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Nonlinear Wave-Current Interaction in Water of Finite Depth 1 

Zhen Liu1, Zhiliang Lin2, Longbin Tao3, Jian Lan4 2 

Abstract:  3 

The interaction of nonlinear progressive waves and a uniform current in water of finite depth 4 

is investigated analytically by means of the homotopy analysis method (HAM). With HAM, 5 

the velocity potential of the flow and the surface elevation are expressed by Fourier series and 6 

the nonlinear free surface boundary conditions are satisfied by continuous mapping. Unlike a 7 

perturbation method, the present approach does not depend on any small parameters; thus the 8 

solutions are suitable for steep waves and strong currents. To verify the HAM solutions, 9 

experiments are conducted in the wave-current flume of The Education Ministry Key 10 

Laboratory of Hydrodynamics at Shanghai Jiao Tong University (SJTU). It is found that the 11 

HAM solutions are in good agreement with experimental measurements. Based on the series 12 

solutions of the validated analytical model, the influence of water depth, wave steepness and 13 

current velocity on the physical properties of the coexisting wave-current field are studied in 14 

detail. The variation mechanisms of wave characteristics due to wave-current interaction are 15 

further discussed in a quantitative manner. The significant advantage of HAM in dealing with 16 

strong nonlinear wave-current interactions in the present study is clearly demonstrated in which 17 

the solution technique is independent of small parameters. A comparative study on 18 
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wave characteristics further reveals the great potential of HAM to solve more complex wave-29 

current interaction problems leading to engineering applications in the offshore industry and 30 

the marine renewable energy sector. 31 

Keywords: Wave-current interaction; Nonlinear; Finite water depth; Homotopy analysis 32 

method 33 

 34 

Introduction 35 

The co-existence of waves and currents is a common feature of most marine environments. 36 

Nonlinear wave-current interaction is an important topic in both coastal and offshore 37 

engineering. Giant waves (freak waves) have been registered in many regions of the oceans, 38 

especially off the east coast of South Africa, where strong interactions between waves and 39 

opposing currents exist (Mallory 1974; Kharif and Pelinovsky 2003). In these cases, the 40 

opposing current significantly augments the wave height and steepness, resulting in 41 

considerable hazards for ships and offshore structures. During the past several decades, wave-42 

current interaction has been the subject of numerous research efforts. Most of them are well 43 

documented in the review articles by Peregrine (1976), Jonsson (1990) as well as Thomas and 44 

Klopman (1997).  45 

In many practical instances the current velocity varies significantly with depth, leading to the 46 

creation of a velocity profile, for example, with a wind-driven current where the magnitude of 47 

the current velocity varies exponentially with depth. Studies based on this type of current have 48 

been reported in the literature (Thomas 1981; Thomas 1990; Swan et al. 2001; Swan and James 49 

2001). In some other cases, however, it is reasonable to assume that the current velocity is 50 



 

 

 

approximately uniform with depth. Examples of this type of current include large scale ocean 51 

currents, and the majority of tidal flows where the time and length scales over which the current 52 

varies are much larger than the wave period or wavelength. Rienecker and Fenton (1981) 53 

presented the numerical solution for steady water waves progressing in constant water depth 54 

based on the Fourier approximation method. In their model, the time mean Eulerian velocity, 55 

i.e. the current velocity, can be taken into account. Later, this method is further simplified by 56 

Fenton (1988) and applied to waves in both deep and shallow water conditions. Fenton (1985) 57 

proposed a 5th-order perturbation solution for waves propagating on a uniform current in 58 

constant water depth. For not-too-high waves and not-too-shallow water depths, the analytic 59 

solution given by Fenton (1985) was in good agreement with the numerical solution by 60 

Rienecker and Fenton (1981). However, it is worth noting that the perturbation solution 61 

procedure by Fenton (1985) is rather complicated and difficult to extend to solve the more 62 

complex interaction of multiple waves and a current. Umeyama (2011) also reported a 3rd-order 63 

perturbation solution and experimental data for waves propagating on a following current. It is 64 

important to point out that the experimental conditions in his work possess relatively weak 65 

nonlinearity and low current velocities. Based on a Lagrangian coordinate system, Chen and 66 

Chen (2014) also obtained a 5th-order perturbation series approximation for the interaction of 67 

progressive waves and uniform currents. The focus of their research is on the wavy track of the 68 

particle motion. Though there are several theoretical works on waves propagating on favorable 69 

or adverse uniform currents, few analytical models describing the interaction between steep 70 

waves and strong currents, as well as the effect of water depth, can be found in the literature.  71 

Recently, an analytic approach named homotopy analysis method (HAM) has seen rapid 72 



 

 

