as fog-RAN (F-RAN), where BBUs are distributed across

different geographic locations closer to the MTC UEs. We

refer the interested reader to our recent overview of distributed

algorithms for solving the state estimation problem in the

context of upcoming 5G cellular networks [5].

A common centralized approach to solve the above state

estimation problem is to provide the corresponding minimum

mean-square error (MMSE) estimate. One can easily obtain

the MMSE estimate ŝ for the underlying linear model in the

form:

ŝ = (HA)HΣ ·
(

(HA)Σ(HA)H
)

y, (1)

1Note that, at this point, one can insert specific linear modulation scheme
xm = fm(x). For simplicity, we assume fm(x) = x.



Fig. 1. System model example: State estimation in Smart Grid via C-RAN-based mobile cellular network.

where (·)H is the conjugate-transpose matrix operation, and

Σ = HΣnH
H +Σm. However, solving (1) scales as O(N3)

which makes linear MMSE state estimation inapplicable in

large-scale systems which are of interest in this paper.

In the following, we cast the MMSE estimation into an

equivalent MAP state estimator as follows:

ŝ = arg max
s∈CN

P (s|y), (2)

where P (s|y) is the posterior probability of the state s after

the signal y is observed at the RRHs. As we will demonstrate

in the sequel, if certain sparsity arguments are applicable in the

system model under consideration, the solution of the MAP

problem can be efficiently calculated using the framework of

factor graphs and belief-propagation (BP) algorithms.

System model example (Smart Grid): Before continuing,

it is useful to consider an example of the above state estimation

setup. We consider the state estimation problem in an electric

power system, where the goal is to estimate the state of the

power system s, containing complex voltages of N system

buses, via the set of measurements x obtained using mea-

surement devices. Measurement devices are geographically

distributed across the power system and we assume they are

equipped with wireless cellular interfaces, i.e., they represent

MTC UEs connected to the C-RAN based cellular network.

The signal y received from the set of RRHs densely deployed

across the cellular network coverage area is processed centrally

within the C-RAN system architecture. Figure 1 illustrates the

smart grid example that we will further refine in Section IV

and use as a running example throughout this paper.

III. STATE ESTIMATION VIA GAUSSIAN BELIEF

PROPAGATION

In this section, we provide a solution to the combined

state estimation and uplink signal detection problem defined

in (2), by applying factor graphs and Gaussian BP framework.

In fact, for both constituent scenarios: the conventional state

estimation (in case of power systems) and the uplink signal

detection in C-RAN, the GBP has already been proposed and

analyzed (see details in [9] and [7]). Thus in this work, we

propose using GBP in a joint and combined setup of extracting

the system state directly from the observed C-RAN signals.

We note that the various properties of the proposed GBP

approach (e.g., complexity, convergence, etc.) will strongly

depend on the structure of the underlying factor graph. For

example, in terms of complexity (we will come back to

convergence in the next section), for GBP to scale well to

large-scale systems, it is fundamental that both matrices A and

H defining the two linear problems are sparse, i.e., that for

both A and H, the number of non-zero entries scales as O(N).
In many real-world scenarios, the sparsity typically arises from

geographic constraints and reflect locality that is typically

present in both the measurement and the communication part

of the system model. More detailed account on the sparsity

of matrices A and H clearly depends on the specific scenario

under consideration, and we relegate these details to Section

IV where we will explicitly deal with the smart grid example

introduced earlier.

Factor Graph System Representation: The MAP problem

under consideration can be rewritten as follows:

ŝ = arg max
s∈CN

P (s|y) ∝ arg max
s∈CN

P (s,y) = (3)

= arg max
s∈CN ,x∈CM

P (s,x,y) (4)

Assuming that the system state s has a Gaussian prior,

and given that the measurement and communication noise

is assumed Gaussian, the distribution P (s,x,y) is jointly

Gaussian. In addition, due to the problem structure where s

and y are conditionally independent given x, we obtain:

ŝ = arg max
s∈CN ,x∈CM

P (y|s,x)P (s,x) = (5)

= arg max
s∈CN ,x∈CM

P (y|x)P (x|s)P (s). (6)

As noted before, in many real-world systems of interest, a

measurement xj is a linear function of a small subset of local

state variables sN (xj), where N (xj) is the index set of the

state variables that affect xj , and sN (xj) = {si|i ∈ N (xj)}.

