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1 Introduction

The Helmholtz equation is very difficult to solve by iterative methods [18],
and the time harmonic Maxwell’s equations inherit these difficulties. Opti-
mized Schwarz methods are among the most promising iterative techniques.
For the Helmholtz equation, they have their roots in the seminal work of
Deprés [6, 7], which led to the development of optimized transmission con-
ditions [5, 19, 21, 20, 3], and these techniques were independently rediscov-
ered for the sweeping preconditioner [17] and the source transfer domain
decomposition method [4]. For the time harmonic Maxwell’s equations, opti-
mized transmission conditions were developed and tested for problems with-
out conductivity in [1, 11, 23, 24, 16], and with conductivity in [8]. Particular
Galerkin discretizations of transmission conditions were studied in [13, 12],
and for scattering applications, see [23, 24].

In [14, 15], it was discovered that heterogeneous media can actually im-
prove the convergence of optimized Schwarz methods, provided that the co-
efficient jumps are aligned with the interfaces, and the jumps are taken into
account in an appropriate way in the transmission conditions. Similar results
were found for Maxwell’s equations in [9] and [10]; it is even possible to obtain
convergence independently of the mesh size in certain situations. We present
and study here transmission conditions for the Helmholtz equation with het-
erogeneous media, and establish a relation to the results of [9, 10] written
for Maxwell’s equations. We then study improved convergence behavior for
specific choices of the discretization parameters related to the pollution effect
[2].
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2 Optimized Schwarz Methods for Helmholtz and

Maxwell’s Equations

We consider the two dimensional Helmholtz equation in discontinuous media
with piece-wise constant density ρ and wave-speed c. The Helmholtz equation
in Ω = R2 is defined by

∇(
1

ρ
∇ · u) + ω2

c2ρ
u = f, in Ω, (1)

with

ρ =:

{

ρ1 in Ω1,
ρ2 in Ω2,

c :=

{

c1 in Ω1,
c2 in Ω2,

where Ω1 = R− × R, Ω2 = R+ × R and the Sommerfeld radiation condition
is imposed at infinity,

lim
|x|→∞

√

|x|
(

∂|x|u+ iωu
)

= 0, (2)

for every possible direction x
|x| .

We can naturally define a Schwarz algorithm for equation (1) with Robin
transmission conditions at the interface aligned with the discontinuity be-
tween the coefficients, and parameters s1, s2 ∈ C,

∇( 1
ρ1
∇ · un

1 ) +
ω2

c2
1
ρ1

un
1 = f, in Ω1,

( 1
ρ1
∂n1

+ 1
ρ2
s2)u

n
1 = ( 1

ρ2
∂n1

+ 1
ρ2
s2)u

n−1
2 , on Γ,

∇( 1
ρ2

∇ · un
2 ) +

ω2

c2
2
ρ1

un
2 = f, in Ω2,

( 1
ρ2

∂n2
+ 1

ρ1

s1)u
n
2 = ( 1

ρ1

∂n2
+ 1

ρ1

s1)u
n−1
1 , on Γ.

(3)

Proposition 1. The convergence factor of algorithm (3) is given by

ρopt(k, ρ1, ρ2, ω, c1, c2, s1, s2) =

∣

∣

∣

∣

∣

(λ1 − s1)(λ2 − s2)

(λ1 + s2
ρ1

ρ2

)(λ2 + s1
ρ2

ρ1

)

∣

∣

∣

∣

∣

1/2

, (4)

with λj =
√

k2 − ω2
j , ωj =

ω
cj

for j = 1, 2.

The proof of Proposition 1 is based in Fourier analysis, see [27] for details.
In order to obtain an efficient algorithm, we have to choose s1 and s2 such

that ρopt becomes as small as possible for all relevant numerical frequencies
k ∈ K := [kmin, kmax], where kmin is the lowest relevant frequency (kmin

depends on the geometry of the media) and kmax = cmax

h is the highest
numerical frequency supported by the numerical grid with mesh size h.