 

development. Different from the perturbation method, HAM does not depend on any small 73 

parameter, so it is suitable for solving strong nonlinear problems. HAM was first applied to 74 

water waves in infinite water depth by Liao and Cheung (2003). Later, Tao et al. (2007) 75 

successfully extended Liao and Cheung (2003) to water of finite depth. Xu (2006) applied HAM 76 

to investigate nonlinear wave and uniform current interaction in infinite water depths. It was 77 

shown that the phase velocity of the waves in deep water obtained by HAM agrees well with 78 

experimental measurements. In the framework of HAM, Cheng et al. (2009) investigated the 79 

interaction of deep water waves and exponential shear currents. Liu et al. (2014) considered the 80 

phase velocity effects of bi-chromatic wave interaction with exponentially sheared currents by 81 

means of HAM. Examples can also be found in the literature demonstrating the effectiveness 82 

of HAM to solve more complicated wave-wave interaction problems (Liao 2011; Xu et al. 2012; 83 

Liu and Liao 2014; Lin et al. 2014). 84 

The objective of the present study is to investigate the interaction between steep waves and 85 

strong uniform currents in water of constant finite depth by HAM. In contrast to a perturbation 86 

solution, the HAM series solution is independent of small parameters and thus possesses 87 

considerable accuracy for strongly nonlinear problems. By including constant water depth in 88 

the solution procedure, the present work further investigates the influence of water depth on the 89 

nonlinear wave-current interaction problem in detail due to its significance in the shallow water 90 

coastal region. To validate the effectiveness of the present approach, experiments are conducted 91 

and the data are used to compare with the present HAM solution. The present paper is organized 92 

as follows. The following section provides a description of governing equations and boundary 93 

conditions; HAM is presented for a wave-current interaction problem; and the detailed solution 94 



 

 

 

techniques are discussed. Following this section, the experimental setup and measurement 95 

techniques are described. Finally, detailed analytical results about how opposing currents and 96 

water depths influence the wave parameters of wave-current coexisting fields are presented. 97 

Theoretical Consideration 98 

Governing Equations and Boundary Conditions 99 

The Description of Wave-Current Interaction 100 

Consider the interaction between two-dimensional, nonlinear, progressive waves and a uniform 101 

current in water of finite depth. The fluid is assumed to be inviscid and incompressible, and the 102 

flow is irrotational. A Cartesian coordinate system ( , )x z  is adopted where the x-axis is 103 

positive in the direction of wave propagation, and the z-axis is positive vertically upwards from 104 

the still water level as shown in Fig. 1. The quantities  * , ,x z t  and  ,x t  are defined as 105 

the velocity potential and the wave elevation, respectively. The fluid motion described by the 106 

velocity potential  * , ,x z t  is governed by the Laplace equation: 107 

   2 * , , 0, , ,x z t x d z x t                       (1) 108 

and subject to two free surface boundary conditions: 109 

 
* *

0, ,
   

   
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z x t
t x x z

                       (2) 110 

     
*
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0

1 1
, ,
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
      


g U z x t

t

                  (3) 111 

and the following condition at the bottom: 112 

*

0,


  


z d
z


                           (4) 113 

where ( / ,  / )x z      , t denotes time, g  is gravitational acceleration, d  is the water 114 

depth and 0U  is the uniform current velocity. Since gravity capillary waves caused by surface 115 

tension are quite small compared to their wavelengths, the effect of surface tension is neglected. 116 

By means of superposition for potential theory, the total velocity potential of the wave-current 117 

co-existing field is given by 0U x    , where   denotes the wave velocity potential. 118 



 

 

 

Combining Eqs. (2) and (3), the boundary condition becomes: 119 

           
* *

2 * *
* * *

2

1
0, ,

2
g z x t

z tt
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                    

 (5) 120 

Substituting 0U x     into Eqs. (1), (3), (4) and (5), the governing equation becomes: 121 

   2 , , 0, , ,x z t x d z x t                       (6) 122 

which is subject to two nonlinear free surface conditions: 123 
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     (8) 125 

and the following bottom boundary condition:  126 

0,

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

z d
z


                           (9) 127 

Variable Transformation 128 

The objective of this paper is to study the interaction between nonlinear progressive waves 129 

and a uniform current in an arbitrary, uniform water depth. Without loss of generality, assume 130 

that the wave-current co-existing field is made up of a current and a wave component with wave 131 

number k  and corresponding angular frequency  . It is convenient to define the phase 132 

function 133 

0  kx t                              (10) 134 

where 0  denotes an arbitrary, constant phase for zero time at the origin of the ( , )x z  135 

coordinate system. The above variable can be used to replace the variables x  and t, and then 136 

the time, t, will not appear explicitly for a steady wave-current system. Thus, one can express 137 

the potential function ( , , ) ( , )x z t z   , and the wave elevation  , ( )x t    for the co-138 

existing field of one train of progressive waves and a uniform current. With these definitions, 139 



 

 