In other words, the row-vector aj has non-zero components

only on a small number of positions indexed by the set N (xj),



thus making the matrix A sparse2. Using this fact and the fact

that the measurements xj are mutually independent, we obtain:

P (x|s) =
M
∏

j=1

P (xj |sN (xj)). (7)

On the other hand, in the C-RAN communication part,

although in theory the received signal yi depends on all the

transmitted symbols in x, the channel coefficients between a

RRH and a geographically distant MTC UE can be considered

negligible, thus leading to matrix H sparsification [7]. Upon

distance-based sparsification proposed in [7], the received

symbol yi depends only on a small number of symbols xN (yi),

where N (yi) is the index set of symbols transmitted3 by the

set of MTC UEs in geographic proximity of the i-th RRH.

Taking the channel sparsification into account, we obtain:

P (y|x) =
L
∏

i=1

P (yi|xN (yi)). (8)

Finally, assuming that the state vector is apriori given as

a set of i.i.d Gaussian random variables, we obtain the final

factorized form of the initial MAP problem:

ŝ = arg max
s∈CN ,x∈CM

L
∏

i=1

P (yi|xN (yi))·

M
∏

j=1

P (xj |sN (xj)) ·
N
∏

k=1

P (sk). (9)

The factor graph representation of the MAP problem follows

the factorization presented in (9) and is illustrated in Figure 2.

Factor graph G = G(V ∪ F , E) is a bipartite graph consisting

of the set of variable nodes V , the set of factor nodes F , and

the set of edges E . In our setup, the set V can be further

divided as V = S ∪ X ∪ Y, where S = {s1, s2, . . . , sN}
is the set of state nodes, X = {x1, x2, . . . , sM} is the set

of measurement nodes, while Y = {y1, y2, . . . , yL} is the

set of received symbol nodes. The set of factor nodes can

be divided as F = FH ∪ FA ∪ Fy ∪ Fx ∪ Fs, where

FH = {fh1
, fh2

, . . . , fhL
} and FA = {fa1

, fa2
, . . . , faM

}
represent factor nodes that capture linear relationships between

variable nodes described by the rows of matrices H and

A, respectively. In addition, Fy = {fy1
, fy2

, . . . , fyL
} and

Fs = {fs1 , fs2 , . . . , fsN } represent the factor nodes that pro-

vide inputs due to observations of y and the prior knowledge

about x, respectively, while Fx = {fx1
, fx2

, . . . , fxM
} serve

as a virtual inputs needed for initialization of measurement

nodes. Similarly, the set of edges E can be divided as

E = EH ∪ EA ∪ Ey ∪ Ex ∪ Es, where EH ∪ Ey ∪ Ex and

EA ∪ Es ∪ Ex can be considered as the set of edges of two

bipartite subgraphs GH = (Y∪X∪FH∪Fy∪Fx, EH∪Ey∪Ex)

2More precisely, the number of state variables that affect certain measure-
ment is limited by a constant, independently of the size N of the system.

3As noted in footnote 1, if the signal x is modulated prior to transmission,
one can easily add an additional “layer” to the factor graph containing a set
of M modulated signal variable nodes Xm connected via modulation factor
nodes Fm with the corresponding measurement nodes X .

and GA = (X ∪ S ∪ FA ∪ Fs ∪ Fx, EA ∪ Es ∪ Ex), obtained

as the subgraphs of G induced from the set of factor nodes

FH∪Fy∪Fx and FA∪Fs∪Fx, respectively. As noted earlier,

the state estimation problem using GBP over factor graph GA,

and the uplink C-RAN signal detection problem using GBP

over factor graph GH, have been recently investigated in detail

in [9] and [7], respectively.

Gaussian Belief-Propagation and GBP Messages: To

estimate the state variables s, we apply message-passing

GBP algorithm [10]. GBP operates on the factor graph G
by exchanging messages between factor nodes and variable

nodes in both directions. As a general rule, at any variable or

factor node, an outgoing message on any edge is obtained as

a function of incoming messages from all other edges, using

the message calculation rules presented below. In general,

the underlying factor graph describing joint state estimation

and signal detection problem will contain cycles, thus the

resulting GBP will be iterative, which means that all nodes

will iteratively repeat message updates on all of the outgoing

edges according to a given message-passing schedule. We

provide details on message-passing schedule, correctness and

convergence of GBP on loopy graphs later in this section.

Let us consider a variable node vi ∈ V incident to a

factor node fj ∈ F . Let N (vi) denote the index set of

factor nodes incident to vi, and N (fj) denote the index set

of variable nodes incident to fj . We denote messages from vi
to fj and from fj to vi as µvi→fj (vi) = (mvi→fj , σ

2
vi→fj

)

and µfj→vi(vi) = (mfj→vi
, σ2

fj→vi
), respectively. Note that,

in the GBP scenario, all messages exchanged across the

factor graph represent Gaussian distributions defined by the

corresponding mean-variance pairs (m,σ2). Thus to describe

processing rules in a variable and a factor node, it is sufficient

to provide equations that map input (m,σ2)-pairs into the

output(m,σ2)-pair, as detailed below.