In what follows, we only consider s1 = P1(1+i) and s2 = P2(1+i), Pj > 0,
a choice that has been justified in [21], and thus study the min-max problem
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ρ∗opt = min
P1,P2>0

max
k∈K

|ρopt(k, ρ1, ρ2, ω, c1, c2, P1(1 + i), P2(1 + i))|. (5)

Similarly we can define a Schwarz algorithm for the time-harmonic Maxwell
equations in a given domain Ω = R3

−iωεE+∇×H = J, iωµH+∇×E = 0, (6)

with the Silver-Müller radiation condition [25, 22]

lim
r→∞

r(H× er +
1

Zj
E) = 0, (7)

where r := |x| and er = x/r for any vector x ∈ R3.
We also consider the heterogeneous case where the domain Ω consists of

two non-overlapping subdomains Ω1 := R− × R2 and Ω2 := R+ × R2 with
interface Γ , with piece-wise constant parameters εj and µj in Ωj , j = 1, 2.
A general Schwarz algorithm for this configuration is

−iωε1E
1,n+∇×H1,n= J, iωµ1H

1,n +∇×E1,n = 0 in Ω1,
(Bn1

+S1Bn2
)(E1,n,H1,n) = (Bn1

+S1Bn2
)(E2,n−1,H2,n−1) on Γ ,

−iωε2E
2,n+∇×H2,n= J, iωµ2H

2,n +∇×E2,n = 0 in Ω2,
(Bn2

+S2Bn1
)(E2,n,H2,n) = (Bn2

+S2Bn1
)(E1,n−1,H1,n−1) on Γ ,

(8)

where Sj , j = 1, 2 are tangential, possibly pseudo-differential operators, and

Bnj
(Ej,n,Hj,n) =

Ej,n

Zj
× nj + nj × (Hj,n × nj)

are the characteristic conditions, with Zj =
√

µj/ǫj, j = 1, 2. Different
choices of Sj , j = 1, 2 lead to different Schwarz methods, see [11].

Remark 1. A direct computation shows that algorithms (3) and (8) have the
same convergence factor, when setting ρj := µj and cj :=

1√
εjµj

for j = 1, 2.

Hence we can use all the results presented in [9] for Maxwell’s equations for
the case of the Helmholtz equation (3). We thus focus in the remainder on
the Helmholtz case, but keep in mind that all results we will obtain hold
mutatis mutandis also for the Maxwell case.

Using Remark 1, we obtain from [9] and [10]

Corollary 1. The solution of (5) for c1 6= c2 is asymptotically

ρ∗opt =















1−O(h1/4) if ρ1 = ρ2,
√

ρmin

ρmax
+O(h1/2) if 1√

2
≤ ρ1

ρ2
≤

√
2,

4

√

1
2 +O(h1/2) if ρ1

ρ2

< 1√
2
or ρ1

ρ2

>
√
2.

(9)



4 Victorita Dolean, Martin J. Gander, Erwin Veneros, Hui Zhang

If ρ1 6= ρ2 and c1 = c2, we obtain after excluding the resonance frequency
[11]

ρ∗opt =

√

ρmin

ρmax

+O(h1/2), (10)

with ρmin = min{ρ1, ρ2} and ρmax = max{ρ1, ρ2}.

The detailed proof of Corollary 1 and the values of Pj can be found in [27].
We see from Corollary 1 that in most of the cases the optimized convergence
factor ρ∗opt has an asymptotic behavior independent of the mesh size h.

3 Scaling Results when Controlling the Pollution Effect

The core of our study is the asymptotic analysis of algorithms (3) and (8)
when the mesh size h is related to the wave number ω to control the pollution
effect [2]. We will focus on the first case of Corollary 1, because this is the only
case where the convergence can deteriorate in the mesh size h; see the first
line in (9). We will consider three particular relationships between ω and h:
ωh = Cω, Cω a constant, where the pollution effect is not controlled, ω2h =
Cω where the pollution effect is provably controlled, and finally ω3/2h = Cω

which is widely believed to suffice to control the pollution effect.

