
En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :

Genie industriel

Présentée et soutenue par :
Mme VALENTINA MARIA LLAMAS ZOGBI

le mardi 14 novembre 2017

Titre :

Unité de recherche :

Ecole doctorale :

Towards an agile methodology for industrial problem solving / Vers une
méthodologie agile pour la résolution de problèmes industriels

Systèmes (Systèmes)

Laboratoire de Génie de Productions de l'ENIT (E.N.I.T-L.G.P.)
Directeur(s) de Thèse :
M. LAURENT GENESTE
M. THIERRY COUDERT

Rapporteurs :
Mme MARIE-ANNE LE DAIN, INP GRENOBLE

M. SAMIR LAMOURI, ENSAM - ARTS ET METIERS PARISTECH

Membre(s) du jury :
M. MAURICE PILLET, UNIVERSITE DE SAVOIE CHAMBERY-ANNECY, Président

M. JUAN CAMILO ROMERO BEJARANO, AXSENS, Membre

Towards an agile methodology for industrial problem solving

Valentina María Llamas

1

TOWARDS AN AGILE METHODOLOGY FOR INDUSTRIAL PROBLEM SOLVING

Towards an agile methodology for industrial problem solving

Valentina María Llamas

3

ACKNOWLEDGMENTS

I would like these paragraphs to express my deepest and sincere gratitude to all the people

that, with their advice and support, collaborated with the accomplishment of the present

work.

First and foremost, I would like to thank both of my academic advisors, Laurent Geneste and

Thierry Coudert. Thanks for your support and guidance through these last three years. I

really appreciate all your contributions of time and ideas that truly helped and motivated

me. Thanks for your precious advice and enormous knowledge.

I would also like to thank my industrial supervisor, Juan Romero. Thank you for providing me

the opportunity of joining this collaborative research. I am especially grateful for the

continuous support and encouragement both on professional and personal levels.

Further, I would like to acknowledge Marie-Anne Le Dain and Samir Lamouri for taking the

time to appraise my work and for their very interesting suggestions, and to Maurice Pillet for

accepting to be the president of the jury.

Thanks to Aymeric de Valroger and Jean-Claude Simonet, president and associate director of

Axsens bte, for welcoming me to the company and mostly for your insightful comments and

guidance. I also want to thank all my colleagues from Axsens bte and from ENIT-LGP. I would

like to recognize Sofia, for she accompanied me during this last year with positive energy and

motivation.

I thank my dearest friends for your friendship and support, most times in the distance. I am

mostly grateful to my family for their unconditional support during my entire career. Thanks

to my sister, my brothers and especially to my parents, a source of inspiration and my

example to follow in all levels of life. Thanks to my grandparents for their excellent advice

and continuous incentive.

My deepest and truly acknowledgment goes to my loving, encouraging and patient Luciano. I

am grateful for your faithful support and inspirational words. Thanks for accompanying me

into this project and for all those to come.

Towards an agile methodology for industrial problem solving

Valentina María Llamas 5

TABLE OF CONTENTS

7 List of Figures

List of Tables 9

1. Introduction 11

1.1 12

1.2 15

1.3 16

1.4

Business processes

Problem-solving processes

Problem statement and objectives

Structure of the document 16

2. State of the art 19

2.1 19

2.2 20

2.3 39

2.4 44

2.5

Introduction

Agility Concepts

Knowledge and experience capitalization and reuse

Problem Solving

Synthesis and Contributions 51

3. Information model for agility 53

3.1 53

3.2 53

3.3 55

3.4 56

3.5 57

3.6 65

3.7

Introduction

Definition of the concepts of the agile process

Agile process versioning system

Roles within the agile process

Knowledge and Experience-Driven Process

Illustration of an agile process

Conclusion 67

4. Agile lifecycle model 69

4.1 The agile process lifecycle 69

70

75

83

92

 4.1.1 Step 1. Definition of the process scope

 4.1.2 Step 2. Experience filtering

 4.1.3 Step 3. Adaptation of the first version of the process

 4.1.4 Step 4. Process execution. Continuous adaptation

 4.1.5 Step 5. Storage in the Experience/Knowledge Base 102

4.2 Decision making based on event 104

4.3 Conclusion 106

5. Illustration based on an industrial situation 107

5.1 107

5.2 110

5.3

Knowledge and experience base Step

1. Definition of the process scope Step

2. Experience filtering 112

Towards an agile methodology for industrial problem solving

Valentina María Llamas 6

5.4 113

5.5 116

5.6 133

5.7

Step 3. Adaptation of the first version of the process

Step 4. Process execution. Continuous adaptation

Step 5. Storage in the Knowledge/experience base

Conclusion 136

6. Conclusion 137

141

143

Publications related to this PhD

work References

Appendix 151

153 Appendix 1

Appendix 2 155

Towards an agile methodology for industrial problem solving

Valentina María Llamas

7

List of Figures

FIGURE 1: GENERIC PROCESSES STRUCTURATION 13

FIGURE 2: THREE TYPES OF GENERIC PROCESSES 15

FIGURE 3: THREE RESEARCH DOMAINS OF THIS STUDY 19

FIGURE 4: XP PRACTICES AND CYCLE OF LIFE BY (LINDSTROM AND JEFFRIES, 2004) 23

FIGURE 5: TRADITIONAL WATERFALL DEVELOPMENT AND SCRUM DEVELOPMENT BY (JAMES, 2010) 25

FIGURE 6: STRUCTURE OF ENTERPRISE AGILITY BY (DOVE, 1994) 30

FIGURE 7: CONCEPTUAL MODEL OF AGILE SUPPLY CHAIN BY (LIN ET AL., 2006) 32

FIGURE 8: BUSINESS PROCESS AGILITY CONSTRUCT BY (RASCHKE, 2010) 33

FIGURE 9: AGILITY KEY CONCEPTS AND CHARACTERISTICS 36

FIGURE 10: POSITIONING OF AN EXPERIENCE IN THE TRIPLET DATA-INFORMATION-KNOWLEDGE. ADAPTED FROM (BÉLER, 2008) 40

FIGURE 11: THE CBR CYCLE BY (AAMODT AND PLAZA, 1994) 42

FIGURE 12: THE PDCA CYCLE ADAPTED FROM (DEMING, 2000) 46

FIGURE 13: THE FORD 8D METHOD ADAPTED FROM (JABROUNI, 2012) 47

FIGURE 14: DMAIC PHASES ADAPTED FROM (BOON SIN ET AL., 2015) 48

FIGURE 15: INTERACTIONS BETWEEN RESEARCH DOMAINS 51

FIGURE 16: AGILE PROCESS ILLUSTRATION 54

FIGURE 17: EXAMPLE OF TYPES OF PROCESSES (TP) COMPOSING THE KB 58

FIGURE 18: ILLUSTRATION OF TWO PROCESS SCENARIOS FOR A SAME TYPE OF PROCESS 59

FIGURE 19: TYPE OF PROCESS UML REPRESENTATION 60

FIGURE 20: ILLUSTRATION OF THREE EXPERIENCES FOR A GIVEN SCENARIO 61

FIGURE 21: UML REPRESENTATION OF TYPE OF PROCESS, SCENARIO, EXPERIENCE AND ACTIVITY 62

FIGURE 22: EXAMPLE OF SIMPLIFIED TAXONOMIES 64

FIGURE 23: ILLUSTRATION – KNOWLEDGE BASE FOR THE TYPE OF PROCESS: PROBLEM SOLVING 65

FIGURE 24: AGILE PROCESS FIRST VERSION 66

FIGURE 25: V0, V1 AND V3 OF THE AGILE PROCESS 67

FIGURE 26: AGILE LIFECYCLE 70

FIGURE 27: DEFINITION OF THE PROCESS CONTEXT 72

FIGURE 28: COST AND DELAY COMPATIBILITY FUNCTIONS 73

FIGURE 29: DEFINITION OF THE PROCESS CONTEXT - ILLUSTRATION 74

FIGURE 30: COST AND DELAY COMPATIBILITY FUNCTIONS - ILLUSTRATION 74

FIGURE 31: EXPERIENCE FILTERING PROCESS 77

FIGURE 32: AVAILABLE SCENARIOS FOR TP: PROBLEM SOLVING 79

FIGURE 33: TAXONOMIES OF TAGS - ILLUSTRATION 80

FIGURE 34: FILTERED SCENARIOS FOR THE CURRENT LIFECYCLE 82

FIGURE 35: ADAPTATION OF THE FIRST VERSION OF THE PROCESS 83

FIGURE 36: ADAPTATION OF V0 85

FIGURE 37: EXAMPLE OF PROBABILITY DISTRIBUTION AND COMPATIBILITY FUNCTION FOR COST 87

FIGURE 38: FIRST VERSION OF THE PROCESS (V0) AND ITS DASHBOARD – ILLUSTRATION 90

FIGURE 39: CONSTRAINTS NEGOTIATION 93

FIGURE 40: SELECTED AND NON-SELECTED ACTIVITIES 94

FIGURE 41: VERSIONS V0 AND V1 OF THE PROCESS - ILLUSTRATION 98

FIGURE 42: D2 DASHBOARD - ILLUSTRATION 100

FIGURE 43: VERSIONS V0, V1 AND V2 OF THE PROCESS - ILLUSTRATION 101

FIGURE 44: OCCURRENCE OF AN UNEXPECTED EVENT - ILLUSTRATION 105

FIGURE 45: VERSION V3 OF THE PROCESS - ILLUSTRATION 105

FIGURE 46: KNOWLEDGE AND EXPERIENCE BASE FOR THE TYPE OF PROCESS: PROBLEM SOLVING 108

FIGURE 47: TAGS TAXONOMY 110

Towards an agile methodology for industrial problem solving

Valentina María Llamas

8

FIGURE 48: DEFINITION OF THE PROCESS CONTEXT 111

FIGURE 49: COST AND DELAY CONSTRAINTS 111

FIGURE 50: “FILTERED” EXPERIENCE BASE 113

FIGURE 51: V0 DASHBOARD 115

FIGURE 52: EVOLUTION OF THE AGILE PROCESS 117

FIGURE 53: D1 DASHBOARD 120

FIGURE 54: VERSIONS V0 AND V1 OF THE PROCESS 123

FIGURE 55: D2 DASHBOARD – NORMAL EXECUTION OF THE PROCESS 124

FIGURE 56: VERSIONS V0, V1 AND V2 OF THE PROCESS -– NORMAL EXECUTION OF THE PROCESS 125

FIGURE 57: VERSIONS V0, V1 AND V2 OF THE PROCESS – UNEXPECTED EVENT 127

FIGURE 58: D2 DASHBOARD - – UNEXPECTED EVENT 130

FIGURE 59: VERSIONS V0, V1, V2 AND V3 OF THE PROCESS 132

FIGURE 60: LAST VERSION OF THE PROCESS AND EXPERIENCE BASE 133

FIGURE 61: UPDATED KNOWLEDGE AND EXPERIENCE BASE 135

Towards an agile methodology for industrial problem solving

Valentina María Llamas

9

List of Tables

TABLE 1: AGILITY RELATED WORKS 21

TABLE 2: MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT (“MANIFESTO FOR AGILE SOFTWARE DEVELOPMENT,” 2001) 22

TABLE 3: THE ROLES WITHIN THE AGILE PROCESS MODEL 56

TABLE 4: AGILE PROBLEM-SOLVING PROCESS TAGS 63

TABLE 5: EXPERIENCES TAGS – ILLUSTRATION 80

TABLE 6: SIMILARITY VALUES FOR ALL TAGS - ILLUSTRATION 81

TABLE 7: COST AND DELAY VALUES CORRESPONDING TO FILTERED EXPERIENCES 88

TABLE 8: GLOBAL COST AND DELAY COMPATIBILITY FOR FILTERED SCENARIOS 89

TABLE 9: ACTIVITIES COST AND DELAY VALUES - ILLUSTRATION 99

TABLE 10: PROBABILITY AND COMPATIBILITY VALUES AT DECISION D2 – ILLUSTRATION 99

TABLE 11: UPDATED EXPERIENCES TAGS – ILLUSTRATION 103

TABLE 12: EXPERIENCES TAGS 110

TABLE 13: COMPUTE OF SIMILARITY 112

TABLE 14: COST AND DELAY VALUES FOR FILTERED EXPERIENCES 113

TABLE 15: COST AND DELAY PROBABILITY AND COMPATIBILITY VALUES – V0 DASHBOARD 114

TABLE 16: COST AND DELAY VALUES FOR ALL ACTIVITIES AT DECISION POINT D1 118

TABLE 17: COST AND DELAY PROBABILITY AND COMPATIBILITY VALUES – D1 DASHBOARD, SCENARIO VIEW 119

TABLE 18: COST AND DELAY PROBABILITY AND COMPATIBILITY VALUES – D1 DASHBOARD, ACTION VIEW 119

TABLE 19: COST AND DELAY VALUES FOR ALL ACTIVITIES AT DECISION POINT D2 - NORMAL EXECUTION OF THE PROCESS 122

TABLE 20: COST AND DELAY PROBABILITY AND COMPATIBILITY VALUES – D2 DASHBOARD, SCENARIO VIEW-

NORMAL EXECUTION OF THE PROCESS 123

TABLE 21: COST AND DELAY PROBABILITY AND COMPATIBILITY VALUES – D2 DASHBOARD, ACTION VIEW-

NORMAL EXECUTION OF THE PROCESS 123

TABLE 22: COST AND DELAY VALUES FOR ALL ACTIVITIES AT DECISION POINT D2- UNEXPECTED EVENT 128

TABLE 23: COST AND DELAY PROBABILITY AND COMPATIBILITY VALUES – D2 DASHBOARD, SCENARIO VIEW- UNEXPECTED EVENT 129

TABLE 24: COST AND DELAY PROBABILITY AND COMPATIBILITY VALUES – D2 DASHBOARD, ACTION VIEW- UNEXPECTED EVENT 129

TABLE 25: UPDATED EXPERIENCES TAGS 134

Towards an agile methodology for industrial problem solving

Valentina María Llamas

11

1. INTRODUCTION

This PhD thesis has been performed in the framework of a long-lasting partnership between

the company Axsens-bte and the laboratory LGP-ENIT (Laboratoire Génie de Production –

Ecole Nationale d’Ingénieurs de Tarbes). Axsens-bte1 is a consulting and training firm

specialized in the domains of continuous improvement, problem solving, supply chain and

industrial methods, among others. In the company, the research was carried out within the

department “Research and Methods” (R&M). The R&M department aims at defining

innovative and practical solutions for Axsens-bte customers through applied research and

collaborative projects. On the other hand, the LGP2 is the laboratory of the ENIT, an

engineering public school integrated in the University of Toulouse and linked to the “Institut

National Polytechnique de Toulouse” (INPT). This research was conducted within the

“Systèmes Décisionnels et Cognitifs” (SDC) team, one of the four research teams of the

laboratory. The domains of research of the SDC team are: Experiences, Knowledge and

competencies (ECC from French); and uncertainty, risk and decisions (IRD from French).

Furthermore, another PhD thesis has already been carried out between Axsens-bte and

ENIT: “Collaborative problem solving within supply chains: general framework, process and

methodology” (Romero Bejarano, 2013), and a third PhD project has been launched in the

framework of this partnership in 2016.

Moreover, this work has been performed through a specific doctoral program based on the

public-private partnership framework, called CIFRE (from French, “Conventions Industrielles

de Formation par la REcherche”) which supported by the French Ministry of Higher

Education and Research.

In such a context, both Axsens-bte and LGP-ENIT have been dealing with strong industrial

issues for many years. Organisation, modelling, optimization, methods and tools are needed

to face these issues. That is why Axsens-bte and LGP-ENIT are collaborating via the CIFRE

framework to provide new paradigms.

In a highly changing and unstable environment, modern companies need to be ready to

capture market requirements and to propose adequate solutions. Then, organisations

should constantly adapt their continuous improvement strategies to face changes in the

marketplace. More specifically, industrial problem solving is one of the key activities that

support continuous improvement approaches. In order to provide improvement and

innovation in the problem solving domain, the partnership Axsens-bte/LGP has worked

together for many years. The first PhD thesis above referenced, and an open and free

software to support industrial problem solving, ProWhy3, are examples of this collaborative

work which aims at satisfying industrial needs.

1
 http://axsens.com/

2
 http://www.lgp.enit.fr/fr/lgp.html

3
 http://prowhy.org/

Towards an agile methodology for industrial problem solving

Valentina María Llamas

12

Moreover, the adaptation of nowadays companies to face changes in their environment can

be achieved through the revision and adjustment of their business processes. The business

processes context is then very important for the organisation of companies. Some

definitions and insights on the topic which has been identified in the literature are presented

next.

1.1 Business processes

A process is “a specific ordering of work activities across time and place, with a beginning, an

end, and clearly identified inputs and outputs” (Davenport, 1993). Moreover, a business

process is “a collection of tasks and activities (business operations and actions) consisting of

employees, materials, machines, systems and methods that are being structured in such a

way as to design, create, and deliver a product or a service to the customer” (von Scheel et

al., 2015). The concept of process has evolved until these days, as described in (von Scheel et

al., 2015). The study presented by von Scheel et al. lists influencing people that modified the

vision of processes, and their propositions (methods or approaches) which brought the

progress and evolution of processes. Authors define four major phases of process evolution.

The first phase goes from Sun Tzu (544 BC), with his book on military strategy describing the

use of process activities to fulfil specific goals, to Henry Ford’s mass production. The second

phase, focused on workers and process optimization, goes from Henry Laurence Gantt with

his well-known Gantt chart used to present phases and activities in a project over time,

follows with the simplification and optimization of processes until the Toyota Production

System (TPS). In the third phase, concepts of process visualization and digitalization are

introduced, from the approach to enterprise modelling and enterprise architecture ARIS,

through Lean thinking and practices; Business Process Reengineering, Total Quality

Management (Duret and Pillet, 2011); until Six sigma, a set of methods and tools for process

improvement. The fourth phase is composed of Business Process Management (BPM) and its

notation BPMN, which are further developed afterwards.

There exist several definitions of BPM in the literature. “BPM is a ‘process process’, it is the

process for managing the company processes” (Debauche and Mégard, 2004). According to

(Swenson and von Rosing, 2015) BPM “is a discipline involving any combination of modelling,

automation, execution, control, measurement, and optimization of business activity flows in

applicable combination to support enterprise goals, spanning organisational and system

boundaries, and involving employees, customers and partners within and beyond the

enterprise boundaries”. In more general terms, the BPM approach supports and controls

business processes through their analysis, modelling, simulation, documentation and

execution, aiming at increasing the benefits of the organisation through the improvement of

its effectiveness (Aalst et al., 2003). Moreover, BPM philosophy contains six main phases:

the first phase is Analyse (project preparation and blueprint), the second is Design (project

realization and design), third, Build (final project preparation), fourth, Deploy/implement

(Go live), fifth, Run/Maintain (run processes and govern performance), and finally,

Towards an agile methodology for industrial problem solving

Valentina María Llamas

13

Continuous improvement (Continuously optimize and develop processes) (von Rosing et al.,

2015a).

Furthermore, in order to model business processes, different techniques exist, such as

Business Process Model Notation (BPMN), a standard notation that provides elements to

graphically specify business processes. It aims to support BPM through an easily

understandable set of symbols in order to allow their comprehension by both business and

technical users. It is based on three symbols categories: the model elements (events,

activities, gateways), the connecting means (sequences, messages, associations) and the

element groups (pools, lanes) (Debauche and Mégard, 2004). Moreover, ArchiMate is a high-

level architecture modelling standard. It could be adopted by enterprises operating in a

dynamic and complex environment, combined with different low detailed level modelling

standards (e.g. BPM, UML) (Gill, 2015).