Message from a variable node to a factor node: the

equations below are used to calculate µvi→fj (vi) =
(mvi→fj , σ

2
vi→fj

):

mvi→fj =

(

∑

k∈N (vi)\j

mfk→vi

σ2
fk→vi

)

σ2
vi→fj

(10a)

1

σ2
vi→fj

=
∑

k∈N (vi)\j

1

σ2
fk→vi

. (10b)

Message from a factor node to a variable node: In the setup

under consideration, factor nodes represent linear relations

between variable nodes. Thus, e.g., for a factor node fj , we

can write the corresponding linear relationship as:

fj(vN (fj)) = Civi +
∑

k∈N (fj)\i
Ckvk. (11)

With this general notation, the equations below provide



µfj→vi
(vi) = (mfj→vi

, σ2
fj→vi

):

mfj→vi =
1

Ci

(

∑

k∈N (fj)\i
Ckmvk→fj

)

(12a)

σ2
fj→vi

=
1

C2
i

(

∑

k∈N (fj)\i
C2

kσ
2
vk→fj

)

. (12b)

Calculation of marginals: Applying the above rules in

variable and factor nodes of the factor graph results in the

sequence of updates of messages exchanged across the edges

of the graph. To complete description of loopy GBP, we

need to define message initialization at the start, and message

scheduling during the course of each iteration, which is done

next. After sufficient number of GBP iterations, the final

marginal distributions of the random variables corresponding

to variable nodes is obtained as:

m̂vi =

(

∑

k∈N (vi)

mfk→vi

σ2
fk→vi

)

σ2
vi

(13a)

1

σ̂2
vi

=
∑

k∈N (vi)

1

σ2
fk→vi

. (13b)

GBP Message-Passing Schedule, Correctness and Con-

vergence: We adopt standard synchronous GBP schedule in

which variable node processing is done in the first half-

iteration, followed by the factor node processing in the second

half-iteration. The iterations are initialized by input messages

from Fy generated from the received signal y, and initial

messages from Fx and Fs that follow certain prior knowledge

(as detailed in the next section).

GBP performance on linear models defined by loopy factor

graphs is fairly well understood. For example, if the GBP

converges, it is known that the GBP solution will match the

solution of the MMSE estimator. The convergence criteria

can also be derived in a straightforward manner, by deriving

recursive fixed point linear transformations that govern mean

value and variance updates through the iterations and investi-

gating spectral radius of such transformations. Due to space

restrictions, we leave the details of the convergence analysis

in our scenario for the future work.

IV. NUMERICAL CASE STUDY: SMART GRID STATE

ESTIMATION IN 5G C-RAN

In this section, we specialize our state estimation setup for a

case study in which we perform power system state estimation

by collecting measurements via 5G-inspired C-RAN.

Power system state estimation - DC model: For the

sake of simplicity, in the following, we consider the lin-

ear DC model of a power system. The DC model is an

approximate model obtained as a linear approximation of

the non-linear AC model that precisely follows the electrical

physical laws of the power system. In the DC model, the

power system containing N buses is described by N state

variables s = (s1, s2, . . . , sN )T , where each state variable

si = θi represents the voltage angle θi (in the DC model,

the magnitudes of all voltage phasors are assumed to have

unit values). In the DC model, the measurements include

only active power flow Pij at the branch (i, j) between

the bus i and the bus j, active power injection Pi into

the bus i, and the voltage angle θi. Collecting M of such

arbitrary measurements across the power system, we obtain

the measurement vector x = (x1, x2, . . . , xM )T , where each

measurement xi ∈ {Pij , Pi, θi} is a linear function4 of the

(sub)set of state variables s, additionally corrupted by additive

Gaussian noise of fixed (normalized) noise standard deviation

of σn = 10−5 per unit (p.u.). The noisy measurements x are

then transmitted via C-RAN network as described below.

We illustrate the methodology using the IEEE test bus case

with 30 buses (N = 29, since one of the bus voltage angles is

set to the reference value zero) that we use in the simulations.

The example set of M = 58 measurements is selected in

such a way that the system is observable with the redundancy

M/N equal to 2. For each simulation scenario, we generate

300 random (observable) measurement configurations.