 

the governing equation becomes: 140 

2 2
2 2

2 2
ˆ 0, ( )

   

 
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 

k d z
z

            (11) 141 

which is subject to the bottom boundary condition: 142 

0, z d
z


  


                        (12) 143 

and the nonlinear free surface conditions: 144 
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1
, ( )U k f z
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    (14) 146 

where 147 

1 ˆ ˆ
2

  f                            (15) 148 

ˆ ˆ       

f 
 

                       (16) 149 
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f f

f k
z z

 
 

                  (17) 150 

and  ˆ = / , / .k z      151 

HAM for the Wave-Current Interaction 152 

The Solution Expressions 153 

  By satisfying the Laplace Eq. (11) and bottom condition Eq. (12), the velocity potential 154 

( , )z   can be expressed by a set of base functions 155 

   cosh ( )
sin 1

cosh( )

   
  

mk z d
m m

mkd
                  (18) 156 

in the form:  157 

  
1

( , ) ,m m

m

z b z   
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

                      (19) 158 



 

 

 

where  159 

     cosh ( )
, sin

cosh( )
m

mk z d
z m

mkd
  


                (20) 160 

and ( 1,2, )mb m   are coefficients. This provides us with a rule for the solution expression 161 

for ( , )z  (Liao, 2003). It should be noted that Eq. (19) automatically satisfies the governing 162 

equation (11) and the bottom boundary condition (12). Accordingly, the wave elevation can be 163 

expressed by a set of base functions: 164 

  cos 1m m                         (21) 165 

in the form: 166 

 
1

( ) cos




 m

m

a m                        (22) 167 

where ma  are coefficients to be determined. 168 

Zeroth-Order Deformation Equation 169 

In the framework of HAM (Liao, 2003), there is great freedom to choose the linear auxiliary 170 

operator. According to the linear part of the nonlinear boundary conditions (13) and (14), two 171 

linear auxiliary operators are chosen as: 172 

   1     L                            (23) 173 

  2
2

2

2

 
 


L g

z

  
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                      (24) 174 

where  175 

 tanhgk kd                           (25) 176 

Based on the nonlinear boundary conditions, two nonlinear operators can be defined as: 177 
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          (27) 179 

Then the zeroth-order deformation equation can be constructed as: 180 

 2ˆ , ; 0, ( ; )z q d z q       
 

               (28) 181 

which subject to the bottom boundary condition: 182 

 , ;
0,

z q
z d

z

 
  





                    (29) 183 

and the two nonlinear boundary conditions on ( ; )z q   : 184 

       1 0 11 ( ; ) ( ; ), , ; ,q q qc q z q q         
  

L N             (30) 185 

   2 20 01 ( , ; ) ( , ) ( , ; ),q z q z qc z q q              
  

L N          (31) 186 

where  0,1q  is an embedding parameter; 0c  is the so-called nonzero convergence-control 187 

parameter; 0 ( , )  z  is the initial estimate of the potential function; and  , ;z q 


, ( ; )q   188 

and  q  are the mapping functions, respectively.  189 

When q = 0, the zeroth-order deformation Eqs. (28)-(31) have the solution:  190 

0( , ;0) ( , )z z   


                        (32) 191 

( ;0) 0  
                           (33) 192 

When 1q , the zeroth-order deformation Eqs. (28)-(31) are equivalent to the original Partial 193 

Differential Equations (PDEs) (11)-(14), respectively, provided that:  194 

( , ;1) ( , )


z z                            (34) 195 

( ;1) ( )                              (35) 196 

 1                               (36) 197 

Thus, as the embedding parameter q  increases from 0 to 1, ( , ; )z q 


 and ( ; )q   deform 198 

continuously from initial estimates 0 ( , )z   and 0 to become the exact solutions of the original 199 



 

 

 

problem, respectively. Similarly,  q  deforms continuously from 0  to the exact 200 

frequency  .  201 

The Maclaurin series of ( , ; ),z q 


( ; )q   and  q , with respect to the embedding 202 

parameter q , read as: 203 
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where  207 
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Assuming that 0c  is properly chosen so that the Maclaurin series (37), (38) and (39) converge 211 

at 1q , then the so-called homotopy-series solutions are obtained as: 212 
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High-Order Deformation Equation 216 

Substituting the series in Eqs. (37)-(39) into the zeroth-order deformation equations and 217 



 

 

 

equating the like-power of q , the so-called mth-order deformation equations are:  218 
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 