Theorem 1. Let ρ1 = ρ2, c1 6= c2 and ωh = Cω. If |ρopt| defined in (4) is
maximal for the frequencies k = ω1, k = ω2 and k = kmax, and sj = (1+i)Pj,
then the solution of the min-max problem (5) is

P ∗
1 =

p1
h
, P ∗

2 =
p2
h
, ρ∗opt =

(

p21(2p
2
2 − 2p2cr + c2r)

p22(2p
2
1 + 2p1cr + c2r)

)

1

4

, (11)

where {p1, p2} is solution of the system of equations

p2

1
(2p2

2
−2p2cr+c2r)

p2

2
(2p2

1
+2p1cr+c2r)

=
ρ2p2

2
(2p2

1
−2p1cr+c2r)

p2

1
(2p2

2
+2p2cr+c2r)

,

p2

1
(2p2

2
−2p2cr+c2r)

p2

2
(2p2

1
+2p1cr+c2r)

=
ρ2(2p2

2
−2p2cmax2

+c2
max2

)(2p2

1
−2p1cmax1

+c2
max1

)

(2p2

2
+2p2cmax2

+c2
max2

)(2p2

1
+2p1cmax1

+c2
max1

)
,

cr := rh :=
√

|ω2
1 − ω2

2 |h, cmax1
:=

√

c2max − C2
ω/c

2
1, cmax2

:=
√

c2max − C2
ω/c

2
2.

Proof. Evaluating |ρopt|4 from (4) at sj :=
pj

h (1 + i) for k = ω1, k = ω2 and
k = kmax yields

R1 =
(h2r2−2p2hr+2p2

2
)p2

1

p2

2
(h2r2+2p1hr+2p2

1
)
, R2 =

ρ2p2

2
(h2r2−2p1hr+2p2

1
)

(2p2

2
+2p2hr+h2r2)p2

1

,

R3 =

(

h2(
c2
max

h2
− C2

ω
c2
2
h2

)−2p2h

√

c2
max

h2
− C2

ω
c2
2
h2

+2p2

2

)

(

h2(
c2
max

h2
− C2

ω
c2
2
h2

)−2p1h

√

c2
max

h2
− C2

ω
c2
2
h2

+2p2

1

)

(

h2(
c2
max

h2
− C2

ω
c2
1
h2

)−2p1h

√

c2
max

h2
− C2

ω
c2
1
h2

+2p2

1

)

(

h2(
c2
max

h2
− C2

ω
c2
1
h2

)−2p2h

√

c2
max

h2
− C2

ω
c2
1
h2

+2p2

2

) .
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Replacing rh by cr, cmax1
=

√

c2max − C2
ω/c

2
1 and cmax2

=
√

c2max − C2
ω/c

2
2,

the expressions can be simplified to

R1 =
p21(2p

2
2 − 2p2cr + c2r)

p22(2p
2
1 + 2p1cr + c2r)

, R2 =
ρ2p22(2p

2
1 − 2p1cr + c2r)

p21(2p
2
2 + 2p2cr + c2r)

,

R3 =
(2p22 − 2p2cmax2

+ c2max2
)(2p21 − 2p1cmax1

+ c2max1
)

(2p22 + 2p2cmax2
+ c2max2

)(2p21 + 2p1cmax1
+ c2max1

)
.

Equioscillation between R1, R2 and R3 then gives the result [27].

Remark 2. Note that Theorem 1 gives a closed form solution of the min-max
problem (5), not just an asymptotic one.

For the special case of equal transmission conditions, we have

Corollary 2. Under the same assumptions as in Theorem 1, if sj = (1+i)Pj

with P1 = P2, then the solution of the min-max problem (5) is given by

P ∗
1 = P ∗

2 =
p

h
, ρ∗opt =

(

(2p2 − 2pcr + c2r)

(2p2 + 2pcr + c2r)

)

1

4

,

with p the solution of the equation

(2p2 − 2pcr + c2r)

(2p2 + 2pcr + c2r)
=

(2p2 − 2pcmax2
+ c2max2

)(2p2 − 2pcmax1 + c2max1
)

(2p2 + 2pcmax2
+ c2max2

)(2p2 + 2pcmax1 + c2max1
)
.