C-RAN cellular network model: The set of M MTC-UEs

simultaneously transmit their measurements to the set of L
RRHs during a given allocated time-frequency slot shared by

all MTC-UEs. We assume M MTC-UEs and L RRHs are

placed uniformly at random following independent Poisson

Point Process (PPP) in a unit-square area, however, with slight

refinement of the PPP placement strategy. Namely, to account

for neighboring relations within logical topology of IEEE 30

bus test case, we first divide a unit-square into a× a disjoint

sub-squares, and then we assign M MTC-UEs to one of a2

sub-squares. We also balance the number of RRHs per sub-

square, thus allocating ∼ L
a2 RRHs per sub-square. Finally,

all RRHs and MTC-UEs allocated to a given sub-square are

placed using the PPP within a given sub-square.

After the placement, we assume M MTC-UEs transmit

their signals x, where each measured signal is normalized

to its expected normalization value5. For the channel model

between the MTC UEs and RRHs, for simplicity, we account

only for a distance-dependant path-loss model with exponent

α. We use channel sparsification approach proposed in [7],

with threshold distance set to d0 =
√
2
a

(i.e., equal to the

diagonal length of each sub-square). The received signal

y = (y1, y2, . . . , yL) collected at L RRHs is additionally cor-

rupted by additive Gaussian noise, whose standard deviation is

selected so provide fixed and pre-defined signal-to-noise ratio

(SNR) value. Finally, noisy received signal y is forwarded via

high-throughput backhaul links to C-RAN BBUs.

GBP-based State Estimation: Using the approach pre-

sented in Section III, we apply GBP across the factor graph

to recover the state estimate x from the received signal y.

More precisely, for each random measurement configuration,

4More precisely, we have that Pij = −bij(θi − θj) and Pi =
−

∑
j∈Ni

bij(θi − θj), where Ni is the set of adjacent buses of the bus

i and bij is susceptance of the branch (i, j).
5We assume normalization constants are known in advance at MTC-UEs

and C-RAN nodes, either as a prior knowledge or by long-term averaging.



we generate the part of the factor graph GA and, similarly,

from known MTC-UE and RRH random positions, we derive6

the part of the factor graph GH. Upon reception of y, the GBP

runs until it converges. We adopt a synchronous scheduling of

GBP messages where messages are flooded from the top of

the factor graph G and back within a single GBP iteration. For

a linear model, it is well known that if the GBP converges,

it will converge to the minimum mean-square error (MMSE)

estimate of the state x.

Simulation Results: In the first set of experiments, we

investigated the system observability as a function of the

number of RRHs L deployed in the system. As noted earlier,

the system contains N = 29 state variables measured via

M = 58 MTC UEs. We start with L = M and decrease

the RRH density in order to evaluate its effect on the system

observability. Figure 2 shows the fraction of instances GBP

was not able to converge due to insufficient rank of the

underlying system as a function of the number of base stations

L. Note that in each simulation, a random measurement

configuration is verified to provide an observable system, thus

the rank insufficiency is a consequence of the C-RAN topology

and channel matrix sparsification. According to Figure 2, for

the parameters used in our simulation, the relative density L
M

of RRHs, normalized by the number MTC UEs, should exceed

one for acceptable GBP performance.
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Fig. 2. The fraction of unobservable system topologies.

In the next simulation experiment, we fix the relative RRH

density L
M

= 1, and consider only the simulation instances

which were observable after C-RAN transmission. We inves-

tigate the accuracy of GBP solution of the state estimate as a

function of the received SNR (note that the measurement noise

σn is keep fixed). Figure 3 shows the root mean square error

of the BP algorithm RMSEBP normalized by the root mean

square error of the MMSE method RMSEMMSE. According

to the box plot, we note that if the system is observable,

the GBP algorithm is able to reach the same solution (to

the precision of 10−6) as the MMSE method for a range of

different values of SNRs. Our preliminary experiments show

that, if the system observability is not compromised by the C-

RAN signal transmission, the accuracy of GBP matches well

6We note that, in case the small-scale fading is included in the model, one
can assume that the channel state information is available at the C-RAN.

the accuracy of centralized MMSE estimator7.
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Fig. 3. The AC-BP normalized WRSS (i.e., WRSSτBP/WRSSWLS) for the
low noise level v1 (subfigure a) and the high noise level v4 (subfigure b).

V. CONCLUSIONS

Motivated by the development of 5G massive MTC and

large-scale distributed 5G MEC architecture, in this paper,

we proposed a scalable and efficient linear state estimation

framework. The proposed framework is based on GBP al-

gorithm and jointly combines linear state estimation with

signal detection in 5G C-RAN architecture. The advantage

of GBP solution is accuracy that matches MMSE estimation,

low complexity, scalability to large-scale systems (due to

the fact that the underlying factor graph is usually sparse),

and ease of parallelization and distributed implementation in

future distributed F-RAN architectures. For the future work,

we aim to provide rigorous convergence analysis of GBP in

the presented framework, motivated by similar analysis in [7]

and [9], and provide extensive numerical simulation study.
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