Over years, a certain level of standardization has been achieved on business processes.

Recurrent and static processes (such as the billing process) are, in most cases, performed in

different situations following the same steps. Then, such processes can be standardized

through the definition of a predefined structured approach, which can be systematically

deployed. Business processes need to be standardized and structured in modern companies,

for instance, to support Enterprise Resource Planning (ERP) software structured manner of

working.

Therefore, some routine or recurrent business processes exist within organisations. Such

processes are often performed following a predefined and structured workflow. However,

business processes can also be non-structured or “exploratory”. Unlike structured processes,

in this case, the workflow of the process is completed all along the execution of the process.

It means that there is no predefined “path” to follow, then, decision makers do not know

how they will perform the process before deploying each step. Structured and non-

structured types of generic processes, illustrated in Figure 1, are described next.

Figure 1: Generic processes structuration

Towards an agile methodology for industrial problem solving

Valentina María Llamas

14

Figure 1a represents a non-structured or exploratory process (Lechner and Floyd, 2007). This

type of process presents a high level of flexibility that allows readjustments through

different alternatives. When facing a disturbance, the process can be reconfigured to reach

the objectives, for instance, new activities can be added in real time to overcome problems.

However, this high level of flexibility involves a low level of formalization since it is quite

difficult to define standards for their systematic reuse. Then, the formalization and use of

general knowledge is difficult to achieve.

At the opposite, the situation in Figure 1b describes a structured process. The process is

formalized as a set of pre-defined activities, allowing its systematic reuse. The advantages

are both, that activities can be performed without ambiguities, and that knowledge can be

formalized and used to help decision makers. However, in such a type of process, when

unexpected events or disturbances occur, it is very difficult to change and to react.

Furthermore, when overcoming non-formalized scenarios (i.e. new activities performed out

of the standard), the standardized available knowledge can be inadequate.

Then, two extreme situations can be recognized: completely structured and exploratory

processes. However, a third case exists which combines both types of processes. There are

some business processes that can be structured and, at the same time, contain exploratory

parts. Such a combination of both situations could improve business processes by taking into

account the advantages of each one of them. More specifically, the third type of process

presents a certain level of flexibility that could be used to improve business processes. In our

work, this third approach is denominated an agile process, represented in Figure 2b.

An agile process is defined through the combination of both previously described extreme

situations. Thus, drawbacks from both structured and non-structured processes are taken

into account to define an agile process that:

 is sufficiently structured to ensure objectives satisfaction and process efficiency but

not over constrained by standards,

 can be reconfigured and adapted to unexpected situations,

 is based on experience feedback principles (i.e. the process is driven by knowledge

and experiences reuse and allows learning during its execution).

Towards an agile methodology for industrial problem solving

Valentina María Llamas

15

Figure 2: Three types of generic processes

Then, agile processes combine exploratory and structured processes. In the same way that

fully structured and fully exploratory processes exist, there also exist processes that are

composed by a combination of both exploratory and structured processes. Such is the case

of industrial problem-solving processes, described in the next section.

1.2 Problem-solving processes

Problem Solving is one of the main activities carried out regularly by companies with the

purpose of improving quality and achieving continuous improvement. A large number of

methods, such as Plan, Do, Check, Act (PDCA), Define, Measure, Analyse, Control (DMAIC), 8

Disciplines (8D) / 9 Steps (9S) exist. These methods are based on specific approaches

defining steps to follow in order to solve a problem (problem-solving approach and methods

are described in section 2.4). Such predefined approaches are, in most cases, very

structured. The success of these methods strongly depends, indeed, on the disciplined

approach required to systematically perform the pre-defined resolution workflow that they

propose.

In addition to this, they are often applied systematically and regardless of the nature of the

problem to solve, the context that surrounds it and the level of skills and evidence available

to eradicate it. Therefore, a lack of flexibility to adjust the problem-solving process to deal

with simple to complex, interconnected and highly changing context and problems has been

observed during the application of these methods in industry.

Furthermore, a typical characteristic of problem-solving processes is that they are defined on

a rigid framework. It means that the defined steps in order to solve a problem must be

always applied in a predefined manner (which is the principle of a structured process).

Nevertheless, there are activities that often do not fit this rigidity concept because of their

highly exploratory nature. For instance, a typical exploratory activity is the analysis of root

Towards an agile methodology for industrial problem solving

Valentina María Llamas

16

causes. It is a non-structured step due to a high level of uncertainty regarding the specific

task to be performed since different tools and techniques exist in order to define root

causes.

Then, problem-solving processes constitute an interesting target to define and to apply

agility principles since they combine structured and exploratory processes. Taking into

consideration the statement regarding business process and more specifically, problem-

solving processes, the problematic that this research work addresses is outlined in the next

section.

1.3 Problem statement and objectives

Business process context was presented in the first section. Such processes, in most cases,

are defined following a structured workflow. Exploratory processes also exist in

organisations, where no predefined path is followed during process execution. However, a

process can be a combination of structured and exploratory sub-processes or activities,

which is the case of problem-solving processes. This thesis work studies a third type of

process between both extreme situations, what we call an agile process. Then, the problem

addressed in this work can be summarized as:

 Problem-solving processes are not sufficiently agile in order to continuously adapt their

workflow when facing changes. In most cases, they are not defined according to their

context, the nature of the problem to be solved and the possible events (expected or

unexpected) that could impact their execution and that could require reconfiguration.

In order to tackle the research problem, two global objectives are defined in our work: The

first objective is a methodological one, and the second one regards more technical aspects.

 First objective: The improvement of flexibility and adaptability of problem-solving

processes through the incorporation of agile principles. Increasing and adapting the

learning of problem-solving processes from previous situations through the

incorporation of knowledge reuse principles. Such concepts could be applied to

problem-solving processes in order to enable their agility.

 Second objective: Support of existing problem-solving processes through the

definition of appropriate algorithms and mechanisms. Such mechanisms could help

to increase the agility of the process.

Those global objectives will be further refined with respect to the bibliographic review. Then,

at the end of the state of the art section, the global objectives are re-defined.

1.4 Structure of the document

This PhD thesis work intends to define an agile problem-solving process model based on the

Towards an agile methodology for industrial problem solving

Valentina María Llamas

17

capitalization and reuse of knowledge and experiences. The document is organised as

follows.

The bibliographic study carried out for this research is detailed in chapter 2. It is divided into

the three research pillars necessary to define the originality of our work: the domains

related to: i) the agility concept, ii) knowledge and experience capitalization and reuse

concepts, and iii) the problem-solving approaches and methods. The link between the three

research pillars and the concepts that will be considered for our study are presented. This

bibliographic review leads to deepen and to refine the objectives of this work

The information model for agility is introduced in chapter 3. The information about the

elements of an agile process (activities, decision-making points and versioning system) are

detailed. The knowledge capitalization and reuse mechanisms are also detailed and the

structure and way of working of the knowledge and experience bases are described. A

tagging system enabling the characterization and future retrieval of the process is also

introduced, as well as specific indicators that are defined with the purpose of constraining

the process.

In chapter 4, the agile lifecycle is described. Such a lifecycle, based on CBR (Case based-

reasoning) principles, guides the definition, execution and storage of an agile process. The

chapter is divided following the five steps of the agile lifecycle: 1/ Process scope definition,

2/ Experience filtering, 3/ Adaptation of the first version of the process, 4/ Process

execution/continuous adaptation, 5/ Storage in the Experience/Knowledge bases.

In chapter 5, an application of the method on an industrial context is introduced. It was

conducted at a surface treatment company and it intends to clarify the agile lifecycle

through the application of the model and its elements to a real case.

Finally, the last section concludes with a synthesis of the contributions of this work. Also, the

identified perspectives and further work related to this research are presented.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

19

2. STATE OF THE ART

2.1 Introduction

This study brings together three research domains in order to define an agile knowledge and

experience based process model. First, agility principles and concepts which are intended to

provide flexibility and adaptability to process management need to be detailed. Second, in

order to define appropriate knowledge and experience capitalization and reuse mechanisms

for agile processes, such concepts need to be defined. It has been argued that problem-

solving processes, due to their dual (structured / exploratory) nature, will be used as the

application of this study. Problem solving is thus, the third research domain that needs to be

described for this work.

This chapter outlines the founding principles and key concepts of each one of the three

domains in order to clearly identify the concepts that will be used and/or adapted for our

model. The three research domains are illustrated in Figure 3.

Figure 3: Three research domains of this study

Section 2.2 outlines agility, a wide studied concept that has been divided into three sub-

sections tracing main applications domains: Agile software development methods are

described in section 2.2.1, Agile organisations principles are described in section 2.2.2 and

Agile business processes and workflows are described in section 2.2.3. In section 2.2.4 a

summary of the concepts and characteristics of agility is presented, followed by the

definition of the key features of an agile process. In section 2.3 the domain of knowledge

and experience capitalization and reuse is presented. The experience feedback approach is

introduced in section 2.3.2, followed by the link between agility and knowledge and

experience capitalization and reuse concepts. Section 2.4 describes problem-solving

processes. First, in section 2.4.1 the industrial problem-solving approach is introduced,

describing why problem solving is necessary in today’s companies and how it is applied. In

Towards an agile methodology for industrial problem solving

Valentina María Llamas

20

section 2.4.2 some of the standard problem-solving methods are introduced. In section

2.4.3, the link between agility and problem solving is presented, followed by the link

between problem solving and knowledge and experience capitalization and reuse. Finally, in

section 2.5, the synthesis of this chapter and the contributions of this work are presented.

2.2 Agility Concepts

The concept of agility has been at the heart of several research works. Many definitions of

agility exist for different application domains. According to the Cambridge dictionary, agility

is “the ability to move about quickly and easily” (Cambridge University Press, 2017). The

concept of agility is sometimes used indistinctly with the concept of flexibility. Flexibility

refers to “the capability of an organisation to move from one task to another quickly and as

a routine procedure, with each situation defined ahead of time so that the procedures

needed to manage it are in place” while agility can refer to this definition but it adds its main

driver that is “the ability to respond quickly to unanticipated changes” (Vokurka and Fliedner,

1998). Furthermore, many authors agree that flexibility is one of agility main characteristics

(Sharifi and Zhang, 1999; Yusuf et al., 1999; Lin et al., 2006; Agarwal et al., 2006; Ren et al.,

2009). Different types of agility are described in the literature: Customer agility refers to the

incorporation of the customer to the identification and creation of new opportunities for

innovation (Raschke, 2010); partnering agility allows a firm to exploit opportunities through

the access to its extended enterprise network’s competencies (Sambamurthy et al., 2003);

and operational agility ensures that the firm can rapidly change and adapt its processes to

face the changes in the environment (Sambamurthy et al., 2003).

Moreover, agility is a concept that has been studied in several domains such as agile

software development, agile manufacturing, agile enterprise, agile supply chains, business

process agility, and agile workflows. Related works corresponding to these domains are

synthesized in Table 1.

Domain References

Agile software development methods

(McCauley, 2001; Fowler and Highsmith,

2001; Schwaber, 2004; Lindstrom and

Jeffries, 2004; Qumer and Henderson-

Sellers, 2008; Tarhan and Yilmaz, 2014)

Towards an agile methodology for industrial problem solving

Valentina María Llamas

21

Agile manufacturing

(Nagel and Dove, 1991; Sharifi and Zhang,

1999; Yusuf et al., 1999; Katayama and

Bennett, 1999; Kettunen, 2009)

Agile enterprise (Dove, 1994; Ren et al., 2009; Gill, 2015)

Agile supply chain
(Christopher, 2000; Lin et al., 2006; Agarwal

et al., 2007; Sangari et al., 2015)

Business process agility

(Raschke and David, 2009; Raschke, 2010;

Seethamraju and Krishna Sundar, 2013; von

Rosing et al., 2015; Battistella et al., 2017)

Agile workflows
(Weber and Wild, 2005; Minor et al., 2014;

Bergmann and Gil, 2014)

Table 1: Agility related works

From section 2.2.1 to section 2.2.3 agile concepts from different domains are presented.

Finally, the adapted agile key concepts and characteristics from the bibliographic study are

presented in section 2.2.4.

2.2.1 Agile software development methods

In the 1990s, traditional software development methods started to fail, representing low

success rates of software projects (Tarhan and Yilmaz, 2014). This was caused by a constant

technical evolution in the domains of computers, software and communications technology

(Lindstrom and Jeffries, 2004). Afterwards, in the late 1990s, agile software development

methods started emerging as alternatives to provide improvements to traditional methods

(McCauley, 2001).

The waterfall process (Royce, 1987) was the first formal software development method. It is

still used when project requirements are fixed. It is based on five main practices: System

concept, Analysis, Design, Coding and Testing (Qumer and Henderson-Sellers, 2008).

The spiral model (Boehm, 1988) for software development is also a well-known traditional

method. It may be characterized by five main phases: Project concept, Risk management,

Planning, Prototyping and Product engineering (Qumer and Henderson-Sellers, 2008).

Predictive methods such as waterfall produce rigid requirement documents to be used in the

development lifecycle, impeding any changes in requirements. Even if the spiral model

presents many of the waterfall method disadvantages, its incremental development process

Towards an agile methodology for industrial problem solving

Valentina María Llamas

22

enables to adapt to unstable requirements (Nuseibeh, 2001).

In 2001, some agile software developers worked together to share practices. Then, the Agile

Alliance was created, formally introducing agility through the Agile Manifesto (Table 2). The

Agile Manifesto lists values and principles common to all agile methods (Lindstrom and

Jeffries, 2004).

We are uncovering better ways of developing software by doing it and helping

others do it. Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the

left more.

Table 2: Manifesto for Agile Software Development (“Manifesto for Agile Software Development,”
2001)

Two of the authors of the agile manifesto explain that the distinction between the first and

the second part of each value (i.e. each item in Table 2) lies at the heart of agility (Fowler

and Highsmith, 2001).

Moreover, a set of agile principles is included in the agile manifesto (see Appendix 1).

According to (McCauley, 2001), the general principles that these agile methods introduce are

flexibility and adaptability in order to respond to changes in requirements all over the

project.

Despite the values and principles outlined by the agile manifesto, there is no unified

definition of an agile software development method. In (Qumer and Henderson-Sellers,

2008), the authors claim that “a software method is said to be an agile software

development method when a method is people focused, communications-oriented, flexible

(ready to adapt to expected or unexpected change at any time), speedy (encourages rapid

and iterative development of the product in small releases), lean (focuses on shortening

timeframe and cost and on improved quality), responsive (reacts appropriately to expected

and unexpected changes), and learning (focuses on improvement during and after product

development)”.

Based on the principles and values of the Agile Manifesto, several agile software

development methods have emerged. Two of the most deployed methods are Extreme

Programming and Scrum (Tarhan and Yilmaz, 2014). Other well-known agile methodologies

Towards an agile methodology for industrial problem solving

Valentina María Llamas

23

(Qumer and Henderson-Sellers, 2008) are: Feature Driven Development (FDD) (Palmer and

Felsing, 2002), Adaptive Software Development (ASD) (Highsmith, 2013), Dynamic Software

Development Method (DSDM) (Stapleton, 1997) and Crystal (Abrahamsson et al., 2003).

Extreme Programming and Scrum methodologies are detailed next.

Figure 4: XP practices and cycle of life by (Lindstrom and Jeffries, 2004)

Extreme Programming (XP) is a lightweight and efficient methodology for small-to-medium-

sized teams that develop software from highly changing requirements (Beck, 2000). It is

focused on iterative and rapid development (Qumer and Henderson-Sellers, 2008). Six roles

are included in an XP team: programmer, customer, tester, tracker, coach and manager. This

method is based on values of simplicity, communication, feedback and courage, applied

through its twelve main practices. XP main practices are illustrated in Figure 4 by (Lindstrom

and Jeffries, 2004). In the illustration, the twelve practices are distributed in three circles,

from the inside to the outside. It represents: 1) the programmers, 2) the practices that helps

the team to collaborate to deliver quality software and 3) the planning cycle that takes place

between programmers and customers. Each practice is defined by (Lindstrom and Jeffries,

2004) as follows:

 Whole team: All of the contributors to the project work together as one team. It

includes the programmers (developers, analysers, testers, etc.) and the customer.

 Planning game: It consists of defining what will be delivered by the due date and

deciding what to do next. It is composed of two phases: First, the Release planning

consists of establishing an initial plan for the project based on the desired features

and their difficulty. The plan, mostly imprecise, is regularly revised along the project.

Second, the Iteration planning is defined considering the features demanded by the

customer for the next two weeks (iterations duration is usually of 2 weeks) and the

Towards an agile methodology for industrial problem solving

Valentina María Llamas

24

estimated workload to perform it along with the previous iteration outputs.

 Customer tests: Acceptance tests are defined by the customer to ensure that

features are working. Tests are built and implemented by the team.

 Small releases: Integrated tested software is released with every iteration to the

customer who can release it to the end user. Also, programmers frequently release

software to their own end users.

 Simple design: A key principle of XP is to create and maintain, during tests and

improvements, a simple design.

 Pair programming: Programmers work in pairs to ensure that all the software is

reviewed by at least one person. This practice helps to improve the code and

knowledge sharing among the team.

 Test-driven development: All the tests are run all along the project. This continuous

feedback helps to improve the design of the software.

 Design improvement: A continuous design improvement process called refactoring is

used. It ensures the removal of duplication and increases the consistance of the

code.

 Continuous integration: The system is fully integrated all along the project. It avoids

serious problems such as the non-detection of problems during integration due to

non-integrated tests.

 Collective code ownership: All programmers are familiar with the code and they can

all add improvements at any moment.

 Coding standard: A common standard is used to code so that all programmers are

familiar with it.

 Metaphor: The metaphor is a description or a vision of the system, used to ensure

that everyone understands how the software works.

 Sustainable pace: Teams work in a pace that can be sustained indefinitely in order to

ensure efficiency.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

25

Figure 5: Traditional waterfall development and Scrum development by (James, 2010)

Scrum is “a framework within which people can address complex adaptive problems, while

productively and creatively delivering products of the highest possible value” (Schwaber and

Sutherland, 2001), developed by Ken Schwaber and Jeff Sutherland and applied since the

1990s. Scrum searches to introduce flexibility, adaptability and productivity into the system

(Schwaber and Beedle, 2002).

In Figure 5, the difference between a waterfall method and Scrum is shown by (James,

2010). In the waterfall method, requirements need to be perfectly understood from the

beginning and errors are propagated through phases. In the Scrum method, on the other

hand, all development activities are blended within each iteration.

Scrum is an agile method grounded on the values of commitment, courage, focus, openness

and respect (Schwaber and Beedle, 2002). Scrum is based on a ‘skeleton’ composed by a

cycle of iterations and inspections working as follows: the team, based on the initial

requirements, decides what to develop in the iteration or sprint, works by self-managing to

accomplish the objective of the iteration and, when finished, presents the increment of

Towards an agile methodology for industrial problem solving

Valentina María Llamas

26

functionality to stakeholders for inspection and, if necessary, adjustments for the next sprint

(Schwaber, 2004). To implement this incremental cycle, Scrum sets a structure of roles,

meetings and artifacts. Each component of Scrum is detailed next.

The Scrum team, a self-organized and cross-functional group of people, allows flexibility,

creativity and productivity optimization into the project. Three roles are defined within the

Scrum team:

 The Product Owner: One person that is responsible for maximizing the value of the

product and the work that is performed by the Development team. S/he is the only

responsible for managing the product backlog (an artifact explained after in this

section).

 The Development team: Group of people (ideally between three and nine people)

responsible for delivering the product increment at the end of each sprint. The team

is self-organized, cross-functional and there are no sub-teams inside of it. They work

according to the Product Owner decisions.