L L  and 1m . The definitions of mS , mS , m ˈ  m , 0

,z m , 
,m i , 228 

( 0,1,2)i
m i   and their detailed derivations can be found in Liao (2011).  229 

The Initial Estimate 230 

Without loss of generality, assume that the wave number k  and the coefficient 1a  in the 231 

wave profile of Eq. (22) are given in the wave-current system. The wave frequency   is 232 

unknown and to be calculated. Liao (2003) has demonstrated that there is great freedom to 233 

choose the initial estimate in HAM. Based on the dispersion relation of the linear wave-current 234 

interaction, the initial estimate of the frequency   is set as: 0 0(1 )( )U k     , where   235 

is a very small, positive real value. The rest of this subsection considers the choice of the initial 236 

estimate for  , z  . 237 



 

 

 

The auxiliary linear operator in Eq. (24) has the property 238 

2[ ]m m m   L                         (54) 239 

where m  is defined by Eq. (20) and 240 

  2tanh ( ) m g mk mk d m                    (55) 241 

Therefore, the inverse operator 1
2
L  is defined as 242 
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m m
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
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
  L                   (56) 243 

Note that the inverse operator 1
2
L  has definition only for non-zero values of m . When 244 

0m  , therefore, 245 

  2tanh ( )g mk mk d m                    (57) 246 

In this paper, there is only 1 0  . Thus, an initial estimate for 0 ( , )z   can be chosen as 247 

   0 1 1, ,=z b z                          (58) 248 

where 1b  is an unknown constant to be determined later.  249 

Solution Procedure 250 

Considering the rule for solution expressions (19) and (22) and the property of the auxiliary 251 

linear operator 2L  in Eq. (54), the right-hand side of Eq. (48) can be expressed as 252 
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(59) 253 

where ,m ib  are coefficients and mI  is related to the right-hand side of Eq. (48). According to 254 

the property of the auxiliary linear operator, 255 

,1 0mb 

           

        

        

(60) 256 

has to be enforced to avoid the so-called secular terms. Therefore, using Eq. (57), it is 257 

convenient to obtain the solution of Eq. (48): 258 
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where ,1mb  is an unknown coefficient to be determined in the ( 1)m th-order deformation 260 

equation. Similarly, according to Eq. (49), there is  261 
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(62) 262 

When 1m   using Eq. (60), the unknown coefficient 1b  in Eq. (58) can be obtained for 263 

the initial estimate 0 ( , )z  . When 2m  , since the coefficient of the primary wave 264 

component is given, there are 265 
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(63) 266 

Thus, Eqs. (60) and (63) provide a set of algebraic equations for 1,1mb   and 1m  ( 2)m   267 

and make the problem closed. The high-order deformation equations can be solved by means 268 

of the symbolic computation software-Mathematica 7. At the th -M order approximations, we 269 

have: 270 
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Optimal Convergence-Control Parameters 272 

For the 
th

m  order approximations  , z   and ( )  , there is still one unknown 273 

parameter 0c , which is used to guarantee the convergence of the approximation series. In order 274 

to choose an optimal 0c , two averaged residual square errors of the boundary conditions are 275 

defined as: 276 
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where kI  is the number of discrete points and / kI   . In this paper, 20kI   is used. 279 

Defining the total averaged residual square error as T
m m m

  E E E , then by solving 280 

0d / d 0T
m c E , the optimal value of 0c  can be obtained, which corresponds to the minimum 281 

value of T
mE . 282 

Experimental Set-up 283 

To provide better understanding on the interaction between waves and currents and validate 284 

the developed analytical model, wave flume tests were carried out at the Education Ministry 285 

Key Laboratory of Hydrodynamics at Shanghai Jiao Tong University, China. The details of the 286 

facility, measurement apparatus and test conditions are described as follows. 287 

Wave Flume 288 

The experiments are conducted in a glass-walled wave flume 60.0 m long and 0.8 m wide 289 

with a fixed water depth of 0.5 m. The schematic of the experimental setup is shown in Fig. 2. 290 

The flume is equipped with a hydraulically driven piston-type wave maker, while wave 291 

absorbers are equipped on the other end to absorb the incident wave energy. The following and 292 

opposing circulating currents are generated by a pump located near the wave maker.  293 

The time series of water surface elevations are recorded by three capacitance wave gauges, 294 

which are represented by filled circles in Fig. 2. These gauges are placed along the flume with 295 

a spacing of 0.5 m. The absolute accuracy of these wave gauges is on the order of ±1 mm. 296 

Before the wave gauges are used, they are calibrated to ensure their accuracy during the tests. 297 



 

 

 

The duration of each record is 120 s. The sampling frequency is 50 Hz. 298 

Both current and wave particle velocity measurements are made using a Nortek acoustic 299 

Doppler velocimeter (ADV) with velocity range 1m/s, sampling rate 200 Hz, and specified 300 

accuracy of 1 mm/s. Detailed measurements of the vertical current profile and wave particle 301 

profile along the centreline of the flume are carried out. 302 

Wave-Current Condition 303 

The experimental conditions are listed in Table 1. The depth-averaged following and 304 

opposing current velocities are approximately 0.135 m/s and -0.139 m/s, respectively, in the 305 

current-only cases. Runs W1-W4 are for waves without a current, while Runs WFC1-WFC4 306 

are waves from W1-W4 superimposed on a following current, and Runs WOC1-WOC3  are 307 

waves from W1-W3 superimposed on an opposing current. The specified wave periods input 308 

to the wave-making system for all cases are set to 1 s, while the corresponding wave periods 309 

measured are almost constant around 1 s. These consistent values indicate that the assumption 310 

of a constant wave period during wave-current interaction is a reasonable one for this theoretical 311 

study. On the other hand, it is noted that differences between measured wave heights and 312 

specified ones will not affect the experiment results as the measured wave heights will be used 313 

in post-processing. 314 

 In the present experiments the measuring section is located 15 m off the wave maker. At this 315 

location it is possible to generate the required test conditions for the duration of sufficient wave 316 

cycles. During this period regular waves coexist with the current, and the relevant experimental 317 

data are recorded before the incident wave train is disrupted by reflected waves travelling in the 318 

opposite direction. Fig. 3(a-d) shows a typical time history of the wave-only surface elevations. 319 



 

 

 

As can be seen in Fig. 3(a-d), the time histories of wave elevations for the wave-only Cases 320 

W1-W4 (around 20 to 70 seconds) appear to be quite stable, even for Cases W3 321 

( 1 0.25, 2.0a k kd  ) and W4 ( 1 0.30, 1.9a k kd  ), with relatively high wave steepness and 322 

low water depths. For these values of the parameters 
1a k  and kd , Mclean (1982) pointed out 323 

that Stokes wave trains without current interaction are unstable to 3D perturbations. However, 324 

it is clear that the 3D perturbation effect in Cases W3 and W4 (around 20 to 70 seconds) is not 325 

evident. This indicates that the 3D effect in the present experiments conducted in the wave 326 

flume with the given configuration (60 m×0.8 m) is rather weak. Ma et al. (2010) also reported 327 

that experiments conducted in a wave flume with the same configuration (60 m×0.8 m) can 328 

ensure two-dimensionality of the wave field. Fig. 4(a-d) shows a typical time history 329 

comparison between wave-only cases and wave-current coexisting cases. It is worth noting that 330 

the relatively stable parts of the time histories of wave elevations for the coexisting wave-331 

current Cases WFC3 (
1 0.17, 1.8a k kd  ) and WOC3 (

1 0.28, 2.4a k kd  ) occur around 40 332 

to 46 seconds in Fig. 4(c). For Case WFC4 (
1 0.21, 1.7a k kd  ) this relatively stable portion 333 

occurs around 20 to 26 seconds in Fig. 4(d); these stable sections were extracted from the initial 334 

phase of the complete time history of wave elevations (up to 100 seconds) for the corresponding 335 

cases as shown in Fig. 5(c1-c2, d). As seen in Fig. 5(c1-c2, d), the latter parts of the time 336 

histories of wave elevations for Cases WFC3 and WOC3 (around 55 to 95 seconds), as well as 337 

WFC4 (around 40 to 90 seconds), appear to be unstable. Since it is not the focus of the 338 

present study, no special wave gauges were arranged to obtain sufficient data to study 339 

the instability due to 3D perturbation effects in the experiment. In the present paper, the 340 

experimental measurements are used to make a comparison with the 2D HAM solution 341 



 

 

 

without any perturbation. Only the relatively stable parts of the time histories (after the initial 342 

phases) for Cases WFC3 and WOC3 (around 40 to 50 seconds), as well as Case WFC4 (around 343 

15 to 30 seconds), as shown in the box in Fig. 5(c1-c2, d), were utilized in post-processing. 344 

These stable sections were extracted and compared to those of the wave-only Cases W3 and 345 

W4 as shown in Fig. 4(c-d). In addition, Fig. 5(a1-a2, b1-b2) was obtained from 346 

experimental measurements for a range of low wave steepness, i.e., Cases W1 347 

( 0.1, 2.1ak kd  ) and W2 ( 0.17, 2.0ak kd  ) with following and opposing currents; as can 348 

be seen in the figure, the complete time histories of wave elevations from 20 up to 70 349 

seconds remain stable. This indicates that during the recording period (around 20 to 70 350 

seconds), 3D perturbation effects are not evident for Cases W1 and W2 with following 351 

and opposing currents, i.e., Cases WFC1 ( 0.07, 1.8ak kd  ), WOC1 ( 0.13, 2.5ak kd  ), 352 

WFC2 ( 0.12, 1.7ak kd  ) and WOC2 ( 0.24, 2.4ak kd  ). 353 

Results and Discussion 354 

The analytical model, which is proposed as a solution of the interaction between nonlinear 355 

waves and a uniform current, has been validated by comparing analytical results against 356 

experimental data in the following subsection. Based on the accurate homotopy series solutions, 357 

the variation in flow characteristics due to the nonlinear interaction between steep waves and 358 

strong opposing currents is further examined in detail, together with the influence of water 359 

depth. 360 

Validation of the Analytical Model 361 

To validate the analytical model for nonlinear wave-current interactions, the analytical 362 

solutions are compared with the experimental measurements of wavelength and wave steepness. 363 



 

 

 

As shown in Table 2, the relative water depth of each test case in the experiment is 364 

approximately 0.3, corresponding to an intermediate water depth condition. For the same wave 365 

period and wave height presented in Table 2, it can be seen that the wavelength and wave 366 

steepness obtained by HAM are in good agreement with the experimental data for waves with 367 

and without a current. As shown in Table 2, the experiment measured wavelength for Case W4 368 

is approximately 1.647 m, while the HAM obtained wavelength is about 1.640 m. The relative 369 

error between them is 0.4%. Further, Fig. 6 shows wave steepness values from the experimental 370 

data and analytical solution. It can be seen that a notable discrepancy exists for Case WOC3, 371 

i.e., the experimental data and analytical solution for wave steepness are 0.090 and 0.085 372 

respectively. The relative error between these values is 5.6%, which indicates that even for this 373 

case, the agreement between the analytical solution and the experimental data is acceptable. As 374 

shown in Table 2, the maximum total averaged residual square error ( 20)T
m mE  approaches 375 

the magnitude of 
510 , which further demonstrates that all the series approximation solutions 376 

are convergent and possess a high level of accuracy. 377 

It is of interest to validate the effectiveness of the present model for the prediction of wave 378 

kinematics. The HAM solutions of horizontal velocities of water particles at the crest and trough 379 

are compared to the corresponding experimental data. In addition, the present HAM solutions 380 

and experimental measurements are also compared to numerical results obtained by the Fourier 381 

approximation method (Fenton, 1988). Fig. 7 shows the comparison of horizontal particle 382 

velocities at wave crest and trough between theoretical solutions and experiments (for cases 383 

WFC1-4 and cases WOC1-3). It can be observed that the present solutions agree well with the 384 

numerical results obtained by the Fourier approximation method. It is worth noting that the 385 



 

 

 

current distributions measured in the experiments have boundary layers near the bottom, 386 

resulting in a weak influence on the water wave dynamics (see Fig. 7). Therefore, the 387 

discrepancy in the wave kinematics near the bottom is mainly attributed to the shear current 388 

that occurs due to the bottom boundary effect. However, it will not influence the effectiveness 389 

of the present analytical model to predict wave characteristics near the free surface. 390 

The comparisons presented above indicate that the present analytical model is capable of 391 

producing reliable predictions for nonlinear wave-current interaction in water of finite depth. 392 

In the next subsection, we will further investigate the interaction of steep waves and a strong 393 

opposing current and the influence of the opposing current and water depth on the wave 394 

characteristics. 395 

Study of Wave-Current Interaction 396 

To examine the influences of a strong opposing current and water depth on the free surface 397 

and wave steepness, further analytical calculations with the validated model are presented in 398 

this section, and two sets of the wave-current parameters are listed in Table 3 and Table 4, 399 

respectively. 400 

The Influence of an Opposing Current 401 

For a given initial wave period, the influence of an opposing current on the free surface of a 402 

nonlinear wave is considered by varying the opposing current velocities from -0.15 m/s to -0.4 403 

m/s at an interval of 0.05 m/s (Table 3). Fig. 8 shows the free surface profiles for waves 404 

coexisting with different opposing currents at the instantaneous time of 0t  at a water depth 405 

of 0.5 m, in which 1a  is set to 0.05 m and the wave period 1.01T s is kept constant 406 

throughout. The results are non-dimensionalised as / d  and /x d . It can be observed that, 407 



 

 

 

for a given amplitude parameter 1a , the opposing current tends to narrow both the crest and 408 

corresponding trough to condense the wavelength. For example, the wavelength for the wave-409 

only Case C1 is 1.600 m, which is approximately 1.19 times that of the wave-current coexisting 410 

Case C2 ( 1.343 mL ) with minimum opposing current velocity, and it is approximately 1.81 411 

times that of Case C7 ( 0.883 mL ) with maximum opposing current velocity. The variation in 412 

wavelength is evident, which demonstrates that an opposing current leads to a significant 413 

decrease in wavelength. Further, the elevation near the crest increases significantly while the 414 

elevation near trough appears almost unchanged. To clearly see the tendency of wave 415 

characteristics in Fig. 8, the variations in non-dimensional wavelength /L d , wave crest height 416 

1 1/H a
 

and wave trough height 2 1/H a
 

are plotted against non-dimensional current velocity 417 

1/2
0 / ( )U gd  in Fig. 9. From Fig. 9, one can see that /L d  decreases significantly from 3.2 418 

to 1.7 as 
1/2

0 / ( )U gd  increases from 0 to 0.18. It is interesting to note that 1 1/H a  increases 419 

significantly over the range of larger current velocity values. For 
1/2

0 / ( )U gd  values ranging 420 

from 0 to 0.1, values of 1 1/H a  are almost constant around 1.15. As 
1/2

0 / ( )U gd  increases 421 

beyond 0.1, from 0.1 to 0.18, 1 1/H a  increases instantly from 1.15 to 1.35, indicating that a 422 

stronger opposing current tends to significantly increase the wave crest height. However, the 423 

corresponding wave trough height tends to remain approximately constant throughout (also see 424 

Table 3). 425 

To further demonstrate the influence of an opposing current, wave steepness /H L  and the 426 

non-dimensional current velocity 
0 0/U C  for Cases C1-C7 are calculated; the results are 427 

listed in Table 5 and plotted in Fig. 10, in which 0C  is the phase velocity of the linear wave at 428 

the water depth of 1.7d m which corresponds to a deep water wave condition in this paper. 429 



 

 

 

Table 5 also presents the 5th perturbation solution of /H L  for the corresponding wave 430 

condition based on Fenton (1985). It can be seen that, when the opposing current velocity is 431 

low, the wave steepness values obtained by HAM and the perturbation method are almost the 432 

same. When the opposing current velocity increases, however, there exists a small discrepancy 433 

between wave steepness values /H L . It is worth noting that the present model can provide 434 

an estimate of the accuracy by computing the total averaged residual square errors T
mE  of the 435 

th30 HAM solution for each case as shown in Table 5. Besides, compared to the perturbation 436 

technique in Fenton (1985), the present model is much easier to apply and extend to solve more 437 

complex wave-current interaction problems. As shown in Fig. 10, one can see that at a water 438 

depth of 0.5 m, /H L  increases up to 0.125 as 0 0/U C  increases, which indicates that the 439 

wave possesses relatively strong nonlinearity due to the effect of an opposing current. To further 440 

compare the influence of an opposing current on the wave steepness /H L  at different water 441 

depths, the plots of /H L  against the non-dimensional opposing current velocity 0 0/U C  at 442 

different water depths are also presented in Fig. 10. Again, it is seen in Fig. 10 that the /H L  443 

values at each water depth increase consistently as 0 0/U C  increases. Moreover, the wave 444 

steepness increases as the water depth decreases. However, for increases in water depth beyond 445 

0.8 m, the wave steepness tends to be independent of the water depth. It is also observed that 446 

the water depth effect in the Cases with lower current velocity is more pronounced than that in 447 

the Cases with higher current velocity, as shown in Fig. 10. For example, for 0 0/ 0.095U C , 448 

when the water depth varies from 0.4 m to 1.7 m, the variation in the wave steepness is about 449 

0.004, which is about 5% of /H L  at 0.4d m. However, for the maximum opposing 450 

current velocity value of 0 0/ 0.253U C  in this paper, the corresponding variation in wave 451 



 

 

 

steepness is about 0.002, which is only about 1.6% of /H L  at 0.4d m. 452 

Fig. 11 shows the variation of non-dimensional wavelength 0/L L  against non-dimensional 453 

opposing current velocity 0 0/U C  at different water depths d , in which 0C  and 0L  are 454 

the corresponding phase velocity and wavelength of the linear wave at a water depth of 1.7d455 

m. It is clearly seen that at each water depth 0/L L decreases as 0 0/U C  increases. With the 456 

same current strength and water depths ranging from 0.4 m to 0.8 m, a decrease in water depth 457 

also leads to a decrease in wavelength; however, for water depths beyond 0.8 m, the wavelength 458 

tends to be independent of the water depth. It is important to note that the water depth effect on 459 

0/L L  also dominates over the range of lower opposing current velocities and the value of 460 

0/L L  for each water depth tends to approach an identical value as  0 0/U C  increases. For 461 

instance, for 0 0/ 0.095U C , when the water depth varies from 0.4 m to 1.7 m, the variation 462 

in 0/L L  is about 0.038, which is about 4.6% of 0/L L  at 0.4d m. However, for the 463 

maximum opposing current velocity 0 0/ 0.253U C , the corresponding variation in 0/L L  464 

is about 0.003, which is only about 0.57% of 0/L L  at 0.4d m. It is clearly seen that, as the 465 

opposing current velocity increases, the percent variation in the non-dimensional wavelength 466 

due to changes in water depth is much smaller than variations in wave steepness. That is why 467 

the value of 0/L L  for each water depth tends to approach an asymptotic value (about 0.55) as 468 

0 0/U C  increases. 469 

The Influence of Water Depth 470 

To investigate how decreases in water depth influence wave steepness for the case of waves 471 

coexisting with an opposing current, the initial wave period is also kept constant throughout. 472 

Then the influence of water depth on the wave steepness under different opposing current 473 



 

 

 

velocities is considered by varying the water depth from 0.1 m to 0.7 m at an interval of 0.1 m 474 

(for larger water depths) and 0.05 m (for smaller water depths) as shown for 0 0.3 U m/s in 475 

Table 4. For a constant wave period (0.76 s), the wavelengths presented in Table 4 are used as 476 

the input to the present model. From Table 4, it is clearly seen that for water depths ranging 477 

from 0.1 m to 0.3 m, the variation in water depth leads to a relatively significant variation in 478 

wavelength. However, for water depths beyond 0.3 m, the variation in water depth only results 479 

in small variations in wavelength. This is a further demonstration that the water depth has an 480 

evident effect on the wavelength starting from an intermediate water depth condition. 481 

The HAM solutions for wave steepness /H L  for Cases D1-D9 are plotted against relative 482 

water depth /d L  in Fig. 12, and the values are listed in Table 6 with the corresponding total 483 

averaged residual square errors T
mE . As shown in Table 6, for / 0.5d L , a decrease in /d L  484 

leads to a distinct increment in /H L , while for / 0.5d L  (which corresponds to a deep-485 

water wave condition in the present study), the influence of the variation in /d L  on the 486 

/H L  is less evident. On the other hand, although the value of T
mE  for Case D9 is relatively 487 

high (
36.360 10 ), it is noted that the nonlinearity in this case is very high resulting from a 488 

stronger opposing current and shallower water depth. To further investigate the influence of 489 

water depth on wave steepness under different opposing current velocities, additional 490 

calculations are carried out and the results are plotted in Fig. 12. It can be seen in Fig. 12 that 491 

for each opposing current, a transitional point exists and divides the curve into two parts. By 492 

connecting all the transitional points, it is clearly seen that on the left side of the transition line, 493 

the values of /H L  increase significantly as /d L  decreases. On the right side of the 494 

transition line, however, /H L  is independent of /d L . As shown in Fig. 12, /H L  495 



 

 

 

increases to a higher value (approximately 0.12) as the opposing current velocity increases. 496 

This is a further demonstration of the influence of the opposing current on the wave steepness. 497 

Conclusion 498 

  In this paper, an analytical approximation of nonlinear wave-current interaction in water 499 

of finite depth is derived using the homotopy analysis method. Series approximation solutions 500 

are obtained and compared to experimental and available numerical results; they demonstrate 501 

that the present method not only gives highly accurate results of wave parameters for the 502 

interaction between steep waves and a strong opposing current, but the method also produces 503 

excellent results for wave kinematics. Based on the validated analytical model, the interaction 504 

between waves and a strong opposing current is investigated to clarify the influence of the 505 

strong opposing current and water depth on the wave profile, wavelength and wave steepness. 506 

The following key conclusions can be drawn from the present study: 507 

(1) The accuracy and convergence of the series approximation solutions obtained by the 508 

proposed method are verified by estimating the errors of the exact kinematic and dynamic free 509 

surface boundary conditions, and by comparing the present experimental measurements and to 510 

an available numerical solution. This demonstrates the proposed homotopy analysis method is 511 

a very effective technique to study nonlinear waves interacting with a strong current in finite 512 

water depths. 513 

(2) An opposing current leads to significant decreases in wavelength and tends to narrow 514 

both the crest and trough. The wave crest elevation increases as the opposing current velocity 515 

increases, and the wave trough elevation tends to remain constant throughout. 516 

(3) The wave steepness /H L  at each water depth increases consistently as the non-517 



 

 

 

dimensional opposing current velocity 0 0/U C  increases. It is also observed that the water 518 

depth effect in the case of smaller opposing current velocity is more pronounced than that in 519 

the case of larger opposing current velocity. 520 

 (4) At each water depth the non-dimensional wavelength 0/L L  decreases as the non-521 

dimensional opposing current velocity 0 0/U C  increases. The water depth effect on 0/L L  522 

dominates over the range of smaller opposing current velocities, and the value of 0/L L  for 523 

each water depth tends to approach an asymptotic value as 0 0/U C  increases. 524 

 (5) Under the existence of an opposing current, a decrease in relative water depth /d L  525 

leads to an increase in wave steepness /H L . Two regimes exist and are separated by a 526 

transition line: on the left side of the transition line, the value of /H L  increases significantly 527 

as /d L  decreases, while on the right side of the transition line, the value of /H L  is 528 

independent of /d L . 529 

The method presented in this paper can be applied to solve more complex scenarios of 530 

nonlinear wave interaction with strong currents in water of finite depths leading to engineering 531 

applications in the coastal and offshore industries. 532 
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