Proof. The proof follows along the same lines as the proof of Theorem 1.

Theorem 2. Let ρ1 = ρ2, c1 6= c2 and ω2h = Cω. If |ρopt| defined in (4) is
maximal for the frequencies k = ω1, k = ω2, k = km := cm

h3/4 and k = kmax,
and sj = (1 + i)Pj , P1 = p1

h and P2 = p2√
h
, then the asymptotic solution of

the min-max problem (5) for h small is given by

P ∗
1 =

c
3/4
maxc

1/4
r

21/4h7/8
, P ∗

2 =
1

2

c
1/4
maxc

3/4
r

23/4h5/8
, ρ∗opt = 1− r1/4

21/4c
1/4
max

h1/8 +O(h1/4).

Interchanging the role of P1 and P2 leads to the same result.

Proof. The proof is based again on equioscillation.

Theorem 3. Let ρ1 = ρ2, c1 6= c2 and ω3/2h = Cω. If the frequencies k = ω1,
k = ω2, k = km := cm

h5/6 and k = kmax are the local maxima of the convergence
factor ρopt from (4), and if s1 = (1 + i)P1, s2 = (1 + i)P2, with P1 = p1

h11/12

and P2 = p2

h3/4 , then the asymptotic solution of the min-max problem (5) for
h small is given by

P ∗
1 =

c
3/4
maxc

1/4
r

21/4h11/12
, P ∗

2 =
1

2

c
1/4
maxc

3/4
r

23/4h3/4
, ρ∗opt = 1− r1/4

21/4c
1/4
max

h1/12 +O(h1/6).
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ω = Cω ω2h = Cω ω3/2h = Cω ωh = Cω

ρ1 = ρ2, c1 6= c2
1−O(h1/4)
(Corollary 1)

1−O(h1/8)
(Theorem 2)

1−O(h1/12)
(Theorem 3)

< 1
(Theorem 1)

ρ1 6= ρ2, c1 6= c2
max{ 4

√

1

2
,
√

ρmin

ρmax
}

(Corollary 1)

max{ 4

√

1

2
,
√

ρmin

ρmax
}

(Remark 3)

max{ 4

√

1

2
,
√

ρmin

ρmax
}

(Remark 3)

< 1
(Remark 3)

ρ1 6= ρ2, c1 = c2

√

ρmin

ρmax

(Corollary 1)

√

ρmin

ρmax

(Remark 3)

√

ρmin

ρmax

(Remark 3)

< 1
(Remark 3)

Table 1 Comparison of the convergence factors with different relationships between ω

and h.

Interchanging the role of P1 and P2 leads to the same result.

Proof. The proof is similar to the proof of Theorem 2.

One can justify the choice of the frequencies k = ω1, k = ω2, k = km and
k = kmax as the correct candidates for the |ρopt| using asymptotic analysis,
but this exceeds the space available, see [27] for more details.

Remark 3. One can obtain similar results also for the cases ρ1 6= ρ2 but this
will only reduce the order of the second asymptotic term, as in Theorems 2
and 3. For the relationship ωh = Cω one can also obtain a similar result to
Theorem 1.

We give a summary of all these results in Table 1.

4 Conclusions

We studied the performance of optimized Schwarz methods for Helmholtz
and Maxwell’s equations for heterogeneous media, where aligning interfaces
with heteronegeities can lead to methods that converge faster than without
heterogeneities. This is in contrast to recent approaches like GenEO [26]
that lead to robust methods for heterogeneous media without alignment of
interfaces, but they can not benefit from the heterogeneity. Using Fourier
analysis, we showed that the convergence factor of the optimized Schwarz
methods for the Helmholtz equation and the Maxwell’s equations are the
same, and it suffices therefore to study the algorithms only for the Helmholtz
equation. We then studied in detail the performance for three different choices
of the relationship between the wave number and the mesh size to control
the pollution effect, and showed that increasing the resolution improves the
performance of the optimized Schwarz methods. It was not possible to show
all the proofs in detail in this short manuscript, but more information can be
found in the PhD thesis [27].
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