 The Scrum Master: One person that ensures that Scrum is well understood and that it

adheres to theory, practices and rules. S/he is in charge of communication between

the Scrum team and the people from the outside by helping useful interactions

among them. S/he ensures that meetings are held and kept within the time-box.

A set of time-boxed events, called Scrum Events, is proposed in order to enable transparency

and inspection during the project. Five events are defined:

 The Sprint: It is the heart of Scrum. During a time-box of one month or less, the team

creates releasable product Increment. Each Sprint is considered as a project.

 Sprint planning: It plans the work to be done at the Sprint. It is created by all of the

Scrum team. Two questions should be answered: What can be delivered at the end of

the next Sprint? And, how will the work be achieved? A Sprint Goal, the objective set

for the Sprint, is defined during this meeting.

 Daily Scrum: It is a fifteen-minute meeting to synchronize activities and create a plan

for the day. It is conducted by the Development team and everyone should answer

three questions regarding the Sprint Goal: What was done yesterday? What will be

done today? And, are there any impediments to achieve it?

 Sprint Review: It is performed at the end of each Sprint in order to inspect the

Increment and to adapt the Product Backlog. For this purpose, the Scrum team and

the stakeholders collaborate about what was done in the Sprint.

 Sprint Retrospective: After the Sprint Review, and before the next Sprint planning,

the Scrum team inspects itself and create improvements for the new Sprint.

Finally, Scrum Artifacts are defined in order to ensure transparency of key information

allowing all the people involved in the project to have the same understanding. Three

Towards an agile methodology for industrial problem solving

Valentina María Llamas

27

artifacts are defined:

 Product Backlog: It is an ordered list of everything needed in the product and

represents the sole source of requirements for changes to the product. It is never

complete and evolves along the project.

 Sprint Backlog: It is the set of Product Backlog selected for a Sprint and the plan to

achieve both the Sprint Goal and the delivery of the Increment. It is a forecast by the

Scrum team about functionalities to be done in the next Increment and the work

needed to achieve them.

 Increment: All the Product Backlog items completed during a Sprint plus the value of

the Increments of previous Sprints.

 Agile software development methods and principles were introduced in this section.

Interesting concepts regarding the principles behind agile methods such as flexibility,

speed, leanness, learning, and responsiveness were presented. Two agile methods were

introduced, Scrum and Extreme Programming. Such methods propose interesting agile

approaches, however they are software-development oriented and some specific

characteristics are out of the scope of this research. Other characteristics need to be

adapted to agile processes, for instance, the “short iterations” principle used in agile

software development methods, can be adjusted in order to define short activities of

the process to increase its flexibility.

The second main domain where agility has been developed is organisations. The principles

are presented in the following section.

2.2.2 Agile organisations

Agility in organisations is a widely studied domain in literature. In this study, the approach

chosen to describe the constituent concepts of an agile organisation is the following: First,

agile manufacturing, one of the most discussed subjects in the bibliography regarding agility,

is presented. Second, an agility approach regarding the complete enterprise is detailed.

Finally, agility in supply chains, the agile interaction between agile partners, is studied.

Agile manufacturing

Since 1980, manufacturing companies are facing unprecedented levels of globalization,

socio-political changes and market instability. Several studies were led in order to provide

clarification of the causes of these new conditions in business (Sharifi and Zhang, 1999)

including a study by a group of scholars of the Iacocca Institute of Lehigh University in 1991

(Nagel and Dove, 1991). The report that resulted from the study, entitled “21st-century

manufacturing enterprise strategy”, introduced for the first time the concept of Agile

Manufacturing.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

28

Even if several authors have defined agile manufacturing in their studies, there is no

agreement on a unique definition. However, most authors agree that the main force, driver

or dimension of agility is change (Vokurka and Fliedner, 1998; Sharifi and Zhang, 1999; Yusuf

et al., 1999).

According to the study led at the Iacocca Institute of Lehigh University, agile manufacturing

(Nagel and Dove, 1991) is “…a manufacturing system with extraordinary capabilities (Internal

capabilities: hard and soft technologies, human resources, educated management,

information) to meet the rapidly changing needs of the marketplace (speed, flexibility,

customers, competitors, suppliers, infrastructure, responsiveness). A system that shifts

quickly (speed and responsiveness) among product models or between production lines

(flexibility), ideally in real-time response to customer demand (customer needs and wants)”.

In (Sharifi and Zhang, 1999) agility is defined as “the ability to cope with unexpected changes,

to survive unprecedented threats of business environment, and to take advantage of changes

as opportunities”. In (Yusuf et al., 1999), the authors define agility as “the successful

exploration of competitive bases (speed, flexibility, innovation, proactivity, quality and

profitability) through the integration of reconfigurable resources and best practices in a

knowledge-rich environment to provide customer-driven products and services in a fast-

changing market environment”. (Goldman, 1995) defines agility as “dynamic, context-

specific, aggressively change-embracing, and growth-oriented. It is not about improving

efficiency, cutting costs, or battening down the business hatches to ride out fearsome

competitive storms. It is about succeeding and about winning profits, market share, and

customers in the very centre of competitive storms that many companies now fear.” “Agility

is characterized by cooperativeness and synergism (possibly resulting in virtual corporations),

by a strategic vision that enables thriving in face of continuous and unpredictable change, by

the responsive creation and delivery of customer-valued, high quality and mass customized

goods/services, by nimble organisation structures of a knowledgeable and empowered

workforce, and facilitated by an information infrastructure that link constituent partners in a

unified electronic network” (Sanchez and Nagi, 2001). Finally (Katayama and Bennett, 1999)

claims that agile manufacturing relates to the interface between the company and the

market through a set of abilities for meeting widely varied customer requirements in terms

of price, specification, quality, quantity and delivery.

Agile manufacturing core concepts have been identified by (Yusuf et al., 1999) as:

 Core competence management: Identification, improvement and affectation of the

available set of skills.

 Virtual enterprise: Companies collaborate at corporate and operational levels.

 Capability for reconfiguration: Enterprises can easily adapt or reconfigure their

business to answer a specific purpose.

 Knowledge-driven enterprise: Knowledge is the main differentiator of successful

Towards an agile methodology for industrial problem solving

Valentina María Llamas

29

business. Companies should be composed of people with the right set of

competencies and knowledge.

An approach that allows to achieve agility in organisations is proposed by (Sharifi and Zhang,

1999). The authors propose a set of agility drivers that refer to the changes in the business

environment that guide the company to modifying its strategy to remain competitive. The

categories of these changes have been identified as: changes in the market, changes in

competition criteria, changes in customer requirements, changes in technology, and changes

in social factors. Moreover, the authors define four major categories of agility capabilities to

help an organisation to appropriately respond to changes in its environment:

 Responsiveness: “Ability to identify changes and respond fast to them, reactively or

proactively, and recover from them.”

 Competency: “Extensive set of abilities that provide productivity, efficiency, and

effectiveness of activities towards the aims and goals of the company.”

 Flexibility: “Ability to process different products and achieve different objectives with

the same facilities.”

 Quickness: “Ability to carry out tasks and operations in the shortest possible time”.

Furthermore (Kidd, 1996) claims that some of the key words related to agile manufacturing

are: fast, adaptable, robust, virtual corporations, reconfiguration, dynamic teaming and

transformation of knowledge (“explicitly transforming raw ideas into a range of capabilities

which are embodied in both products and services”).

 The agile manufacturing approach has been introduced along with its principal

characteristics. To summarize, common characteristics that describe an agile

manufacturing organisation are: its speed, flexibility and responsiveness to reconfigure

its resources in order to adapt to fast and unexpected change. Moreover, agile

organisations collaborate with their partners and are knowledge-driven.

Enterprise agility

Enterprises must be ready to answer constant changes in the marketplace. This need drove

the emergence of agile manufacturing concepts. Moreover, agile behaviour should be

demonstrated on the management front (Izza et al., 2008). Agility is “the ability to thrive in

an environment of continuous and unpredictable change” (Dove, 1994).

In Figure 6, a structure to construct agility in enterprises is proposed by (Dove, 1994). It is

based on eight change domains (in the left side of the cube), since change is the focal point

of agility; four agile dimensions (in the centre of the cube), in which change capabilities are

in balance for the enterprise; ten agile attributes (in the higher part of the cube), enterprise

characteristics that allow them to be agile; and twelve key enterprise elements (in the lower

Towards an agile methodology for industrial problem solving

Valentina María Llamas

30

part of the cube), important sub-modules into which an enterprise can be decomposed from

an agile perspective. Moreover, a focus is done on agile dimensions proposed by (Dove,

1994). If an enterprise wants to be agile, then it should have a good balance of change

response transversal to the four dimensions of agility. The dimensions are: Cost and Time of

change, and Robustness and Scope of the solution to face change.

Figure 6: Structure of enterprise agility by (Dove, 1994)

A framework to measure agility is presented by (Izza et al., 2008). The five dimensions to

measure agility of enterprise information systems are:

 Process dimension: Business processes can be measured in terms of time and cost to

face changes.

 Organisation dimension: Organisational elements can be measured by their

hierarchy, type, management type, among others.

 Information dimensions: Stored and manipulated information in the enterprise

 Resource dimension: people, IT and organisational structures

 Environment dimension: External factors to the enterprise.

 The main concepts regarding enterprise agility have been presented. Many aspects of

agility in manufacturing systems are retrieved in the domain of enterprise agility. As a

global conclusion, change remains the driving force of agility.

Agile supply chains

Nowadays enterprises are aware that they need to be agile in order to survive and to be

competitive. They also need to collaborate with suppliers and customers by working

Towards an agile methodology for industrial problem solving

Valentina María Llamas

31

together to be truly competitive (Lin et al., 2006). A supply chain is “a series of activities that

moves goods from the customer order through the raw materials stage, supply, production

and distribution of products and then to the customer” (Ren et al., 2009). Supply Chain

Management (SCM) states that companies should collaborate and integrate their business

with their value chain partners in order to better respond to the customer needs (Agarwal et

al., 2007). Business survival and success can be achieved through the definition of an agile

supply chain (Ren et al., 2009). An agile supply chain, “aims to enrich/satisfy customers and

employees. It possesses the ability to respond appropriately to changes occurring in its

business environment” (Lin et al., 2006). Furthermore, it provides a new ground to innovate

on the supply chain and allows to compete in the changing market (Balaji et al., 2014).

Agility in the supply chain is defined as “the ability of an organisation to respond rapidly to

changes in demand, both in terms of volume and variety” by (Christopher, 2000). Agility

“describes a company or a supply chain that is able to change and adapt quickly to changing

circumstances”, according to (Ren et al., 2009).

(Christopher, 2000) proposes four characteristics of agile supply chains:

 Market sensitive: Capability of reading and responding to real demand.

 Virtual: Agile supply chains use information technology to share data between buyers

and suppliers.

 Process integration: Collaborative working between buyers and suppliers.

 Network based: Organisations that structure, coordinate and manage their

relationships with partners.

Moreover, the principles behind these characteristics are discussed in the literature. For

instance (Agarwal et al., 2007) define four characteristics of agile supply chain that follow

the same principles presented by Christopher: Market sensitive and responsiveness,

information-driven virtual integration, process integration and performance management,

and centralized and collaborative planning.

Furthermore, a conceptual model of agile supply chain introduced by (Lin et al., 2006) is

illustrated in Figure 7. Here, a compilation of agility drivers, capabilities, enablers and supply

chain goals from literature is presented.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

32

Figure 7: Conceptual model of agile supply chain by (Lin et al., 2006)

 The concepts of agile manufacturing, enterprise agility and agile supply chain were

presented. The main same principles and characteristics are retrieved in the three

domains. The driving force of agility is change.

The third and last agility domains developed in this study are agile business processes and

agile workflows. The principles are presented in the following section.

2.2.3 Agile business processes and agile workflows

Business processes were defined in section 1.1 as activities that a company engages to reach

a business objective. Furthermore, effectiveness of business processes provides a key

competitive advantage to the firm (Ray et al., 2004). Then, current companies must be

prepared to rapidly adapt and adjust their business processes to face threats and changes in

the global marketplace (Seethamraju and Krishna Sundar, 2013). This is how the concept of

agility arises in the domain of business processes, in order to provide the continuous

readiness of the system to detect and adapt to changes. Moreover, to achieve this agility,

companies need to effectively identify and develop their set of capabilities in order to create

Towards an agile methodology for industrial problem solving

Valentina María Llamas

33

new value propositions (Battistella et al., 2017).

Business Process Agility (BPA) is defined as “the ability to add and/or reconfigure a business

process by quickly adding new capabilities to the set of business processes capabilities in

order to accommodate the potential needs of the firm” (Raschke, 2010). The key concepts of

BPA are flexibility and speed (Seethamraju and Seethamraju, 2009).

Figure 8: Business process agility construct by (Raschke, 2010)

Four components are identified as the core values of BPA by (Raschke, 2010), illustrated in

Figure 8.

 Reconfigurability: Refers to the ability of adapting the process to changes in the

environment.

 Responsiveness: Stands for the ability of identifying and recovering from changes

(Sharifi and Zhang, 1999).

 Employee adaptability: Indicates the ability for people to adapt to changes.

 Process-centric view: It refers to the perspective of management of the process,

contrary to the functional view.

Research in the domain of business process agility is focused on determining the relationship

between Information Technology (IT) and agility in organisations (Seethamraju and Krishna

Sundar, 2013). Firms must build process capabilities to improve IT, and consequently enable

agility allowing them to achieve a competitive advantage (Sambamurthy et al., 2003).

Moreover, digitized platforms of business processes such as enterprise resource planning

(ERP), allow to create BPA because they help to identify changes and rapidly adapt business

processes to match market requirements (Seethamraju and Seethamraju, 2009). ERP tools

are integrated software systems composed of a set of modules that supports business

processes (Robey et al., 2002).

In (Seethamraju and Krishna Sundar, 2013), the impact of ERP systems on BPA is studied

through four characteristics.

 Process integration: It refers to the unification of activities, processes and

information across units and functions (Seddon et al., 2010). The result of the study

Towards an agile methodology for industrial problem solving

Valentina María Llamas

34

shows that integration helps to ensure efficient process changes, but a high

dependence of information created by the system may turn on process changes low

efficiency.

 Process optimization: It refers to the improvement (Seddon et al., 2010) and

standardization of business processes. Standardization in enterprise systems regards

the reduction of variability and variety of processes, information, business rules and

technology systems. The result of the study shows that process agility is a

requirement for customer-facing processes and not necessarily for transactional

routine ones.

 Standardization of technologies: A standardized technology platform has a mixed

effect on BPA. It depends on the nature of the business process (repetitive or not), on

the degree of standardization and on when the simplification and improvement of

the process took place (before or at the time of ERP implementation). Then,

standardization may improve the ability to construct an agile process but in a limited

way, since it can also constraint quickness to change the process.

 Best practices: This characteristic refers to the possibility of changing enterprise

process to match the best practices contained in the ERP system. The result of this

study shows that, while best practices improve efficiency, they do not necessarily

contribute to agility. For the purpose of our study, this characteristic is taken into

account in the knowledge and experience bases, where users can find past

experiences to reuse in the current process (see section 3.5).

Furthermore, agility has been studied in the domain of Business Process Management

(BPM). A proposition of agile BPM is detailed in (von Rosing et al., 2015). The authors apply

principles and values of agile software development methods to the BPM philosophy

through a way of working defined by BPM phases and elements:

 Agile analysis: Refers to the identification of the requirements of the process through

collaborative and iterative work with the stakeholders. Requirements are prioritized

and organized in short releases.

 Agile planning: A high-level project planning is defined including project releases,

resources, cost and risks. Planning is also performed at other project levels such as

release, iteration and daily.

 Agile architecture and design: A global process design is made from the to-be

situation. Afterwards, through iterations small transition states incorporate detailed

design.

 Agile build: Process architecture concepts are required in this phase. At first, the

global architecture of the process is defined and it is detailed as the process evolves

in short iterations.

 Agile testing: Testing is performed iteratively for each design object, then associated

Towards an agile methodology for industrial problem solving

Valentina María Llamas

35

requirements may be traced in the case of issues.

Finally, the last domain of agility detailed in this study is workflow agility. Workflow

management systems “are frequently used to control the execution of business processes

and to improve their efficiency and productivity” (Weber and Wild, 2004). The missing

flexibility of workflow concept is a major limitation of traditional workflow management

systems (Minor et al., 2014). The increasing demand for flexibility results in agile workflows

(Bergmann and Gil, 2014).

In (Minor et al., 2014) the authors propose a case-based adaptation of workflows. They state

that “agile workflow technology addresses structural changes on workflow instances at run

time”. Changes can refer, first, to ad hoc changes that can occur unexpectedly at any

moment. Second, late modelling changes refer to structural changes that can be projected to

some extent. The authors employ Case-based Reasoning (CBR) (see section 2.3.2) in order to

adapt workflow instances. Past instances are recorded into workflow adaptation cases, and

their changes are then adapted to new cases in a similar situation of change.

Likewise, in (Weber and Wild, 2004) the authors propose a theoretical approach to manage

agile workflows, also based on CBR principles. The agile approach is based on the strict

separation of the build-time and the run-time. During build-time, the preliminary model of

the business process is created, focusing on business process aspects that have clear

benefits or are critical parts of the process. During the execution of the workflow (run-time),

if there are exceptions or changing requirements, changes are annotated in the model with

context-specific information. CBR allows flexibility that enhances to adapt the workflow to

respond to changing requirements.

Furthermore (Bergmann and Gil, 2014) describe a mechanism to retrieve similar workflows

based on graph comparison based on process-oriented case-based reasoning (POCBR).

POCBR “aims at addressing the problem of creating new workflows as an experience-based

activity”. The proposed approach consists of a general framework to represent workflows as

semantically labelled graphs and to model related workflows knowledge intensive similarity

measures including algorithms for similarity computations and retrieval.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

36

 Agile business process principles were presented. The concepts introduced in this

domain, such as reconfigurability, flexibility and responsiveness, match previously

presented concepts from agile software development and agile enterprise domains.

Moreover, within the agile workflow domain, authors propose workflow adaptation

using CBR principles, which affirms the necessity of knowledge-driven systems in agile

processes. Nevertheless, in both domains some specific concepts, such as their link with

information systems, are not applicable to our study.

Considering the above cited concepts and definitions of agility, a study of its features is

proposed in the next section.

2.2.4 Synthesis of agile key characteristics

In order to define the drivers that make a process agile, the agile characteristics defined in

the literature were taken into consideration, in particular from the above described domains

of agile software development methods and agile manufacturing, in order to reuse and

adapt them and define our own agile process. At a first time, all concepts and characteristics

from literature related to the concept agility were outlined, as illustrated in Figure 9. Some

concepts from other domains were identified as key agile characteristics by the research

team (e.g. concurrent engineering).

Figure 9: Agility key concepts and characteristics

Based on characteristics described in the last sections and, mainly, on concepts and

characteristics identified in Figure 9, the key concepts of an agile process were defined. For

this purpose, brainstorming sessions were carried out among the academic and industrial

Towards an agile methodology for industrial problem solving

Valentina María Llamas

37

partners of this research work. The ten key concepts (values, characteristics and

requirements) of agile processes that have been identified are:

 Capability for reconfiguration: Ability to easily and significantly change activities of an

agile process to answer new purposes, constraints or events,

 Collaboration: Association with team members and with other enterprises or

individuals in order to solve a problem or make a decision,

 Concurrent Engineering: Integrated organisation path for agile processes in which the

activities overlap and all the departments collaborate from the beginning of the

process (Valle and Vázquez-Bustelo, 2009),

 Core Competences Management: Knowledge of the available set of skills, its

continuous improvement and its affectation to the adequate work position,

 Innovativeness: Continuous engagement to search and experiment new ideas,

 Knowledge-driven Process: Ability to reuse knowledge and experiences through the

process,

 Proaction: Actions taken to predict and adapt to change before it occurs,

 Responsiveness: Ability to identify changes (expected and unexpected), respond fast,

reactively or proactively, and recover from them (Sharifi and Zhang, 1999),

 Robustness: Ability to tolerate all transitions caused by change without having to

take corrective actions (Conboy and Fitzgerald, 2004),

 Short activities: Splitting of long tasks to increase flexibility.

From this list of ten key concepts, the requirements about our global agile knowledge and

experience based process model can be defined. An agile process needs to have capabilities

for reconfiguration, responsiveness, robustness, proaction, innovativeness. It should be

structured and organized taking into account concurrent engineering, collaboration, core

competence management and short activities perspectives and principles. A special focus is

done on the concept of knowledge-driven process, considered as a major driver of agile

processes in our work. An agile process needs to continuously be guided by past experiences

and knowledge in order to avoid undesirable past situations and to promote successful ones.

However, it is important to notice that some of the concepts are not treated in this study

such that collaboration concept, which we consider out of the scope of this work.

Nevertheless, it may be studied as an extension of this work.

In this first section, existing works regarding agility concepts were presented. The values and

principles of agile software development methods were outlined including an overview of

two methods: Scrum and Extreme Programming. The second agility domain discussed was

agile organisations. For this purpose, agility in manufacturing companies was detailed

followed by a global enterprise approach and agility through the supply chain. Agile business

processes and agile workflows were defined along with its principles and concepts. Finally, a

summary of agility characteristics was presented followed by the introduction of the

Towards an agile methodology for industrial problem solving

Valentina María Llamas

38

selected key concepts which define the first global requirements of our agile process.

Considering the need for a knowledge-driven process, the principles of knowledge based

systems are described in the next section.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

39

2.3 Knowledge and experience capitalization and reuse

Knowledge and experiences capitalization and reuse are well-known practices that support

problem-solving processes and, thus, contribute to enterprise performance. Moreover,

nowadays the competitive advantage of an organisation resides on the “know-how (practical

knowledge) and the know-what (formal or cognitive knowledge)” of the people who create

and exploit knowledge in companies (Zorn and Taylor, 2004). In a company, then, best

practices and experiences from a specific situation should be properly stored in order to

allow their future reuse, in a way to avoid problem-solving from scratch.

Knowledge-based systems (KBS) are a system architecture used to support human problem

solving. Their benefits can be summarized as: faster decision making, increase of

productivity, increase of the quality of decision making (Schreiber and Akkermans, 2000).

They help to solve complex problems through the use of human knowledge captured in an

information system (Turban et al., 2004). Standard KBS methods exist such as KADS

(Knowledge Acquisition and Design Structuring) and CommonKADS (Schreiber and

Akkermans, 2000), which seeks to capture the knowledge used by people to do a given task

and transform it into a system implementation (Kamsu Foguem et al., 2008). Moreover,

Knowledge Management (KM) (Liebowitz, 2001; Zorn and Taylor, 2004; Dalkir, 2013) is “the

process of creating value from an organisation’s intangible assets” (Liebowitz, 2001). It refers

to the management system that allows to define, develop, control and exploit a company’s

expertise (Zorn and Taylor, 2004). The knowledge management approach seeks to identify

and capture all intellectual assets in order to transfer and reuse them across the company,

with the purpose of creating value-added benefits to the organisation (Liebowitz, 2001).

Knowledge management systems capitalize the generic knowledge necessary to solve a

problem through models of expertise, creating a high level of abstraction of models that

makes them difficult to be adopted (Kamsu Foguem et al., 2008). For this reason, our work is

based on experience feedback principles over knowledge management ones.

In this section, first the notions of knowledge and experience are stated. The principles

behind the experience feedback approach are detailed next. Finally, the link between

knowledge and experiences capitalization and reuse and agility is explained.

2.3.1 The notions of knowledge and experience

There are different manners to describe and to refer to the concepts of knowledge and

experience in the literature. Before explaining the core principles of knowledge and

experiences capitalization and reuse, these concepts need to be clarified.

In order to characterize the term of knowledge, several approaches are found on literature.

One of the most spread computer-science-perspective refers to the triplet: Data,

information and knowledge (Bergmann, 2002). Data are “syntactic entities (i.e. data are

patterns with no meaning). Data can be stored and processed by computers.” Information is

Towards an agile methodology for industrial problem solving

Valentina María Llamas

40

“interpreted data (i.e. data with meaning). Hence, information is data together with

semantics.” Knowledge is “a set of related information with pragmatics. Knowledge puts

information into a context given by certain task or goal.” From this classical perspective and

its definitions proposed by Bergmann, an adaptation is proposed in (Béler, 2008). The author

adds to the known data/information/knowledge triplet, the concept of experience, as

illustrated in Figure 10. The gradual transformation (or hierarchy) information, experience,

knowledge is explained in (Kamsu Foguem et al., 2008): information corresponds to an event

along with its context; an experience permits to formalize analysis and solution. Finally,

when lessons learned, procedures, rules, etc., are implied from past experiences, knowledge

is obtained. In order to clearly differentiate concepts, knowledge and experience are further

described below.

Figure 10: Positioning of an experience in the triplet Data-Information-Knowledge. Adapted from
(Béler, 2008)

According to (Bergmann, 2002), an experience is “valuable, stored, specific knowledge that

was acquired by a problem solving agent in a problem solving situation”. Thus, an experience

is a piece of contextualized knowledge obtained from a previous situation that can be

capitalized in order to be reused in the future. In our study, and as detailed in section 3.5,

every piece of experience is stored in a dedicated repository denominated “Experience

Base” (EB).

Knowledge, on the other hand, has a higher level of generalization and a larger scope such as

general rules, constraints, mathematical laws, etc. (Dalkir 2013). Knowledge has been either

defined or validated by knowledge experts. “Knowledge corresponds to high added-value

information that allow to generate, to infer new information” (Béler, 2008). In our study, and

as detailed in section 3.5, every piece of knowledge is stored in a dedicated repository

denominated “Knowledge Base” (KB).

Moreover, experiences can be transformed into new knowledge. In her work (Rakoto, 2004)

explains that knowledge such as rules or company referential may be generated from a set

of experiences. This is possible through the generalization of experiences to create

knowledge with the intervention of experts who ensure that knowledge will help to avoid

future negative events and to foster future positive events. It is important to notice that the

process of experience generalization into knowledge is considered but not detailed in this

study.

Experience feedback principles are detailed in the next section.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

41

2.3.2 Experience feedback principles

Organisations performance can be improved through the sharing of experiences and lessons

learned. The capitalization and reuse of knowledge and/or experiences in organisations is a

widely discussed subject in the literature through different approaches. Knowledge

management principles were introduced at the beginning of section 2.3. However, it has

been stated that this research is focused on experience feedback principles.

The objective of experience feedback (EF) approach is to define a manner to capitalize past

experiences and lessons learned in order to reuse them in future similar situations.

Experience feedback can be considered as an organisational process seeking to grow the

knowledge bases on an organisation through the experience of its actors (Béler and

Desforges, 2007). Moreover, experience feedback can be defined as “a structured method of

capitalization and exploitation of information resulting from the analysis of negative and/or

positive events. It implements a set of human and technological resources which must be

managed to contribute to reducing the repetitions of errors and to support some best

practices” (Rakoto, 2004). The experience feedback process helps to avoid or to foster the

reuse of respectively, negative (failures, problems) or positive (innovation, improvement)

past experiences (Romero Bejarano, 2013). According to (Kamsu Foguem et al., 2008), the

major experience feedback advantage is that it allows knowledge contextualization since a

particular problem resolution process is capitalized and can be partially or totally reused.

Moreover, as previously cited (Kamsu Foguem et al., 2008) argues that experience feedback

approach gradually builds knowledge from useful cases, through the mentioned

data/information/experience/knowledge hierarchy. Close to experience feedback,

experience management can be considered a special form of knowledge management

restricted to managing experiences (Bergmann 2002). According to (Bergmann, 2002), the

experience management process is defined through the steps of experiences collection,

modelling, storage, reuse, evaluation and maintenance.

Literature reviews other techniques allowing to reuse knowledge contained in past

experiences, especially the Case-based Reasoning (CBR) model (Kolodner, 1993; Aamodt and

Plaza, 1994) which proposes to reuse previous experiences to solve current problems. It

differs from experience feedback and knowledge management principles with the sense that

it is regarded as a cognitive model and a technical architecture instead of an organisational

model for experience reuse (Bergmann, 2002). CBR principles are used in this work as a

baseline to define an agile process lifecycle (see chapter 4). CBR follows a cycle, illustrated in

Figure 11, composed of four main phases (Aamodt and Plaza 1994):

 A retrieval phase is performed from previous cases, and the most similar case

(retrieved case) to the problem (new case) is found.

 The information or solution contained in the retrieved case is reused (adapted) to

solve the current problem, and a solved case is suggested.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

42

 The suggested solution is verified and revised by the user, confirming the solution.

 The repaired case is retained in the case base for future problem solving.

Figure 11: The CBR cycle by (Aamodt and Plaza, 1994)

2.3.3 Link between agility and knowledge and experience capitalization and reuse

In section 2.2.4 key agile characteristics and concepts were listed. Moreover, as it was

mentioned, the concept of “knowledge-driven process” is considered as a major driver for

agile processes. According to (Qumer and Henderson-Sellers, 2008) “learning” is one of the

five features of agile software development methods, it refers to the continuous application

of updated knowledge and experiences. On the other hand, in the domain of agile

enterprises and agile workflows, the knowledge capitalization and reuse is of major

importance. In (Yusuf et al., 1999) the authors refer to knowledge-driven enterprise as the

ability to use the collective company knowledge and skills of the people for competitive

product creation. In the domain of agile workflows, CBR is used as a base to define a model

for knowledge capitalization and reuse (Bergmann and Gil, 2014; Weber and Wild, 2004).

Even if knowledge-driven process is a key characteristic of different agile methods, to our

knowledge, there is no agile approach that defines and implements complete knowledge

and experience capitalization and reuse mechanisms.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

43

 An agile process needs to be guided by experience and knowledge capitalization and

reuse mechanism. Experience feedback principles are used in this work in order to

define a structured approach to capitalize experiences and reuse them to support

decision making in future similar situations and then contribute to process

reconfiguration. Moreover, CBR principles are considered and adapted to our work in

order to define the lifecycle of an agile process (see chapter 4).

In the second bibliography section, a study on knowledge and experience capitalization and

reuse was presented. First, the concepts of experience and knowledge have been detailed.

Experience feedback principles were described followed by case-based reasoning ones.

Finally, the link between the concepts introduced in this section and agility concepts detailed

in section 2.2 was presented. The third and last research pillar of this study, problem solving,

is introduced in the next section.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

44

2.4 Problem Solving

In companies, continuous improvement needs to be ensured by the management in order to

gain efficiency to compete in the industrial environment. Problem solving is a key activity

that enterprises perform on a daily basis to improve quality and to obtain sustainable and

continuous improvement (Kamsu Foguem et al., 2008). It refers to the analysis of a problem

in order to find its root cause(s), to implement a solution and to avoid its recurrence.

Different problem-solving methods exist and are widely applied in industry, mostly in order

to solve manufacturing problems in order to guarantee the quality of the products.

Industrial problem-solving processes are of major importance to this research since they

concern the direct application of the agile knowledge and experience based process model.

Section 2.4.1 discusses the problem-solving approach, and some methods used for industrial

problem solving are described in section 2.4.2. The links between problem solving and the

two above presented research domains (agility and knowledge and experience capitalization

and reuse) are introduced in section 2.4.3.

2.4.1 Problem-solving approach

Problem solving is a widely discussed topic on literature since it regards different application

domains. Problem solving includes the processing of information concerning a deviation

from a desired state, to identify and choose the appropriate action to reduce the deviation

from the planned situation (Newell and Simon, 1972).

Furthermore, problem-solving processes are widely discussed in literature for being a key

characteristic of continuous improvement. Continuous improvement is a requirement of the

ISO 9000 world standard which includes the improvement of products and services, the

treatment of non-conformities and the improvement of the performance of the quality

system (International Organisational for Standardization, 2015). According to this standard, a

robust process should be in place to treat non-conformities and problems. More specifically,

an industrial technical problem “appears when the performance of a product or one of its

components deviates from what has been stated on standards or specifications and there is a

convergence of unknown factors and unusual or unexpected conditions that make complex

for the firm to bring the product back to its expected performance” (Romero Bejarano, 2013).

Then, an industrial problem-solving process is “a set of activities allowing to solve in an

organized and systematic manner complex problems. This approach is usually based on rules,

principles, expert knowledge and it can employ, in a structured and logical way, a set of

technical tools” (Jabrouni, 2012). For the purpose of this research, the latter definition of

problem solving is considered.

A problem-solving process is deployed when a problem occurs. Then, the main goal of the

problem-solving process is to find the root cause (s) of the problem, to treat it (them) and to

avoid its (their) future recurrence. This problem-solving approach is valid for most problem-

Towards an agile methodology for industrial problem solving

Valentina María Llamas

45

solving methods that are detailed in the next section.

2.4.2 Problem-solving methods

Taking into consideration problem-solving approaches described in literature to solve

industrial problems, two major categories can be distinguished. The first one regards

innovation and invention as the drivers of the methodology, such as the widely known

“theory of inventive problem solving” (TRIZ in its Russian abbreviation) (Fey et al., 1994;

Ilevbare et al., 2013; Czinki and Hentschel, 2016). This theory is based on theoretical

conclusions and on the analysis of numerous patents from the past in order to propose an

adapted solution to the current problem (Czinki and Hentschel, 2016). TRIZ is mostly used

for innovation problems such as product design and business development (Ilevbare et al.,

2013). This technique is excluded from our research given its inventive nature and the type

of problems it helps to solve.

The second category of problem-solving methods refers to several structured methods and

approaches that exist to solve problems in the domain of quality improvement (Choo et al.,

2015). These are the methods that lie at the heart of this research. Several standard

problem-solving methods exist to solve problems within companies. Some of the most

common and known methods are: Plan-Do-Check-Act (PDCA), 8 Disciplines (8D), and six

sigma DMAIC (Define, Measure, Analyse, Improve and Control) (Kamsu Foguem et al., 2008).

They are detailed in the next sections.

PDCA (Plan-Do-Check-Act)

The PDCA (Plan-Do-Check-Act) cycle (also known as the Deming cycle, PDSA (Plan-Do-Study-

Act), and also as the Shewhart cycle) (Shewhart, 1930; Deming, 2000), consists of four stages

to follow in order to solve a problem (Prashar, 2017). The first step refers to the

development of a Plan for a change in the process or system. The second step refers to the

implementation of the plan. The third step refers to the study and the analysis of the data

collected during the Do phase in order to verify its consistency with the expected results.

The last phase refers to either adopting or abandoning the change according to the Check

results. Then, the first step is reached again, either to restart with a new change, or to

continuously improve the cycle, as illustrated in Figure 12.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

46

Figure 12: The PDCA cycle adapted from (Deming, 2000)

8D (8 Disciplines or 8 Do)

The 8 Disciplines (8D) is a problem-solving method developed and first used within the Ford

Company in the late 1980s (Jabrouni, 2012). The methodology proposes eight structured

steps in order to solve a problem based on team work (Riesenberger and Sousa, 2010). It is

usually applied in companies as the standard approach to solve common problems (Duret

and Pillet, 2011). The eight steps or disciplines are illustrated in Figure 13. Moreover, the 9-

Steps (9S) (IAQG (International Aerospace Quality Group), 2014) method considers the 8D

steps and includes a first step where immediate containment actions are carried out.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

47

Figure 13: The Ford 8D method adapted from (Jabrouni, 2012)

Towards an agile methodology for industrial problem solving

Valentina María Llamas

48

DMAIC (Define, Measure, Analyse, Improve and Control)

DMAIC (standing for Define, Measure, Analyse, Improve and Control) is a structured

procedure for improvement in the domain of quality management (de Mast and Lokkerbol,

2012). This problem solving technique is part of the six-sigma method. Six sigma is “an

organized and systematic method for strategic process improvement and new product and

service development that relies on statistical methods and the scientific method to make

dramatic reductions in customer defined defect rates” (Linderman, 2003). Unlike the 8D

method, based on a qualitative approach (expertise), DMAIC method is based on a

quantitative approach (statistics). The five phases of the DMAIC described by (Boon Sin et al.,

2015) are presented in Figure 14. Moreover, some authors add more steps to the DMAIC, for

instance (Duret and Pillet, 2011) describe the Standardization step (dmaicS) where the

solution is sustained, best practices are applied and the project is finished.

Figure 14: DMAIC phases adapted from (Boon Sin et al., 2015)

Other methods to solve complex problems exist such as the Shainin system (Bhote, 1991)

Towards an agile methodology for industrial problem solving

Valentina María Llamas

49

which consists of the use of a set of 24 statistical technics to solve a problem and improve

quality. The Kepner Tregoe method (Kepner and Tregoe, 1982), also called Problem Solving

and Decision Making (PSDM), proposes four processes to solve a problem: situation analysis,

problem analysis, decision analysis and potential problem analysis.

Considering the previously presented structured problem-solving approaches (PDCA, 8D,

DMAIC), common phases are identified among those methodologies. Four standard phases

can be distinguished: Context (actions conducted to fully understand the problem and its

context), Analysis (deep analysis to find the root causes of the problem), Solution (definition

of the actions, application and verification of their effectiveness) and Generalization/Lesson

learned (standardization of solutions and, if possible, their generalization for potential reuse

in future similar situations) (Béler, 2008; Kamsu Foguem et al., 2008; Jabrouni, 2012; Romero

Bejarano, 2013).

2.4.3 Links between problem solving, agility, and knowledge/experience capitalization

and reuse

The purpose of this section is to detail the intersection between the research domains:

agility, knowledge and experience capitalization and reuse, and problem solving.

The problem-solving methods considered and studied in this work (PDCA, 8D, and DMAIC)

are known to be sequential and structured processes. A lack of flexibility to dynamically

adjust the problem-solving process to fit with simple to complex, dynamic and networked

contexts and problems has been observed when these methods are applied in industry.

More specifically, and as it has been mentioned in the introduction of this research work,

problem-solving processes present a dual structured/exploratory nature. In order to define

whether agility concepts are included in problem-solving processes or not, the exploratory

and structured nature of the process are considered separately.

First, regarding the exploratory activities or steps, some agility key characteristics arise such

as a high level of flexibility that allows the reconfiguration of the process through different

options. When an unexpected situation appears, the process can be adjusted to achieve the

objectives. Nevertheless, a low level of formalization is denoted by the high level of

flexibility, since the determination of standards for their systematic reuse is hard to achieve.

Therefore, the capitalization and reuse of knowledge and experiences is difficult to

accomplish and it can be said that the level of agility in such a process is “low”. On the other

hand, the structured part of the process is represented as a set of pre-defined activities,

which allow their systematic reuse. The advantages of such a process are, first, that the

activities of the process can be carried out without uncertainty and, second, that decision

makers can be supported by the formalization and reuse of knowledge. However, it is quite

difficult to adapt the process to unexpected events. Moreover, the capitalization and reuse

of experiences only concern activities because decision making is already standardized

Towards an agile methodology for industrial problem solving

Valentina María Llamas

50

through knowledge. Hence, there is no agility in the process to react to problems.

Therefore, an agile problem-solving process needs to be defined in order to provide

flexibility and adaptability to the existing processes through the necessary combination of

structured and exploratory process components. To our knowledge, this topic has not been

yet treated on literature and it constitutes a major challenge to our study.

On the other hand, a link between problem solving and knowledge and experiences

capitalization and reuse exists and is discussed in literature. First, most problem-solving

methods (especially the ones treated within the scope of this study) include a step of

“standardization” or “transfer of knowledge” with the purpose of capturing and

consolidating the learning in order to enhance its generalization (Romero Bejarano, 2013).

Furthermore, the standardization step seeks to spread best practices into other workplaces

(Duret and Pillet, 2011). Then, a process can be built on the basis of a similar process that

was performed in the past, adapting it to the current context. Moreover (Kamsu Foguem et

al., 2008; Jabrouni et al., 2011) describe how methods for capitalizing and reusing past

experiences can improve problem-solving processes and consequently, the performance of

organisations over time. However, a disadvantage of the current problem-solving methods is

that even if many modern enterprises ensure that they perform capitalization and reuse of

experiences, most of the time the “standard capitalization/reuse cycle” is not correctly

performed or it is not adequate (e.g. the resolution of the problem is capitalized into a

spreadsheet such as Excel, but its reuse is not performed). This can be seen as a problem of

lack of capitalization and reusing tools or software in today’s organisations. Then, the

simplification of experiences capitalization phase, in order to reinforce their reuse, is one of

this research’s objectives.

 Problem-solving concepts and methods were presented in this section. Three of the

methods presented in this section are taken into consideration further in this work:

PDCA, 8D, DMAIC. Such processes are considered in our study for having a dual nature,

they are both structured and exploratory process. Then, problem-solving processes

could be improved by agile principles.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

51

2.5 Synthesis and Contributions

The three domains of research of our work were presented in this chapter. First; agility

domain was introduced detailing its different application areas, its principles and finally its

key concepts and characteristics. Second, knowledge and experience capitalization and

reuse concepts, experience feedback and CBR principles were discussed. Finally, industrial

problem-solving concepts were described including some of the commonly used methods by

industrial companies.

Figure 15: Interactions between research domains

The links between the three research domains were presented. The interactions between

them are illustrated in Figure 15. A problem-solving process allows the structuration of an

experience feedback approach, which supports the company knowledge management. In

order to work better, problem solving can exploit formalized knowledge and to use

knowledge-based systems tools such as CBR. Furthermore, problem-solving processes need

to be agile in order to face changes in their environment and to adapt quickly. Then, agility

principles such as responsiveness and flexibility can help to improve problem-solving

processes. Regarding agility, agile processes need to be knowledge-driven in order to learn

from past experiences. Then, knowledge-based systems such as experience feedback allow

supporting the capitalization and reuse of agile experiences.

To our knowledge, there is no specific method combining problem solving, agile methods

and a unified and complete approach including experience and knowledge capitalization and

Towards an agile methodology for industrial problem solving

Valentina María Llamas

52

reuse principles.

The contribution of this thesis regards the proposition of an agile problem-solving process

based on the capitalization and reuse of experiences and knowledge. The model defined in

this work is composed of an information model for agility and of an agile process lifecycle,

based on CBR principles, which allows to define and to execute an agile process.

The objectives of this research were described in section 1.3. Considering all concepts and

principles introduced in this state of the art chapter, such objectives are further detailed

below.

 The first objective of this research work regards the adaptation of agile principles in

order to improve problem-solving processes. From all the agile domains, ten key

concepts were identified which need to be applied to problem-solving processes in

order to make them more agile. In particular, existing problem-solving processes

need to be supported with knowledge and experience capitalization and reuse

concepts.

 The second objective considers that specific algorithms and mechanisms, based on

experience feedback principles, could help decision makers to define and execute

processes through the reuse of similar past cases. Then, decision making can be

supported by a set of indicators based on past situations.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

53

3. INFORMATION MODEL FOR AGILITY

3.1 Introduction

In the previous chapter, through the literature review, the research statement concerned by

this study was defined. A process that can be defined through agility principles and driven by

experiences and knowledge needs to be developed. For this purpose, this chapter aims at

defining the information model for agility in order to clearly state its principles and

elements.

The first part of this chapter outlines the definition of the key concepts of the proposed agile

process. The second part of this chapter describes the knowledge and experience

capitalization and reuse mechanism. Finally, an illustration is proposed in order to exemplify

the introduced concepts.

3.2 Definition of the concepts of the agile process

As defined in section 1.1, a process is “a specific ordering of work activities across time and

place, with a beginning, an end, and clearly identified inputs and outputs” (Davenport, 1993).

Considering the agile key characteristics and knowledge/experiences capitalization and

reuse principles described in chapter 2, the agile process can be defined. The definition of

the agile process is presented followed by the explanation of its components.

Our agile knowledge and experience based process is composed of activities and decision-

making points. It aims at satisfying constraints and ensuring objectives and process

efficiency. Supported decision making enables to continuously adapt the process during its

execution. Our agile process is based on knowledge and experiences capitalization and reuse

principles. Figure 16 illustrates the agile process along with its elements: a sequence of

activities and of decision-making points including decision support (dashboards) relying on

knowledge and experience bases.

Activities and decision-making points are the building blocks of the agile process. An activity

is an indivisible element defined by its identifier (ID), its description, and its cost and delay

values. It means that for a given activity, its purpose and/or nature is identified through the

description. The cost of the activity is denoted with its Cost value, and the time necessary to

carry out the activity is identified with its Delay value. The activities that compose a given

process are denoted “scenario activities”. All scenario activities are linked to their

corresponding “generic activity” which reflects the objective of the activity that will be

respected for all scenario activities (same description). For instance, in a problem-solving

process (see section 2.4) there is an activity intended to define a team to solve the problem.

Then, the generic activity description should be “team definition”, and all scenario activities

should be named after it. An agile process is composed of an indeterminate number of

activities since at the beginning, a first version of the process is defined with a certain

Towards an agile methodology for industrial problem solving

Valentina María Llamas

54

number of ordered activities and, afterwards during process execution, as the process can

change following the different decisions, activities may be added.

Figure 16: Agile process illustration

Decision-making points are also key elements of an agile process in our model. A decision

allows comparing a set of feasible options and to choose the most convenient one to solve a

problem (Alvarado et al., 2005). Moreover (Kast, 1993) claims that a decision problem

contains four elements: the set of possible choices, the set of uncontrolled elements (which

represents uncertainty), the set of possible consequences and the relation between

decision, uncontrolled elements and consequences. According to (Malakooti, 2012), decision

making can be defined through the following steps: 1) Problem formulation, 2) Problem

solving technique, 3) Multi-criteria decision making (selection of the best option) and 4)

Decision realization (action to be performed).

In the proposed agile process, two kinds of decision-making points are used: “nominal” and

“based on event” decision-making points. During the execution of an agile process, every

nominal decision-making point determines a gate to decide what to do next in the process.

When a decision is reached, decision makers take into consideration and evaluate available

information regarding the process, summarized in a decision dashboard, in order to define

which option of the process will be executed next. Decision makers can, for instance, choose

among performing an activity that leads to the alternative 1, or another activity that leads to

the alternative 2.

In order to help decision making, at each decision-making point, a compilation of

information from previous experiences, represented in a decision dashboard, is proposed to

Towards an agile methodology for industrial problem solving

Valentina María Llamas

55

users. Dashboards along with key performance indicators provide quick and precise

information (Peral et al., 2017), which is the objective of an efficient help to decision making.

On the other hand, decision-making points based on event are unplanned. When an

unexpected event occurs, a decision-making point based on event is created in order to

decide what to do next. The decision based on event can lead to modify the structure of the

process to overcome the unexpected situation. If the structure of the process is modified, it

will be stored in the Experience Base as an “event-scenario” and will receive special

treatment for its future reuse (see section 4.2).

Nominal decision-making points are defined in a first version of the process (V0) which is

created before the process execution by using existing processes in the knowledge base. The

mechanism which enables to create versions of the process, including the first version (V0), is

described in the next section.

3.3 Agile process versioning system

The agile process model is composed of incremental versions. At every decision-making

point, a new version of the process (Vn+1) is created. The first version of the process model

(V0) includes activities and nominal decision-making points. It is built from existing processes

stored in the Knowledge Base (see section 3.5). In the Knowledge Base, a set of options to

perform a given type of process (e.g. “Problem-solving” process) is available. This set of

options is the baseline for the first version of the process. The process manager (see section

3.4) is supported by previous process information compiled in a decision dashboard in order

to decide if something needs to be added or modified to the proposed first version V0.

A new version of the process is created any time there is a change from the previous version.

Three typical situations during the execution of the process lead to the creation of a new

version:

1. At each decision-making point, an option is chosen among the set of proposed

options in order to continue the process. Then, the process is changed due to this

choice and a new version is created.

2. The process can be modified when activities or decision-making points are added or

modified in order to better respond to changes or problems. Then, a new version is

created.

3. When an unexpected event occurs, if activities and/or decision-making points are

added, a new version of the process is also created.

The versioning of the agile process goes from V0 to Vn. Vn is the last version of the process

(i.e. referred to the last decision-making point or to the last modification included in the

process). Every new version includes a notation mentioning the result of decisions. This

notation builds a trace of all the decisions made during the process along with the rationale

that led to that decision. This versioning system facilitates the formalization of experiences,

Towards an agile methodology for industrial problem solving

Valentina María Llamas

56

their capitalization and their future reuse.

The versioning system of an agile process has been presented. In the next section, in order

to define and execute an agile process the necessary roles are described.

3.4 Roles within the agile process

Taking into consideration agile practices (mostly from agile software development methods)

referring to team empowerment, three roles are proposed in this approach in order to

manage and execute an agile process. However, the definition of the roles does not intend

to restrict the application of the model. Thus, several roles may be assumed by the same

person if necessary (e.g. in a small company). The three roles defined for the agile process

are presented in Table 3.

Process

manager

S/he is in charge of the characterization and of the definition of the

first version of the process. S/he can also manage the execution of

the process. The process manager has sufficient knowledge regarding

the process itself. For instance, for a problem-solving process the

process manager could be the quality/continuous improvement

manager.

User

Any person that will use the process during its execution. It is

considered that all users have a minimal level of knowledge

concerning the process. It is important to notice that in the case

where a regular user has sufficient understanding about the process

itself, s/he can take the process manager role.

Knowledge

expert

S/he defines process models that are added into the knowledge base

either from scratch, or from a prior performed process. S/he is in

charge of validating knowledge (e.g. knowledge contained within an

experience).

Table 3: The roles within the agile process model

It is important to specify that “decision makers”, a term used along this work, is the group of

people involved in the decision-making activity. Then, all of the roles could be part of the

group depending on their participation during the process. For instance, if the process

manager is in charge of the whole process, s/he is the sole decision maker. On the other

hand, if a group of users are given with all the responsibilities of the process, they are the

decision makers.

The roles of an agile process have been presented in this section. In order to ensure

knowledge and experiences capitalization and their future reuse, dedicated mechanisms are

Towards an agile methodology for industrial problem solving

Valentina María Llamas

57

introduced in the next section.

3.5 Knowledge and Experience-Driven Process

In the proposed approach, an agile process is based on knowledge and experiences

capitalization and reuse principles. In order to introduce the dedicated capitalization and

reuse mechanisms, the necessary elements are presented in this section.

The aim of this section is to define the basis related to knowledge and experiences in order

to define the lifecycle of the agile process in chapter 4. The knowledge and experience bases

are described in sections 3.5.1 and 3.5.2. Experiences tagging system, which enables a fast

retrieval mechanism, is presented in section 3.5.3. The process indicators used within

dashboards are defined in section 3.5.4.

3.5.1 The Knowledge Base

The Knowledge Base (KB) is a structured collection of pieces of knowledge. In this study,

every piece of knowledge corresponds to a specific standard process. Then, the KB is a

repository composed of processes. All processes contained in the knowledge base are

classified, according to their nature, in different kinds of Types of Processes (TP). The process

classification and the definition of the types of processes may change from a company to

another one. In the “Cross industry process classification framework”(“Process Classification

Framework | APQC,” 2015) thirteen categories of high-level processes are defined including

several processes corresponding to each category. A selection of a sample of ten processes

of the “Develop and Manage Business Capabilities” category has been done in this study in

order to define a baseline of types of processes to be contained in the Knowledge Base. The

selected processes, illustrated in Figure 17, are: Improve processes, Manage projects,

Establish quality requirements, Evaluate performance to requirements, Manage non-

conformance, Implement and maintain the enterprise quality management system, Assess

knowledge management capabilities, Create and manage organisational performance

strategy, Evaluate process performance, and Train and educate functional employees. These

high-level types of processes can be used to structure the knowledge base, even if other

types can be defined. For instance, in this work, the problem-solving type of process is added

(TP: Problem Solving).

Towards an agile methodology for industrial problem solving

Valentina María Llamas

58

Figure 17: Example of types of processes (TP) composing the KB, inspired from (“Process Classification

Framework | APQC,” 2015)

Every type of process is composed of one or more scenarios. Each scenario corresponds to a

different manner to perform a process, referring to changes in its structure. It means that

every structural change on a process creates a new scenario which has to be stored in the

knowledge base. Structural changes considered in this study are:

 Modification of the sequence of activities,

 Modification of the description of the activity,

 Addition of one or more activities.

For instance, consider the type of process “Problem Solving”, and the 8D process within

problem solving (the 8D process corresponds to a sub-category of the type of process

Problem Solving). The 8D process can be represented by the eight standard sequential

activities. In that case, there is only one possible scenario. However, it can be decided to

define other alternative where two activities can be performed in parallel. Therefore, a

second scenario is possible. Figure 18 represents the 8D process model with the two possible

scenarios (1) and (2). Activities are represented with rectangles and denoted with A plus a

number.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

59

Figure 18: Illustration of two process scenarios for a same type of process

During process execution, a choice between scenarios 1 and 2 needs to be done, before

performing activity A1. The choices between different scenarios stored in a knowledge base

constitute the first pillar of an agile process.

Consequently, the knowledge base is composed of different types of processes. As

illustrated in Figure 19, each type of process is represented by an oriented and acyclic graph.

The nodes of the graph are XOR, AND or scenario activities. The edges represent the

precedence constraints between the nodes. Such edges can be identified with an ID, which is

used in order to distinguish which action was taken after a decision (see section 4.1.4).

Scenario activities allow describing a process and are stored into the Knowledge base. The

XOR nodes allow the representation of possible options and then, to define scenarios. The

AND nodes permit to represent the parts of the process which can be performed in parallel.

Therefore, the graph enables the representation of all scenarios corresponding to a type of

process in a simplified manner, mainly since XOR nodes allow grouping generic activities that

are common to two or more scenarios. Nodes have a specific attribute called “list of events”

that is used to treat unexpected events during the process execution (see section 4.2). The

UML diagram of Figure 19 represents the components of the graph for a type of process.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

60

Figure 19: Type of process UML representation

The storage of processes into the knowledge base can be achieved in two different manners.

First, at the creation of the knowledge base (i.e. when the KB is empty) it may be considered

that knowledge can be defined from international recognized standards (e.g. such as EN

9136 (IAQG (International Aerospace Quality Group), 2016) for 8D/9S in the Aerospatiale

domain), company rules or best practices. In this case, the knowledge expert validates the

knowledge and adds the new process into the KB, into its corresponding type of process.

Otherwise, knowledge can be created from experiences. After the execution of the process,

if its structure does not exist in the knowledge base (i.e. there is no scenario that matches

completely the structure of the new process), it is the responsibility of the knowledge expert

to validate (or not) the new process as knowledge and to store it on the knowledge base.

3.5.2 The Experience Base

From the knowledge base, for a given type of process, the scenarios which have been

performed/executed are called experiences and are stored into the Experience Base (EB). For

this purpose, in the EB, a scenario gathers a set of experiences that present the same

structure and it corresponds to the scenario that exists in the KB. Experiences correspond to

instances of the execution of scenarios. This means that every time that a process scenario is

performed, a new experience linked to the scenario is added to the experience base. For the

scenario (1) illustrated in Figure 18, three experiences are represented (Figure 20).

Towards an agile methodology for industrial problem solving

Valentina María Llamas

61

Figure 20: Illustration of three experiences for a given scenario

Activities are the building blocks of every process and, consequently, of each experience. In

order to allow decision support through decision dashboards, activities are given with

indicators (cost and delay) during the execution of the process. Generic activities are

activities included in the KB representation, considered as “general” since they are not given

with a set of proper indicators. An experience activity is an instance of a scenario activity of

the type of process in the knowledge base, stored in the Experience base. Also, experiences

are given with global cost and delay indicators. In Figure 21, type of process, scenario and

experience are illustrated with an UML representation including the relations between these

entities. Types of processes are associated to scenarios that are themselves associated to

experiences. Experiences have tags as attributes and are composed of activities that are

characterized by individual cost and delay values. Tags are described in section 3.5.3 and

cost and delay indicators in section 3.5.4.

Therefore, each experience is modelled by an oriented and acyclic graph which contains only

activity nodes and precedence constraints (the edges). Two fictive activities are used: “start”

and “end”. Their duration and cost are equal to zero.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

62

Figure 21: UML representation of type of process, scenario, experience and activity

3.5.3 Tagging system

In order to index an experience, a set of tags is defined and linked to the experience. Each

set of tags synthesizes the most important characteristics of the experience. The set of tags

is identified during the definition of the process (see section 4.1.1) and is employed in order

to find similar past experiences (see section 4.1.2).

In our approach, tags are considered as concepts and they are gathered within taxonomies

and stored into the knowledge base. Taxonomies are considered in this work for being a

simplified ontology (McGuinness, 2002). An ontology is “a formal, explicit specification of a

shared conceptualization” (Gruber, 1993). A taxonomy is a hierarchical structure described

through relations between concepts included in the hierarchy (Van Rees, 2003). Taxonomies

create a coherent representation of concepts through their structuration into a tree

according to their similarity (Jabrouni, 2012). In our work, taxonomies are defined for each

Towards an agile methodology for industrial problem solving

Valentina María Llamas

63

type of tag in order to characterize the process and to enable a research into the experience

base. To retrieve similar past experiences semantic similarities are used (see section 4.1.2).

For the purpose of this research, considering that a focus on problem-solving processes is

done, the four tags described in Table 4 are defined for each experience. However, our

approach is generic and other kind of tags can be used.

Process Model

(T1)

It refers to the standard or procedure that is used to define the

process. For instance, for problem-solving processes, process

models could be 8D, 9S, PDCA, DMAIC methodologies.

Enterprise

department

(T2)

It refers to the sector of the enterprise where the process belongs

to (e.g. Manufacturing, finance, human resources, marketing, etc.).

Type of product

(T3)

It refers to the type of product concerned by the problem. Let us

consider a bike factory, some examples of products could be the

frame, saddle, front, wheels, or pedals.

Type of Problem

 (T4)

It characterizes the problem that is being solved. For instance,

painting, dimensional, material, or assembling problem.

Table 4: Agile problem-solving process tags

Then, in a scenario Si, for an experience Eij, the set of tags is: ToEij= <T1ij, T2ij, T3ij, T4ij>.

An example of simplified taxonomies that will be used further in this paper is shown in

Figure 22. The example is based on a bicycle factory. The taxonomy represented in Figure

22a corresponds to the process models regarding problem-solving processes such as 8D,

PDCA and DMAIC. In Figure 22b enterprise departments’ tags are represented. In Figure 22c,

the tags corresponding to the type of product concerned by the problem are represented.

Four tags corresponding to types of problems are shown in Figure 22d.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

64

Figure 22: Example of simplified taxonomies

3.5.4 Process indicators

In this study, indicators are computed for all the activities within a process. When the

process is finished, the experience is stored in the experience base along with its indicators.

When defining a new process, the available experiences indicators are used to help decision

making using dashboards.

During the process execution, at the end of each activity, its cost and delay values are

computed, then, global indicators can be computed for the experience. Moreover, global

indicators for scenarios are computed in order to compare different scenarios during

decision making (see section 4.1.4). It means that when a new process is being defined, the

set of indicators from previous experiences, grouped into scenarios and stored in the

experience base, can help to decide which scenario to choose.

For the purpose of this study, the indicators represented in the dashboard are the

probability distributions of cost and delay values for all possible scenarios for a given process

type. Each scenario corresponds to one or more experiences, and each experience is given

with a cost and delay value. Then, the probability distributions of all experiences values of

cost and delay for a given scenario are represented on the decision dashboard. Moreover, a

set of requirements in terms of cost and delay is defined according to the objectives that the

process should satisfy (see chapter 4 for more details). The global compatibilities with

regards to those requirements are also represented in the dashboard. During the execution

Towards an agile methodology for industrial problem solving

Valentina María Llamas

65

of the process, the information presented on the decision dashboard is updated according to

the indicators regarding already performed and remaining activities. The computing of the

decision dashboard is detailed in section 4.1.4.

3.6 Illustration of an agile process

In order to illustrate the concepts, an agile process is illustrated in this section through an

example. In Figure 23, the knowledge base containing an agile process is presented. For the

type of process “problem solving”, all available scenarios are retrieved in the knowledge

base. Then, for each scenario, one or more associated experiences may exist in the

experience base.

Figure 23: Illustration – Knowledge base for the type of process: problem solving

For the chosen type of process in the knowledge base, the first version of the process is

built. XOR nodes from the knowledge base are replaced by decision-making points in the

process first version. The first version of the process, illustrated in Figure 24, shows the

available options to perform the process. For instance, in the first decision point (D1) it can

be chosen to perform the activities A1 and A2 in parallel or sequentially, and in the second

decision point (D2), it can be chosen to perform either A3 or A4. The four available scenarios

are illustrated in the lower part of Figure 24.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

66

Figure 24: Agile process first version

During process execution, users consider the process first version as a baseline in order to

carry out the process. At each decision-making point, a dashboard is proposed in order to

help decision making. Such a dashboard includes cost and delay probability distributions and

compatibility in order to show how compatible such values are compared to the target ones.

The dashboard construction is detailed in section 4.1.4.

Let us consider that decision makers take into consideration the decision dashboard in order

to execute the process. The evolution of the process, explained through its versions, is

represented in Figure 25. For instance, in D1 the decision was to perform the activity A1 and

then A2. This first decision is visible in the second version of the process (V1), as illustrated in

Figure 25b. The same reasoning is applied to create the third version of the process (V2),

illustrated in Figure 25c. Here, the decision (D2) was to perform A3 instead of A4. Once the

process was completed, the new experience needs to be capitalized. Considering V2, the last

version of the process, the structure of the process (A1-A2-A3) matches an existing scenario

(Scenario 2 illustrated in Figure 24). The experience is then capitalized into the existing

scenario.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

67

Figure 25: V0, V1 and V3 of the agile process

3.7 Conclusion

The information model for agility was presented in this chapter. The agile process proposed

in this work was introduced and its main key elements were outlined. The system that allows

recording of the changes that occur during the execution of an agile process (versioning

system) was introduced. The roles that are needed to define and execute such a process

were described.

The knowledge and experience bases were presented along with the elements that are

stored. The notions of types of processes, of scenario and experience were explained.

Finally, the tagging system and the indicators defined in order to characterize an agile

process were introduced.

The proposed illustration enabled understanding of the principles behind an agile process.

This chapter permitted the unification and understanding of the concept “agile process”.

However, some questions arise: How is this process defined? How is it executed? And, how

is it retrieved from the experience base? Next chapter allows answering of those questions

through the definition of the agile process lifecycle.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

69

4. AGILE LIFECYCLE MODEL

The constituent elements of an agile knowledge and experience based process are defined in

chapter 3, setting the information model of this work. The model proposed in this research,

considering the definition of an agile problem-solving process model, is completed with a

dynamic cycle that allows to create and to execute such a process. In order to guide the

definition and the execution of an agile problem-solving process a specific lifecycle is

proposed. The lifecycle introduced in this chapter allows the incorporation of knowledge and

experience capitalization and reuse principles, from the definition of the agile process, its

execution, until its storage in the experience and knowledge bases once the process is over.

Furthermore, the treatment of unexpected events is introduced at the end of this chapter.

Our agile process permits to define decision-making points and to react to disturbances.

The agile lifecycle is described in the first part of this chapter (section 4.1). The treatment of

unexpected events is detailed in section 4.2.

4.1 The agile process lifecycle

The proposed agile lifecycle is inspired by Case-based Reasoning (CBR) principles (Aamodt

and Plaza, 1994), previously detailed in chapter 2. It is composed of five steps deployed

around the knowledge and experience bases, as illustrated in Figure 26. The first step

“Process scope definition” consists in defining and characterizing the current process. The

“Experience filtering” step aims to apply filters to select the most similar past experiences

according to the current process information. This step can be compared to the “retrieve”

phase of CBR. “Adaptation of the first version of the process” considers the first version

proposed from the knowledge base and, if necessary, modified by the process manager. It

can be compared to the “reuse” phase of CBR. “Process execution/continuous adaptation”

refers to the execution of the agile process. Finally, “Storage in EB/KB” is performed when

the agile process is over, in order to collect all instances of the process in the Experience

Base and, if necessary, in the Knowledge Base. This step can be compared to the “retain”

phase of CBR.

Each one of the agile lifecycle phases along with an illustrative example is presented in the

following sections.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

70

Figure 26: Agile lifecycle

4.1.1 Step 1. Definition of the process scope

The objective of the first step is to describe and to characterize the current process which

has to be carried out. This characterization of the process aims to define its characteristics

and constraints, useful data that will be used to perform the experience filtering phase

(section 4.1.2). This step is performed by the process manager who is in charge of the entire

process lifecycle. It means that the process manager describes the process and gathers all

necessary information from stakeholders. According to the Cambridge dictionary a

stakeholder is “a person such as an employee, customer, or citizen who is involved with an

organisation, society, etc. and therefore has responsibilities towards it and an interest in its

success” (Cambridge University Press, 2017). We refer to stakeholders as all actors directly

involved and/or impacted by the results of the process. It includes the external and internal

customers (quality manager, accounts, etc.), project manager, etc.

For the purpose of this study, two stages are proposed in order to define the process scope.

The first step strives for characterizing the process. The second one aims at gathering all the

process constraints from stakeholders. Both steps are detailed next, followed by the

illustrative example.

4.1.1.1 Definition of the process context

This stage aims at establishing all the characteristics that define the agile process. Two major

activities are performed during the definition of the process context. In a first time, from the

list of types of processes capitalized in the knowledge base (see section 3.5.1), the type of

Towards an agile methodology for industrial problem solving

Valentina María Llamas

71

the current process is selected by the process manager. The type of process list can be

modified for a specific company, the objective being that the list includes all the company’s

types of processes which may be defined and executed through the agile lifecycle.

The second activity to be performed is the definition of a set of tags which allows formalizing

the complete description of the process following the requirements. As it has been detailed

in section 3.5.2, a set of tags is defined for each process in order to synthesize its most

important characteristics. Four mandatory tags need to be defined for an agile problem-

solving process: Process Model (T1), Enterprise department (T2), Type of product (T3), and

Type of Problem (T4). The set of tags identified for the current process is denominated

“Target tags” (denoted by Tt = {Tt1, Tt2, Tt3, Tt4}). It is important to notice that more tags

could be added in order to improve precision in the experience filtering phase (see section

4.1.2), such as: Expert involved in the process (T5), the required competencies of the expert

(T6), etc. However, this study is only focused on the four previously mentioned tags.

The target tags are used as an input of step 2/ “Experience filtering”, to search and filter

similar past experiences in the experience base (see section 4.1.2). This means that the set of

target tags is compared to the set of tags linked to each experience stored in the experience

base, searching semantic similarity. For this purpose, the expected level of similarity

between the target tags and the experience tags (in the experience base) needs to be

defined. Two cases are proposed:

a) It can be decided that an experience tag must be equal to its corresponding target

tag (i.e. both tags are equal). Then, the similarity between the target and the

experience tags must be equal to one. This case is used when the process manager

decides that s/he wants to retrieve only past experiences that respect the equality of

certain tags. For instance, if the process manager wants to retrieve from the

experience base only 8D processes, the similarity must be equal to one between the

target tag Tt1=8D and the experience tag T1=8D. In this case, the attribute of the tag

indicates that it is a non-flexible tag. Then, the nature of the tag Ti is non-flexible and

is denoted as Ti.nature= Non-Flexible.

b) If there is no need to retrieve the same tag value, the similarity can be computed and

characterized by a numerical value. For instance, the process manager wants to

perform an 8D process but s/he wants to see all problem solving experiences that are

available in the experience base. Then, the target tag Tt1 is equal to “8D” and it is

compared to the experience tag T1 with a computed similarity for each experience. In

this case, the attribute of the tag Ti indicates that it is a flexible tag. Then the nature

of the tag is flexible and is denoted as Ti.nature= Flexible.

At this stage, a threshold Gt has to be defined. It is used during the computation of the

global similarity between Tt and a set of tags linked to an experience. If this global similarity

measure is inferior to the threshold, the experience is not used (section 4.1.2).

Towards an agile methodology for industrial problem solving

Valentina María Llamas

72

Figure 27: Definition of the process context

Then, when the process manager selects the type of process as illustrated in the left part of

Figure 27 (the “Problem solving” type of process is selected), s/he identifies the set of tags

and defines whether each tag is flexible or not, as illustrated in the right part of Figure 27.

Also, the global threshold for the flexible tags needs to be defined at this stage. It is

important to notice that, if during experience filtering step, no experience match the

required similarity level, the process manager can decide to modify the threshold in order to

include more experiences and evaluate possible deviations during decision making.

Once the process is completely characterized through its set of tags, the stakeholders need

to define the constraints to be respected during the execution of the process.

4.1.1.2 Definition of process constraints

All actors interested and/or involved in the process have different constraints regarding cost,

delay, involved resources or others. The purpose of this step is to collect process constraints

from stakeholders.

Two constraints are considered in this study, the process cost and the process delay. First,

the Cost (C) of the process refers to the maximum cost allowed to perform the process.

Second, the Delay (D) regards the maximum duration allowed for the execution of the

process. The values of C and D set by stakeholders allow to constraint the process. This

means that, when retrieving similar past experiences, constraints are considered in order to

compare them with prior experiences. This is possible since cost and delay indicators are

measured and recorded for each activity within a process, as well as the global process cost

and delay indicators (see section 3.5.4).

Then, during this step, the process manager collects all cost and delay constraints along with

their owner (i.e. the stakeholder that set the constraint) and defines the global values of C

and D.

Furthermore, the process manager considers that cost and delay constraints are flexible. All

Towards an agile methodology for industrial problem solving

Valentina María Llamas

73

constraints are considered as fuzzy constraints (Dubois et al., 1996). This allows more

flexibility when past experiences indicators do not satisfy current process constraints but

their values are close to the target ones. Then, constraints release may be negotiated with

the corresponding stakeholder (see section 4.1.4).

Based on the fuzzy model of a soft constraint proposed by (Dubois et al., 1996), the soft

constraints C (cost) and D (delay) are described through the following equations. Let TC be

the Target Cost and TD be the Target Delay. The parameters α and β allow the definition of

flexibilities within the soft constraints C and D.

The soft constraints are defined by means of their respective compatibility functions

(equations 1 and 2). These functions allow to define how a value c (respectively d) of cost

(respectively of delay) is compatible with the soft constraints of cost C (respectively the soft

constraints of delay D).

𝐶𝑜𝑚𝑝𝑎𝑡α(𝑐, 𝑇𝐶) = {

1 𝑖𝑓 𝑐 ≤ 𝑇𝐶
(1+α)∗TC−c

α∗TC
 𝑖𝑓 𝑇𝐶 < 𝑐 ≤ (1 + α) ∗ TC

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

𝐶𝑜𝑚𝑝𝑎𝑡β(𝑑, 𝑇𝐷) = {

1 𝑖𝑓 𝑑 ≤ 𝑇𝐷
(1+β)∗TD−d

β∗TD
 𝑖𝑓 𝑇𝐷 < 𝑑 ≤ (1 + β) ∗ TD

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

Figure 28: Cost and delay compatibility functions

4.1.1.3 Illustrative example

In order to illustrate the definition of the process scope step, an illustrative example is

provided. Let us imagine that a bicycle manufacturing company deploys a simple process to

treat their simple problems. For the purpose of this example, let us consider a problem

detected in the assembly line, regarding non-conformance painted pedals. The quality

department needs to solve this problem and to avoid its recurrence. The process manager

designated for this problem-solving process is the quality manager.

During the first step, the process manager characterizes the process scope. First, the set of

Towards an agile methodology for industrial problem solving

Valentina María Llamas

74

target tags are defined. For this purpose, the chart illustrated in Figure 29 is completed.

Figure 29: Definition of the process context - Illustration

The targeted type of process is “Problem solving”, the required process model (represented

by the tag T1) is “simple problem” (the method used within the company), all problems

treated by the quality department (tag T2), referring to the pedals (tag T3), and concerning

the painting (tag T4). The tag T1 is defined as non-flexible, it means that only past processes

performed through the “simple problem” method should be retrieved. The other tags are

flexible. Then, a global threshold of 0.7 is defined.

Also, constraints need to be defined during this step. For this purpose, the process manager

collects information from stakeholders. The first stakeholder (a client affected by this

problem) demands that the problem is solved within 3 days. The second stakeholder, the

manufacturing manager demands that the process cost is less than 1000€. The process

manager sets tolerance levels in order to set the constraints as flexible. As illustrated in

Figure 30, defined values are for cost, α=0.1 ((1 + 0.1) x 1000 = 100) and for delay β = 0.33 ((1

+ 0.33) x 3 = 4).

Figure 30: Cost and delay compatibility functions - Illustration

At the end of this step, the process is characterized through the definition of its set of target

tags and its cost and delay constraints. Then, considering the collected information, the

experience filtering step can be performed. Experience filtering is detailed in the next

section.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

75

4.1.2 Step 2. Experience filtering

Using as inputs the set of target tags defined during the process context definition step

(section 4.1.1.1), the experience and knowledge bases are consulted in order to get similar

past experiences and knowledge. When experiences tags available in the experience base

match the target tags, such experiences are taken into consideration to define the first

version of the process (V0).

The similarity between the set of target and experience tags needs to be measured. This is

possible through measuring semantic similarity between tags that belong to the same

taxonomy (Jabrouni et al., 2011). It means that, for a given experience each tag is compared

to its corresponding target tag, and their similarity is computed (i.e. T1 is compared to Tt1,

T2 to Tt2, etc.). The measure of similarity of Wu and Palmer, (Wu and Palmer, 1994) is

chosen for this study because of its simplicity and efficiency (3):

𝑆𝑖𝑚 (𝑡1, 𝑡2) =
2∗depth(𝑡𝑐𝑜𝑚)

depth(𝑡1)+depth(𝑡2)
 (3)

Such that:

- depth(ti) is the number of nodes on the path from the root concept to ti,

- tcom is the first common ancestor of t1 and t2 in the taxonomy.

Using this formula, and depending on the nature of target tags (flexible or non-flexible),

experiences are filtered. The process defined to perform the filtering phase is illustrated in

Figure 31 and detailed below. Furthermore, the experience filtering algorithm is described in

Algorithm 1.

2.1) The first step represented in Figure 31, consists in using a simple query in order to find,

from the selected type of process available in the knowledge base, all its associated

scenarios in the experience base. For each scenario, a set of experiences exists in the

experience base (see Figure 21 in section 3.5.2).

2.2) The second step allows the computation of the global similarity of each selected

experience corresponding to the scenarios associated to the required type of process.

2.3) In the third step, the similarity value of non-flexible tags is considered. The objective of

defining a tag as non-flexible is to retrieve only the same value of the tag, this means that

similarity between both tags must be equal to one. Then, results different to one should be

excluded from the selection since they are not interesting. It means that, when similarity

between a target non-flexible tag and an experience tag is different to one, the experience is

discarded and not furthered considered during the current agile process lifecycle. If, on the

other hand, the value of similarity is equal to one for each non-flexible tag, the experience is

saved and the remaining tags are analysed to verify that the global similarity is larger than

Towards an agile methodology for industrial problem solving

Valentina María Llamas

76

the global threshold.

Once experiences have been filtered according to their non-flexible tags, the set of flexible

tags is considered for a second filtering (or if all tags are flexible a first filtering is performed

at this stage) represented in step 2.4 of Figure 31. For a given experience, the individual

values of similarity between its flexible tags and the target tags computed in step 2.2, are

considered. Then, the global similarity (named Simg) of the experience is computed using a

GOWA operator (Yager, 2004) described in the equation 4. The parameter β permits to tune

the operator from minimum to maximum function. If β +∞, the GOWA operator functions

as a Maximum. If β -∞, it functions as Minimum. The value β=2 corresponds to a

quadratic mean, etc.

𝑆𝑖𝑚𝑔 = (∑
1

4

4
𝑘=1 × 𝑆𝑖𝑚(𝑇𝑡𝑘, 𝑡𝑘)𝛽)1/𝛽 (4)

The global similarity value Simg should, at least, be equal to the defined global threshold Gt.

It means that, if the global similarity value is inferior to the threshold, the experience is

discarded. On the other hand, if it is equal or superior, it is selected. Then, the same process

is repeated for all experiences of all scenarios. Algorithm 1 allows performing these four

steps.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

77

Figure 31: Experience filtering process

Towards an agile methodology for industrial problem solving

Valentina María Llamas

78

1 Start
2 Declare variables Si, STP, Eij, SEi, tk, ToEij, Ttk, Tt, ExpKO, SE’i, Sum, Nb
3 Initialize variables ExpKO = FALSE, SE’i = ∅, Sum = 0, Nb = 0
4 For each Si ∈ STP
5 For each Eij ∈ SEi
6 For each tk ∈ ToEij

7 Calculate Simk = Sim(Ttk, tk)=
2∗depth(𝑡𝑐𝑜𝑚)

depth(𝑇𝑡𝑘)+depth(𝑡𝑘)

8 If (Ttk.nature = Non Flexible and Simk ≠ 1)
9 ExpKO = TRUE
10 Break
11 End If
12 End For
13 If ExpKO = FALSE then
13 For each Ttk ∈ Tt
15 If (Ttk.nature = Flexible) then

16 𝑆𝑢𝑚 = 𝑆𝑢𝑚 + (𝑆𝑖𝑚𝑘)𝛽
17 Nb = Nb+1
18 End If
19 End For

20 𝑆𝑢𝑚 =
𝑆𝑢𝑚

𝑁𝑏

21 𝑆𝑖𝑚𝑔 = √𝑆𝑢𝑚
𝛽

22 If (Simg ≥ threshold or Nb = 0) then
23 SE’i = SE’i U Eij
24 End If
25 End if
26 End For
27 End For
28 End

Algorithm 1: Algorithm to filter experiences from the set of scenarios

4.1.2.1 Illustrative example

In this section, the example introduced in section 4.1.1.3 is further developed

Let us consider that the scenarios illustrated in the upper part of Figure 32 are those

available in the knowledge base for the type of process “Problem solving”. In order to

perform step 2.1, these available scenarios are retrieved in the experience base, as

represented in the lower part of Figure 32. Let us consider that five scenarios are retrieved.

The activities represented in the problem-solving processes of Figure 32 are: A0: Define the

problem; A1: Apply immediate containment actions; A2: Perform root cause analysis; A3:

Define and implement corrective actions; A4: Define preventive actions; A5: Standardize and

transfer the knowledge.

Si: Scenario i
STP: Set of scenarios
corresponding to the
selected type of process
Eij: Experience j of the
scenario i
SEi: Set of experiences
corresponding to Si
tk: Tag k corresponding
to a set of tags ToEij
ToEij: Set of tags of the
experience Eij
Ttk: Target tag k
Tt: Set of target tags
Ttk.nature: Nature of the
Ttk
Simk: Similarity between
tk and Ttk
ExpKO: Experience
discarded (yes/no)
Simg: Global similarity
of flexible tags
SE’i: Filtered set of
experiences

Towards an agile methodology for industrial problem solving

Valentina María Llamas

79

Figure 32: Available scenarios for TP: Problem solving

The experience filtering for each scenario is performed next. For this purpose, the sets of

tags corresponding to each experience are presented in Table 5. For the purpose of this

study, one experience is linked to scenario S1, three to S2, two to S3, and four experiences to

S4. The first number on the experience’s notation refers to the scenario and the second to

the experience. It is important to notice that the scenario S5 that exists in the knowledge

base (A1 and A2 in parallel, and A3) is not considered in the experience base since it has

never been performed before, therefore, there are no experiences associated to the

scenario.

Moreover, Figure 33 illustrates the taxonomies of tags. The taxonomy for process model tags

(used for tag T1) is illustrated in Figure 33a, two types of problem-solving processes are

available: Simple and complex problems. In Figure 33b, the taxonomy for enterprise

departments (used for T2) is illustrated. In Figure 33c, the taxonomy for products (used for

T3) is presented. The problems taxonomy (used for T4) is illustrated in Figure 33d.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

80

Scenario Experience T1 T2 T3 T4

S1 E11 Complex problem Quality Saddle Painting

S2

E21 Simple problem Quality Frame Dimensional

E22 Simple problem Manufacturing Pedals Painting

E23 Simple problem Finance Saddle Material

S3
E31 Simple problem Quality Front Painting

E32 Simple problem Manufacturing Saddle Assembling

S4

E41 Simple problem Quality Frame Painting

E42 Simple problem Quality Wheels Painting

E43 Simple problem Manufacturing Pedals Painting

E44 Simple problem Manufacturing Pedals Material

Table 5: Experiences tags – Illustration

Figure 33: Taxonomies of tags - Illustration

Following step 2.2 of Figure 31, the similarity between each tag of the experiences and

target tags is computed with formula (3) and the taxonomies of Figure 33. All similarity

values are presented in Table 6.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

81

 T1 T2 T3 T4
Global similarity

(Simg)

TT SIMPLE QUALITY PEDALS PAINTING

Flexible/Non
Flexible

Non Flexible Flexible Flexible Flexible

S1 E11
Complex Quality Saddle Painting

N/A
Sim=0.67 Sim=1 Sim=0.67 Sim=1

S2

E21
Simple Quality Frame Dimensional

0.80 Sim=1 Sim=1 Sim=0.67 Sim=0.67

E22
Simple Manufacturing Pedals Painting

0.90 Sim=1 Sim=0.67 Sim=1 Sim=1

E23
Simple Finance Saddle Material

0.67 Sim=1 Sim=0.67 Sim=0.67 Sim=0.67

S3

E31
Simple Quality Front Painting

0.90 Sim=1 Sim=1 Sim=0.67 Sim=1

E32
Simple Manufacturing Saddle Assembling

0.67 Sim=1 Sim=0.67 Sim=0.67 Sim=0.67

S4

E41
Simple Quality Frame Painting

0.90 Sim=1 Sim=1 Sim=0.67 Sim=1

E42
Simple Quality Wheels Painting

0.90 Sim=1 Sim=1 Sim=0.67 Sim=1

E43
Simple Manufacturing Pedals Painting

0.90 Sim=1 Sim=0.67 Sim=1 Sim=1

E44
Simple Manufacturing Pedals Material

0.80 Sim=1 Sim=0.67 Sim=1 Sim=0.67

Table 6: Similarity values for all tags - Illustration

Step 2.3 (Figure 31) considers non-flexible tags. In this example, T1 is a non-flexible tag.

Considering similarities of Table 6, the only experience with similarity different to one for T1,

is E11. This experience is discarded.

During step 2.4 (Figure 31), the global similarity Simg is computed for each experience using

the GOWA operator. This global similarity is compared to the threshold in order to filter the

experiences. The global similarity values are presented in the last column of Table 6. In this

example, the similarities of experiences E23 and E32 do not satisfy the threshold of 0.7

therefore, they are discarded.

Then, after discarding experiences E23 and E32, the filtered scenarios corresponding to this

agile process are obtained and are represented in Figure 34 (i.e. scenarios S2, S3, S4).

Towards an agile methodology for industrial problem solving

Valentina María Llamas

82

Figure 34: Filtered scenarios for the current lifecycle

At the end of this step, only experiences with tags sufficiently similar to the current process

are kept. In the next step, these filtered experiences are used to help the process manager

to adapt the first version of the process to the current process needs. They constitute

valuable information useful to help decision makers to make choices and to be agile.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

83

4.1.3 Step 3. Adaptation of the first version of the process

During this step, the first version (V0) of the process (see section 3.3) extracted from the

knowledge base is adapted by the process manager (see Figure 35) in order to allow agility

during the process execution. This first version of the process is an instance of the

corresponding process model found in the knowledge base. Every XOR node is transformed

into a decision-making point that allows deciding which path to perform during the

execution of the process (section 4.1.4).

The complete process model is considered with the purpose of ensuring agility during

process execution, since all possible paths should be visible for decision makers.

Figure 35: Adaptation of the first version of the process

Then, filtered scenarios and experiences (i.e. output of the experience filtering step),

relevant information and indicators are compiled into a decision dashboard denominated V0

dashboard, as illustrated in the lower part of Figure 35. V0 dashboard is proposed to the

process manager in order to help decision making regarding the adaptation of the first

version of the process. During this step, the process manager can choose to modify the

proposed V0 according to the V0 dashboard and/or personal criteria (i.e. s/he can decide to

create a new scenario). Moreover, the process manager can choose a “preferred scenario” in

V0 that will be proposed to users in order to carry out the process. The preferred scenario

can be defined from indicators of V0 dashboard or from the process manager personal

criteria.

The combination of the first version of the process and of the dashboard allows the process

Towards an agile methodology for industrial problem solving

Valentina María Llamas

84

manager to understand experiences performed in the past and how they match the current

process. Only scenarios that contain one or more experiences are visible in V0 dashboard

since its purpose is to provide information about past experiences. It means that, in the

cases that a scenario was discarded during experience filtering step (i.e. all of its experiences

were discarded), or if the scenario is the result of a combination of some parts of previously

performed scenarios but it has never been carried out, in both cases the scenario is not

represented in the dashboard.

The adaptation of the process first version is illustrated in Figure 36. The steps referred to

the elaboration of the V0 dashboard indicators are detailed next.

V0 dashboard

The V0 dashboard is constructed from filtered scenarios and experiences (section 4.1.2).

After the experience filtering step, each scenario contains a filtered set of experiences. Then,

for each filtered scenario, a compatibility distribution of the cost and delay values

corresponding to all filtered experiences is computed. For this purpose, first, the probability

distributions of cost and delay values in the filtered scenario are computed. Afterwards, the

compatibility of each value with regards to the soft constraints C and D is calculated. The

objective is to provide global compatibility values of cost and delay for a given scenario, and

to graphically illustrate them. The set of values that cost and delay indicators can take when

performing a given scenario and how compatible those values are compared to the

constraints are represented. This information is presented into the V0 dashboard in order to

help the process manager to adapt V0. Two aggregated indicators (one for cost and one for

delay) are then computed and shown in the dashboard.

Indicators presented in V0 dashboard are: cost and delay probability distributions, global cost

and delay compatibility values (Cc and Cd), number of experiences of the scenario before

filtering (nexp0), number of experiences of the scenario after filtering (nexp1).

Towards an agile methodology for industrial problem solving

Valentina María Llamas

85

Figure 36: Adaptation of V0

Step 3.1: Algorithm 2 allows the computing of the cost and delay distributions of

probabilities for each scenario i.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

86

1 Start
2 Declare variables Si, STP, Eij, SE’i, Di, Ci, dij, cij, ck, dk, Nbck, Pcki,
 Nbdk, Pdki
3 Initialize variables Di = 0, Ci = 0, Nbck = 0, Pcki = 0, Nbdk = 0, Pdki = 0
4 For Si ∈ STP
5 For Eij ∈ SE’i
6 Di = Di U dij
7 Ci = Ci U cij
8 End For
9 For ck ∈ Ci
10 For Eij ∈ SE’i
11 If (ck = cij) then
12 Nbck = Nbck + 1
13 End If
14 End For

15 𝑃𝑐𝑘𝑖 =
𝑁𝑏𝑐𝑘

|𝑆𝐸’𝑖|

16 End For
17 For dk ∈ Di
18 For Eij ∈ SE’i
19 If (dk = dij) then
20 Nbdk = Nbdk + 1
21 End If
22 End For

23 𝑃𝑑𝑘𝑖 =
𝑁𝑏𝑑𝑘

|𝑆𝐸’𝑖|

24 End For
25 Nbck = 0
26 Nbdk = 0
27 End For
28 End

Algorithm 2: Compute of cost and delay distribution of probabilities for V0 dashboard

Step 3.2: The compatibility between each cost and delay value with respect to constraints is

computed. For this purpose, functions defined in section 4.1.1.2 for fuzzy constraints are

considered (equations (1) and (2) are recalled below). Then, compatibility is computed with

equations (1) and (2) for the set of cost and delay values described in the previous step. If a

value (cost or delay) is inferior or equal to the target (TC or TD), then this value is fully

compatible (compatibility=1). When the cost or delay value is between the target and the

defined limit value, the compatibility is given by the function described in equation (1) and

(2) (between 0 and 1). If cost or delay values are superior to the limit value, the compatibility

is zero.

𝐶𝑜𝑚𝑝𝑎𝑡α(𝑐, 𝑇𝐶) = {

1 𝑖𝑓 𝑐 ≤ 𝑇𝐶
(1+α)∗TC−c

α∗TC
 𝑖𝑓 𝑇𝐶 < 𝑐 ≤ (1 + α) ∗ TC

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

Si: Scenario i
STP: Set of scenarios
corresponding to the
selected type of process
Eij: Experience j of the
scenario i
SE’i: Filtered set of
experiences for scenario i
Di: Set of different delays
of the experiences of SE’i
Ci: Set of different costs
of the experiences of SE’i
dij: Delay of the experience
j of the scenario i
cij: Cost of the experience
j of the scenario i
Nbck: Number of occurrences
of ck
Nbdk: Number of occurrences
of dk
Pcki: Probability that ck
exists within SE’i
Pdki: Probability that dk
exists within SE’i

Towards an agile methodology for industrial problem solving

Valentina María Llamas

87

𝐶𝑜𝑚𝑝𝑎𝑡β(𝑑, 𝑇𝐷) = {

1 𝑖𝑓 𝑑 ≤ 𝑇𝐷
(1+β)∗TD−d

β∗TD
 𝑖𝑓 𝑇𝐷 < 𝑑 ≤ (1 + β) ∗ TD

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

Step 3.3: The global compatibility of cost and delay is computed for each scenario. In this

study, the global compatibility is computed as the sum, for each value, of the product of the

probability of the value in the filtered scenario and the compatibility of the value with

regards to the soft constraint (equations (1) and (2)). Then, considering the outputs of

Algorithm 2 and of equations (1) and (2), the two values of cost and delay compatibility are

computed for each scenario. The V0 dashboard is constructed considering the filtered

scenarios, the probability distributions, the compatibilities, and the global compatibility

values, for cost and delay.

The global compatibility of the values of costs for scenario i with regards to the target cost

TC is given by:

𝐶𝑜𝑚𝑝(𝐶𝑖, 𝑇𝐶) = ∑ 𝑃𝑐𝑘𝑖 ∗ 𝐶𝑜𝑚𝑝𝑎𝑡𝛼(𝑐𝑘, 𝑇𝐶)𝑐𝑘∈𝐶𝑖
 (5)

The global compatibility of the values of delays for scenario i with regards to the target delay

TD is given by:

𝐶𝑜𝑚𝑝(𝐷𝑖, 𝑇𝐷) = ∑ 𝑃𝑑𝑘𝑖 ∗ 𝐶𝑜𝑚𝑝𝑎𝑡𝛽(𝑑𝑘, 𝑇𝐷)𝑑𝑘∈𝐷𝑖
 (6)

In the dashboard, the global compatibility value for cost is named Cc, and for delay Cd.

Furthermore, probability distributions and compatibilities are graphically represented in the

dashboard, as illustrated in Figure 37. The vertical bars indicate the probability of each value,

for instance in Figure 37, the probability for a is 0.25; 0.5 for b and 0.25 for e. The function

(blue line) represents the compatibility of each value with regards to the soft constraint. For

instance, in Figure 37, the function takes the value one for a and b, and 0.5 for e (it can be

computed through equation (1)).

Figure 37: Example of probability distribution and compatibility function for cost

Step 3.4 of Figure 36 illustrates the extraction of all scenarios corresponding to a type of

Towards an agile methodology for industrial problem solving

Valentina María Llamas

88

process from the knowledge base. XOR nodes in the knowledge base are replaced by

decision-making points in V0. For a given process type, all of its scenarios are used to

construct V0. The process manager, after consulting V0 dashboard, may decide to modify

these scenarios. For the purpose of this study, only the addition of new scenarios is allowed.

Scenarios cannot be deleted since it would decrease flexibility during the execution of the

process. Even if the scenario does not match cost and/or delay target values, it should be

available for consultation during process execution.

Then, considering outputs of step 3.3 and 3.4, the process manager can adapt the process

first version (step 3.5). V0 dashboard is constructed for the example detailed in the next

section.

4.1.3.1 Illustrative example

The first version of the process is adapted in this step. For this purpose, first, the probability

of the cost and delay values in the filtered scenarios is computed. The cost and delay values

for the filtered experiences are presented in Table 7.

Scenario Experience c (€) d (days)

S2
E21 900 3.5

E22 1000 2

S3 E31 1000 3

S4

E41 1100 3

E42 1000 5

E43 900 4

E44 1000 3.5

Table 7: Cost and delay values corresponding to filtered experiences

In the second column of Table 8, the probabilities of cost and delay values within each

scenario are presented. In the third column, the value of compatibilities with regards to the

target values is presented. Finally, in the fourth column, the global compatibilities cost and

delay values for each scenario are presented.

Scenario Probability Compatibility Global compatibility

S2

Pc(900)=0.5 Cα(900;1000)=1
Comp(Cs2;1000)=1

Pc(1000)=0.5 Cα(1000;1000)=1

Pd(3.5)=0.5 Cβ(3.5;3)=0.5
Comp(Ds2;3)=0.75

Pd(2)=0.5 Cβ(2;3)=1

S3
Pc(1000)=1 Cα(1000;1000)=1 Comp(Cs3;1000)=1

Pd(3)=1 Cβ(3;3)=1 Comp(Ds3;3)=1

S4

Pc(1100)=0.25 Cα(1100;1000)=0

Comp(Cs4;1000)=0.75 Pc(1000)=0.5 Cα(1000;1000)=1

Pc(900)=0.25 Cα(900;1000)=1

Towards an agile methodology for industrial problem solving

Valentina María Llamas

89

Pd(3)=0.25 Cβ(3;3)=1

Comp(Ds4;3)=0.375
Pd(5)=0.25 Cβ(5;3)=0

Pd(4)=0.25 Cβ(5;3)=0

Pd(3.5)=0.25 Cβ(3.5;3)=0.5

Table 8: Global cost and delay compatibility for filtered scenarios

Step 3.4 of Figure 36 refers to the extraction of all the scenarios available in the knowledge

base in order to propose a first version of the process to the process manager. Moreover, all

the information computed during this step is presented to the process manager in the V0

dashboard. Then, the first version of the process (V0) and its associated dashboard are

illustrated in Figure 38.

After analysing V0 dashboard, the process manager decides to designate a preferred

scenario that users will follow during process execution. The chosen path is scenario S2. It is

only a piece of advice, and this choice can be changed during the execution of the process.

Once V0 is defined and adjusted (if necessary) by the process manager, the process

execution takes place. The process execution is described in the next section.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

90

Figure 38: First version of the process (V0) and its dashboard – Illustration (1/2)

Towards an agile methodology for industrial problem solving

Valentina María Llamas

91

Figure 38 (continuation): First version of the process (V0) and its dashboard – Illustration (2/2)

Towards an agile methodology for industrial problem solving

Valentina María Llamas

92

4.1.4 Step 4. Process execution. Continuous adaptation

During this step, users carry out the agile process using the first version adapted by the

process manager as a guideline. They perform the process following the preferred scenario

and at each decision-making point, they decide what to do next. Decision makers can

propose and implement options not provided in V0, and modifications can be inserted in real

time. In order to support decision making, a decision dashboard is available at each decision-

making point. Similar to the V0 dashboard, presented in section 4.1.3, the decision

dashboard provides information and graphic representations regarding different indicators

of filtered scenarios. Moreover, after each decision point, the rationale that led to the

decision is formalized by the problem-solving team, and will be stored along with the

experience and its indicators in the experience base in the last lifecycle step.

The execution of the activities of the agile process is performed by users. They begin to carry

out the process based on the first version provided by the process manager. If the process

execution is standard, users should follow exactly the preferred path chosen by the manager

during the previous step. When a decision-making point is reached, decision makers choose

which scenario to perform, helped with information provided in the decision dashboard (see

subsection “decision dashboard” below). If none of the available options is adequate for the

process, they can decide to create a new option (i.e. new activities).

During the process execution phase, several versions of the process are created to capitalize

the knowledge provided, mainly during decision making. For this purpose, every time that

the process is modified, mostly during decision making, a new version is created (see section

3.3). A new version is created at each decision-making point in order to memorize which

option was chosen during decision making. Every version of the process includes an

explanation that details the reasons for choosing one scenario over another, mainly when

the scenario proposed by the system was not chosen. This explanation, called rationale for

decisions, is integrated during decision making in a free text form. Every time a new process

is defined, the rationale of all past experiences is available in the dashboard to help decision

makers.

Moreover, if necessary, users can negotiate with stakeholders if constraints are not satisfied

during the execution of the process. Let us consider the selection of one scenario among a

set of scenarios during decision making. If the chosen scenario does not satisfy the

constraints set by the stakeholders, two options are possible, as illustrated in Figure 39.

Either another scenario from the set can be selected, or unsatisfied constraints can be

negotiated with their owner. It means that, if cost and/or delay fuzzy constraints are not

satisfied during the execution of the process, users can then negotiate their release with the

corresponding stakeholder. In the case that the stakeholder determines that the impact of

releasing such a constraint is minor, the fuzzy constraint may be changed to its new allowed

value. If the constraint is not released, another option to perform the process (i.e. another

Towards an agile methodology for industrial problem solving

Valentina María Llamas

93

scenario) should be considered.

Figure 39: Constraints negotiation

In the next subsection, the decision dashboard is detailed and the manner of computing

indicators is described.

Decision dashboard

A decision dashboard is proposed to users at each decision-making point in order to support

decision making. As it has been described, the purpose of the dashboard is to help decision

making by providing indicators and graphic distributions for available scenarios, based on

the process execution state. Unlike V0 dashboard, decision dashboards display information

from two perspectives or views. First, the “action view” refers to the action that needs to be

taken right after the decision (i.e. to choose one alternative or another). It presents

computed indicators for all scenarios that share the same action after the decision-making

point. Second, the “scenario view” presents indicators for each filtered scenario (similar to V0

dashboard) and helps to evaluate the complete process after the decision-making point. In

order to compile information and to build the decision dashboard, first the scenario view is

defined followed by the action view.

1) Scenario view

The scenario view displays the available filtered scenarios that could be performed after the

decision-making point. For each scenario, relevant information is provided in order to help

decision making. Such information are: the number of experiences contained in the scenario

before and after filtering (Nexp0 and Nexp1), the probability and compatibility distributions

for cost and delay for each scenario, and the global compatibilities values of cost (Cc) and

delay (Cd).

The decision dashboard is proposed to users during a given decision, then, in order to

Towards an agile methodology for industrial problem solving

Valentina María Llamas

94

compute cost and delay compatibility values, the process progression should be analysed at

that precise moment. For each experience activity, its progression state is considered, which

can take the values “finished” (the activity is completed) or “unfinished” (the activity is not

completed). If an activity is being performed at the time of the decision, it is considered as

unfinished.

Moreover, each scenario activity is defined as “selected” or “non-selected” taking into

consideration the result of the previous decisions. Thus, all the activities that could be

performed respecting the result of the decision (the action that was chosen to execute the

process) are considered as “selected”. For instance, let us consider the illustration presented

in previous sections. Let us consider that during the decision D1 the action a2 is chosen to

execute the process, then all the scenario activities linked to that action are considered as

Selected (Figure 40). All the scenario activities linked to actions a1 and a3 are set as Non-

Selected.

Figure 40: Selected and Non-Selected activities

For each experience of the filtered scenario, at the time of the decision, the global cost value

can be computed as the sum of: the cost of the finished activities of the current process

(denominated real cost), plus the cost of the unfinished activities from past experiences

(denominated cost of the activity of the experiences). The function (denoted fc(V, E, Act))

which allows the computing of the global cost is represented in Algorithm 3. The same is

performed for delay global values, the real delay is considered for finished activities, and the

activity delay (delay of the activity of the experiences) is considered for unfinished activities.

The recursive function (denoted as fd(V, E, Act)) which allows the computing of delay is also

described in Algorithm 3.

Moreover, considering such global values, the probabilities of cost and delay values are

Towards an agile methodology for industrial problem solving

Valentina María Llamas

95

computed with Algorithm 3. Once probabilities are computed, the compatibility of such cost

and delay compared to the soft constraints are given.

1 Declare variables Si, STP, Eij, SE’i, Di, Ci, dij, cij, ck, dk, Nbck, Pcki,
 Nbdk, Pdki
2 Declare functions fd(V, E, Act), fd_finished(V, Act), fc(V, E, Act)
3 Initialize variables Di = 0, Ci = 0, Nbck = 0, Pcki = 0, Nbdk = 0, Pdki = 0,
delay = 0, cij = 0

4 Function: fd(V, E, Act)__
5 If Act = start(E) then
6 Return 0
7 Else
8 max = 0
9 For a ∈ pred(E, Act)
10 If a.finished = true and a.selected = true then
11 delay = fd(V, E, a)
12 else
13 delay = fd_finished(V,a)
14 End If
15 If delay > max then
16 max = delay
17 End If
18 End For
19 Enf If
20 Return max + duration(E, Act)
21 End___

22 Function: fd_finished(V, Act)___
23 If Act = start(V) then
24 Return 0
25 Else
26 max = 0
27 For a ∈ pred_finished(V, Act)
28 delay = fd_finished(V, a)
29 If delay > max then
30 max = delay
31 End If
32 End For
33 End If
34 Return max + real_duration(V, Act)
35 End__

36 Function: fc(V, E, Act)__
37 C = 0
38 For each a ∈ E
39 If a.finished = true
40 C = C + real_cost(V, a)
41 Else
42 C = C + cost(E, a)
43 End If
44 End For
45 Return C

V: Version of the process
E: An experience
Act: Activity from which the
cost or delay is computed

pred(E, Act): List of
predecessors of Act in the
experience E
pred_finished(V, Act): List of
predecessors of Act in the
version V, which have a
state=finished
duration(E, Act): duration of
the activity Act in the
experience E
real_duration(V, Act): Real
duration of the activity Act in
the version V
start(E): First fictive node of
the experience E
end(E): Last fictive node of
the experience E
real_cost(V, a): Real cost of
the activity a in the version V
cost(E, a): Cost of the
activity a in the experience E

Towards an agile methodology for industrial problem solving

Valentina María Llamas

96

Algorithm 3: Compute of cost and delay probabilities for decision dashboard – Scenario view

Finally, the global compatibility of cost and delay are computed with equations (5) and (6).

2) Action view

The action view displays the possible actions to take right after the decision. For each action,

aggregated information from the corresponding scenarios is presented. Displayed indicators

are: the global number of experiences “Nexp1” (i.e. sum of all experiences related to the

action); the “flex” indicator that provides the number of available options (i.e. scenarios) to

perform the process if that action is chosen; the probability and compatibility distributions

for cost and delay for the set of scenarios; and the global compatibility values of cost (Cc)

and delay (Cd).

Information from each scenario is aggregated upon its corresponding action. For this

purpose, all scenarios for which a given action is performed (i.e. all scenarios that go through

a given action) need to be selected in order to compute their global compatibility values. The

algorithms and formulas to be used during this step are similar to those used to compute

view perspective indicators, since the global cost and delay are given by the sum of the

values of the current process activities and the values of each past experience. However, the

46 End___

47 Start
48 For all Si ∈ STP
49 For Eij ∈ SE’i
50 dij = fd(Vc, Eij, end(Eij))
51 Di = Di U dij
52 cij = fc(Vc, Eij, end(Eij))
53 Ci = Ci U cij
54 End For
55 For each ck ∈ Ci
56 For Eij ∈ SE’i
57 If (ck = cij) then
58 Nbck = Nbck + 1
59 End if
60 End For

61 𝑃𝑐𝑘𝑖 =
𝑁𝑏𝑐𝑘

|𝑆𝐸’𝑖|

62 End For
63 For each dk ∈ Di
64 For Eij ∈ SE’i
65 If (dk = dij) then
66 Nbdk = Nbdk + 1
67 End if
68 End For

69 𝑃𝑑𝑘𝑖 =
𝑁𝑏𝑑𝑘

|𝑆𝐸’𝑖|

70 End For
71 End For
72 End

Si: Scenario i
STP: Set of scenarios
corresponding to the selected
type of process
Eij: Experience j of the
scenario i
SE’i: Filtered set of
experiences
Vc: Current version
Di: Set of different delays of
the experiences linked to SE’i
Ci: Set of different costs of
the experiences linked to SE’i
dij: Delay of the experience j
of the scenario i
cij: Cost of the experience j
of the scenario i
Nbck: Number of occurrences of
ck
Nbdk: Number of occurrences of
dk
Pcki: Probability that ck
exists within SE’i
Pdki: Probability that dk
exists within SE’i

Towards an agile methodology for industrial problem solving

Valentina María Llamas

97

sets of cost and delay values considered are given by the union between all the values of all

the filtered experiences that pass by the action. This means that, considering a given action,

for all filtered experiences that go through it, their cost and delay values are taken into

account in order to define the cost and delay sets that will allow the computing of

probabilities and compatibilities.

For this purpose, Algorithm 4 describes the manner to define the set of cost and delay values

in order to compute probabilities. Considering these values, cost and delay compatibilities

can be computed.

1 Start
2 Declare variables Eij, SE’i, Si, Slm, Di, Ci, dij, cij, Dlm, Clm, ck, dk,
 Nbck, Pcklm, Nbdk, Pdklm

3 Initialize variables Dlm = ∅, Clm = ∅, Di = ∅, Ci = ∅, Nbck = 0, Pcklm = 0,
 Nbdk = 0, Pdklm = 0

4 For each Si ∈ Slm (Slm ⊆ STP)
5 For each Eij ∈ SE’i
6 Di = Di U fd(Vc, Eij, end(Eij))
7 Ci = Ci U fc(Vc, Eij, end(Eij))
8 End For
9 Dlm = Dlm U Di
10 Clm = Clm U Ci
11 End For
12 For each ck ∈ Clm
13 Nbexp = 0
14 For each Si ∈ Slm
15 For each Eij ∈ Si
16 If (ck = cij) then
17 Nbck = Nbck + 1
18.....End If
19 Nbexp = Nbexp + 1
21 End For
22 End For

23 𝑃𝑐𝑘𝑙𝑚 =
𝑁𝑏𝑐𝑘

𝑁𝑏𝑒𝑥𝑝

24 End For
25 For each dk ∈ Dlm

26 Nbexp = 0
27 For each Si ∈ Slm
28 For each Eij ∈ Si
29 If (dk = dij) then
30 Nbdk = Nbdk + 1
31.....End If
32 Nbexp = Nbexp + 1
33 End For
34 End For

35 𝑃𝑑𝑘𝑙𝑚 =
𝑁𝑏𝑑𝑘

𝑁𝑏𝑒𝑥𝑝

36 End For
37 End

Slm: Set of scenarios concerned by
the action m of the decision l
Dlm: Set of different delays of the
scenarios linked to Slm
Clm: Set of different costs of the
scenarios linked to Slm
Eij: Experience j of the scenario i
SE’i: Filtered set of experiences
Di: Set of different delays of the
experiences linked to SE’i
Ci: Set of different costs of the
experiences linked to SE’i
dij: Delay of the experience j of
the scenario i
cij: Cost of the experience j of
the scenario i
Nbck: Number of occurrences of ck
Nbdk: Number of occurrences of dk
Pcklm: Probability that ck exists
within Slm
Pdklm: Probability that dk exists
within Slm
Nbexp: Total number of experiences
corresponding to the action lm

Towards an agile methodology for industrial problem solving

Valentina María Llamas

98

Algorithm 4: Computing of cost and delay probabilities for decision dashboard – Action view

Therefore, the global compatibility of cost and delay corresponding to an action lm are

computed using:

𝐶𝑜𝑚𝑝(𝐶𝑙𝑚, 𝑇𝐶) = ∑ 𝑃𝑐𝑘𝑙𝑚 ∗ 𝐶𝑜𝑚𝑝𝑎𝑡𝛼(𝑐𝑘 , 𝑇𝐶)𝑐𝑘∈𝐶𝑙𝑚
 (7)

𝐶𝑜𝑚𝑝(𝐷𝑙𝑚, 𝑇𝐷) = ∑ 𝑃𝑑𝑘𝑙𝑚 ∗ 𝐶𝑜𝑚𝑝𝑎𝑡𝛽(𝑑𝑘, 𝑇𝐷)𝑑𝑘∈𝐷𝑙𝑚
 (8)

4.1.4.1 Illustrative example

Let us consider the execution of the agile problem-solving process illustrated in the previous

sections. Users execute the process following the preferred scenario proposed by the

process manager. Then, scenario S2 should be chosen over the other scenarios. Let us

consider the evolution of the process from V0 to V1 as illustrated in Figure 41.

The current version of the process is V1, it has been created after decision D1, and the next

decision-making point is D2. In order to construct the decision dashboard, cost and delay

need to be updated with the values from the already performed activities (A1 and A2). The

real duration of activities A1 and A2, and the duration of A3 and A4 for experiences E21, E22

and E31 are shown in Table 9. The total cost and delay values are presented in the lower

rows.

Figure 41: Versions V0 and V1 of the process - Illustration

Activity

Real E21 E22 E31

Cost
(€)

Delay
(days)

Cost
(€)

Delay
(days)

Cost
(€)

Delay
(days)

Cost
(€)

Delay
(days)

A1 300 0.5 - - - - - -

A2 400 1 - - - - - -

Towards an agile methodology for industrial problem solving

Valentina María Llamas

99

A3 - - 100 1 200 0.5 300 2

A4 - - 100 1 100 1 - -

Total
Cost 900 1000 1000

Delay 3.5 3 3.5

Table 9: Activities cost and delay values - Illustration

With the new values of cost and delay for each experience, probability, compatibility and

global compatibility can be computed for each scenario as presented in Table 10.

Scenario Probability Compatibility Global compatibility

S2

Pc(900)=0.5 Cα(900;1000)=1
Comp (Cs2;1000)=1

Pc(1000)=0.5 Cα(1000;1000)=1

Pd(3.5)=0.5 Cβ(3.5;3)=0.5
Comp (Ds2;3)=0.75

Pd(3)=0.5 Cβ(3;3)=1

S3
Pc(1000)=1 Cα(1000;1000)=1 Comp (Cs3;1000)=1

Pd(3.5)=1 Cβ(3.5;3)=0.5 Comp (Ds3;3)=0.5

Table 10: Probability and compatibility values at decision D2 – Illustration

In order to build the decision dashboard, the probability distributions and the compatibilities

are considered. First, the scenario view is constructed from values of Table 10. Second, for

the action view, the same values of the scenarios are considered, since in this example for

each action there is only one scenario. If several scenarios were available, the set of their

cost and delay values would have been considered in order to define the action probability

distributions and compatibility. The decision dashboard is presented in Figure 42.

The “action views” are local to the decision and, on the other hand, the “scenario views” are

global to the process.

Let us consider that, based on the decision dashboard, decision makers choose to perform

scenario S2. The rationale that led decision makers to choose scenario 2 should be described

at this point, for simplicity reasons it is not illustrated in this example. Then, activities A3 and

A4 are normally performed and recorded in the third version of the process (V2) as

illustrated in Figure 43.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

100

Figure 42: D2 dashboard - Illustration

Towards an agile methodology for industrial problem solving

Valentina María Llamas

101

Figure 43: Versions V0, V1 and V2 of the process - Illustration

Once process execution is over, the last version of the process is considered to be stored in

the experience and/or knowledge base. The process storage is described in the next section.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

102

4.1.5 Step 5. Storage in the Experience/Knowledge Base

When the agile process is over, all the information that helps to describe and characterize

the process needs to be properly stored in the experience and knowledge bases. The storage

phase is of major importance since it guarantees the knowledge and experience

capitalization (and reuse). This step is performed by users, except in the case where a new

scenario needs to be added in the knowledge base.

During this step, the last version of the agile process, created on step 4, is analysed in order

to determine whether the process structure has changed or not. Two options are possible.

First, when there is no change in the structure of the process, it can be stored linked to the

scenario that represents its structure in the experience base. It means that the agile process

has now become a new experience corresponding to that scenario. This option also includes

the possibility that the structure of the process has changed but it corresponds to another

existing scenario. Then, it is also stored in the experience base as a new experience linked to

that other scenario.

On the other hand, when a change in the process structure is observed and its structure

does not match any existing scenario, a knowledge expert needs to be involved. The

knowledge expert must decide if the new scenario is validated or not. In the case that it is

validated, it is added as a new scenario in the knowledge and experience bases. Moreover, in

the experience base, the execution of the process is stored as the first experience

corresponding to the scenario.

4.1.5.1 Illustrative example

In order to store the current process, the knowledge expert verifies if the structure of the

process has changed. Considering the last version of the process illustrated in Figure 43, the

structure of the process (A1-A2-A3-A4) corresponds to an existing scenario (S2). Then, the

process is stored into the experience base as a new experience.

It means that the experience base is updated with the new experience. Table 11 shows the

available experiences in the experience base for the type of process: “Problem solving”

(Table 5 has been updated and is represented in Table 11).

Scenario Experience T1 T2 T3 T4

S1 E11 Complex Quality Saddle Painting

S2

E21 Simple Quality Frame Dimensional

E22 Simple Manufacturing Pedals Painting

E23 Simple Finance Saddle Material

E24 Simple Quality Pedals Painting

S3
E31 Simple Quality Front Painting

E32 Simple Manufacturing Saddle Assembling

S4
E41 Simple Quality Frame Painting

E42 Simple Quality Wheels Painting

Towards an agile methodology for industrial problem solving

Valentina María Llamas

103

E43 Simple Manufacturing Pedals Painting

E44 Simple Manufacturing Pedals Material

Table 11: Updated experiences tags – Illustration

In the last sections, the lifecycle that allows the process manager and users to define and to

execute an agile problem-solving process has been introduced. Principles regarding decision

making based on event are detailed in the next section.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

104

4.2 Decision making based on event

Two types of decisions can be found in an agile process. Nominal decision-making principles

were introduced in section 3.2. On the other hand, when decision-making points are created

in order to face an unexpected change, they are denominated decision-making points

“based on event” in our study. If an unexpected event arises during the execution of the

process, a decision-making point based on event is created in order to analyse, decide and

find a solution. The path chosen to adapt the process to face the unexpected event will be

defined and stored in the experience and knowledge bases. Then, if the event reoccurs in

the future, all existing scenarios linked to such event will be proposed to users as a possible

solution.

Decisions based on event introduce a change in the model since they need a special

treatment for their storage and future reuse. However, the basic elements of the model stay

unchanged. Unexpected events can appear during the execution of the process, then,

decision makers need to decide what to do next. The event may need to be immediately

treated, in which case a new decision-making point based on event needs to be created in

order to decide which path to follow. Afterwards, it can be chosen to create a new scenario

(new activities or new sequence of the same activities) or to perform the same existing

activities to overcome the problem. In addition, if an activity is being performed at the time

that the unexpected event occurred, it is considered as an “unfinished” activity. Then, during

the newly created decision based on event, it can be chosen to create activities and to

resume the “unfinished” activity, or to perform other activity. When the process is over, it is

stored into the experience and the knowledge base.

For simplification purposes, when the first version of the process is proposed, only

“nominal” (i.e. not based on event) scenarios are visible (V0). However, when an

unexpected-event occurs during the process execution, all the activities or scenarios that

were performed in the past to overcome such an event are “activated”. It means that if

activities are not concerned by such an event, they are inhibited and they are not available

during the process execution. As briefly mentioned in section 3.5.1, nodes have an attribute

named “list of events” that refers to all the events that can “activate” such a node, as

presented on the UML diagram of Figure 19. The list can take the values None, Event1,

Event2, etc. When no unexpected event has occurred, the events list for all nodes should be:

None. It means that, if a scenario has only been performed in a nominal mode, the attribute

value “None” indicates that when an unexpected event occurs, it should be inhibited (i.e. the

activities that compose it). If on the other hand, a scenario was created to overcome an

unexpected event Event1, “Event1” should be added to the “list of events” attribute of the

concerned activities, then, it should only be activated if the event named Event1 reoccurs.

The storage of the process is carried out like a regular experience. If the structure of the

process corresponds to an existing scenario, it is stored as a new experience. If the process

Towards an agile methodology for industrial problem solving

Valentina María Llamas

105

structure has changed, a new scenario needs to be created. In both cases, for the activities

(or other nodes) that were performed after the unexpected event, their list of events needs

to be properly modified. The event that activates such nodes needs to be added to the list.

4.2.1 Illustrative example

The same example from previous sections is considered. Let us consider that we are at the

moment of the execution of the activity A4 (defining preventive actions). At that moment,

an unexpected event occurs, as illustrated in Figure 44. The unexpected event is implied by

the fact that the problem reappeared.

Figure 44: Occurrence of an unexpected event - Illustration

Such an event had never occurred during problem solving within the company. It means that

when the unexpected event appeared, no scenario based on event could be activated based

on experience feedback. A decision-making point based on event is created in order to

immediately treat the event (D3). Decision makers decide to go back to activity A2 in order

to redefine the root cause of the problem. Afterwards, activities A3 and A4 need to be

performed again. This decision creates a new version of the process, presented in Figure 45.

Figure 45: Version V3 of the process - Illustration

Let us now consider that the process is completely carried out without further problems. At

the moment of the storage of the last version of the process, the attributes of the activities

need to be updated including the event “Event1” in the event list attribute. