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Chapter 7

Exploration with 2-by-2
experiments
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7.1 Introduction

7.1.1 What are 2-by-2 experiments ?

The idea of 2-by-2 experiments is the following. After a first work of development, a new
system (denoted by a function f , such as in figure 6.1) is built and a sensitivity analysis
is desired. The first phase of development usually provides a set of values for the input
parameters for which the system globally works and a guess on the range in which they
belong. The sensitivity analysis will explore the influence of the input parameters when they
browse this range.

Sensitivity indices (such as Sobol indices) provide a quantification of the influence of an
input by a single value, without any assumption on the system. But a single value is a very
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short summary of the influence. The form of the function f is a much more fertile knowledge
on the system because it can be interpreted.

So called "One-At-Time" (OAT) methods are very informative about the form of f . Using
the nominal values and the range of variations provided by the development phase, OAT
methods make one input vary while the others are set to a nominal value. By doing so, it is
possible to draw the evolution of outputs when this input varies. But this method looses the
effect of interactions between inputs (Saltelli and Annoni, 2010) and there is a chance that
the nominal value of another input hinders the effects of the moving input.

On another hand, let all the inputs vary is the good method to catch all variations, as
we have seen in sensitivity analysis. But the shape of f is not accessible when all inputs are
moving. Only projections can be drawn, and they are poisoned by the variations of others
parameters.

Let 2 inputs vary is a compromise to keep the drawing capacity of OAT and the possibility
to take interactions into account. Such experiments are denoted as 2-by-2 experiments. It
is a way to check the main features pointed out by the sensitivity analysis. The expected
result is to find the mechanism at the origin of the influence in order to control it (to reduce
uncertainty or to tune the system to various situations). The total experimental plan is
summarized in the table 7.1, but the resulting figures are too numerous to be all included in
the main matter. To make browsing easier, hyperlinks to the appendix are inside the table
7.1. The experimental plan can also be represented by a graph: vertices are input parameters
and edges exists between two inputs for which a 2-by-2 experiment has been carried out. The
resulting graph of the present experimental plan is shown figure 7.1. For each edge of the
graph 7.1, the five outputs have been computed. The inputs connected by the edge are the
only ones to move, the others stay at their nominal value. Both nominal values and ranges
of variation are recap in the table 7.2.

C0 C1 ℓ N σadd σobs σV σX τ

C0 p.303 p.306
C1 p.303
ℓ p.306 p.312 p.315 p.318
N p.312 p.321 p.324 p.327

σadd p.315 p.321 p.330 p.333
σobs p.318 p.324 p.330 p.336 p.339
σV p.342
σX p.336 p.342
τ p.327 p.333 p.339

Table 7.1 – Couples of inputs experimented: results are on the indicated page (hyperlink).
This table is a copy of C.3.
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Figure 7.1 – Graph of 2-by-2 experiments: vertices are input parameters and edges exist
between inputs involved in a common 2-by-2 experiment. The annotated numbers are the
degree of the vertices.

Input Min Max Nominal value Unit

C0 0.3 2.5 2.1 none
C1 0 2.5 0.9 none
ℓ 3 100 10 m
N 400 2500 700 none

σadd 0.1 2.1 0.5 m·s−1

σobs 0.1 2.1 0.5 m·s−1

σV 0 1.1 0.1 m·s−1

σX 0 11.1 1.0 m
τ 5 30 10 min

Table 7.2 – Range of variation and nominal value for each input.

7.1.2 Link with global sensitivity analysis

For global sensitivity analysis, the computer code is seen as a function of all the parameters.
The Hoeffding decomposition of this function allows to attribute the variance on the output
to a group of parameters.

Y = f(X) =
∑

u∈I

fu(Xu) (7.1)

For a 2-by-2 experiment, we look at the same function but with only two parameters
moving. The others are fixed to their nominal value. The 2 parameters varying are denoted
Xi and Xj . It is also possible to write the Hoeffding decomposition on this new model, which
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has only 3 terms :

Ỹ = f̃(Xi, Xj) = f̃i(Xi) + f̃j(Xj) + f̃i,j(Xi, Xj) (7.2)

The two models are linked by the fixation of the parameters Xi,j = {Xk, k ∈ [[1, p]], k Ó=
i, j} to their nominal value xi,j .

L(Ỹ ) = L(Y |Xi,j = xi,j) (7.3)

Because the Hoeffding decomposition is unique, one can identify the terms :

f̃i(Xi) =
∑

u∈I,i∈u

fu(Xi, xu\i) (7.4)

f̃i,j(Xi, Xj) =
∑

u∈I,{i,j}∈u

fu(Xi, Xj , xu\{i,j}) (7.5)

But this relationship are not exploitable without additional assumptions. The main inter-
est of 2-by-2 experiments is to allow a visualization of the response surface and thus to infer
about the shape of the function f .
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7.2 Validation of the tuning strategy

The conclusions of the sensitivity analysis presented in the previous chapter sustain the pos-
sibility to reduce the system to only 3 informative outputs and 3 influential inputs. The
reduced system has two degrees of freedom: σadd (which is unknown in practice) and the
affordable time of execution Texe. It states a tuning strategy for the 3 main inputs which
ensures the reconstruction is then performing well. The tuning strategy consists in setting
σobs with the wind spectrum slope and then to set N by a trade-off between the affordable
time of execution Texe and the desired precision rV .

7.2.1 Setting σ
obs with wind spectrum slope

We have seen is the chapter 1 (REF +précise), that the wind spectum has a characteristic -5/3
slope in log-log scale (see figure 5.32 for an illustration). This output has been shown to be
affected by the inputs σadd and σobs, mainly. It is poorly affected by interactions so that it is
a useful output to tune the inputs. The input σadd is the error made by the instrument, which
is unknown in practice. Conversely, σobs is the guess of this error, and it is the parameter
used in the algorithm instead of σadd. We can expect the system to perform the best when
the guess σobs is equal to the true value σadd.

Figure 7.2 shows the result of the 2-by-2 experiment when σobs and σadd are the only input
moving. The displayed output is the wind spectrum slope b. One can see the clear influence
of both variable. The red plan in the middle of the figure stands for the theoretical -5/3 value.
The black line represents the equality of the two inputs. In the area where σobs < σadd (right
hand side of the figure, where the ground is red), the wind spectrum slope is higher than the
expected value. Indeed, the true observation noise (σadd) is higher than its guess (σobs) thus
the filter let some noise left in the estimation. Conversely, in the area where σobs > σadd (left
hand side of the figure, where the ground is blue), the wind spectrum slope is lower than
the expected value. There, the filter overestimates the amount of noise and removes to much
power in the highest frequencies. The sensitivity analysis and this response surface show the
wind spectrum slope is very sensitive to this setting. One can see that the response surface
seems to cross the -5/3 value when σobs and σadd are equal. This feeling is confirmed by a
look at the cross-sections in figures 7.3 and 7.4.

Figure 7.3 shows the evolution of the output b against σadd, for different values of σobs.
Each solid curve corresponds to a different value of σobs (precised in the key). The -5/3 value
is the horizontal dashed line. The vertical dashed lines are where σadd is equal to one of the
value of σobs displayed. One can see that the solid lines cross the horizontal dashed line when
σobs = σadd (it is less clear for small values of σobs). The observation is the same for the figure
7.4 which displays the evolution of the output b against σobs, for different values of σadd. It
sustains that the output b has the expected value when σobs = σadd.

It also confirms the tuning strategy. For a given instrument, σadd is fixed. The parameter
σobs should be set the same value. The strategy consists in drawing the output b against σobs
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and to pick the value of σobs which gives the wind spectrum slope the closest to -5/3.

Figure 7.2 – Evolution of b when only σadd and σobs vary. The sampling grid has 20 values
of σobs and 20 values of σobs (400 points in total). The red plan is at the level b = −5/3
(theoretical expected value).
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Figure 7.3 – Evolution of b when σadd vary,
for different values of σobs. Horizontal dot-
ted line is b = −5/3. Vertical dashed lines
signalize when σadd = σobs for each value of
σobs.

Figure 7.4 – Evolution of b when σobs vary,
for different values of σadd. Horizontal dot-
ted line is b = −5/3. Vertical dashed lines
signalize when σadd = σobs for each value of
σadd.

7.2.2 Variations of the wind RMSE against the main inputs

Among the 5 outputs, the TKE RMSE and the number of null potential have been dismissed
because of their complex variations, unsuitable to a tuning strategy. The execution time
depends only on N and the wind spectrum slope is exploited to set σobs equal to σadd. The
wind RMSE is thus the only relevant score to assess the wind retrieval with reconstruction.
It has been shown that this score depends mostly on the first group of parameters: N , σadd

and σobs. Since it also have been shown that the influence of these inputs could be complex
because of interactions, the 2-by-2 experiments will be fully exploited here. Three 2-by-2
experiments are required to completely visualize the influence and the interactions of these
three main inputs. The figure 7.5 (respectively 7.6 ; 7.7) shows the variations of the wind
RMSE when only N and σadd (repectively N and σobs ; σadd and σobs) are moving.

In the figure 7.5, one can see the wind RMSE steadily decreases with N , whatever the
value of σadd. The theorem 5.1 predicts a 1/

√
N decrease of rV , which look confirmed here,

independently from σadd. The effect of σadd is to increase the RMSE. But one can see that this
increase is not linear. As long as σadd < 0.5, the RMSE does not increase and then increases
rapidly (the increasing speed depends on N). The 0.5 threshold is interesting because it is
the nominal value of σobs.

In the figure 7.6, one can see the effect of N is the same as in figure 7.5. The effect of
σobs is interesting. It shows a minimum around the value σobs = 0.5 which corresponds to
the nominal value of σadd. It sustains that the reconstruction is performing the best when
σobs = σadd.

Figure 7.7 crosses the effects of σobs and σadd already observed. Two areas are to consider:
when σobs < σadd and σobs > σadd. As long as σadd < σobs, there is no effect of σadd on
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Figure 7.5 – Evolution of rV when only N and σadd vary.

the RMSE and σobs makes it increase linearly. When σobs > σadd, the evolution of the wind
RMSE is much more complex. It fastly increases with σadd. The effect of σobs is in two stages:
for very small σobs the RMSE increases and reaches a maximum and then decreases up to
the point where σobs = σadd (after what it increases again, as mentioned previously). In any
case, there is a low on the line σobs = σadd.

The best choice for σobs is thus to be equal to σadd. We have seen this can be obtained
quite safely by the tuning with the wind spectrum slope. Once this setting has been made, one
can see the evolution of wind RMSE against σadd and N in figure 7.8. The RMSE increases
linearly with the observation noise and decreases as 1/

√
N , as the regressions in figure 7.9

show. Hence the wind RMSE can be approached by the relation (7.6) when the input σobs is
correctly set.

rV = K
σadd

√
N

(7.6)

The constant K is estimated by ordinary least squares on the points of the surface 7.8 The
resulting value is K = 2.33. One can see in the figure 7.9 that the wind RMSE is always
lower that the input σadd, even for very low N . For example, if one has a lidar making a
error σadd = 1.19 m·s−1 (middle line in figure 7.9), the error on the wind at the output of
the filter is below 0.2 m·s−1, even with only 500 particles. It reduces the noise about 83% for
the lowest N tested and rate raises up to 93% with N = 2500. It shows the efficiency of the
wind retrieval with the reconstruction. Even for an instrument quite noisy, the filter lessens
strongly the inaccuracy on the wind.

208



Figure 7.6 – Evolution of rV when only N and σobs vary.

Figure 7.7 – Evolution of rV when only σadd and σobs vary.
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Figure 7.8 – Well set case: evolution of rV when only N and σobs vary with σobs = σadd.
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Figure 7.9 – Evolution of rV with N when σobs = σadd. Regressions (dashed lines) show the
observed decrease is close the square root, as predicted by the theory.
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7.2.3 Effect of N on the execution time

The number of particles is the only parameter to have an influence on the execution time
Texe. The 2-by-2 experiments confirm this claim (see the results for Texe in the appendix,
page 361). By regression, as shown in the figure 7.10, the rate of increase seems to be a power
law:

Texe = Na (7.7)

The parameter a is estimated by ordinary least squares is a = 1.75. According to this relation,
twice the number of particles multiply by 3.36 the execution time. The other regression
tested is exponential (Texe = 2N/a), but it seems less in agreement with the observations.
Nevertheless, according to the exponential relationship, the time of execution should double
each 515 particles. They are key figures to dimension numerical experiments.

Figure 7.10 – Evolution of Texe with N for different values of σobs. Regressions (dashed lines)
show the best fit is a power function.

7.2.4 Tuning strategy for the reconstruction

The best wind retrieval is thus obtained with the following three inputs values:

• σadd the smallest,

• σobs equal to σadd,

• N the highest.

Although σadd is fixed by the instrument, this result helps to assess which precision is afford-
able for a given instrument. Even for inaccurate instrument, the resulting error is much lower
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than the raw error. The number of particles is bounded by the affordable time of execution.
Examining these results, the following tuning strategy seems to be the most appropriate:

1. Set N to a low value, such that Texe is really small.

2. For σobs ranging around the a priori accuracy of the instrument, calculate the wind
spectrum slope b.

3. Set σobs to the value which gives b the closest to -5/3. σobs is then almost equal to σadd.

4. Set N to the maximum affordable value. The error on wind retrieval is now minimum,
estimated by K σobs√

N
with K = 2.33
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7.3 Other interesting results

7.3.1 On the bad construction of the score rk

After the sensitivity analysis, the output rk (TKE RMSE) have been shown to have very
complicated behaviour, including high order interactions. As a consequence, it cannot be
used to tune the output. We will see at the examination of the 2-by-2 experiments that the
interpretation of the score rk itself is also complex, which makes it an irrelevant score.

Figure 7.11 depicts the surface response when only ℓ and σadd vary. σadd is the most
influential input. Although its interaction with ℓ does not have a high Sobol index, one can
see in the figure 7.11 that they are clearly interacting. The effect of σadd depends on the value
of ℓ. The shape of the response surface is complex and no clear interpretation can explain
it. When ℓ is large, the local average is no longer local and converges to a spatial average.
When ℓ is large, the RMSE rk reaches a minimum when σadd = 0.9. The value of σadd where
this minimum is reached increases when ℓ decreases. One of the unclear interpretations about
this could be that RMSE on TKE is the lowest when the instrument has a variance of error
comparable to the ambient turbulence. This could be checked by changing the reference wind
in the system, but it has not been done here. The effect of ℓ is due to the local average used
to compute the TKE. By using another TKE estimator, for example the STKE defined in the
section 1.4, one should retrie the same evolution as ℓ is maximum.

Figure 7.11 – Evolution of rk when only ℓ and σadd vary.

Figure 7.12 is the response surface when only N and τ vary. Both have quite small Sobol
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indices, but τ showed an asymmetric influence on the cobweb plot 6.25. In the figure 7.12
one can see that τ does have an influence, while N has no influence at all. The non influence
of N is retrieved in the others 2-by-2 experiments in the appendix. The weird effect of τ is
confirmed as well by others 2-by-2 experiments in the appendix. This effect is due to the
construction of the score rk. The time average operator introduce some threshold effect that
is visible here. This effect makes difficult the interpretation of the score.

Figure 7.12 – Evolution of rk when only N and τ vary.

Finally, the figure 7.13 shows the response surface rk against σadd and σobs. rk is minimum
when σadd = 1.6 and σobs is not too small. When σobs is not too small, this minimum disap-
pears. There is no low on the line σobs = σadd, as for the wind RMSE. It tells that knowing
perfectly the instrument error does not help to improve rk. Whatever, is the guess of the
instrument error σobs, if the real σadd is not at the good value (related to ℓ as seen in 7.11
and probably related to the ambient turbulence), the TKE retrieval will not work. This is a
very bad issue for this score because it depends on arbitrary parameters (ℓ) or uncontrollable
(ambient turbulence) or unknown (if the previous reasoning are wrong). In any case, this
output is hardly useful in practice.

The 2-by-2 experiments give more insight about the variations of rk. But they are complex
and there is no satisfying interpretations for them. Unverified interpretations could be that
the score rk depends on the balance between the instrument error σadd and the ambient
turbulence, and not on the balance between σadd and its guess σobs. Hence, the conclusion
of this analysis is that the score rk is not well constructed and is not very informative about
the system.
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Figure 7.13 – Evolution of rk when only σadd and σobs vary.

7.3.2 Influence of C0 and C1

The inputs C0 and C1 have been put in the second group of influence in the last chapter.
They have a notable influence but the interaction share was the argument to put them out of
the first group. Another argument was that turbulence modelling provide estimation of them.
In particular, Pope (1994) proposes the relationship C1 = 1

2 + 3
4C0 with the value C0 = 2.1.

Nevertheless, the 2-by-2 experiments can give more insight about their influence and check if
such relationship is visible in the outputs.

On the output b (wind spectrum slope) they were mentioned to be influential. Figure 7.14
shows the evolution of b when only C0 and C1 vary. One can see the response surface crosses
the -5/3 value around the thick line, which has for equation C1 = 1

2C0. The dashed line has
the equation suggested by Pope C1 = 1

2 + 3
4C0. The black dot is where the nominal values

have been chosen. The equation suggested by Pope looks wrong in this figure because it has
been designed for 3D flows while this one is only 1D. The nominal values are close to optimal
line.

On the output NG0 (number of null potential), C0 and C1 were spot as influential (re-
spectively second and third total Sobol index in figure 6.3). In the figure 7.15 is displayed
the evolution of NG0 against C0 and C1. Although the sensitivity analysis let think that NG0

has complex variations when C0 and C1 vary (because of interactions), the response surface is
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Figure 7.14 – Evolution of wind spectrum slope when only C0 and C1 vary. The black dotted
line are the points where C1 = 1

2C0. The dashed line has for equation C1 = 1
2 + 3

4C0. The
dot denote the nominal values.

very smooth. One can see that a range of values are admissible (they give no null potential)
and another is not. The same lines as in the previous figures are plotted (C1 = 1

2 + 3
4C0,

Pope’s result, is the dashed line ; C1 = 1
2C0, the convenient equation for the wind spectrum,

is solid dotted). The line that was admissible for the wind spectrum (C1 = 1
2C0, solid dotted)

is admissible here too. The line given by Pope for 3D flows (C1 = 1
2 + 3

4C0, dashed) is not
very convenient according to this score neither. The nominal values (C0 = 2.1, C1 = 0.9) are
in the admissible area too, close to the dotted line.

On the output rV (wind RMSE), they are also in good position in figure 6.21. The figure
7.16 displays the evolution of wind RMSE when only C0 and C1 vary. The same lines as in
the two previous figures are plotted. As for the two previous figures, the line C1 = 1

2C0 is
admissible (it gives low RMSE) while the line C1 = 1

2 + 3
4C0 is not. The results are thus

consistent among the 3 exploitable outputs. One more thing about the figure 7.16: it shows
the extreme value C1 = 0 always gives the lowest RMSE, which is strange, because it suggests
the model is better without the fluctuation term.

On the output rk the inputs C0 and C1 have a contrary effect, as shows the figure 7.17.
The line C1 = 1

2C0 gives the highest TKE RMSE, while the line C1 = 1
2 + 3

4C0 gives lower
values (still not minimum). The influence of C0 and C1 on rk is antagonist to the influence
on rV . But the sensitivity analysis raised many questions on the reliability of the score rk. It
has been shown to be influenced in a complex way. Moreover, the range of the variations due
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Figure 7.15 – Evolution of NG0 when only C0 and C1 vary. The black dotted line are the
points where C1 = 1

2C0. The dashed line has for equation C1 = 1
2 + 3

4C0. The bullet denotes
the nominal values.

to C0 and C1 is not as broad as other inputs can give. Hence, to set C0 and C1, the choice is
made to choose the effect on rV rather than the effect on rk.

Further examination of the influence of parameters C0 and C1 with 2-by-2 experiments
confirm the influence that was suspected with Sobol indices. The response surfaces are
smoother than what was expected according the interactions in which they are involved.
The wind spectrum gives the sharpest criterion to choose C0 and C1. By visual examination,
the relation C1 = 1

2C0 should be fulfilled to have a -5/3 spectrum slope. This criterion is valid
for the output NG0 and rV too. However, it appears to be the worst choice for the output
rk. But this output suffers from many weakness in its construction. Hence, the effect of rk

is ignored. Thus, the 2-by-2 experiment concludes that C0 and C1 must fulfil the relation
C1 = 1

2C0 to be well set. The nominal point (C0 = 2.1, C1 = 0.9) does not fulfil exactly, it
should be improved easily.
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Figure 7.16 – Evolution of wind RMSE when only C0 and C1 vary. The black dotted line
are the points where C1 = 1

2C0. The dashed line has for equation C1 = 1
2 + 3

4C0. The bullet
denotes the nominal values.
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Figure 7.17 – Evolution of TKE RMSE when only C0 and C1 vary. The black dotted line
are the points where C1 = 1

2C0. The dashed line has for equation C1 = 1
2 + 3

4C0. The bullet
denotes the nominal values.
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7.3.3 Retrieval of known variations of NG0

Figure 7.18 – Evolution of NG0 when only N and σadd vary.

The influence of N , although not visible in the Sobol indices (both in figures 6.3 and 6.41),
is quite clear in figures 7.18 and 7.19. It shows a regular decrease of NG0 as N is rising. We
retrieve the behaviour predicted by the theorem 5.2 which states an exponential decrease of
NG0 with N .

The influence of σadd and σobs is described by the theorem 5.3. This theorem gives an
upper bound for the average number of null potential. This upper bound is displayed in figure
7.21. One can see this bound is very low in a large corner of the figure. The actual number
of null potential, obtained when only σadd and σobs vary, is displayed in figure 7.20. One can
see the same large corner of very low values. This corner is delimited by the black line.

221



Figure 7.19 – Evolution of NG0 with N . Regressions show an exponential decrease.

Figure 7.20 – Evolution of NG0 when only
σadd and σobs vary.

Figure 7.21 – Theoretical average for the NG0

output against σadd and σobs.
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7.4 Conclusion

So-called 2-by-2 experiments are the computation of the surface response when only 2 inputs
vary and the others are kept to their nominal values. It allows visualizations of the surface
response which are not possible in higher dimensions and thus help to find the shape of
the response function f . Such visualizations have been used to confirm the tuning strategy
coming out of the sensitivity analysis. Only few 2-by-2 experiments are necessary, thanks to
the ranking of importance made by the sensitivity analysis. The surface response of wind
spectrum slope and wind RMSE have been commented and confirm the following tuning
strategy:

1. Set N to a low value, such that Texe is really small.

2. For σobs ranging around the a priori accuracy of the instrument, calculate the wind
spectrum slope b.

3. Set σobs to the value which gives b the closest to -5/3. σobs is then almost equal to σadd.

4. Set N to the maximum affordable value. The error on wind retrieval is now minimum,
estimated by K σobs√

N
with K = 2.33.

Beside, some results of the 2-by-2 experiments have been used to check remarkable points.
From these additional examinations, it comes out that

• The score rk has been shown to be not very well constructed because it is not very
informative on the system.

• The inputs C0 and C1 have been left apart from the tuning strategy, they are explored
with 2-by-2 experiments. It yields that the setting fulfilling the relation C1 = 1

2C0 gives
the best results.

• The influence of N on NG0 is in agreement with the theorem 5.2, although not visible
in the Sobol indices.

The full results of 2-by-2 experiments have not been commented all, but they are let available
to the curious reader in the appendix C, page 301.
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8.1 Sobol indices estimated by regression

8.1.1 Motivation

In the chapter 4, several estimators for Sobol indices have been presented. They are all based
on a different way to estimate the average operator in the Sobol index. For example, Sobol
(2001) compares 2 estimators (though denoted λ and µ in the paper, here the notations of
the previous chapter are kept):

D̂u

MC1
=

1

N

N∑

i=1

f(Xi)f(Zi
u, Xi

ū) −
(

1

N

N∑

i=1

f(Xi)

)2

(8.1)
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D̂u

MC2
=

1

N

N∑

i=1

(
f(Xi) − f(Zi

u, Xi
ū)

)2
(8.2)

He shows that D̂u

MC2
has a smaller variance to estimate total Sobol indices, while D̂u

MC1

has a smaller variance to estimate main effect Sobol indices. Moreover, D̂u

MC2
is always

positive, which avoid the estimation to be negative when indices are small. Saltelli et al.
(2010) makes a broader comparison focused on the estimation of first order Sobol indices,
and proposes another Monte Carlo estimator:

D̂u

MC3
=

1

N

N∑

i=1

f(Xi)
(
f(Zi) − f(Zi

u, Xi
ū)

)
(8.3)

Owen (2013) also makes a comparison of several estimation strategies and proposes a new
estimator with the concern of improving the estimation of small Sobol indices.

Among all these estimators, the estimation method of V (E [Y |Xu]) is modified to improve
its efficiency (smaller variance, more efficient calculation) or to retrieve valuable properties
(positivity, asymptotic normality). In this section, we present another type of estimation,
based on a linear regression. When sensitivity analysis comes to the user, a complete set
of Sobol indices is not always informative. The interpretation of the highlighted sensitivity
is the final result of the sensitivity analysis. Only few coefficients are relevant to describe
the contribution of variance. Poorly influential groups are not taken into account in the
interpretation of the Sobol indices, even though their Sobol index is not exactly zero. Using
a linear regression opens to all feature selection techniques and makes the final result easier
to interpret. It also gives an alternative way to get estimators with good properties. In
addition, the optimisation formulation of regression takes profit of many efficient off-the-
shelves algorithms to make the minimization. Three estimators are presented and compared:

• The least squares estimator : Ŝu

ls

• The Lasso estimator : Ŝu

l1

• The best subset estimator : Ŝu

l0

First, the Sobol index estimation with regression is stated in a general way. Then, the prop-
erties and the relationship among the three considered estimators are reviewed. A strategy
to set the penalty is also given. Next, a small scale numerical experiment is carried out on
the case of turbulent medium reconstruction.

8.1.2 Linear model statement

The notation will be the same as in the chapter 4:
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• [[1, p]] = {1, . . . , p}

• I is the collection of all subset of [[1, p]] (thus of cardinal 2p).

• u is an element of I.

• | · | the cardinal of the set "·". For example, |u| is the number of indices in u ; and |I|
is the number of groups of indices in I (|I| = 2p).

• I ′ ⊂ I is the number of subsets considered. d = |I ′| 6 2p is its cardinal. For example,
if one is interested in first and second order Sobol indices only, one will have I ′ =

[[1, p]] ∪ {(i, j) ∈ [[1, p]]2}.

• For all u ∈ I, it is denoted ū = [[1, p]] \ u = {i ∈ [[1, p]], i /∈ u}

• X = (X1, ..., Xp) is the vector of random inputs (inputs are assumed independent).

• Z = (Z1, ..., Zp) is an independent copy of X.

• Y = f(X) = (X1, ..., Xp) is the output (also random).

• Xu = (Xi)i∈u is the vector of random inputs in u.

• Zu = (Zi)i∈u is an independent copy of Xu.

• Yu = f(Zu, Xū) is the output when the inputs in u are taken from another independent
realisation.

The aim is to estimate Su = cov(Y,Yu)
V(Y ) . It is the coefficient of the slope of the linear

regression between Y and Yu:

Lemme 8.1. For any set u of indices (u ∈ I ′), when

(au, bu) = arg min
(a,b)

{
E

[
(Y − aYu − b)2

]
+ E

[
(Yu − aY − b)2

]}
(8.4)

then

au = Su

Proof is in the appendix B.3.1.

The lemma 8.1 shows the best coefficient to predict the total variance from the predictor
Yu is the Sobol index Su. The coefficient au in the linear model of the lemma is equal to the
Sobol index even if E [Y ] Ó= 0. The bu coefficient is not interesting to interpret the variance.
Hence, in the following, we will suppose that the output Y is centred: E [Y ] = 0.
The variance of the output can be explained with the linear model (8.5).

Y = auYu + ǫu (8.5)
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The statistical model (8.5) answers the following question: if the output Y has to be explained
with Yu (the same code with the input parameters Xu frozen), how much variance is it possible
to explain? The best approximation of Y as a function of Yu is E [Y |Yu] (it can be seen as the
projection of Y onto Yu). The assumption stated by the linear model is that E [Y |Yu] = auYu.
As a consequence, the error ǫ of such model is a centred and the coefficient au is chosen to
minimize its variance. The variance of ǫu when it is minimum is denoted σ2

0u.

The statistical model (8.5) can be used to estimate only the Sobol index Su. The aim is to
get all Sobol indices at once. The vector of all slopes is denoted a = (au, u ∈ I ′). The vector
of all Sobol indices is denoted S = (Su, u ∈ I ′). These vectors are of dimension d = |I ′|.
Finally, the minimization problem (8.4) is changed into (8.6).

Sls = arg min
a





∑

u∈I′

E
[
(Y − auYu)2

]
+ E

[
(Yu − auY )2

]


 (8.6)

The minimization of (8.6) benefits then from the advances in linear regression. In partic-
ular, we will focus on two penalties to select the most relevant coefficients: the L1 penalty
(problem 8.7, Lasso method) and the L0 penalty (problem 8.8, best subset method).

Sl1 = arg min
a





∑

u∈I′

E
[
(Y − auYu)2

]
+ E

[
(Yu − auY )2

]
+ λ‖a‖1



 (8.7)

with the L1 norm ‖a‖1 =
∑

u∈I′ |au|.

Sl0 = arg min
a





∑

u∈I′

E
[
(Y − auYu)2

]
+ E

[
(Yu − auY )2

]
+ λ‖a‖0



 (8.8)

with the L0 norm ‖a‖0 =
∑

u∈I′ 1au Ó=0 = |{u, au Ó= 0}|.

8.2 Properties and links among estimators

The theoretical Sobol indices from penalized regression have been defined: least squares (8.6),
Lasso (8.7), best subset (8.8). Now we focus on their estimation. The problem is to find an
estimation of the coefficients in the linear model (8.5) from the following data:

Y =




y1

...
yN


 Yu =




y1
u
...

yN
u




for all u ∈ I ′. The samples Y and Yu are denoted the same way as the random variables Y

and Yu they are sampling.
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Moreover, the random variables Y and Yu are assumed centred: E [Y ] = E [Yu] = 0 which
has for consequence

∑N
i=1 yi =

∑N
i=1 yi

u = 0. Since the random variables Y and Yu follow the
same law, we have E

[
Y 2

]
= E

[
Y 2

u

]
= σ2 and so

∑N
i=1(yi)2 =

∑N
i=1(yi

u)2 = σ̂2 ≃ σ2. The
variance of the noise in the linear model (8.5) is denoted σ2

0u = V (Y − auYu).

8.2.1 The least squares estimator

The coefficients of the linear model (8.5) can be estimated with ordinary least squares. The
problem to solve in theory (8.6). In estimation, it is (8.9):

Ŝls = arg min
a





∑

u∈I′

‖Y − auYu‖2
2 + ‖Yu − auY ‖2

2



 (8.9)

For any u ∈ I ′, the solution is given by (8.10):

Ŝls
u = (Y T

u Yu)−1Y T
u Y =

∑N
i=1 yiyi

u∑N
i=1(yi

u)2
(8.10)

The least squares estimator is known to be the BLUE: Best Linear Unbiased Estimator. Its
bias is zero and its variance is minimum among all estimators of the form AY with A ∈ Rd×N

(Gauss-Markov theorem, (Saporta, 2006) section 17.2).

E
[
Ŝls

u

]
= Su (8.11)

V
(
Ŝls

u |Yu

)
= (Y T

u Yu)−1σ2
0 =

σ2
0

σ2
(8.12)

Its expression is the same as the Monte Carlo estimator D̂u

MC1
. Janon et al. (2014) already

pointed out the equality of such estimators (remark 1.3 of the paper) and they proved their
asymptotic normality (proposition 2.2 of the paper). Moreover, the asymptotic variance of the
estimator given by Janon (denoted σ2

MC1) and the variance given by Gauss-Markov theorem
(equation (8.12)) are the same. Indeed, when Y is centred, σ2

MC1 is written

σ2
MC1 =

V (Y (Yu − SuY ))

V (Y )2 From Janon et al. (2014)

=
V (Yu − SuY )

V (Y )
because E [Yu − SuY ] = E [Y ] = 0 and (Yu, Y ) = (Y, Yu)

=
σ2

0

σ2

In conclusion, the least squares method gives the same estimator as crude Monte Carlo.
This estimator is unbiased but asymptotically Gaussian: if the samples Y and Yu are too
small or for small Sobol indices, the variance is high and negative estimations are possible.
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8.2.2 Lasso versus least square

The Lasso method (Least Absolute Shrinkage and Selection Operator) aims to solve a least
squares problem while pushing some coefficients to be exactly 0. It is thus a valuable tool
when the vector of coefficient is sparse (van de Geer, 2016). Having several coefficients equal
to zero makes the statistical model more informative and more easily interpreted: predictors
with a coefficient to 0 are dismissed. The Lasso method was first introduced by Tibshirani
(1996). The principle is to solve the least square problem with a L1-penalty in the function
to minimize.

The use of a L1-penalty is what make some coefficients to be exactly zero. Indeed, the
admissible area has a very different shape with the L1 norm and the L2 norm. This is visible in
the figure 8.1: an illustration with p = 2 is presented. On the right hand side, the admissible
area for the L2 norm is a circle. On the left hand side, the admissible area for the L1 norm is a
square with angle on the axis. The solution of the unconstrained problem (8.6) is denoted β̂LS

in the figure 8.1 and the lines of equal cost are drawn in red. The solution of the constrained
problem is the point in the admissible area the closest to β̂LS according to the cost lines in
red. For the L2 norm (right panel), the solution is on a circle. Both coefficients are likely to
be non-zero. For the L1 norm (left panel), the solution is likely on one of the corner of the
square. On any corner, one the coefficient will be exactly zero.

Figure 8.1 – Illustration of admissible area with L1 and L2 norms. The extreme points are
located on an axis for the L1 norm, thus one of the coefficient is null.
Credit: Par LaBaguette — Travail personnel, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=48816401

The Lasso is written only for the Sobol indices estimation problem. The problem to solve
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is (8.13) and the solution is given by the proposition (8.1).

Ŝl1 = arg min
a





∑

u∈I′

‖Y − auYu‖2
2 + ‖Yu − auY ‖2

2 + λ1‖a‖1



 (8.13)

Proposition 8.1. For any u ∈ I ′, the Lasso and least squares estimators are related according

to the following formula:

Ŝl1
u = max

(
Ŝls

u − ε1, 0
)

with ε1 = λ1
2σ2 .

Proof is in the appendix B.3.2, page 296.

The Lasso method gives an estimator that has a direct relationship with the least squares
estimator. To get the Lasso estimator, the least square estimator is shrunk of ε1 = λ1/(2σ2).
When the least squares estimator is smaller that the shrunk, the Lasso estimator is exactly
zero.

From a Bayesian point of view, the penalty is equivalent to give a prior distribution
to the coefficients a. The L1-penalty imposes an absolute exponential prior distribution:
∀a ∈ a, P (a) ∝ exp(−λ1|a|). Maximizing the likelihood gives the least squares estimator.
Maximizing the posterior probability with an absolute exponential prior gives the Lasso esti-
mator.

The hard part to take profit of the Lasso is to correctly set the penalty λ1. When λ1 → 0,
the estimator tends to the ordinary least squares estimator and there is no benefit to use the
Lasso. When λ1 → +∞, the penalty unrealistically shrinks the coefficients to estimate. Good
predictors will be dismissed, leading to too simple models.

8.2.3 Best subset versus least square

The so-called best subset method (mentioned in (Tibshirani, 1996; Breiman, 1995; Lin et al.,
2010)) adds a L0 penalty to the least square problem (equation (8.8)):

Ŝl0 = arg min
a





∑

u∈I′

‖Y − auYu‖2
2 + ‖Yu − auY ‖2

2 + λ0‖a‖0





with the L0 norm ‖a‖0 = |{i, ai Ó= 0}| denoting the number of non-zero components in a.
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Proposition 8.2. For any u ∈ I ′, the best subset and least squares estimators are related

according to the following formula:

Ŝl0
u = Ŝls

u 1
Ŝls

u
>ε0

with ε0 =
√

λ0
σ2 .

Proof is in the appendix B.3.3, page 298.

The best subset estimator gives also an estimator directly linked with the least square
estimator. When the least square estimator is smaller than the threshold ε0 =

√
λ0/σ, the

best subset estimator is exactly zero. Otherwise, least square and best subset estimators
are equal. The shrinkage is not systematic, conversely to the Lasso. As for the Lasso, the
difficulty is to correctly choose the penalty λ0.

The best subset estimator is optimal in terms of information loss. Indeed, it minimizes
the Akaike information criterion. The Akaike information criterion (AIC) is a metric of the
information loss due to the model (original publication in 1973, republished in the collection
(Akaike, 1998)). The model Y = auYu + ǫu is imperfect and the AIC quantifies the benefit
of adding a new predictor. It is defined by

AIC = 2k − 2 log(L(a))

where k is the number of coefficients to estimate and L is the likelihood function. In our case,
k is the number of non-zero Sobol indices and the likelihood function is given by

log(L(a)) = log(P (Y |a)) ∝
∑

u∈I

‖Y − auYu‖2
2

Hence, the AIC for our problem is exactly the function of a to minimize in the best subset
problem (8.8).

Unfortunately, the minimization with a L0 penalty is a NP-hard problem (Natarajan,
1995). As a consequence, only greedy algorithms can perform the minimisation of (8.8).
For example, in (Tibshirani, 1996), they are estimated using the so-called leaps and bounds

procedure (Furnival and Wilson, 1974).

8.2.4 Lasso versus best subset

Lasso and best subset estimators are both related to the least squares estimator. Transitively,
they are related to each other. The property 8.1 tells the Lasso is soft threshold of the least
square estimator, while property 8.2 tells the best subset is a hard threshold of the least
square estimator. The threshold of Lasso is said soft because it is continuous, while the hard
threshold is not. Shapes of both threshold functions are displayed in figures (8.2) and (8.3).

232



Figure 8.2 – Soft threshold: link between the
Lasso estimator and the least square estima-
tor.

Figure 8.3 – Hard threshold: link between
the best subset estimator and the least
square estimator.

To have the same threshold ε = ε1 = ε0, we need to have the following relation between
the penalty:

λ1 = 2σ
√

λ0 (8.14)

In this case, the relationship between Ŝl0
u and Ŝl1

u is easy to write and valid everywhere but
at the discontinuity (when Ŝls

u = ε).

Ŝl0
u =

Ŝls
u

Ŝls
u − ε

Ŝl1
u (8.15)

When the thresholds are different, one need to distinguish the case ε1 < ε0 and ε1 > ε0 and
then the sub-cases Ŝls

u < min(ε1, ε0), Ŝls
u ∈]ε1, ε0[ and Ŝls

u > max(ε1, ε0). The final result
does not feed the comment. One can see that Ŝl0

u → Ŝl1
u either when ε → 0 (both converge

toward Ŝls
u when the penalty decreases) either when Ŝls

u → +∞. It highlights that the use of
L1 or L0 penalty is only relevant for small Sobol indices. For large Sobol indices, Ŝls

u has the
advantage to be unbiased.

Even with an expression of Ŝl0
u and Ŝl1

u as a function of Ŝls
u , for which the asymptotic

behaviour is known, the asymptotic law of the penalized estimators are not straightforward.
The Delta method does not apply because neither soft nor hard threshold functions are
differentiable.

Lin et al. (2010, 2008) argue in favour of the L0 penalty. They compare L1 and L0 penalties
according to the predictive risk function R(β, β̂) = E

[
‖Xβ − Xβ̂‖2

2

]
and show that the risk

ratio of L0 over L1 is bounded while the risk ratio of L1 over L0 is not. The final estimate
of L0 is better, but the algorithm to get it are not efficient. Indeed, Natarajan (1995) proved
that the L0-penalized least squares is a NP-hard problem. Hence, even if the L0 estimate is
better, more efficient algorithms exist for the L1 estimate.
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8.3 Choice of penalty by cross-validation

8.3.1 General principle of cross-validation

Given a linear model Y = Xβ + ǫ, one wants to estimate β and the uncertainty on the
estimation. The principle of cross-validation is to split the sample X in two part: a part
dedicated to the estimation of the coefficient in the regression, another part dedicated to the
prediction of the model with the estimated sample. On the part dedicated to the prediction,
one has both the reference value (given in the sample) and the predicted value. Hence, one
can have a score of error on the model.

The sample (Y, X) where Y ∈ RN and X ∈ RN×d is divided into one sample (YA, A) used
for the estimation of the coefficient (the training sample), and a sample (YB, B) used for the
prediction and error estimation (the testing sample). We denote NA the size of the learning
sample.

The training phase provides the estimated coefficients β̂ in the linear model Y = βX + ǫ.
The regression (with or without penalty) is performed on the sample (YA, A). For instance,
for the ordinary least squares, we have the formula

β̂ = (AT A)−1AT YA

Using this estimated coefficient, the output is predicted with the predictors of the second
sample. The comparison with the observed output provides an estimation of the uncertainty
of prediction:

ǫ ≃ YB − Bβ̂

In particular, one can check the bias, variance and mean squared error. In our case, we are
interested in the uncertainty of estimation. The uncertainty of estimation has to be derived
from the uncertainty of prediction.
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8.3.2 Uncertainty of prediction and uncertainty of estimation

The uncertainty on prediction quantifies the error made by the model when it is applied
on new data. The uncertainty on estimation quantifies the error made in the estimation by
comparing to a new dataset. By splitting the sample into a training sample and a testing
sample, one can access the uncertainty of prediction. But the uncertainty of estimation is not
directly accessible and has to be derived from the uncertainty of prediction. If we consider a
linear model Y = Xβ + ǫ, with Y ∈ R, X ∈ Rd, β ∈ Rd and we assume we have an estimation
β̂ of the coefficient which is independent of X.

The uncertainty of the prediction Ŷ = Xβ̂ of the variable Y is described by its bias,
variance, and mean-squared error (MSE).

BiY = E
[
Ŷ − Y

]
(8.16)

VarY = V
(
Ŷ

)
= E

[
(Ŷ − E

[
Ŷ

]
)2

]
(8.17)

MSEY = E
[
(Ŷ − Y )2

]
(8.18)

These statistics describe the uncertainty of prediction. But for this application, we are
more interested on the error of estimation: bias, variance and MSE for the estimated coeffi-
cients β.

Biβ = E
[
β̂

]
− β (8.19)

Varβ = V
(
β̂

)
= E

[
(β̂ − E

[
β̂

]
)(β̂ − E

[
β̂

]
)T

]
(8.20)

MSEβ = E
[
(β̂ − β)T (β̂ − β)

]
(8.21)

Note that they all are of different dimensions: Biβ ∈ Rd, Varβ ∈ Rd×d and MSEβ ∈ R.
Although, they are linked by the following relation:

MSEβ = Bi
T
β Biβ + tr(Varβ) (8.22)

where tr(·) is the trace operator.

The uncertainty of prediction and estimation are linked with the following relations when
β̂ is independent from X:

BiY = E [X] Biβ (8.23)

VarY = E
[
XVarβXT

]
+ V

(
XE

[
β̂

])
(8.24)

MSEY = Bi
T
βE

[
XT X

]
Biβ + E

[
tr(XVarβXT )

]
+ σ2

0 (8.25)

Proof is in the appendix B.3.4.

In the case of the Lasso method, the cross-validation is repeated for different values of
penalty. As the estimator given by the ordinary least squares is unbiased, the bias of esti-
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mation should decrease with the penalty. Conversely, a large penalty shrinks the coefficients
and thus reduces the variance of the estimator but its bias grows. In the middle, we expect
the mean squared error to reach a minimum.

lim
λ→0

Biβ(λ) = 0 and lim
λ→+∞

Varβ(λ) = 0

With the testing sample, one can estimate the bias, variance and mean squared error of
prediction (equations (8.16),(8.17),(8.18)). They can be linked to the same statistics for es-
timation (equations (8.19),(8.20),(8.21)) through the formulae (8.23), (8.24) and (8.25). The
penalty is then chosen to minimise the error of prediction MSEY (λ). When this minimum
is reached, the chosen penalty makes a good comprise between bias and variance of estimation.

8.3.3 Application to Sobol indices estimation

For our particular problem, the linear model is not of the form Y = Xβ + ǫ. Instead, we
have d linear models of the form Y = auYu + ǫu. There is only one predictor which verifies
E [Yu] = 0 and E

[
Y 2

u

]
= σ2, for any u. The error ǫu has no reason to be the same for each

model: E [ǫu] = 0 and E
[
ǫ2
u

]
= σ2

0u. Applying the formulae (8.23), (8.24) and (8.25) we have:

Bi
u
Y =

=0︷ ︸︸ ︷
E [Yu]Bi

u
a = 0 (8.26)

Var
u
Y = σ2(Var

u
a + E [âu]2) (8.27)

MSE
u
Y = σ2(Bi

u
a )2 + σ2

Var
u
a + σ2

0u = σ2
MSE

u
a + σ2

0u(1 − σ2) (8.28)

In practice, the estimators of bias, variance and mean squared error of prediction are
accessible through the formulae:

B̂i
u
Y =

1

N

N∑

i=1

(yi
uâu − yi) (8.29)

V̂ar
u
Y =

1

N − 1

N∑

i=1

(
yi

uâu − 1

N

N∑

i=1

yi
uâu

)2

(8.30)

M̂SE
u
Y =

1

N

N∑

i=1

(yi − yi
uâu)2 (8.31)

On the two last series of equation, one can see that the estimator for the bias is useless.
Indeed, despite the link (8.23) between bias of prediction and bias of estimation, despite the
fact that Bia(λ) is expected to increase with λ, the estimator (8.29) cannot be used to retrieve
that trend because of the relation (8.26).
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For the variance and mean-squared error, we would rather have a score for all the coeffi-
cients, not one for each u. Applying the definition of the MSE for any vector of parameters
β (equation 8.21) to the case β = a and β = (auYu + ǫu, u ∈ I ′), the relevant global MSE is
the sum of MSE for each u.

MSEY =
∑

u∈I′

MSE
u
Y and MSEa =

∑

u∈I′

MSE
u
a

tr(VarY ) =
∑

u∈I′

Var
u
Y and tr(Vara) =

∑

u∈I′

Var
u
a

Finally,

tr(VarY ) = σ2


tr(Vara) +

∑

u∈I′

E [âu]2




MSEY = σ2
MSEa + (1 − σ2)

∑

u∈I′

σ2
0u

In the equation of variance, the terms E [âu]2 vary with penalty (they are linked to the bias
which is not accessible). The variations of tr(VarY ) against λ are thus not equal to the
variations of tr(Vara). In the equation of MSE, σ2 = V (Y ) is a constant, σ2

0u = V (ǫu) is the
minimum variance of the least squares problem. It is also a constant (it depends only on u).
The variations of MSEY are the same as MSEa. Hence, the error of estimation is minimum
when the error of prediction is minimum.

In conclusion, the penalty will be chosen to minimize the error of prediction. In the par-
ticular case of centred design, the bias of prediction is longer linked to the bias of estimation.
The variance of prediction rely on additional terms that are still to be estimated to complete
the link between prediction and estimation. As a consequence, only mean-squared error plot
will be used.

8.3.4 Results of numerical experiments

The three estimators presented in the last section will be experimented on the application
case of turbulence reconstruction. The sample of inputs X and Z are generated with latin
hypercubes. For both X and Z, 4000 values of each input are generated. The split between
samples for cross-validation have been made randomly, with a proportion of 65% for the
training sample (2400 values) and 35% for the test sample (1600 values). Once the sample
has been split, the random state of the splitting is saved in case the experiment is repeated
in the same conditions. The experiment have been carried out with the meta-model of the
output rV (the root-mean squared error on the wind) because it is easy to interpret. The algo-
rithm used to minimize the cost functions (least squares and Lasso) is the conjugated gradient.

The figures (8.4) and (8.5) show the evolution of the estimated mean-squared error M̂SEY

of the Lasso for different penalty values. On the left (figure 8.4) the Lasso estimate have
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calculated from the Monte-Carlo estimate, on which the soft-threshold function has been
applied, using the proposition 8.1. On the right (figure 8.5) the Lasso estimate have calculated
by the minimization of the cost function defined by (8.7) (L1 penalized least squares). One
can see a clear minimum on both. Although, the slope is much more regular when the soft
threshold is applied. Indeed, it avoids the weaknesses of the minimization: do not reach the
exact minimum but something close enough, get stuck at a local minimum... Overall, the
comparison of both figures corroborates the minimization is trustworthy. But in the objective
to apply another minimum finder to such curve, the soft threshold one is recommended.
Moreover, the soft threshold one is much faster to compute.

As a conclusion, to find the good penalty value by cross-validation, we recommend to
do first an ordinary least squares regression on the training sample, then to get the Lasso
estimate by soft thresholding for all the penalty values and eventually to compute the mean
squared error on the testing sample. This recommendation holds only for problems which
have a result similar to the proposition 8.1.

Figure 8.4 – Estimated mean squared error
against the penalty in Lasso estimation. Ob-
tained with soft thresholding of the Monte
Carlo estimate.

Figure 8.5 – Estimated mean squared error
against the penalty in Lasso estimation. Ob-
tained with the minimization of the cost func-
tion.

This methodology can be extended to the L0 penalty. The best subset estimator resulting
from L0 penalized regression has been shown to be accessible through a hard thresholding of
the least squares estimator (proposition 8.2). This was the only method of estimation tested
here since only greedy algorithm can solve the L0 penalized minimization. As a consequence,

the parameter to check will not be the penalty λ0 but the threshold ε0 =
√

λ0
σ2 . The Monte

Carlo estimate is calculated on the training sample. For each threshold value, the mean
squared error is estimated on the testing sample. It results the curve in figure 8.6.
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One can see the step-like shape of the curve: the threshold does not have influence until
it reaches the next coefficient value. As a consequence, the minimum is not unique. For this
example, it is reached for a threshold around 0.1, which a large value. It let only two non-zero
indices. It points out the method of selection is not perfect and might be too selective. In
(Fruth et al., 2011) the value of 0.02 is used to threshold second order Sobol indices (figure 2
in the 2011 version on HAL). This value will be used here as well.

Figure 8.6 – Estimated mean squared error against the threshold in best subset estimation.

The figure 8.7 shows the evolution of the coefficients with the penalty. On the x-axis is
the value of the penalty in logarithmic scale. On the y-axis is the value of the estimated
coefficients. One can see that for a penalty almost null, the coefficients are all non-zeros.
Actually they are equal to their ordinary least squares estimate. For a very large penalty, all
coefficients are null. When the penalty decreases, they raise one after another. The introduc-
tion of a new coefficient can sometimes influence the curve of another coefficient. This is the
sign of a correlation between them (as in (Hesterberg et al., 2008), figure 2). No such feature
is visible in the figure. This is not surprising since the inputs of the sensitivity analysis have
been simulated independently. Although it is good to be confirmed by this observation.

Four estimators have been tested: the straightforward Monte Carlo, the ordinary least
squares, the Lasso and the best subset. They are displayed in figure (8.8). As expected, the
least squares (blue) and the Monte Carlo (black dashed line) are two realisations of the same
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Figure 8.7 – Value of the coefficients estimated by Lasso regression against the penalty (in
log-scale). The coefficients are all at 0 for large penalty and raise in order of importance up
to their value as obtained with ordinary least square.

estimator. The Lasso (green) shrinks all the coefficients up to 0. It results that only the
main indices are kept non-zero and the negative estimation of small indices are filtered. The
best subset (yellow) also selects the major coefficients, but it does not shrink them. The hard
threshold was set to the value ε0 = 0.02.
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Figure 8.8 – Three estimators ensuing from regression (coloured bars) are compared to the
Monte Carlo estimator (black dashed line). One can see that the ordinary least square (blue)
gives the same estimation (more or less some randomness due to estimation). The best subset
is exactly equal to the Monte Carlo, excepted for indices smaller than the threshold, which
are 0. The Lasso estimator gives a shrunk estimation bounded to 0.

8.4 Conclusion

Sobol indices summarize the influence of a group of parameters with a real number in [0, 1].
But the number of groups grows exponentially with the number of parameters (if the code
has p parameters, there are 2p groups of parameters). In practice, only few of them are really
influencing the code. Moreover, the interpretation of the Sobol indices will focus only on the
main ones. That is to say, a good estimation of Sobol indices is not necessarily an unbiased
estimation.

Penalized regressions offer biased estimators with lower variance such that the total error
is lower. From the initial remark that Sobol indices can be seen as the estimated parameter
in a linear model, three regression types have been tested. The ordinary least squares give the
same estimate as with Monte Carlo. The L1 penalized least squares give the Lasso estimate.
The L0 penalized least squares give the best subset estimate. The Lasso shrinks all coefficients
and set the smallest ones to exactly zero. The best subset does not shrink the coefficients
but set the smallest ones to exactly zero. They are linked to the least squares estimate with
a soft threshold and a hard threshold, respectively.

To set the penalty objectively, a cross-validation has been carried out for each penalty
value in a given set. The penalty which gives the lowest mean squared error is chosen to
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perform the final estimation. The application of this methodology on a single example has
shown good results, but more experimentations are needed to assess if it can be repeated and
trusted.
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General conclusion

The present thesis analyses the sensitivity of the reconstruction method to filter wind measure-
ments. This is important to improve the ability of lidar to perform turbulence measurements
(in wind farms or in airport, for example). The presentation was divided in two parts: a first
part dedicated to the state of the art of the different fields used in the reconstruction method,
a second part dedicated to the applications and the results. This conclusion summarizes the
original contributions of this work.

Major contributions

Tuning strategy

The results of the sensitivity analysis presented at the chapter 6 underlined key inputs pa-
rameters and relevant output scores. The key parameters are the number of particles, N , the
true observation noise, σadd and the given observation noise, σobs. The relevant output are
the wind spectrum slope, b, the wind RMSE, rV and the execution time Texe. Additional
experiments of the chapter 7 show how the key inputs influence the relevant outputs. From
this knowledge, we highlight a tuning strategy to set the most influential inputs. The tuning
strategy is the following:

1. Set N to a low value, such that Texe is really small.

2. For σobs ranging around the a priori accuracy of the instrument, calculate the wind
spectrum slope b.

3. Set σobs to the value which gives b the closest to -5/3. σobs is then almost equal to σadd.

4. Set N to the maximum affordable value. The error on wind retrieval is now minimum,
estimated by K σobs√

N
with K = 2.33.

Thanks to the tuning strategy coming out of this work, the reconstruction method should
be easier to deploy on new dataset. The benefit of the tuning strategy could be assessed on
other dataset from BLLAST. Beyond, automatic application of the tuning strategy would
help making the reconstruction more autonomous.

Reconstruction system details and behaviour

The reconstruction method was described in previous publications (Baehr, 2008, 2010; Baehr
et al., 2011; Suzat et al., 2011; Rottner and Baehr, 2014; Rottner, 2015). Such publications
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were highlighting the originality of the method in comparison to existing methods and giving
theorems about convergence. Deeper details could not be published because of the patenting
process, which came out to pending in December, 2016 (Baehr et al., 2016). Publications are
now authorized and this thesis is probably the most complete. Another paper, Rottner and
Baehr (2017), was submitted in June 2017, but cannot be as detailed as this document. The
level of details given in the chapter 5 is an important result of this PhD.

In addition, the validation scores built for the sensitivity analysis have been studied and
some theoretical results about their behaviour are demonstrated. The theorem 5.2 links the
number of null potential to the number of particles. It is based on a result from Del Moral
(2004), itself coming from Azuma-Hoeffding’s inequality. The theorem 5.3 links the number of
null potential to the observation noise (true and given). This is an orginal result in agreement
with the numerical experiments of the chapter 7. However, the numerical experiment does
not test the theory. Dedicated experiments shall be carried out before claiming the theoretical
result is matched by the experiment.

Sobol indices estimation

The chapter 8 tests an innovative way of estimation of Sobol indices. The Sobol indices
expressed as a solution of a least squares problem was already known (Janon et al., 2014).
But it has never been combined with penalties, as it is done in optimization under constaints.
The idea is that only the few highest Sobol indices are useful in pratice. To make small
Sobol indices go to exactly zero, a penalty is added to the function to minimize in the least
square problem. The tested penalties are L1 (the sum of absolute value of Sobol indices) and
L0 (the number of non-zero Sobol indices). The L1 penalty shrinks all coefficients and set
the smallest ones to exactly zero. The L0 penalty does not shrink the coefficients but set
the smallest ones to exactly zero. To set the penalty objectively, a cross-validation has been
carried out for each penalty value in a given set. The penalty which gives the lowest mean
squared error is chosen to perform the final estimation. The application of this methodology
on a single example has shown good results, but more experimentations are needed to assess
if it can be repeated and trusted.

Improvements in the implementation

The need of many runs to perform a sensitivity analysis motived the recoding of the recon-
struction code from Scilab to Fortran 90. Indeed, Scilab is a high level interpreted language,
while Fortran is a low level compiled language. The coding with a low level language is much
harder than high level. Software engineering took a large part of the time in this PhD. It
was the opportunity to re-think the algorithms. The conditioning step of the reconstruction
especially, was improved (economy of one loop) The algorithm was presented in the chapter
5. Overall, the computing time was reduced by a factor 150. The 1D code used here processes
2 hours of data in 70 seconds (for 1400 particles). The previous code was processing it in
about 3 hours. This result must be tempered by the fact that the Scilab code performs 3D
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reconstruction.

Prospects

Influence of the meta-model

It is a legitimate to wonder to what extend the presented results and conclusions are dependent
from the choice of meta-model. Although a rigorous assessment (systematic cross-validation
with different kernel types for example) was not possible within the allocated time, the whole
sensitivity analysis was repeated with a Matérn 3/2 variogram instead of the Gaussian one.
The results, in figures 8.9 to 8.12, are presented in the same way that figures 6.37 and 6.38:
the tile has inputs in abscissa, outputs in ordinate and the Sobol indices of a given input for
a given output is depicted in shade of color. First order simple Sobol indices (direct influence
share) are in blue (figures 8.9 and 8.10). The interaction part (difference between total and
simple first order indices) is in green (figures 8.11 and 8.12). The only visible difference is
the line of the output NG0: the interaction share is much smaller with the Matèrn variogram
(as a consequence, direct effect is stronger). This difference is not clear to interpret and it
does not contest the conclusions of this work. Therefore, this experiment is agreeing that the
conclusions are not dependent from the choice of the meta-model.

Figure 8.9 – First order Sobol indices with
Gaussian variogram.

Figure 8.10 – First order Sobol indices with
Matérn 3/2 variogram.
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Figure 8.11 – Interaction part with Gaussian
variogram.

Figure 8.12 – Interaction part with Matérn
3/2 variogram.

Estimation with penalised regression

The results presented in this thesis about the estimation of Sobol indices with penalised
regression are only a demonstrative example. The method should be tested on a complete
real case example, and compared to other well proven estimation methods. Mathematical
properties (invariances, convergence...) of such estimators are still to be explored.

Sensitivity analysis feedback

The sensitivity analysis carried out here was the first ever done in the reconstruction. Strong
of this first experiment, we can do recommendations for a second study.

The scores can be discussed. Although the initial idea of the score RMSE on TKE was
worth to try, it appears to be not as informative as expected. The effects of the integration
time, τ , are compensated in Sobol indices estimation. At the chapter 1, it was told that
spatial and time variances cannot be compared for vertical velocity. The value of this score
is not interpretable, nor are its trends. Instead, an average value of LSKTE would have been
informative. The number of particles rejected at the selection is also a good indicator of
malfunctions in the reconstruction. It could be a good score.

As a first attempt, the stochastic nature of the code was not taken into account (the
argument is that N is always large enough to ensure convergence). In a second experiment,
this aspect should be included. Likewise, instead of estimating a multidimensional Sobol
index, Sobol indices have been estimated independently on each component. Although the
difference of variance (due to units) was an argument to justify the average Sobol indices used
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in the chapter 6, multidimensional Sobol index could be worth to be estimated the next time.

Reconstruction method

The present study was restricted to the 1-dimensional case, for two reasons: the recoding
in Fortran is time-consuming and the 1D code runs faster. Given that the target of this
thesis was to make the sensitivity analysis, the 1D code was enough. However, turbulence is
very different in 3D (see chapter 1 and the comparison between TKE estimators) and lidar
measurements are limited by the Cyclop’s dilemma (while they are not in 1D). Thus, the
extension to 3-dimensional case is a very interesting prospect, even if some major results (like
the tuning strategy) might hold.

Known limitations of the reconstruction method have been recalled in the chapter 5. One
of them is that it does not work in stable conditions. Further work on the Lagrangian model
must be done in order to get a suitable model. Given the differences of nature between
turbulent and stable cases, switching model techniques might be helpful to solve this issue.

The dataset used as a reference was taken in fair weather, well developed turbulence. A
prospect would be to make the same study with another reference. It could tell if the present
study is confirmed whatever the reference is. It is likely that the conclusion will be different
if the reference is taken in sable atmosphere. Although the Lagrangian model is not expected
to work in stable cases, the sensitivity analysis might points out what are the parameters to
change in order to adapt the model to such cases.
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Part III

Appendices
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Appendix A

Theoretical background

A.1 Probability

This section intends to homogenize the knowledge common to most of readers, including
those not practising probability on a daily basis. There exists already myriad of books on
probability where more details (such as demonstrations) and more examples can be found.
Some of them have been used to write this section, as Barbe and Ledoux (1998) (in French)
and Gardiner (2009); Øksendal (2013) (in English) in addition to many roaming lectures.

A.1.1 Elements of measure theory

Let E be a non-empty space in which belong the object to measure. For example, if one wants
to measure lengths, E will be the set of real numbers. The space E will be called the state

space. The set of all parts of E is denoted by P(E). Parts of the state space are accessible
for measure only if they are in a σ-algebra.

Definition A.1 (σ-algebra).

With words A σ-algebra is a subset of P(E) stable by complementarity and countable

union.

Formally E is a σ-algebra if it satisfies the 3 following statements:

• E ∈ E
• ∀A ∈ E , Ac ∈ E
• ∀n ∈ N, An ∈ E ,

⋃

n∈N

An ∈ E

In a set E, there are many σ-algebras. As an example, {∅, E} is a σ-algebra of E (it is
called the coarse σ-algebra). P(E) is a σ-algebra of E (it is called the discrete σ-algebra).
For any subset A ⊂ E, {∅, A, Ac, E} is a σ-algebra of E (it is called the σ-algebra generated

by A).
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A very common σ-algebra is the one corresponding to lengths, surfaces or volumes. On
R, it is the σ-algebra generated by the intervals, denoted by B(R). On a more general space
E, it is the σ-algebra generated by the open sets of E, denoted by B(E). Lengths, surfaces
or volumes are then given by the measure of the elements in the σ-algebra.

Definition A.2 (Measure).

With words A measure µ is an application associating to any measurable element a

positive real number, such that

• the measure of the empty set is zero.

• the measure of the union of disjoint sets is the sum of each set measure.

Formally

µ :
E −→ [0, +∞]

A Ô−→ µ(A)

and satisfies the 2 following statements:

• µ(∅) = 0

• ∀n ∈ N, An ∈ E such that ∀i Ó= j, Ai ∩ Aj = ∅, µ


 ⋃

n∈N

An


 =

∑

n∈N

µ(An)

Intuitively, what in this definition makes it a measure? First, the fact that it is a mapping
that associates to each measurable set a real number. The measure "summarizes" the set by
a real number (for example its size). Second, the additivity: the size of disjoint sets is the
addition of the size of all sets.

The measure defined on B(E) that correspond to lengths, surfaces and volumes is called
the Borel measure λ. When this measure is extended to null subsets1, it is called the Lebesgue
measure and denoted Λ. 2

Probability are measures on another space than the state space. Let space Ω be a space
endowed with a σ-algebra F . A measurable element of the probability space A ∈ F is a called
an event. The space Ω is called the universe.

1a set N is null for the measure λ if ∃A ∈ B, N ⊂ A and λ(A) = 0
2Non measurable elements exist only if one accepts the axiom of choice. But this axiom is controversial

because it yields to paradoxical results, such as Banach-Tarski theorem (well explained in this Youtube video).
In summary any subset of R, unless very exotic, is measurable.
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Definition A.3 (Probability).

With words A probability is a measure with maximum value 1.

Formally

P :
(Ω, F) −→ [0, 1]

A ∈ F Ô−→ P(A)

with P(Ω) = 1.

Hence, the probability for an event to occur is the "size" of the event, as measured by P.

A.1.2 Random variables

Measure theory is the starting point to study random variables. By default, random variables
are real valued, for the sake of simplicity (and because the differences are most of the time
an extension of the notations to complex or multi-dimensional case).

A.1.2.1 Definition

Definition A.4 (Random variable).

With words A random variable X is a measurable function from a probability space

(hidden) to a state space (accessible by measurement).

Formally

X :
(Ω, F ,P) −→ (E, E)

ω Ô−→ X(ω)

where X verifies

∀A ∈ E , X−1(A) ∈ F .

with X−1(A) = {ω ∈ Ω : X(ω) ∈ A}.

Given ω ∈ (Ω, F ,P), the value X(ω) is called a realization of X. The figure A.1 gives a

visual sight of the notation.

The probability space (Ω, F ,P) is considered as hidden. It is the source of randomness:
nothing is known about Ω but the σ-algebra F and the probability P exist. In a coin toss, for
example, Ω could be the R3 × R3 space of the initial position and speed of coin... or it could
be R3 × R3 × R3 space of the initial position and speed of coin and wind speed... or even
more complex. Instead of trying to set what could be influencing the coin, we settle that it is
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Figure A.1 – Diagram to introduce random variables: the random variable X is a measurable
function from an unknown departure space Ω to a measurable arrival space E.

unknown, and the unknown part is the source of randomness. Informally, randomness is an
unknown variable.

A.1.2.2 Probability law

Given a random variable X (definition A.4), the departure space (Ω, F ,P) is equipped with
the measure P. The arrival space (E, E) is measurable. With this ingredients, one can define
a measure on the arrival space: the probability law of X.

Definition A.5 (Law of a random variable).

With words The law ηX of the random variable X is the pushforward image of the

probability P on the state space.

Formally

∀A ∈ E , ηX(A) = P
(
X−1(A)

)

with X−1(A) = {ω ∈ Ω, X(ω) ∈ A}.

To ensure the pre-image X−1(A) is measurable by P, the fact the X is a measurable
function is essential. As P is a probability, ηX arrival values are in [0, 1] :

ηX :
E −→ [0, 1]

A Ô−→ ηX(A) = P
(
X−1(A)

)

As a consequence, ηX is also a probability on (E, E):

ηX(E) = P (Ω) = 1 (A.1)
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A.1.2.3 Probability density function

Usually, in problems with Euclidian geometry, the state space (E, E) is equipped with the
Lebesgue measure Λ (the measure which correspond to length, areas and volumes, including
negligible elements). It is very informative to know how the probability law ηX of the random
variable X is different from the Lebesgue measure Λ. Both ηX and Λ are measures on
(E, E). Given a measurable element A ∈ E , we want to compare ηX(A) =

∫
x∈A dηX(x) and

Λ(A) =
∫

x∈A dΛ(x). In particular, is there a weight function fX (with which properties?)
such that ∫

x∈A
dηX(x) =

∫

x∈A
fX(x)dΛ(x)

The answer of this question is given by the theorem of Radon-Nikodym.

Theorem A.1 (Radon-Nikodym).
Let ν and µ be two positive and σ-finite measures on the measurable space (E, E) such

that µ is absolutely continuous with respect to ν (∀A ∈ E , µ(A) = 0 ⇒ ν(A) = 0).

Then there exists a function h such that

h : E → [0, +∞[, / ∀A ∈ E , µ(A) =

∫

A
hdν

.

The function h is called the Radon derivative of µ with respect to ν (or "density of µ w.r.t

ν") and we denote

h =
dµ

dν

Notice that the function h is almost unique. The ambiguity relies on negligible sets for µ.
The probability density function (or PDF) is the Radon derivative of the probability law,
ηX , with respect to a measure of interest, ν.

Definition A.6 (Probability density function).

With words The probability density function of a random variable X is the weight func-

tion to compare the probability law with a measure of interest ν.

Formally

fX :
E → [0, +∞[

x Ô→ fX(x)

such that

∀A ∈ E ,

∫

x∈A
dηX(x) =

∫

x∈A
fX(x)dν(x)

To be fully exact, one should always precise the measure of interest ν to which the PDF
refers. In our case, the measure of interest is the Lebesgue measure (corresponding to lengths,
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surfaces and volumes): ν = Λ. It follows that fX is Lebesgue-integrable with integral 1.
∫

x∈E
fX(x)dΛ(x) = ηX(E) = 1 (A.2)

The primitive of the probability function with 0 for limit when x → −∞, denoted by
FX(x), is called the cumulative distribution function or CDF. For 1-dimentional real-
valued random variable3, it is defined by equation A.3.

FX(x) =

∫ x

−∞
fX(y)dy = ηX(] − ∞, x]) = P (X 6 x) (A.3)

The last expression allows to define the CDF even when the random variable has no PDF.
For example, the random variable with the Cantor function as cumulative density function has
no probability density function. Indeed, the law of such a random variable is not absolutely
continuous with respect to Lebesgue measure4. Hence the Radon-Nikodym theorem does not
apply. It gives an example of a random variable that have a continuous CDF but no PDF.

A.1.2.4 Expected value

A random variable (function from unknown space) is fully described by its probability law
(measure) or its probability density function (real positive valued function on the state space),
when it exists. The expected value describes the central trend of the random variable by a
scalar5 denoted E [X]. It requires additional regularity of the random variable, expressed with
Lp spaces.

Definition A.7 (Lp space).

With words The Lp space (shortcut for Lp(E, F )) is the ensemble of functions from E

to F , with (E, E , µ) a measured space, which are integrable at order p for the measure

µ.

Formally

Lp(E, F ) =

{
f : E → F

/∫
|f(t)|pdµ(t) < +∞

}

The application ‖f‖p = (
∫ |f(t)|pdµ(t))

1
p is a semi-norm for Lp because ‖f‖p = 0 ; f = 0

(take f = 1x=0(x) for instance). Hence, the space Lp is modified in order to make ‖f‖p a
norm. The modification consists in merging all functions equal almost everywhere, according
to µ.

3When E ⊂ Rn, the cumulative distribution function is defined by integration on the cuboid ⊗n
i=1]−∞, xi].

4if K3 is the Cantor set, ηX([0, 1] \ K3) = 0, while Λ([0, 1] \ K3) = 1
5a single element of the state space. If E is multi-dimensional, E [X] will be multi-dimensional as well.
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Definition A.8 (Lp space).

With words The Lp space is the Lp.

Formally

Lp(E, F ) = {[f ], f ∈ Lp(E, F )}
with [f ] any element of {g ∈ Lp(E, F ), µ({x, f(x) Ó= g(x)}) = 0}.

Applied to random variables, the previous definition with p = 1 is an assumption to define
the expected value. Let X ∈ L1(Ω, E) in the following definition.

Definition A.9 (Expected value).

With words The expected value of a random variable X is the average value of X

considering every element ω in the universe Ω with the measure P.

Formally

E [X] =

∫

ω∈Ω
X(ω)dP(ω) =

∫

x∈E
x dηX(x)

The equality
∫

ω∈Ω X(ω)dP(ω) =
∫

x∈E x dηX(x) come from the definition of ηX and the
substitution x = X(ω).

When X has a probability density function, the integral can be written with the Lebesgue
measure, which is easier to estimate.

E [X] =

∫

x∈E
x dηX(x) =

∫

x∈E
xfX(x) dΛ(x) (A.4)

However, the existence of E [X] is not guaranteed. For example, the Cauchy distribution
has no expected value. Let Z be a random variable with the following PDF:

fZ(z) =
1

π

1

1 + z2
(A.5)

Then zfZ(z) ∼
z→∞ 1/(πz), thus the integral

∫
zfZ(z)dz does not converge. The Cauchy

distribution has no expected value.

A.1.2.5 Momenta

The definition of momenta involves the expected value E [X]. To do so, it is denoted for any
test function ϕ such that

∫
ϕ(x)fX(x)dx converges6,

E [ϕ(X)] =

∫

x∈E
ϕ(x) dηX(x) =

∫

x∈E
ϕ(x)fX(x) dΛ(x) (A.6)

6The equality A.6 also defines the distribution associated to X.
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Momenta are the scalars obtained by choosing ϕ of the form x Ô→ xn with n ∈ N. The
integer n is called the order of the momentum. They are defined for Ln random variables.

Definition A.10 (Momenta).

With words The n-order momentum of a random variable X is the mathematical ex-

pectation of Xn.

Formally

E [Xn] =

∫

x∈E
xn dηX(x)

Centered momentum are often used :

E [(X − E [X])n] =

∫

x∈E
(x − E [X])n dηX(x) (A.7)

In particular, the 2-order centred momentum is the variance of X :

V (X) = E
[
(X − E [X])2

]
= E

[
X2

]
− E [X]2 (A.8)

It is of particular interested because it is easy to interpret as the discrepancy of the random
variable around the mean value. For a Gaussian random variable, mean and variance are the
only parameters needed to know everything about the random variable.

A.1.2.6 Conditional probability

Briefly, we recall some useful results for conditional probability such as the law of total
probability or Bayes’ theorem. Let A and B be two events, with P (B) Ó= 0. The conditional
probability of A given B is denoted P (A|B).

Definition A.11 (Conditional probability).

With words The conditional probability of A given B is the ratio between P (A ∩ B)

and P (B).

Formally

P (A|B) =
P (A ∩ B)

P (B)

The conditional probability is the probability that A and B occur, considering the event
B happens for sure. The events A and B are independent if and only if P (A|B) = P (A).
Noticing that P (A|B)P (B) = P (A ∩ B) = P (B|A)P (A) one gets Bayes’ formula:
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Theorem A.2 (Bayes). Let A and B be two event of (Ω, F ,P) with P (B) Ó= 0

P (A|B) =
P (B|A)P (A)

P (B)

Bayes’ formula gave its name to Bayesian statistics and probability, in opposition to the
historical frequentist approach. The adjective Bayesian has now become synonym of using a

prior knowledge. The names of the terms in the theorem also are commonly used in a broader
sense.

• P (A|B) is the posterior, usually the output of Bayes’ theorem. It tells what happens
after the event B has been taken into account.

• P (A) is the prior, the external knowledge one wants to exploit. It can be a theoretical
insight, some expert advice or the information of a model... The choice of the prior
influences widely the result. The prior knowledge has to be trustworthy to take benefit
of Bayesian formulation.

• P (B|A) is the likelihood, the information usually coming from the observations. The
ratio P (B|A) /P (B) is the normalized likelihood.

Some probability laws are known only conditionally to some events. A useful tool to
exploit such knowledge is the formula of total probability:

Theorem A.3 (Law of total probability). Let A be an event of (Ω, F ,P) and (Bn)n∈N a

partition of Ω and such that P (Bn) Ó= 0.

P (A) =
∑

n∈N

P (A|Bn)P (Bn)
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A.2 Simulation of random variables

As presented in the previous section, random variables are "measurable functions from a
probability space to a state space" (definition A.4). They induce several objects such as
probability law (def. A.5), probability density function (def. A.6), cumulative distribution
function (eq. A.3)... But in practice, one has to transpose these objects into numerical
equivalents, so that actual manipulations on them become possible. This section intents to
present how random variables are generated on a computer. It is important because the
quality of the pseudo-random generator is critical for the filtering method. It also helps to
understand the non-linear filtering algorithm.

A.2.1 Monte Carlo approximation

Monte Carlo approximation consists in using independent copies of the target random vari-
able, X, to estimate valuable information about X (expected value or PDF shape for exam-
ple). As in the previous section, the state space is denoted (E, E , ηX) and the probability space
is denoted (Ω, F ,P). They are both measured space with respective measures ηX (probability
law of random variable X) and P. Let us consider N independent copies of X, denoted by
X1, ..., XN . Throughout the manuscript, the key character " " will mean "follows the law".
As an example, X  U(0, 1) means "X follows the law U(0, 1)" (uniform between 0 and 1).
Thus, for any i ∈ [[1, N ]], Xi  ηX and all Xi are independent.

The expected value, E [X], (when it exists) is approached by an ensemble average with an
almost sure convergence (strong law of large numbers). The ensemble average is an unbiased
estimator of the expected value. For any test function ϕ, we also have almost sure convergence.

E [ϕ(X)] = lim
N→∞

1

N

N∑

i=1

ϕ(Xi)

As the previous equality holds for any test function ϕ, the empirical distribution ηN
X

(defined by < ηN
X , ϕ >= 1

N

∑N
i=1 ϕ(Xi)) converges almost surely toward the target distribution

ηX (defined by < ηX , ϕ >= E [ϕ(X)]). The empirical distribution is expressed with Dirac
distribution (δa is defined by < δa, ϕ >= ϕ(a)).

ηX = lim
N→∞

ηN
X = lim

N→∞
1

N

N∑

i=1

δXi (A.9)

The probability density function, fX(x), (when it exists) is approached by a histogram.
The probability for X to be in a neighbourhood of a point x (let say Vx = [x−∆x/2, x+∆x/2])
is expressed in two ways: one involve the probability density function, the other involve the
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Mathematical object (def)
Numerical
equivalent

Link

Probability law (A.5)
Monte Carlo

approximation
ηX = lim

N→∞
ηN

X =
1

N

N∑

i=1

δXi

Probability density function
(A.6)

Histogram
∫

x∈Vx

fX(x′)dx′ = lim
N→∞

|{Xi ∈ Vx}|
N

Expected value (A.9) Ensemble average E [ϕ(X)] = lim
N→∞

1

N

N∑

i=1

ϕ(Xi)

Table A.1 – Correspondence between theoretical objects and their numerical equivalent with
Monte Carlo method.

histogram.

ηX([x − ∆x/2, x + ∆x/2]) =

∫ x+∆x/2

x−∆x/2
dηX(x′)

=

∫ x+∆x/2

x−∆x/2
fX(x′)dx′

= fX(x)∆x + o(∆x)

(A.10)

ηN
X ([x − ∆x/2, x + ∆x/2]) =

∫ x+∆x/2

x−∆x/2

1

N

N∑

i=1

δXi(dx′)

=
1

N

N∑

i=1

∫ x+∆x/2

x−∆x/2
δXi(dx′)

︸ ︷︷ ︸
=1 if Xi∈Vx, 0 else

=
1

N
|{i, Xi ∈ [x − ∆x/2, x + ∆x/2]}|

(A.11)

The probability density function appears in A.10 (approximation ∆x → 0). The equation
A.11 leads to the proportion of sample present in [x − ∆x/2, x + ∆x/2]. Hence, PDF are
numerically visualized with histograms.

A.2.2 Pseudo-random generators

All valuable approximations in table A.1 rely on the assumption that any Xi is an independent
copy of X. How to obtain such a sample numerically? The main problem is that computer
are deterministic machine. Perfect randomness is thus not accessible, but it is possible to
build pseudo-random generator of numbers.

Pseudo-random generators are recursive sequences chosen to vary rapidly, but still dwell
inside [0,1]. Thus, pseudo-random generators provide approximation of uniform-distributed
samples. The generator of Fortran 90 and Scilab languages are tested, because both have
been used to implement the reconstruction algorithm. Pseudo-random generators are of the
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form of the equation A.12 (Hull and Dobell, 1962).
{

xn+1 = axn + c [mod m]

x0 given
(A.12)

The starting point x0 is called the random seed. Two sequences of same length generated
with the same seed will be equal, even though they look random. This a useful tool to make
repeatable random experiments. The seed can also be modified manually to ensures more
randomness.

A random generator is said good when it fulfils the best the next 4 qualities (by order of
importance):

1. The generated sample follows is uniformly distributed (its discrepancy is low).

2. Individuals in the sample are independent.

3. The period is large.

4. The sample is quickly generated.

The associated tests are recap in the table A.2 and further details are given below.

Tested
criterion

Law = U(0, 1) Independence Period Speed

Test Kolmogorov-Smirnov χ2 Autocorrelation Theory Timing

Table A.2 – Recap of criteria and tests used for the verification of the pseudo-random numbers
generators

The first property is assessed with two statistical tests. The Kolmogorov-Smirnov test
compares the empirical cumulative distribution function with the theoretical CDF of U(0, 1).
The statistic of the test is t = supx |F N

X (x) − FX(x)| where F N
X (x) is the empirical CDF

and FX(x) is the theoretical CDF. The χ2 test compares the empirical histogram with the

theoretical one, given a number of classes. The statistic of the test is t =
∑J

j=1
(Np̂j−Npj)2

Npj

where j is a class, N is the size of the sample, p̂j is the empirical probability for an individual
to be in the class j and pj its theoretical equivalent. For both tests, the null hypothesis is
"the sample follows a U(0, 1)". The conclusions of these tests are shown in table A.3 and A.4.

The second property is checked by having a look on the auto-correlation. In figure A.2
(resp. A.3) is shown the autocorrelation of the Scilab (resp. Fortran) sample. On both
graphics, the blue dashed line draw the punctual 95% prediction interval for an autocorrelation
of 0. As long as the autocorrelation remains in between the two blue dashed lines, it can be
neglected. Except few overshoots, the auto-correlation is within the prediction bound of 0.
Both generators can be assumed to provide independent realisations every time.
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χ2 test : t =
J∑

j=1

(Np̂j − Npj)2

Npj

Score t p-value Conclusion
Scilab 10.954 0.279 > α H0 not rejected

Fortran 9.05 0.4327 > α H0 not rejected

Table A.3 – Results of χ2 test with J = 10 classes and a sample of 104 individuals. The first
type error threshold is chosen to α = 0.05. The null hypothesis "the sample follows a U(0, 1)"
is accepted for both Scilab and Fortran generators.

Kolmogorov-Smirnov test : t = sup
x

|FN (x) − F (x)|
Score t p-value Conclusion

Scilab 0.0093 0.3473 > α H0 not rejected
Fortran 0.0084 0.4829 > α H0 not rejected

Table A.4 – Results of Kolmogorov-Smirnov test with a sample of 104 individuals. The first
type error threshold is chosen to α = 0.05. The null hypothesis "the sample follows a U(0, 1)"
is accepted for both Scilab and Fortran generators.

The third criterion (the periodicity) is given by the parameters in the equation A.12. For
Fortran, the value of 232 − 1 is given in Marsaglia et al. (2003) for 1-dimensional samples.
For Scilab, the documentation of the rand function gives the value of 231. Both are of order
of magnitude 109. If the program needs more random values than the period, the generated
sequence of random value will start over within a run of code. Having a large period ensures
the pseudo-random generators are "random" until the end. To avoid this shortcoming, the
random seed is reset to a new value at different moments in the program.

The last criterion (speed) is tested by timing the generation of the 104 values.

The four criteria and their test are given in the table A.2. The table A.5 gives the
conclusions of these tests : both are good enough pseudo-random generators, Fortran’s one
is better for both speed and period.

Langage Time to generate 104 values (s) Period Independence Uniformity
Fortran 2.3 · 10−4 232 − 1 OK OK
Scilab 3 · 10−2 231 OK OK

Table A.5 – Conclusions of all tests carried out on both generators. Both are good for use,
but Fortran’s one is way faster.
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Figure A.2 – Autocorrelation of Scilab
sample of 10000 values. Values inside the
two dashed blue lines are in the punctual
95% prediction interval of a 0 correlation
estimation.

Figure A.3 – Autocorrelation of Fortran
sample of 10000 values. Values inside the
two dashed blue lines are in the punctual
95% prediction interval of a 0 correlation
estimation.

A.2.3 Non-uniform sampling

As we have seen, pseudo-random generators provide good approximation of uniform-distributed
samples. Others distributions are generated from uniform-distributed samples. Specific solu-
tions exist to generate Gaussian-distributed sample (such as Box-Muller algorithm (Box et al.,
1958)). We are interested in the simulation of any distribution. The distribution transform
is used in the filtering method, to generate the posterior from the prior and the likelihood.

To describe the target distribution, the simplest way is to have a PDF (possibly un-
normed). Let G(x) a function on E that we call the potential. The potential associates to
any x its weight in the target distribution. The interpretation of G(x) is similar to fX(x).
As a consequence, G have to be a real positive and integrable function.

G :
R → [0, +∞[

x Ô→ G(x)
with

∫ +∞

−∞
G(y)dy < +∞ (A.13)

Let (ui)i∈[[1,N ]] be an uniform-distributed Monte Carlo sample. From this sample, we want
to build a G-distributed sample (xi)i∈[[1,N ]]. As an example, we will take G the function
drawn in blue on A.4 (sum of 2 Gaussian because bi-modal and simple). The potential G is
an unnormed PDF. To get an actual PDF, one must use G/

∫
G(y)dy. Its associated normed
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CDF is denoted w and is defined by equation A.14.

∀x ∈ R, w(x) =

∫ x

−∞
G(y)dy

∫ +∞

−∞
G(y)dy

(A.14)

On figure A.4, an example of G is drawn in blue line and the corresponding w is drawn in
red.

Figure A.4 – Example of unnormed PDF (or potential) G in blue (sum of 2 Gaussian) and
its associated normed CDF w.

The cumulative density function goes from the range of variation of X to [0, 1] and is
steeper where G is high. An uniform-distributed sample is converted into a G-distributed
sample by inverting the cumulative density function. Hence, one can build the G-distributed
sample by applying the inverse of w to every (ui)i∈[[1,N ]] (A.15).

∀i ∈ [[1, N ]], xi = inf{x, w(x) > ui} (A.15)

In figure A.5, one can see an uniform-distributed sample (ui)i∈[[1,N ]] on the y-axis, for
which every element is inverted with the w function (same example as in figure A.4). Thus,
on the x-axis is shown the resulting sample (xi)i∈[[1,N ]] which is build according the relation
A.15.

Theoretically, we have seen how to generate G-distributed random variable, for any real
positive integrable function G. But in practice, computer do not use analogic functions but
arrays of data. Hence, it is necessary to convert the previous reasoning in the discrete case
in order to get an algorithm.
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Figure A.5 – An uniform sample is changed into the target law sample using the inversion of
CDF. On the y-axis, arrows are uniform-distributed, on the x-axis they are G-distributed.

Now G denotes an array of size M , (G = (G1, ..., GM ) ∈ RM ) which gives the potential
on a discrete set of points x = (x1, ..., xM ) ∈ RM 7. For any k ∈ [[1, M ]], Gk = G(xk). In
this framework, w = (w1, ..., wM ) ∈ RM is the discrete CDF, and its definition equation of w

(A.14) is changed into (A.16):

∀k ∈ [[1, M ]], wk =

k∑

m=1

Gm

M∑

m=1

Gm

(A.16)

The inversion of w is modified as well, because the infimum has to belong to x. Using the
fact that w is a sorted array, the operation (A.15) is slightly modified into (A.17).

∀i ∈ [[1, N ]], xi = xk with k = min
m∈[[1,M ]]

{wm > ui} (A.17)

Gathering all the previous elements together, the algorithm A.1 is able to generate sample
according to the potential G. This algorithm has been applied to the example given in figures
A.4 and A.5 with M = 1000 (number of points in the discretization) and N = 5000 (size
of the sample). The result is shown in figure A.6. One can see that the normed histogram
(Monte Carlo equivalent of PDF) is closely comparable to the target PDF (normed potential
G). It proves that the algorithm A.1 correctly simulate G-distributed random variable. This
algorithm will be used many times to produce samples according to an empirical probability
law, only described by arrays of number.

7Beware: xk is a point on which G is known, xi is a element of generated sample.
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Algorithm A.1 Generate G-distributed samples : X = sampling(G, x)

Input: G = (G1, ..., GM ), x = (x1, ..., xM ) # with Gk = G(xk)
Output: X = (x1, ..., xN ) G

U = (u1, ..., uN ) U(0, 1)
w = cumsum(G)/sum(G)
for i ∈ [[1, N ]] do

k = minm,∈[[1,M ]]{wm > ui}
xi = xk

end for
return X = (x1, ..., xN )

Figure A.6 – Example of generation of samples with the algorithm A.1. Histogram of the
sample follows the shape of the potential G given.

A.3 Stochastic processes

The random variables used to describe physical phenomenon might be changing with time.
Hence we introduce stochastic processes ("stochastic" has exactly the same sense as "random",
but "stochastic" is the word in use). Introduction to stochastic processes can be found in
Øksendal (2013) and Gardiner (2009).
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Definition A.12 (Stochastic process).

With words A stochastic process is a family of random variable.

Formally (Xt)t∈[0,T ] is a stochastic process means that

∀t ∈ [0, T ], Xt :
(Ω, F ,P) −→ (E, E)

ω Ô−→ Xt(ω)
is a random variable.

with T > 0.

However, the trajectory of Xt (the function t Ô→ Xt(ω), ∀ω ∈ Ω) is deterministic.

A stochastic process is thus a function which depends on an random event: a "random func-
tion". Although, unlike a function, there is no representative curve for a stochastic process.
Instead, one can draw its momentum or few trajectories. The average is a deterministic func-
tion (t Ô→ E [Xt]). The variance is a deterministic function (t Ô→ V (Xt) = E

[
(Xt − E [Xt])

2
]
).

Momenta provide only a partial information on the stochastic process. However, they help to
get a mental image of a stochastic process. This is now illustrated on two famous examples:
the Brownian motion, and the solution of Langevin equation.

A.3.1 The Brownian motion

In figure A.7 is shown an example of stochastic process with E [Xt] = 0 and cov(Xt, Xs) =

min(t, s). Some trajectories are drawn in red. The ensemble of trajectories expend around the
mean following the increasing variance (dashed blue lines). From a single trajectory it is not
obvious to see that expansion (figure A.8). This is why plotting several trajectories is a way to
visualize the "random dimension": some features of the trajectory are explained by the global
trend (the expansion), and other are just due to randomness (the side of expansion, local
variations). For example, if one would have only the average value and a single realization
(as in figure A.8) one would conclude that the realisation is in disagreement with the average,
although it is simulated in the exact same way as in figure A.7.

We underline here a common problem in signal processing : how to infer about stochastic
process from a single realisation? This point will be addressed in section A.4 (page 273).

The stochastic process shown figure A.7 is a really famous stochastic process: the Brownian
motion. Its name comes from the biologist Robert Brown that was the first to observe it in the
movement of particles inside a fluid in 1827. In 1905, Albert Einstein describes quantitatively
this random movement of particles and links it with the diffusion equation (Einstein (1905),
§4). The formal construction of Brownian motion as a stochastic process was done by Norbert
Wiener in 1923. Hence the Brownian motion is also called a Wiener process. Its formal
definition is the following:
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Figure A.7 – Example of stochastic process (Brownian motion): its average value (black) and
its standard variation (dashed blue) give hints on the behaviour of realizations (red).

Figure A.8 – Same stochastic process (Brownian motion) with only its average value (black)
and one realization (red).
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Definition A.13 (Brownian motion).

With words We call a Brownian motion a Gaussian process (Bt)t∈[0,T ] with mean zero

and with covariance equal to the smallest time.

Formally Given T > 0,

∀t, s ∈ [0, T ], E [Bt] = E [Bs] = 0, cov(Bt, Bs) = min(s, t)

where a Gaussian process is

Definition A.14 (Gaussian process).

With words A stochastic process (Xt)t∈[0,T ] is Gaussian when every sample of it form

a Gaussian vector (i.e. all linear combination of samples is Gaussian).

Formally

∀n ∈ N, ∀t1, ..., tn ∈ [0, T ], ∀θ ∈ Rn,
n∑

i=1

θiXti is Gaussian

In particular we have Bt  N (0, |t|) Hence its mean, variance and auto-covariance are
given by

• E [Bt] = 0

• V (Bt) = |t|
• cov(Bt, Bs) = min(t, s)

A.3.2 The Langevin equation

Another example is the Ornstein-Uhlenbeck process. It is the solution of the Langevin equa-
tion, which was historically made to describe the movement of a "large particle" dropped in
a viscous fluid.

dVt = −1

τ
Vtdt + σdBt (A.18)

The equation A.18 is of different nature than usual partial differential equation: it is a stochas-
tic differential equation (i.e. a differential equation on stochastic processes). Fundations of
stochastic differential equations can be found in any course on stochastic calculus, and also in
the book of Øksendal (Øksendal, 2013) and Gardiner (Gardiner, 2009). Stochastic differen-
tial equation relies on Ito integral (integral of a stochastic process along a stochastic process).
The complete form of equation A.18 using Ito integral is

Vt − V0 =

∫ t

0
−1

τ
Vsds +

∫ t

0
σdBs (A.19)

but the "differential" form is often preferred because it is shorter.
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Using several theorem based on Ito integral, it is possible to solve the equation A.18 (see
Gardiner (2009) p.103, Øksendal (2013) p. 71).

Vt = V0e− t
τ + σ

∫ t

0
e− t−s

τ dBs (A.20)

In particular, it gives an analytic expression of the mean, the variance and the auto-covariance
of the solution process (Gardiner (2009) p. 104):

• E [Vt] = E [V0] e− t
τ

• V (Vt) = σ2 τ

2
+

(
V (V0) − σ2 τ

2

)
e−2 t

τ

• cov(Vt, Vs) =

(
V (V0) − σ2 τ

2

)
e− t+s

τ + σ2 τ

2
e

t−s
τ

Numerically, it is possible to simulate some trajectories (see figure A.9). One can see in

Figure A.9 – Same Ornstein-Uhlenbeck process (solution of Langevin equation): average
(black) framed by standard variation (dashed blue) and few realizations.

figure A.9 that the behaviour of Ornstein-Uhlenbeck process is really different from the Brow-
nian motion. While the average of Brownian motion is always equal to zero, the average of
Ornstein-Uhlenbeck process is a converging exponential. While Brownian motion is infinitely
expanding, the variance of Ornstein-Uhlenbeck process converges toward a constant value.

Physically, Langevin equation is a model for the movement of a "large particle" dropped
in a viscous fluid. From figure A.9, we can tell that the particle will globally slow down in a
first phase (until time-step 400) and get stabilized around a constant speed in a second phase.
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Figure A.10 – The Ornstein-Uhlenbeck process with only its average value (black) and one
realization (red).

In this case, a single realization (as in figure A.10) will conserve the most important
features of global process: first phase of decreasing, second phase around the average. The
single realisation is more informative about the whole process.
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A.4 Signal processing

Wind measurements are stochastic processes (because of random turbulence and random
instrumental noise). What the instrument provides is a single realisation of the stochastic
process "wind". This section aims to clarify how the realisation helps to know the stochastic
process from which it is produced.

A.4.1 Stationarity and ergodicity

With time series of a single realization, we can compute statistics to describe the probability
law of the signal. We consider only real-valued signals indexed by t ∈ [0, T ] with T > 0. The
first assumption to do so is that the probability law of the signal does not change while we
compute the statistics. This assumption is called stationarity :

Definition A.15 (Stationarity).

With words A signal is said stationary if the joint law of a time-sample does not change

by translation in time

Formally

∀d ∈ N, ∀t1, ..., td, ∀τ, Law(Xt1 , ..., Xtd
) = Law(Xt1+τ , ..., Xtd+τ )

This definition is stronger than just "the probability law of the signal does not change
with time". Indeed, if a signal is stationary in the sense given by definition A.15, then
∀t1, t2, Law(Xt1) = Law(Xt2) (if we choose τ = t2 − t1). So it is correct to say that if a signal
is stationary, its probability law does not change with time. But the definition A.15 avoid
also other problematic cases.

A weaker definition of stationarity is limited to the invariance of the p first moments (from
Priestley (1981), def. 3.2.2).

Definition A.16 (Stationarity at order p).

With words A signal is said stationary at order p if the momenta up to p of the joint

law of a time-sample does not change by translation in time.

Formally

∀d ∈ N, ∀t1, ..., td, ∀τ, ∀k 6 p, E
[
(Xk

t1
, ..., Xk

td
)
]

= E
[
(Xk

t1+τ , ..., Xk
td+τ )

]

where E [·] refers to the joint law.

In particular, the stationarity at order p ensures that the momenta only depends on the time
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difference. For example, cov(Xt1 , Xt2) depends only on |t1 − t2|.

V ((Xt1 , Xt2)) =

(
V (Xt1) cov(Xt1 , Xt2)

cov(Xt1 , Xt2) V (Xt1)

)
= V ((X0, Xt2−t1))

if one takes t2 > t1 and τ = t1 in the definition.

As Gaussian processes are naturally very widespread, the process stationary at order 2
are common. Hence, it is sometimes said weak-sense stationary, which refers to process
stationary at order 2. This definition is sufficient for most of applications.

Some applications (like kriging) do not require weak stationarity but only stationarity on
the increments of the process. Such class of process are called intrinsic.

Definition A.17 (Intrinsic process).

With words A random signal Xt is intrinsic when its increments are centred with a

variance depending only on the difference of time.

Formally Xt is intrinsic ⇐⇒

• ∀t, s, E [Xt+s − Xt] = 0

• ∃γ : [0, +∞[→ R, ∀t, s, V (Xt+s − Xt) = 2γ(s)

Intrinsic processes are not necessarily stationary (not even at order one). For example, the
Brownian motion is intrinsic but it is not stationary, as we will see later. Conversely, processes
stationary at order 2 are intrinsic. Intrinsic process is the minimum property to introduce
the tools that are commonly used in signal processing, such as:

• The mean :
µX = E [Xt]

• Autocovariance :
CX(s) = cov(Xt+s, Xt)

• Autocorrelation :

ρX(s) =
cov(Xt+s, Xt)√
V (Xt) V (Xt+s)

• Variogram :

γX(s) =
1

2
V (Xt+s − Xt)

Autocovariance, autocorrelation and variogram are related in the case of stationary process
at order 2. In this case, the mean µX and the variance σ2

X are constant.

V (Xt+s − Xt) = V (Xt+s) + V (Xt) − 2cov(Xt+s, Xt) = 2σ2
X − 2cov(Xt+s, Xt) (A.21)
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Hence
γX(s) = σ2

X − CX(s) (A.22)

These probabilistic parameters are interesting because they give an intuitive interpretation
of the process. Intuitively, the larger is s, the less Xt+s is linked to Xt. Hence, the form
of CX give an information about the "memory" of the process. A process with "long range
memory" (i.e. with CX decreasing slowly) does not need to be observed very often, because
it is predictable. A process with "short range memory" (i.e. with CX decreasing quickly)
requires many observations to be described.

Stationarity is useful to define statistics invariant with time and thus common for a whole
time series. But it is not enough to estimate these statistics from a single realization x(t) of
Xt. Such a realisation must be representative of the whole process: explore the same area of
values, have the same variability. This property is called ergodicity. More precisely, under
which condition is the time average is comparable to the expected value?

Let Xt be a stochastic process stationary at order 2. The time average is the stochastic
process given by

Mτ =
1

τ

∫ τ

0
Xtdt (A.23)

Since Xt is stationary at order 2, its average is constant and its auto-covariance depends only
on the time gap (E [Xt] = µX and E [Xt1Xt2 ] − µ2

X = CX(t2 − t1)). Mean and variance of Mτ

are expressed with these quantities.

E [Mτ ] =
1

τ

∫ τ

0
E [Xt] dt = µX (A.24)

V (Mτ ) = E

[(∫ τ

0
Xtdt

)2
]

− µ2
X

=
1

τ2
E

[∫

[0,τ ]2
Xt1Xt2dt1dt2

]
− µ2

X

=
1

τ2

∫

[0,τ ]2
CX(t2 − t1)dt1dt2

=
1

τ2

∫ τ

−τ
dt

∫ τ

−τ
CX(s)ds with s = t2 − t1, t = t1

=
2

τ

∫ τ

0
CX(s)ds because CX is even

(A.25)

The time average Mτ (stochastic process) will be comparable to the expectation µX

(scalar) if its variance tends to 0. This requires
∫ τ

0 CX(s)ds = o
(

1
τ

)
. In particular, hav-

ing
∫ +∞

0 CX(s)ds < ∞ is enough. Under this condition, the time average approximates
correctly the expectation.

For any x(t) Xt, lim
τ→∞

1

τ

∫ τ

0
x(t)dt = µX (A.26)
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For stochastic process less regular than stationary at order 2, it is still possible to define
ergodicity but the criteria are readable. Let Xt be a non-stationary process, one can define
the measure corresponding to the time average:

ντ : A ∈ E Ô→ 1

τ

∫ τ

0
P (Xt ∈ A) dt (A.27)

ντ (A) is the ratio between the time Xt has spent in A versus the total time τ . If the ran-
dom variable Mτ follows the law ντ , its expectation is given by E [Mτ ] =

∫
E xντ (dx) =

1
τ

∫ τ
0

∫
E xP (Xt ∈ dx) dt = 1

τ

∫ τ
0 E [Xt] dt. Its variance is given by V (Mτ ) = 1

τ

∫ τ
0 V (Xt) +

1
τ

∫ τ
0 E [Xt]

2 − 1
τ2 (

∫ τ
0 E [Xt])

2. When it converges, the limit of ντ when τ → +∞ is the equi-
librium measure ν. A random variable following ν would be a "infinite time average". But
the link between the expectation of the equilibrium measure and the expectation of Xt is
subject to additional hypothesis. In consequence this manuscript will only focus on processes
stationary at order 2, as ergodicity is not the core of the problem.

Definition A.18 (Ergodicity).

With words A random signal Xt is ergodic when its mathematical expectation can be

approached by a time average. In particular, processes stationary at order 2 are ergodic

their auto-covariance decreases faster than 1/τ .

Formally

lim
τ→∞E

[
1

τ

∫ τ

0
Xtdt

]
= µX and lim

τ→∞ V

(
1

τ

∫ τ

0
Xtdt

)
= 0

If Xt is stationary at order 2, it is equivalent to

∫ τ

0
CX(s)ds = o

(
1

τ

)

There is thus a distinction to make between theoretical quantities and reachable approx-
imation of them. The link between them relies on these 2 strong assumptions : stationarity
and ergodicity. Although there are strong, we usually assume they are verified because it is the
only way to make signal processing. Theoretical and approached mean and auto-covariance
are summarized in table A.6.

Theoretical Approached

Mean µX = E [Xt] mx(τ) =
1

τ

∫ τ

0
x(t)dt

Auto-covariance CX(s) + µ2
X = E [XtXt+s] Rxx(τ, s) =

1

τ

∫ τ

0
x(t)x(t + s)dt

Table A.6 – Theoretical and approached expression of mean and auto-covariance under sta-
tionarity and ergodicity assumption.

For stationary and ergodic processes, these statistics are the best approximation one can
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have :
µX = lim

τ→∞ mx(τ) (A.28)

CX(s) + µ2
X = lim

τ→∞ Rxx(τ, s) (A.29)

Stationarity and ergodicity are the necessary hypothesis to infer properties of random
process Xt from a single realization of it x(t) = Xt(ω). Since in most cases it is impossible to
reproduce exactly the same experiment (especially in fluid dynamics), it is generally assumed
that processes are stationary and ergodic, so it is possible to make signal processing on them.

The validity of these hypothesis depend strongly on the choice of the integration time
τ . Indeed, a long integration time gives a better approximation of the expected value with
time average (it ensures ergodicity). But a long integration time let the time for the signal
probability law to change (it unvalidates stationnarity). On the other hand, a the signal
probability law is more likely to stay the same within a short integration time (it ensures
stationarity). But a short integration time deteriorates the approximation of mathematical
expectation with time average (it unvalidates ergodicity).

A.4.2 Fourier transform

The Fourier transform is the basis of many interpretations in signal processing, as it makes
the connection between the time-space and the frequency-space. At first, it is defined only
for periodic functions, that we decompose in pure harmonics : it yields to Fourier series. The
periodic function is described by a collection of coefficients that quantify the contribution
of a frequency in the signal. Fourier transform is an extension of that to any integrable
function. The integrable function is described by another function, that gives the continuous
contribution of frequencies in the signal. The mean value is not important for spectral analysis,
therefore the process Xt is supposed centred for this section.

Definition A.19 (Fourier transform).

With words The Fourier transform a function of time x(t) is the decomposition of the

signal onto a basis of purely oscillating functions. The result is a function of frequency

x̂(ξ) giving the contribution of the frequency ξ in the original signal.

Formally

∀x ∈ L1(R,R), x̂(ξ) =

∫ +∞

−∞
x(t)e−iξ·tdt

But most of the time, we use square-integrable function (function in L2, not necessarily in
L1). The integral in the given definition of Fourier transform is not defined for L2 functions.
Fourier transform is extended to L2 space by using the density of L1 ∩ L2 in L2 and the
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continuity of the integral. On L2, Fourier transform is a linear operator can conserve most of
the properties of its L1 equivalent.

Given a realisation x(t) of the stochastic process Xt, the function x : t ∈ [0, +∞[ Ô→ R is
assumed L1([0, +∞[,R) and L2([0, +∞[,R). The signal x(t) is prolonged for t < 0 by 0.

A.4.3 Power spectral density

To visualize the frequency information brought by Fourier transform, we use the power spec-
tral density. It represents the energetic contribution of frequencies.

Definition A.20 (Power spectral density).

With words Power spectral density is the Fourier transform of the autocorrelation.

Formally

Γx(ξ) =

∫

s∈R

E [Xs−tXt] e−iξ·sds

This definition is applied to ergodic and stationary processes to reach a computable ex-
pression. The auto-covariance is approximated as described in table A.6 :

E [Xs−tXt] = lim
τ→∞

1

τ

∫ τ

0
x(t)x(s − t)dt (A.30)

Wiener-Khinchin theorem gives another expression of the PSD, sometimes taken as defi-
nition (see Miller and Childers (2012), def. 10.1). Here is a sketch of the proof.

Γx(ξ) =

∫

s∈R

(
lim

τ→∞
1

τ

∫ τ

0
x(t)x(s − t)dt

)
e−iξ·sds

= lim
τ→∞

1

τ

∫

s∈R

∫ τ

0
x(t)x(s − t)e−iξsdtds

= lim
τ→∞

1

τ

∫ τ

0
x(t)

(∫

s∈R

x(s − t)e−iξsds

)

︸ ︷︷ ︸
=x̂(ξ)e−iξt

dt

= x̂(ξ) lim
τ→∞

1

τ

∫ τ

0
x(t)e−iξtdt

≃ |x̂(ξ)|2
τmax

Thus the power spectral density is estimated by the squared modulus of the Fourier
transform divide by the sample length τmax.
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A.4.4 Examples

We will now illustrate these notions on the examples of stochastic processes seen before.

Brownian motion (definition A.13)

• Bt  N (0, |t|)
• E [Bt] = 0

• V (Bt) = |t|
• cov(Bs, Bt) = min(s, t)

The Brownian motion is stationary at order 1 because its average is always 0. It is also
intrinsic. But it is not stationary at order 2 because its variance depends on t (thus it is not
stationary in strong sense, neither stationary in weak sense). As a consequence, the relation
A.22 (γ = σ2 − C) does not hold.

• The mean :
µB = 0

• Autocovariance :
CB(s) = cov(Bt+s, Bt) = min(t + s, t) = t

• Autocorrelation :

ρB(s) =
cov(Bt+s, Bt)√
V (Bt+s) V (Bt)

=

√
t

t + s

• Variogram :
γB(s) = |s|

The Brownian motion is not ergodic. A famous property of Brownian motion is that it is
dilating to infinity (it reaches every point of R in finite time):

Almost surely, lim sup
t→+∞

Bt = +∞ and lim inf
t→+∞

Bt = −∞ (A.31)

Hence the function τ Ô→ 1
τ

∫ t0+τ
t0

b(t)dt does not converge for almost every realization b(t) of
Bt. As the Brownian motion is not stationary at order 2, its auto-covariance depends on the
time gap s and the starting time t. Thus, its spectrum cannot be defined the same way as
definition A.20.

To conclude, the Brownian motion is not stationary nor ergodic. Since these properties
are essential for a realization to be informative about the whole process, it explains why the
single realization shown on figure A.8 is not informative about the Brownian motion. However
it is intrinsic with a linear variogram.
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Langevin equation (solution of equation A.18)

• Vt = V0e− t
τ + σ

∫ t

0
e− t−s

τ dBs

• E [Vt] = E [V0] e− t
τ

• V (Vt) = σ2 τ

2
+

(
V (V0) − σ2 τ

2

)
e−2 t

τ

• cov(Vt+s, Vt) =

(
V (V0) − σ2 τ

2

)
e− 2t+s

τ + σ2 τ

2
e− s

τ

The Ornstein-Ulhenbeck process (solution of Langevin equation) is not stationary, because
both its mean and its variance depend on time. But, after few τ , both mean and variance
reach a limit:

E [V∞] = 0

V (V∞) = σ2 τ

2

This limit is called the stationary solution of Langevin equation. According to Gardiner
(Gardiner (2009), p.74), the stationary solution is Gaussian

V∞  N
(

0, σ2 τ

2

)

Hence the stationary solution is order 2 stationary and intrinsic. Asymptotically when t →
+∞, it gives the following expressions:

• The mean :
µV = 0

• Autocovariance :
CV (s) = cov(Vt+s, Vt) = σ2 τ

2
e− s

τ

• Autocorrelation :

ρV (s) =
cov(Vt+s, Vt)

V (V∞)
= e− s

τ

• Variogram :
γV (s) = σ2 τ

2

(
1 − e− s

τ

)

Exponential decrease of autocovariance is the example take by Gardiner for a sufficient
condition for the process to be ergodic (Gardiner (2009), p. 58). Hence, the Ornstein-
Ulhenbeck process is asymptotically ergodic.

Concerning its spectrum, the Fourier transform of its auto-covariance (which is an expo-
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nential) is a Lorenzian function :

ΓV (ξ) =

∫

s∈R

σ2 τ

2
e− s

τ e−iξ·sds

= σ2 τ

2

∫

s∈R

e− s
τ

−iξ·sds

=
σ2 τ

2

1 + 4π2τ2ξ2

To conclude, the Ornstein-Ulhenbeck process is asymptotically stationary of order 2 and
ergodic. Its spectrum decrease with a -2 slope in a log-log scale (usual for PSDs). Because
of these properties the single realization shown on figure A.10 is informative about the whole
process.

A.5 Conclusion

This appendix intended to refresh some basics and to set the notations and the definitions
as they will be used in this document. The first section was giving the essential tools to
understand what a random variable is. The second section focused the numerical generation
of random variables. The third section introduced stochastic processes with two examples:
the Brownian motion and the Ornstein-Ulhenbeck process. The fourth and last section made
the link between the theoretical stochastic processes and the empirical time series of one
realisation.

Random variables are everywhere in turbulence, in filtering and in sensitivity analysis.
A random variable is a function from an unknown departure point (usually denoted ω).
To represent this "unknown dimension", one makes samples of the same random variable.
Such samples are generated on computer using pseudo-random numbers generators. Pseudo-
random numbers generators of two programming languages have been tested. The algorithm
to generate any random variable from a uniformly distributed sample has been explained. In
particular, the algorithm A.1 for the generation of a sample distributed along a given potential
is the key element of the filtering process.

Stochastic processes are families of random variables. As measurements are usually com-
posed of time series, stochastic process are relevant to model them. Two examples are given:
the Brownian motion and the Ornstein-Ulhenbeck process. The Brownian motion describes
the diffusing movement of a particle inside a fluid. In average, the movement is null (there is
no trend). But the variance steadily increases: the particle goes farer and farer but always
comes back. The Ornstein-Ulhenbeck process is the solution of the Langevin equation. This
equation is a simple model for a particle drop into a fluid. Conversely to the Brownian motion,
there is a trend and the variance is bounded.

Signal processing can be used in many contexts. The small section with this name in this
chapter intents to distinguish theoretical signals (stochastic process) from accessible signals
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(a single realisation of the stochastic process). Quantities of importance for applications
(average, variance, auto-covariance, variogram, spectrum) are introduced for both. It is
shown are they can be compared under the assumptions of stationarity and ergodicity. They
are illustrated on the two stochastic processes given in examples.
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Appendix B

Proofs

B.1 Formulae on reconstruction outputs

B.1.1 Influence of N on NG0

Theorem B.1 (Influence of N on NG0). If N > 1 is the number of particles and at any time

there are particles in the probe volume, for any n ∈ N, there exist α(n) > 0 and β(n) > 0

such that

P (NG0 = n) 6 α(n)e−N/β(n) (B.1)

Proof. A result of Del Moral (2004) (theorem 7.4.1, page 232) quoted by Baehr (2010)
(theorem 2.2) on the degeneracy of the particle filter is useful to reckon the influence of N

on NG0. Here is the theorem written with the notation of this manuscript.

If at any time there are particles in the probe volume , then ∀N > 1 and ∀t > 0,
the time τN at which potential is null for all particles follows the inequality:

P
(
τN
6 t

)
6 a(t)e−N/b(t) (B.2)

When the potential vanishes, the system is re-initialized. Thus, the NG0 extinctions are
independent and the time counter can be reset to zero. If the k-th extinction time is denoted
τN

k and compared to the time tk (reset to zero after each extinction), the number of null
potential is written

P (NG0 = n) =
n∏

k=1

P
(
τN

k 6 tk

)
6

n∏

k=1

a(tk)e−N/b(tk)

with the condition
∑n

k=1 tk 6 Nt.

It tells there exist α(n) =
∏n

k=1 a(tk) and β(n) = (
∑n

k=1 1/b(tk))
−1 such that

P (NG0 = n) 6 α(n)e−N/β(n) (B.3)

Thus, the number of null potential decreases exponentially with N .
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B.1.2 Influence of σ
obs and σ

add on NG0

Theorem B.2 (Influence of σobs and σadd on NG0). If the following assumptions are satisfied

• The real wind V r
z,t is stationary at order 2 and ergodic in space and time.

• The particles after conditioning Ṽt are Gaussian with the same mean and variance as

V r
z,t.

Then, the average number of null potential NG0 is bounded from above by a function of σobs

and σadd.

E [NG0] 6 NtNz
(σadd)2 + 2k

−(
(σobs)2 + 2k

)
log

(
ι22π

(
(σobs)2 + 2k

)) (B.4)

with ι = 10−16, the zero machine threshold, and k = 1
2V

(
V r

z,t

)
(constant thanks to the sta-

tionarity assumption).

Proof. The number of null potential is defined as

NG0 =

∣∣∣∣∣

{
(z, t)/

N∑

i=1

Gobs(z, t, i) = 0

}∣∣∣∣∣

with Gobs(z, t, i) = exp
(

− (Ṽ i
t −V o(z,t))

2

2(σobs)2

)
. The potential Gobs can be seen as a function of

two random variables: Ṽ i
t (as a realisation of the random variable Ṽt) and V o(z, t) (as a

realisation of the random variable V o

z,t). Let us consider the random variable G:

G = exp

(
−

(
Ṽt − V o

z,t

)2

2(σobs)2

)
(B.5)

The sum on the N particles can be seen as the Monte Carlo approximation of the expecta-
tion along Ṽt. The observation is considered as a data, thus it is a conditional expectation:

E
[
G|V o

z,t

]
estimated by

N∑

i=1

Gobs(z, t, i)

If we consider the discrete random variable Tz,t such that

Tz,t = 1
E[G|V o

z,t]=0 =

{
1 if E

[
G|V o

z,t

]
= 0

0 else

Then, Tz,t follows a Bernoulli law with parameter pz,t = P
(
E

[
G|V o

z,t

]
= 0

)
. And NG0 is

thus the random variable equal to the sum of all Tz,t, for z ∈ [[1, Nz]] and t ∈ [[1, Nt]].

NG0 =
∑

z,t

Tz,t

If the parameter pz,t were constant, NG0 would have follow a binomial law, but it is not
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the case. Instead, we will find a bound for pz,t which depends on σobs and σadd but not on
z and t.

First, we express E
[
G|V o

z,t

]
. To do so, we use the assumption that Ṽt is Gaussian, of mean

µ̃ and variance σ̃2.

E
[
G|V o

z,t

]
=

1√
2πσ̃

∫
exp

(
−

(
x − V o

z,t

)2

2(σobs)2

)
exp

(
− (x − µ̃)

2

2σ̃2

)
dx

From Bromiley (2003), the product of these two Gaussian functions is expressed, and it
yields to

E
[
G|V o

z,t

]
=

S(V o

z,t)√
2πσ

∫
exp

(
− (x − µ)

2

2σ2

)
dx = S(V o

z,t)

with

1

σ2
=

1

(σobs)2
+

1

σ̃2
, µ =

(
µ̃

σ̃2
+

V o

z,t

(σobs)2

)
σ2 and S(V o

z,t) =
1√

2π σ̃σobs

σ

exp

(
−σ2

2

(V o

z,t − µ̃)2

σ̃2(σobs)2

)

Solving the equation E
[
G|V o

z,t

]
= 0 yields to S(V o

z,t) = 0, which occurs when |V o

z,t − µ̃| =

+∞. However, because of machine threshold, the equality E
[
G|V o

z,t

]
= 0 is in reality

equivalent to E
[
G|V o

z,t

]
< ι (where ι = 10−16), which yields to the condition |V o

z,t − µ̃| >

β(σobs). Then, we know that theoretically V o

z,t  N
(
V r(z, t), (σadd)2

)
and µ̃ = E

[
V r

z,t

]
by

assumption. Hence, from Tchebychev inequality, we have

P
(
|V o

z,t − µ̃| > β(σobs)
)
6

1

β(σobs)2

(
(σadd)2 + (V r(z, t) − E

[
V r

z,t

]
)2

)

with β(σobs) =
√

−(σ̃2 + (σobs)2) log
(
ι22π(σ̃2 + (σobs)2)

)
. In this upper bound, two terms

will be rewritten with the wind variance: σ̃2 = 2k (by assumption) and (V r(z, t)−E
[
V r

z,t

]
)2.

Moreover, since the process V r

z,t is assumed stationary at order 2, the wind variance is a
constant and equal to 2k, as stated in the assumptions. Since V r(z, t) is a realization of
the process V r

z,t, the term (V r(z, t) − E
[
V r

z,t

]
)2 is a realization of the variance estimator

when the average is known. The term (V r(z, t) − E
[
V r

z,t

]
)2 itself is different for each time

step t or vertical level z. But since the process V r

z,t is assumed ergodic in time and space,
the time and space average 1

NzNt

∑
z,t(V

r(z, t) −E
[
V r

z,t

]
)2 converges toward V

(
V r

z,t

)
when
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NzNt → +∞. Hence, the expectation of NG0 can be bounded as follows:

E [NG0] =
∑

z,t

E [Tz,t]

=
∑

z,t

P
(
E

[
G|V o

z,t

]
= 0

)

6
∑

z,t

(σadd)2 + (V r(z, t) − E
[
V r

z,t

]
)2

β(σobs)2

=
1

β(σobs)2




NtNz(σadd)2 +
∑

z,t

(V r(z, t) − E
[
V r

z,t

]
)2

︸ ︷︷ ︸
=NtNz2k




= NtNz
(σadd)2 + 2k

−
(
(σobs)2 + 2k

)
log

(
ι22π

(
(σobs)2 + 2k

))

which gives the result.

B.2 Theorems in sensitivity analysis

B.2.1 ANOVA decomposition

Theorem B.3 (ANOVA decomposition). Let f : [0, 1]p → R be an integrable function.

Previous notations hold.

Then, there exists a unique decomposition of f :

f(x) =
∑

u∈I

fu(xu)

= f∅ +
p∑

i=1

fi(xi) +
∑

16i<j6p

fij(xi, xj) + · · · + f1,...,p(x1, . . . , xp)
(B.6)

such that

∀u ∈ I, ∀i ∈ u,

∫ 1

0
fu(xu)dxi = 0 (B.7)

The proof of this theorem has been first made by Sobol in Sobol (1976), using Fourier-
Haar decompositions. Then a simpler version is in Sobol (1993). This is a proof adapted to
our notations.

Proof. (From Sobol (1993, 1976))
First we prove existence, then uniqueness of the family (fu)

u∈I which satisfies properties
(B.6) et (B.7).
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Existence
Let consider the following functions :

gu :
[0, 1]|u| → R

xu Ô→ gu(xu) =

∫

[0,1]|ū|

f(x)dxū

with the convention g[[1,p]](x1, . . . , xp) = f(x).

The functions fu will be built recursively thanks to the functions g. At first, with the
hands, in order to satisfy the second part of theorem (B.7).

f∅ =

∫

[0,1]p

f(x)dx = g∅

•• ∀i ∈ [[1, p]], fi(xi) =

∫

[0,1]p−1

f(x)dx1 . . . dxi−1dxi+1 . . . dxp − f∅ = gi(xi) − f∅

• ∀i, j ∈ [[1, p]], fij(xi, xj) = gij(xi, xj) − fi(xi) − fj(xj)

• ∀i, j, k ∈ [[1, p]], fijk(xi, xj , xk) = gijk(xi, xj , xj)−fij(xi, xj)−fik(xi, xk)−fjk(xj , xk)

• . . .

It will be proven that the functions of the decomposition are

fu :
[0, 1]|u| → R

xu Ô→ fu(xu) = gu(xu) −
∑

i∈u

fu\i(xu\i)

One can express the functions (gu)u∈I with the functions of the decomposition:

gu(xu) =
∑

v⊂u

fv(xv)

And because g[[1,p]](x1, . . . , xp) = f(x), one gets directly the decomposition 4.1.

f(x) =
∑

u∈I

fu(xu)

The property B.7 of the decomposition functions is still to be proven. Recursively on the
cardinal of u :

|u| = 1 Let u = i. Then,

∫ 1

0
fi(xi)dxi =

∫ 1

0
gi(xi)dxi − f∅

=
∫ 1

0

∫
[0,1]|v| f(x)dxvdxi − f∅ with v = [[1, p]] \ i

=
∫

[0,1]p f(x)dx − f∅

= 0

⋆⋆ |u| = k − 1 ⇒ |u| = k Let u ∈ I of cardinal k. The following property is assumed true
for all n 6 k :

∀v, |v| = n, ∀i ∈ v,

∫ 1

0

fv(xv)dxi = 0

.

287



Then this property is also true for u. Let j ∈ u.

∫ 1

0
fu(xu)dxj =

∫ 1

0

gu(xu)dxj

︸ ︷︷ ︸
f

u\j(x
u\j)

− ∑
i∈u

∫ 1

0

fu\i(xu\i)dxj

︸ ︷︷ ︸{
0 if i Ó= j

fu\j(xu\j) if i = j

= fu\j(xu\j) − fu\j(xu\j) = 0

because |u \ i| = k − 1 hence the property is true by assumption. The change of gu

come from Fubini’s theorem.

A family of functions fu, u ∈ I satisfying the theorem has been found. It proves the exis-
tence of such a family.

Uniqueness

To prove its uniqueness, let
(
f̃u

)
u∈I

and (fu)
u∈I be two families of functions such that

properties (B.6) and (B.7) are verified.

It will be proven that ∀u ∈ I, fu = f̃u recursively on the cardinal of u.

|u| = 0 By integration of (B.6) with respect to (x1, . . . , xp) :

∫

[0,1]p

f(x)dx = f∅ = f̃∅

because ∀u Ó= ∅, ∃i ∈ [[1, p]], i ∈ u so
∫

[0,1]p fu(xu)dx =
∫

[0,1]p f̃u(xu)dx = 0 thanks to
the property (B.7).

⋆⋆ |u| = k − 1 ⇒ |u| = k Let k ∈ [[1, p]]. It is assumed the elements of
(
f̃u

)
u∈I

and
(fu)

u∈I are equal for |u| < k.

Let v ∈ I, |v| = k. One wants to prove that f̃v = fv. To achieve this, one makes the
integration of (B.6) with respect to xv̄ :

∫

[0,1]|v̄|

f(x)dx = f∅ +
∑

u∈I

∫

[0,1]|v̄|

fu(xu)dxv̄ = f̃∅ +
∑

u∈I

∫

[0,1]|v̄|

f̃u(xu)dxv̄

In the sum, the terms u ∈ I of cardinal lower than k are equal on each side (hypothesis
of recurrence). One takes them out of the sum. For f and f̃ , the remaining integral
is written as follows

∫

[0,1]|v̄|

fu(xu)dxv̄ =

{
fv(xv) if u = v

0 if u Ó= v

The case u Ó= v is split in two sub-cases : ∃i ∈ u, i /∈ v or ∃i ∈ u, i /∈ v .

If ∃i ∈ u, i /∈ v, then i ∈ v̄ and the property (B.7) ensures nullity.

If ∃i ∈ v, i /∈ u, then |u| 6 k. Terms of cardinal lower than k have been removed
thanks to the recurrence hypothesis. Only terms of equal cardinal are left. The two
sub-cases lead thus to the same conclusion. We are back to the previous sub-case and
the property (B.7) ensures nullity.
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It has been shown that ∀k ∈ [[0, p]], ∀u ∈ I, |u| = k, fu = f̃u. One can conclude that

∀u ∈ I, fu = f̃u

Which ensures the uniqueness of the family (fu)
u∈I and ends the proof.

B.2.2 Orthogonality in ANOVA decomposition

Proposition B.1. Let f : [0, 1]p → R be integrable and (fu)u∈I the functions of its ANOVA

decomposition. Then,

∀u, v ∈ I, u Ó= v,

∫

[0,1]p
fu(xu)fv(xv)dx = 0 (B.8)

Proof. (From Sobol (1993, 1976))
Soient u et v dans I tels que u Ó= v. Précision le sens de u Ó= v, négation de u = v.

u = v ⇔ u ⊂ v ∧ v ⊂ u ⇔ ∀i ∈ u, i ∈ v ∧ ∀j ∈ v, j ∈ u

Par négation, on a
u Ó= v ⇔ ∃i ∈ u, i /∈ v ∨ ∃j ∈ v, j /∈ u

Dans notre problème, u et v ont des rôles symétriques. On peut donc considérer ∃i ∈ u, i /∈
v ou bien ∃j ∈ v, j /∈ u indifféremment. Disons que l’on considère ∃i ∈ u, i /∈ v. Alors,
d’après le théorème de Fubini,

∫

[0,1]p

fu(xu)fv(xv)dx =

∫

[0,1]p−1

(∫ 1

0

fu(xu)fv(xv)dxi

)
dxī =

∫

[0,1]p−1


fv(xv)

∫ 1

0

fu(xu)dxi

︸ ︷︷ ︸
=0


 dxī = 0

Le fait que i ∈ u, i /∈ v permet de sortir fv(xv) de l’intégrale et d’annuler
∫ 1

0
fu(xu)dxi

grâce à la propriété (B.7).

B.2.3 Orthogonality of Hoeffding spaces

Proposition B.2 (Orthogonality of Hoeffding spaces).

∀ u, v ∈ I, u Ó= v, H0
u ⊥ H0

v (B.9)

Proof. (From Chastaing (2013))
Comme pour la décomposition ANOVA, ce résultat se prouve en deux parties : d’abord un
résultat du type (B.7), ensuite le résultat d’orthogonalité proprement dit (B.9).

Montrons d’abord

∀u ∈ I, ∀hu ∈ H0
u
, ∀i ∈ u,

∫
hu(xu)ηXi

(dxi) = 0 (B.10)
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Soit u ∈ I, hu ∈ H0
u

et i ∈ u. Remarquons que {i, ū} = {u \ i} que
∫

ηXū
(dxū) = 1.

L’indépendance des composantes permet d’écrire
∫

hu(xu)ηXi
(dxi) =

∫ (∫
hu(xu)ηXi

(dxi)

)
ηXū

(dxū) indépendance des composantes

=

∫
hu(xu)ηXv̄

(dxv̄) en prenant v = u \ i

= E [hu(xu)|Xv] = 0 car |v| < |u|

ce qui prouve le résultat intermédiaire.

Soit maintenant u Ó= v ∈ I, hu ∈ H0
u

et hv ∈ H0
v
. Comme u Ó= v on prend i ∈ u, i /∈ v.

∫
hu(xu)hv(xv)ηX(x) =

∫
hu(xv)

(∫
hu(xu)ηXi

(dxi)

)

︸ ︷︷ ︸
=0

ηXī
(dxī) = 0

Le cas i ∈ v, i /∈ u est immédiat puisque u et v ont un rôle symétrique.

B.2.4 Hoeffding’s lemma

Lemme B.1 (Hoeffding projection). Considering

• X1, ..., Xp independent random variables.

• T ∈ L2(Ω,R) (real random variable of finite variance E
[
T 2

]
< +∞).

Then, for all u ∈ I, the orthogonal projection of T in H0
u in written

πH0
u

(T ) =
∑

v⊂u

(−1)|u|−|v|E [T |Xv] (B.11)

Proof. (From Chastaing (2013))
Soit u ∈ I. Montrons d’abord que l’opérateur définit par l’équation (B.11) est le projecteur
orthogonal de L2 sur H0

u
.

On désigne par πH0
u

le projecteur orthogonal de L2 sur H0
u
. Son existence est garantie par

le fait que H0
u

est une sous-espace vectoriel de L2 (H0
u

est stable par combinaison linéaire
puisque l’espérance est linéaire).
On désigne par φu l’opérateur définit par l’équation (B.11) : φu(T ) =

∑
v⊂u

(−1)|u|−|v|E [T |Xv]

On veut prouver que ∀T ∈ L2, φu(T ) = πH0
u

(T ).

Soit T ∈ L2. Par définition de πH0
u

, L2 = ker(πH0
u

)
⊥
⊕ Im(πH0

u

) = (H0
u
)⊥

⊥
⊕ H0

u
. Donc

∃! (F ′, G′) ∈ (H0
u
)⊥ × H0

u
, T = F ′ + G′

de plus G′ = πH0
u

(T ) et F ′ = T − πH0
u

(T ).

Or,
T = T − φu(T )︸ ︷︷ ︸

F

+ φu(T )︸ ︷︷ ︸
G
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donc il suffit de montrer que G ∈ H0
u

et F ∈ (H0
u
)⊥ pour conclure par unicité de la décom-

position orthogonale que G = G′ et F = F ′. On aura alors prouvé que ∀T ∈ L2, φu(T ) =

G = G′ = πH0
u

(T ).

φu(T ) ∈ H0
u

Soit w ∈ I, w ⊂ u. Montrons que E [G|Xw] = 0.

E [φu(T )|Xw] =
∑

v⊂u

(−1)|u|−|v|E [E [T |Xv] |Xw]

=
∑

v⊂u

(−1)|u|−|v|E [E [T |Xv] |Xv∩w] par indépendance des Xi

=
∑

v⊂u

(−1)|u|−|v|E [T |Xv∩w] car σ(Xv∩w) ⊂ σ(Xv)

Arrêtons-nous sur ce résultat en examinant quelques cas particuliers.
Pour u = {i},

φi(T ) = E [T |Xi] − E [T ]

Pour u = {i, j},

φi,j(T ) = E [T |Xi, Xj ] − E [T |Xi] − E [T |Xj ] + E [T ]

Pour u = {i, j, k},

φi,j,k(T ) = E [T |Xi, Xj , Xk]

−E [T |Xi, Xj ] − E [T |Xi, Xk] − E [T |Xj , Xk]

+E [T |Xi] + E [T |Xj ] + E [T |Xk]

−E [T ]

Prenons par exemple w = {i} pour conditionner φi,j,k(T ). On rappelle la convention
E [T |∅] = E [T ].

E [φi,j,k(T )|Xi] = E [T |Xi]

−E [T |Xi] − E [T |Xi] − E [T ]

+E [T |Xi] + E [T ] + E [T ]

−E [T ]

= 2E [T |Xi] − 2E [T |Xi] + 2E [T ] − 2E [T ]

= 0

De même si l’on prend w = {i, j} pour conditionner φi,j,k(T ).

E [φi,j,k(T )|Xi, Xj ] = E [T |Xi, Xj ]

−E [T |Xi, Xj ] − E [T |Xi] − E [T |Xj ]

+E [T |Xi] + E [T |Xj ] + E [T ]

−E [T ]

E [φi,j,k(T )|Xi, Xj ] = E [T |Xi, Xj ] − E [T |Xi, Xj ] + E [T |Xi] − E [T |Xi, Xj ]

+E [T |Xj ] − E [T |Xj ] + E [T ] − E [T ]

E [φi,j,k(T )|Xi, Xj ] = 0

On voit sur ces cas particuliers que la somme sur les v ⊂ u se transforme en somme sur
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t ⊂ w. On compte
(|u|−|w|

|t|

)
termes identiques. On généralise ce résultat :

E [φu(T )|Xw] =
∑

v⊂u

(−1)|u|−|v|E [T |Xv∩w]

=
∑

t⊂w

|u|−|w|∑

j=0

(−1)|u|−|t|−j

(|u| − |w|
j

)
E [T |Xt]

=
∑

t⊂w

(−1)|u|−|t|E [T |Xt]




|u|−|w|∑

j=0

(−1)j

(|u| − |w|
j

)


︸ ︷︷ ︸
=0

= 0

On a montré que ∀w ∈ I, w ⊂ u, E [φu(T )|Xw] = 0. Donc φu(T ) ∈ H0
u.

T − φu(T ) ∈ (H0
u
)⊥

Soit hu ∈ H0
u
. Montrons que E [(T − φu(T ))hu(Xu)] = 0.

E [(T − φu(T ))hu(Xu)] = E [Thu(Xu)] − E [φu(T ))hu(Xu)]

= E [Thu(Xu)] − E [E [T |Xu] hu(Xu)]︸ ︷︷ ︸
α

−
∑

v⊂u

vÓ=u

(−1)|u|−|v|E [E [T |Xv] hu(Xu)]︸ ︷︷ ︸
β

Précisons les termes α et β :

α = E [E [T |Xu] hu(Xu)] = E [E [Thu(Xu)|Xu]] = E [Thu(Xu)]

car Xu est Xu-mesurable, hu est mesurable, donc hu(Xu) est Xu-mesurable.

β = E

[
E [T |Xv] hu(Xu)

]
= E

[
E

(
E [T |Xv] hu(Xu)

∣∣∣∣Xv

)]
= E


E [T |Xv]E [hu(Xu)|Xv]︸ ︷︷ ︸

=0


 = 0

Donc
E [(T − φu(T ))hu(Xu)] = E [Thu(Xu)] − E [Thu(Xu)] − 0 = 0

On vient de montrer que (T − φu(T )) ⊥ hu(Xu), ∀hu(Xu) ∈ H0
u
. Donc (T − φu(T )) ∈

(H0
u
)⊥. Par unicité de la décomposition (propriété du projecteur orthogonal πH0

u

), on a
bien

∀T ∈ L2, πH0
u

(T ) =
∑

v⊂u

(−1)|u|−|v|E [T |Xv]
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B.2.5 Hoeffding decomposition

Theorem B.4 (Hoeffding decomposition). Let Y : (Ω, F ,P) → (R, B(R)) et X : (Ω, F ,P) →
(Rp, B(Rp)) such that Y = f(X) with f : (Rp, B(Rp)) → (R, B(R)), a measurable function.

Previous notations hold.

Under the following assumptions :

1. Y has a finite variance (i.e. E
[
Y 2

]
< +∞).

2. The inputs Xi, i ∈ [[1, p]] are independent : pX(x) =
∏p

i=1 pXi(xi).

Then it exists an unique decomposition of Y with respect to (Xi)i :

Y =
∑

u∈I

fu(Xu)

= f∅ +
p∑

i=1

fi(Xi) +
∑

16i<j6p

fij(Xi, Xj) + · · · + f1,...,p(X1, . . . , Xp)
(B.12)

such that

∀u ∈ I, fu(Xu) =
∑

v⊂u

(−1)|u|−|v|E [Y |Xv] (B.13)

Proof. (From Chastaing (2013))
Plaçons-nous dans le cadre de la projection de Hoeffding. Soit Y est de variance finie (i.e.
E

[
Y 2

]
< +∞) telle que Y = f(X). Par définition de L2, Y ∈ L2(Ω,R), et par définition

des espaces de Hoeffding, f ∈ H[[1,p]].

Montrons d’abord
∀u ∈ I, Hu ⊂

⊕

v⊂u

H0
v

(B.14)

Soit u ∈ I et hu(Xu) ∈ Hu. D’après la proposition (B.2) (orthogonalité des espaces de
Hoeffding), le projecteur orthogonal sur l’ensemble

⊕
v⊂u

H0
v

s’écrit comme la somme des
projecteurs orthogonaux sur chacun des ensembles H0

v
.

π⊕
v⊂u

H0
v

=
∑

v⊂u

πH0
v

Ainsi,

hu(Xu) − π⊕
v⊂u

H0
v

(hu(Xu)) = hu(Xu) −
∑

v⊂u

πH0
v

(hu(Xu))

= hu(Xu) − hu(Xu) car ∀v ⊂ u, v Ó= u, πH0
v

(hu(Xu)) = 0

= 0

On vient de montrer que hu(Xu) = π⊕
v⊂u

H0
v

(hu(Xu)) ∈ ⊕
v⊂u

H0
v

pour tout élément

hu(Xu) de Hu. Donc Hu ⊂ ⊕
v⊂u

H0
v
.
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On applique ce résultat à f ∈ H[[1,p]] ⊂ ⊕
u∈I H0

u
.

f(X) =
∑

u∈I

πH0
u

(f(X))
︸ ︷︷ ︸

fu(Xu)

Et l’expression des fu(Xu) découle du lemme de Hoeffding (B.1).

B.2.6 Variance decomposition

Corollary B.1. Under the same assumptions than for the theorem ??,

V (Y ) =
∑

u∈I

V (fu(Xu)) =
∑

u∈I

(
V (E [Y |Xu]) +

∑

v⊂u

(−1)|u|−|v|V (E [Y |Xv])

)
(B.15)

Proof. (From Chastaing (2013))
Comme Y est de variance finie (hypothèse du théorème ??), on peut prendre la variance
dans l’équation 4.6.

V (Y ) = V

(∑

u∈I

fu(Xu)

)

=
∑

u∈I

V (fu(Xu)) +
∑

u,v∈I
u∩vÓ=u,v

cov(fu(Xu), fv(Xv))︸ ︷︷ ︸
=0 car H0

u
⊥H0

v

=
∑

u∈I

V

(∑

v⊂u

(−1)|u|−|v|E [Y |Xv]

)

=
∑

u∈I


V (E [Y |Xu]) +

∑

v⊂u

vÓ=u

(−1)|u|−|v|V (E [Y |Xv]) +
∑

v,w⊂u

v∩wÓ=
w,v

cov(E [Y |Xw] ,E [Y |Xv])︸ ︷︷ ︸
=0 par indépendance




=
∑

u∈I


V (E [Y |Xu]) +

∑

v⊂u

vÓ=u

(−1)|u|−|v|V (E [Y |Xv])



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B.2.7 Simple, complete and total Sobol indices

Proposition B.3. Let u ∈ I. With the notation introduced above, simple, total and complete

Sobol indices have the following expression :

Du = V (E [Y |Xu]) +
∑

v⊂u
vÓ=u

(−1)|u|−|v|V (E [Y |Xv]) (B.16)

DC
u = V (E [Y |Xu]) (B.17)

DT
u = V (Y ) − V (E [Y |Xū]) (B.18)

Proof. (Evoked in Owen (2013) and Homma and Saltelli (1996))

Expression 4.9 is the direct application of theorem 4.2.

•• Expression 4.10 is obtained by writing the double sum and grouping the terms of same
sign:

DC
u

=
∑

v∈I
v⊆u

Dv =
∑

v∈I
v⊆u

∑

w∈I
w⊆v

(−1)|v|−|w|V (E [Y |Xw])

= V (E [Y |Xu]) +
∑

t⊂u

|u|−|t|∑

j=0

(−1)|u|−|t|−j

(|u| − |t|
j

)
V (E [Y |Xt])

= V (E [Y |Xu]) +
∑

t⊂u

(−1)|u|−|t|V (E [Y |Xt])

|u|−|t|∑

j=0

(−1)j

(|u| − |t|
j

)

︸ ︷︷ ︸
=0

= V (E [Y |Xu])

• Expression 4.11 is a consequence of 4.10:

DT
u

+ DC
ū

=
∑

v∈I
v∩uÓ=∅

Dv +
∑

v∈I
v⊆ū

Dv =
∑

v∈I

Dv = V (Y )

because {v ∈ I, v ∩ u Ó= ∅} ∪ {v ∈ I, v ⊆ ū} = I (see ? and ? equation 11). It follows
that

DT
u

= V (Y ) − DC
ū

= V (Y ) − V (E [Y |Xū])
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B.3 Results related to penalized regression

B.3.1 Sobol indices estimation with regression

Lemme B.2. For any set u of indices (u ∈ I ′), when

(au, bu) = arg min
(a,b)

{
E

[
(Y − aYu − b)2

]
+ E

[
(Yu − aY − b)2

]}
(B.19)

then

au = Su

Proof. In the function to minimize, Y and Yu have a symmetric role and follows the same
law.

J(a, b) = E

[
(Y − aYu − b)

2
]

+ E

[
(Yu − aY − b)

2
]

= E
[
Y 2

]
+ a2E

[
Y 2

u

]
+ b2 − 2aE [YuY ] − 2abE [Yu] − 2bE [Y ]

+E
[
Y 2

u

]
+ a2E

[
Y 2

]
+ b2 − 2aE [YuY ] − 2abE [Y ] − 2bE [Yu]

= 2
(
E

[
Y 2

]
+ a2E

[
Y 2

]
+ b2 − 2aE [YuY ] − 2abE [Y ] − 2bE [Y ]

)

which is parabolic, thus has only one minimum, reached at the point denoted (au, bu). We
solve ∇J(au, bu) = 0.

∇J(a, b) =

(
4aE

[
Y 2

]
+ 4bE [Y ] − 4E [YuY ]

4b + 4aE [Y ] − 4E [Y ]

)

Setting the second component to zero of the gradient yields to equation :

bu = E [Y ] (1 − au) (B.20)

Setting the first component to zero and using the last equation yield to

au =
E [YuY ] − E [Y ]

2

E [Y 2] − E [Y ]
2 =

cov(Y, Yu)

V (Y )
= Su

B.3.2 Solution of Lasso regression

Proposition B.4. For any u ∈ I ′, the Lasso and least squares estimators are related accord-

ing to the following formula:

Ŝl1
u = max

(
Ŝls

u − ε1, 0
)

with ε1 = λ1
2σ2 .
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Proof. The cost function to minimize is denoted

J :
R → R

a Ô→ J(a) = ‖Y − aYu‖2
2 + λ1|a|

For the sake of readability, notations including u are shortened as follow: σ2 = Y T Y =

Y T
u

Yu, âls = Ŝls
u

= (Y T
u

Yu)−1Y T
u

Y . This cost function is developed.

J(a) = σ2

(
1 + a2 − 2aâls +

λ1

σ2
|a|

)

The function J is differentiable everywhere but in a = 0. For any a Ó= 0,

∂J

∂a
(a) = 2σ2

(
a − âls +

λ1

2σ2
sign(a)

)

The term ε1 = λ1

2σ2 appears, this notation holds for the rest of the proof. The derivative is
discontinuous when a = 0. It jumps from −âls − ε1 to −âls + ε1. When we solve ∂J

∂a (â) = 0

we must distinguish the case of 0 ∈ [−âls − ε1, −âls + ε1] (that is to say |âls| 6 ε1). Three
cases are to consider:

•• |âls| 6 ε1

• âls > ε1

• âls < −ε1

When |âls| 6 ε1, there is no solution for the equation ∂J
∂a (â) = 0. Nevertheless, when

|âls| 6 ε1, the value 0 is within the discontinuity at a = 0.

lim
a→0+

∂J

∂a
(a) = 2σ2

(
ε1 − âls

)
> 0 and lim

a→0−

∂J

∂a
(a) = −2σ2

(
ε1 + âls

)
6 0

Hence, when |âls| 6 ε1, J(a) reaches its minimum at â = 0.

When âls > ε1, setting the derivative to zero gives

â = âls − ε1

When âls < −ε, setting the derivative to zero gives

â = âls + ε1

Finally, all cases are gathered into the single following expression:

â = sign(âls) max
(
|âls| − ε1, 0

)

In the case of Sobol indices, it is reasonable to dismiss the case âls < −ε1 (it can happen
either if the least square estimation is really bad or the penalty is very small). Going back
to the problem 8.13, the Lasso estimator is given by Ŝl1

u
= â.
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B.3.3 Solution of best subset regression

Proposition B.5. For any u ∈ I ′, the best subset and least squares estimators are related

according to the following formula:

Ŝl0
u = Ŝls

u 1
Ŝls

u
>ε0

with ε0 =
√

λ0
σ2 .

Proof. We assume exactly k upon d coefficients of the vector a are non-zero and we index
a such that they are first.

a = (au)u∈I′ = (a1, ..., ak, 0, ..., 0)

The cost function to minimize depends on the number of non-zero:

J(k) =

k∑

i=1

‖Y − aiYi‖2
2 + (2p − k)‖Y ‖2

2 + kλ0

It is worth to set the next coefficient ak+1 to a non-zero value only if it shrinks the cost
function:

ak+1 Ó= 0 ⇔ J(k + 1) < J(k)

⇔ ‖Y ‖2
2 − ‖Y − ak+1Yk+1‖2

2 − λ0 > 0

and the next coefficient will take the value which maximizes the improvement. For any
u ∈ I ′, the best subset estimation is the solution to

max
a

{
‖Y ‖2

2 − ‖Y − aYu‖2
2 − λ0

}

This gain function to maximize is denoted G(a).

G(a) = ‖Y ‖2
2 − ‖Y − aYu‖2

2 − λ0

= σ2 − (Y T Y + a2Y T
u

Yu − 2aY T Yu) − λ0

= 2σ2(aâls − a2

2 − λ0

2σ2 )

Solving G′(â) = 0 gives â = âls. Hence, when it is worth to add a non-zero coefficient, this
coefficient is equal to the least square estimator. It is worth to add a non-zero coefficient if
G(â) > 0, that is to say when

(âls)2 − (âls)2

2
− λ0

2σ2
> 0 or when |âls| >

√
λ0

σ2

Combining these condition gives the result:

â = âls1
|̂als|>ε0

with ε0 =
√

λ0/σ.
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B.3.4 Bias, variance and error of prediction and estimation

Formulae to link error of prediction (Y − Ŷ ) and the error of estimation (β − β̂) when the the
errors are estimated by cross-validation with a testing sample independent from the training
sample. Mentioned at section 8.23, page 235.

BiY = E [X] Biβ (B.21)

VarY = E
[
XVarβXT

]
+ V

(
XE

[
β̂

])
(B.22)

MSEY = Bi
T
βE

[
XT X

]
Biβ + E

[
tr(XVarβXT )

]
+ σ2

0 (B.23)

Proof. of equations (B.21), (B.22) and (B.23).

Equation of the bias (B.21).

BiY = E

[
Ŷ − Y

]
= E

[
X(β̂ − β) − ǫ

]
= E [X] Biβ

because β̂ is independent from X.

Equation of the variance (B.22).

From the total variance formula, we have

VarY = E

[
V

(
Xβ̂|X

)]
+ V

(
E

[
Xβ̂|X

])
= E


XV

(
β̂|X

)

︸ ︷︷ ︸
=Varβ


 + V




XE

[
β̂|X

]

︸ ︷︷ ︸
=E

[
β̂
]




because β̂ is independent from X, the conditioning to X does not matter.

Equation of the MSE (B.23).

From the law of total expectation, we have MSEY = E

[
E

[
(Ŷ − Y )T (Ŷ − Y )|X

]]
.

E

[
(Ŷ − Y )T (Ŷ − Y )|X

]
= E

[
(Ŷ − XE

[
β̂

]
+ XE

[
β̂

]
− Y )T (Ŷ − XE

[
β̂

]
+ XE

[
β̂

]
− Y )|X

]

= E

[
(Y − XE

[
β̂

]
)T (Y − XE

[
β̂

]
)|X

]

︸ ︷︷ ︸
I

+E

[
(Ŷ − XE

[
β̂

]
)T (Ŷ − XE

[
β̂

]
)|X

]

︸ ︷︷ ︸
II

+2E
[
(Y − XE

[
β̂

]
)T (Ŷ − XE

[
β̂

]
)|X

]

︸ ︷︷ ︸
III

Because β̂ is the estimator built on the sub-sample (YA, A), we can assume that β̂ is

independent of X. In particular, E
[
β̂

]
= E

[
β̂|X

]
, which is helpful to explicit the terms I,

II and III.
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The term I is linked to the bias on β:

I = E

[
(Xβ + ǫ − XE

[
β̂

]
)T (Xβ + ǫ − XE

[
β̂

]
)|X

]
= E

[
Bi

T
β XT XBiβ |X

]
+E

[
ǫ2

]
= Bi

T
β XT XBiβ+E

[
ǫ2

]

with E
[
ǫ2

]
= σ2

0 .
The term II is linked to the variance on β:

II = E

[
(Xβ̂ − XE

[
β̂

]
)T (Xβ̂ − XE

[
β̂

]
)|X

]
= tr(V

(
Xβ̂|X

)
) = tr(XVarβXT )

The term III is null:

III = E

[
(Xβ + ǫ − XE

[
β̂

]
)T (Xβ̂ − XE

[
β̂

]
)|X

]
= (β−E

[
β̂

]
)T XT XE

[
(β̂ − E

[
β̂

]
)|X

]

︸ ︷︷ ︸
=0

= 0

Finally,
E

[
(Ŷ − Y )T (Ŷ − Y )|X

]
= Bi

T
β XT XBiβ + tr(XVarβXT ) + σ2

0

Taking the expectation gives the result.
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Appendix C

Complete results of 2-by-2
experiments

C.1 Recap of framework

The system described by figure C.1 has been designed to assess the reconstruction system.
Its inputs are parameters of the reconstruction or surroundings for which we want to know
the influence (summarized table C.1). Its output are indicators of some qualities of the
reconstruction method (summarized table C.2). A "2-by-2 experiment" is the run of the
system when only 2 inputs are varying and all outputs are computed. The 2 inputs vary on
a regular grid with 30 points for each (thus, 900 runs for each experiment).

To browse among the figures, use hyperlinks in

• the table of contents.

• the table C.3.

• the list of figures page 384.

Notation Description Place in the system
C0 Kolmogorov "constant" Reconstruction (Lagrangian model)
C1 Fluctuation coefficient Reconstruction (Lagrangian model)
ℓ Spatial interaction length Reconstruction (Lagrangian model)
N Number of particles Reconstruction (filtering)

σadd True observation noise Simulation of observation
σobs Guess of observation noise Reconstruction (filtering)
σX Discretization error in the Lagrangian model Reconstruction (Lagrangian model)
σV Default standard deviation of wind speed Reconstruction (Lagrangian model)
τ Integration time Output computation

Table C.1 – Summary of input parameters for the sensitivity analysis
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Figure C.1 – Diagram of the system on which is done the sensitivity analysis.

Notation Description Definition equation Results
NG0 Number of null potential NG0 = |{G = 0}| p.345

b Slope of the wind PSD Γ(κ) = Aκb p.349
rk Root-mean-squared error on the TKE ‖kLS(z, t)

τ − kT (z, t′)‖2 p.353
rV Root-mean-squared error on the wind rV = ‖V̂z,t − V ref

z,t ‖2 p.357
Texe Time of execution Texe = tend − tstart p.361

Table C.2 – Summary of output parameters for the sensitivity analysis

C0 C1 ℓ N σadd σobs σV σX τ

C0 p.303 p.306 p.309
C1 p.303
ℓ p.306 p.312 p.315 p.318
N p.312 p.321 p.324 p.327

σadd p.315 p.321 p.330 p.333
σobs p.318 p.324 p.330 p.336 p.339
σV p.342
σX p.309 p.336 p.342
τ p.327 p.333 p.339

Table C.3 – Couples of inputs experimented: results are on the indicated page (hyperlink).
This table is a copy of 7.1.
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C.2 Results by experiment (couple of inputs)

An experiment consists in the computation of all 5 outputs when only two inputs vary on a
regular grid. Table C.3 gives all the experiments carried out. There are 13 experiments in
total.

C.2.1 C0 and C1

In this experiment, only C0 and C1 vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.2 – Number of null potential when C0 and C1 vary.
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Figure C.3 – PSD slope when C0 and C1 vary.

Figure C.4 – RMSE on TKE when C0 and C1 vary.
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Figure C.5 – RMSE on wind when C0 and C1 vary.

Figure C.6 – Execution time when C0 and C1 vary.
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C.2.2 C0 and ℓ

In this experiment, only C0 and ℓ vary. To check another experiment, go to table C.3 (hy-
perlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.7 – Number of null potential when C0 and ℓ vary.
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Figure C.8 – PSD slope when C0 and ℓ vary.

Figure C.9 – RMSE on TKE when C0 and ℓ vary.
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Figure C.10 – RMSE on wind when C0 and ℓ vary.

Figure C.11 – Execution time when C0 and ℓ vary.
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C.2.3 C0 and σ
X

In this experiment, only C0 and σX vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.12 – Number of null potential when C0 and σX vary.
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Figure C.13 – PSD slope when C0 and σX vary.

Figure C.14 – RMSE on TKE when C0 and σX vary.
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Figure C.15 – RMSE on wind when C0 and σX vary.

Figure C.16 – Execution time when C0 and σX vary.
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C.2.4 ℓ and N

In this experiment, only ℓ and N vary. To check another experiment, go to table C.3 (hyper-
links in the table). To have more explanation about these inputs, go to table C.1.

Figure C.17 – Number of null potential when ℓ and N vary.
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Figure C.18 – PSD slope when ℓ and N vary.

Figure C.19 – RMSE on TKE when ℓ and N vary.
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Figure C.20 – RMSE on wind when ℓ and N vary.

Figure C.21 – Execution time when ℓ and N vary.

314



C.2.5 ℓ and σ
add

In this experiment, only ℓ and σadd vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.22 – Number of null potential when ℓ and σadd vary.
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Figure C.23 – PSD slope when ℓ and σadd vary.

Figure C.24 – RMSE on TKE when ℓ and σadd vary.
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Figure C.25 – RMSE on wind when ℓ and σadd vary.

Figure C.26 – Execution time when ℓ and σadd vary.
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C.2.6 ℓ and σ
obs

In this experiment, only ℓ and σobs vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.27 – Number of null potential when ℓ and σobs vary.
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Figure C.28 – PSD slope when ℓ and σobs vary.

Figure C.29 – RMSE on TKE when ℓ and σobs vary.
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Figure C.30 – RMSE on wind when ℓ and σobs vary.

Figure C.31 – Execution time when ℓ and σobs vary.
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C.2.7 N and σ
add

In this experiment, only N and σadd vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.32 – Number of null potential when N and σadd vary.
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Figure C.33 – PSD slope when N and σadd vary.

Figure C.34 – RMSE on TKE when N and σadd vary.
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Figure C.35 – RMSE on wind when N and σadd vary.

Figure C.36 – Execution time when N and σadd vary.
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C.2.8 N and σ
obs

In this experiment, only N and σobs vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.37 – Number of null potential when N and σobs vary.
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Figure C.38 – PSD slope when N and σobs vary.

Figure C.39 – RMSE on TKE when N and σobs vary.
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Figure C.40 – RMSE on wind when N and σobs vary.

Figure C.41 – Execution time when N and σobs vary.
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C.2.9 N and τ

In this experiment, only N and τ vary. To check another experiment, go to table C.3 (hyper-
links in the table). To have more explanation about these inputs, go to table C.1.

Figure C.42 – Number of null potential when N and τ vary.
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Figure C.43 – PSD slope when N and τ vary.

Figure C.44 – RMSE on TKE when N and τ vary.
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Figure C.45 – RMSE on wind when N and τ vary.

Figure C.46 – Execution time when N and τ vary.
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C.2.10 σ
add and σ

obs

In this experiment, only σadd and σobs vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.47 – Number of null potential when σadd and σobs vary.
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Figure C.48 – PSD slope when σadd and σobs vary.

Figure C.49 – RMSE on TKE when σadd and σobs vary.
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Figure C.50 – RMSE on wind when σadd and σobs vary.

Figure C.51 – Execution time when σadd and σobs vary.
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C.2.11 σ
add and τ

In this experiment, only σadd and τ vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.52 – Number of null potential when σadd and τ vary.
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Figure C.53 – PSD slope when σadd and τ vary.

Figure C.54 – RMSE on TKE when σadd and τ vary.
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Figure C.55 – RMSE on wind when σadd and τ vary.

Figure C.56 – Execution time when σadd and τ vary.
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C.2.12 σ
obs and σ

X

In this experiment, only σobs and σX vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.57 – Number of null potential when σobs and σX vary.
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Figure C.58 – PSD slope when σobs and σX vary.

Figure C.59 – RMSE on TKE when σobs and σX vary.
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Figure C.60 – RMSE on wind when σobs and σX vary.

Figure C.61 – Execution time when σobs and σX vary.
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C.2.13 σ
obs and τ

In this experiment, only σobs and τ vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.62 – Number of null potential when σobs and τ vary.
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Figure C.63 – PSD slope when σobs and τ vary.

Figure C.64 – RMSE on TKE when σobs and τ vary.
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Figure C.65 – RMSE on wind when σobs and τ vary.

Figure C.66 – Execution time when σobs and τ vary.
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C.2.14 σ
V and σ

X

In this experiment, only σV and σX vary. To check another experiment, go to table C.3
(hyperlinks in the table). To have more explanation about these inputs, go to table C.1.

Figure C.67 – Number of null potential when σV and σX vary.
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Figure C.68 – PSD slope when σV and σX vary.

Figure C.69 – RMSE on TKE when σV and σX vary.
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Figure C.70 – RMSE on wind when σV and σX vary.

Figure C.71 – Execution time when σV and σX vary.
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C.3 Results by output

C.3.1 Number of null potential

In this subsection are shown only the influence on the number of null potential NG0. First
are shown the Sobol indices for this output the most informative experiment and then the
rest of experiments. To browse by experiment, use the hyperlinks in table C.3 (all outputs
are computed for each experiment). To check another output, go back to table C.2. There is
also a list of figures page 384.

Figure C.72 – Sobol indices (score of influence) for number of null potential. Main effect in
blue (effect of input alone), total effect in green (effect of input with all its interactions).
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Figure C.73 – Number of null potential when σadd and σobs vary.

Figure C.74 – Number of null potential when
C0 and C1 vary.

Figure C.75 – Number of null potential when
C0 and ℓ vary.
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Figure C.76 – Number of null potential when
ℓ and N vary.

Figure C.77 – Number of null potential when
ℓ and σadd vary.

Figure C.78 – Number of null potential when
ℓ and σobs vary.

Figure C.79 – Number of null potential when
N and σadd vary.

Figure C.80 – Number of null potential when
N and σobs vary.

Figure C.81 – Number of null potential when
N and τ vary.
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Figure C.82 – Number of null potential when
σV and σX vary.

Figure C.83 – Number of null potential when
σadd and τ vary.

Figure C.84 – Number of null potential when
σobs and σX vary.

Figure C.85 – Number of null potential when
σobs and τ vary.
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C.3.2 Slope of PSD of wind

In this subsection are shown only the influence on the slope of the estimated wind power
density spectrum b. First are shown the Sobol indices for this output the most informative
experiment and then the rest of experiments. To browse by experiment, use the hyperlinks in
table C.3 (all outputs are computed for each experiment). To check another output, go back
to table C.2. There is also a list of figures page 384.

Figure C.86 – Sobol indices (score of influence) for PSD slope. Main effect in blue (effect of
input alone), total effect in green (effect of input with all its interactions).
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Figure C.87 – Slope of PSD when σadd and σobs vary.

Figure C.88 – Slope of PSD when C0 and C1

vary.
Figure C.89 – Slope of PSD when C0 and ℓ
vary.
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Figure C.90 – Slope of PSD when ℓ and N
vary.

Figure C.91 – Slope of PSD when ℓ and σadd

vary.

Figure C.92 – Slope of PSD when ℓ and σobs

vary.
Figure C.93 – Slope of PSD when N and σadd

vary.

Figure C.94 – Slope of PSD when N and σobs

vary.
Figure C.95 – Slope of PSD when N and τ
vary.
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Figure C.96 – Slope of PSD when σV and σX

vary.
Figure C.97 – Slope of PSD when σadd and
τ vary.

Figure C.98 – Slope of PSD when σobs and
σX vary.

Figure C.99 – Slope of PSD when σobs and τ
vary.
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C.3.3 RMSE on TKE

In this subsection are shown only the influence on the root-mean-squared error on turbulent
kinetic energy rk. First are shown the Sobol indices for this output the most informative
experiment and then the rest of experiments. To browse by experiment, use the hyperlinks in
table C.3 (all outputs are computed for each experiment). To check another output, go back
to table C.2. There is also a list of figures page 384.

Figure C.100 – Sobol indices (score of influence) for TKE RMSE. Main effect in blue (effect
of input alone), total effect in green (effect of input with all its interactions).
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Figure C.101 – TKE RMSE when ℓ and σadd vary.

Figure C.102 – TKE RMSE when C0 and C1

vary.

Figure C.103 – TKE RMSE when C0 and ℓ
vary.
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Figure C.104 – TKE RMSE when ℓ and N
vary.

Figure C.105 – TKE RMSE when σV and σX

vary.

Figure C.106 – TKE RMSE when ℓ and σobs

vary.
Figure C.107 – TKE RMSE when N and σadd

vary.

Figure C.108 – TKE RMSE when N and σobs

vary.
Figure C.109 – TKE RMSE when N and τ
vary.
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Figure C.110 – TKE RMSE when σadd and
σobs vary.

Figure C.111 – TKE RMSE when σadd and
τ vary.

Figure C.112 – TKE RMSE when σobs and
σX vary.

Figure C.113 – TKE RMSE when σobs and τ
vary.
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C.3.4 RMSE on wind

In this subsection are shown only the influence on the root-mean-squared error on vertical
wind rV . First are shown the Sobol indices for this output the most informative experiment
and then the rest of experiments. To browse by experiment, use the hyperlinks in table C.3
(all outputs are computed for each experiment). To check another output, go back to table
C.2. There is also a list of figures page 384.

Figure C.114 – Sobol indices (score of influence) for wind RMSE. Main effect in blue (effect
of input alone), total effect in green (effect of input with all its interactions).
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Figure C.115 – Wind RMSE when N and σobs vary.

Figure C.116 – Wind RMSE when C0 and C1

vary.
Figure C.117 – Wind RMSE when C0 and ℓ
vary.
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Figure C.118 – Wind RMSE when σV and
σX vary.

Figure C.119 – Wind RMSE when ℓ and σadd

vary.

Figure C.120 – Wind RMSE when ℓ and σobs

vary.
Figure C.121 – Wind RMSE when N and σadd

vary.

Figure C.122 – Wind RMSE when ℓ and N
vary.

Figure C.123 – Wind RMSE when N and τ
vary.
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Figure C.124 – Wind RMSE when σadd and
σobs vary.

Figure C.125 – Wind RMSE when σadd and
τ vary.

Figure C.126 – Wind RMSE when σobs and
σX vary.

Figure C.127 – Wind RMSE when σobs and
τ vary.
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C.3.5 Execution time

In this subsection are shown only the influence on the execution time Texe. First are shown
the Sobol indices for this output the most informative experiment and then the rest of exper-
iments. To browse by experiment, use the hyperlinks in table C.3 (all outputs are computed
for each experiment). To check another output, go back to table C.2. There is also a list of
figures page 384.

Figure C.128 – Sobol indices (score of influence) for execution time. Main effect in blue (effect
of input alone), total effect in green (effect of input with all its interactions).
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Figure C.129 – Execution time when σV and σX vary.

Figure C.130 – Execution time when C0 and
C1 vary.

Figure C.131 – Execution time when C0 and
ℓ vary.
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Figure C.132 – Execution time when ℓ and
N vary.

Figure C.133 – Execution time when ℓ and
σadd vary.

Figure C.134 – Execution time when ℓ and σobs

vary.
Figure C.135 – Execution time when N and
σadd vary.

Figure C.136 – Execution time when N and
σobs vary.

Figure C.137 – Execution time when N and
τ vary.
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Figure C.138 – Execution time when σadd

and σobs vary.
Figure C.139 – Execution time when σadd

and τ vary.

Figure C.140 – Execution time when σobs and
σX vary.

Figure C.141 – Execution time when σobs and
τ vary.
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Sensitivity analysis of a filtering algorithm for wind
lidar measurements

Thomas Rieutord
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42 avenue Gaspard Coriolis, Toulouse, France.

Abstract — Wind energy industry and airport safety are in need of atmospheric obser-
vations. Remote sensors, such as lidars, are well proven and common technology to provide
wind measurements in the first hundreds of meters of altitude. However, acquisition abilities
of lidars are polluted by measurement noise. Using non-linear filtering techniques, we took
part at the development of an algorithm improving wind and turbulence estimations. The
process is based on a representation of the atmosphere with fluid particles. It uses a stochas-
tic Lagrangian model of turbulence and a genetic selection filtering technique. Its efficiency
depends of the setting of various parameters. Their values were fixed experimentally during
the development phase. But their influence has never been assessed. This work addresses
this question with a variance-based sensitivity analysis. New estimators of Sobol indices,
using penalized regression have been tested. These estimators ensure the lowest Sobol indices
automatically go to zero so the overall interpretation is simplified. The sensitivity analysis
allows to reduce the system from 5 outputs and 9 inputs to 3 inputs (number of particles, real
observation noise, observation noise given to the filter) and 2 outputs (wind spectrum slope,
root-mean-squared error on wind). With this reduced system we determined a procedure to
correctly set the most important parameters. The observation noise given to the filter is well
set when the wind spectrum slope has the expected value of -5/3. Once it is set correctly, the
error on wind is minimum and its expression is known.

Keywords — sensitivity analysis, non-linear filtrering, Doppler lidar, turbulence

PhD delivered by Toulouse INP in November 2017

PhD supervisors – Fabrice Gamboa, Alain Dabas

Speciality – Applied mathematics



Analyse de sensibilité d’un algorithme de filtrage
pour les mesures de vent par lidar

Thomas Rieutord
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Météo-France, CNRS
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Résumé — L’industrie éolienne et l’aéronautique ont des besoins importants en matière
de mesure de vent dans les premières centaines de mètres de l’atmosphère. Les lidars sont
des instruments répandus et éprouvés pour ce type de mesure. Cependant, leurs qualités
d’acquisition sont atténuées par un bruit de mesure systématique. En utilisant des techniques
sur le filtrage non-linéaire nous avons participé au développement d’un algorithme qui améliore
l’estimation du vent et de la turbulence. Cet algorithme est basé sur une représentation
de l’atmosphère par des particules fluides. Il utilise un modèle lagrangien stochastique de
turbulence et un filtrage par sélection génétique. Son efficacité dépend du réglage de certains
paramètres, fixés à une valeur acceptable à l’issue de la phase de développement. Mais
l’influence de ces paramètres n’a jamais été étudiée. Ce travail de thèse répond à cette
question par une analyse de sensibilité basée sur la décomposition de variance. De nouveaux
estimateurs pour les indices de Sobol, utilisant des régression pénalisées, ont été testés. Ces
estimateurs mettent les indices de Sobol les plus petits automatiquement à zéro pour faciliter
l’interprétation globale. L’analyse de sensibilité permet de réduire le système à 9 entrées et
5 sorties à un système de 3 entrées (le nombre de particules, le bruit d’observation réel et le
bruit d’observation donné au filtre) et 2 sorties (la pente du spectre de vent et l’erreur sur
le vent). Grâce à ce système réduit, nous mettons en évidence une méthode de réglage des
paramètres d’entrée les plus importants. Le bruit d’observation donné au filtre est bien réglé
lorsque la pente du spectre est à la valeur cible de -5/3. Une fois ce bruit réglé, l’erreur sur
le vent est minimale avec une expression connue.

Mots clés — analyse de sensibilité, filtrage non-linéaire, lidar Doppler, turbulence.
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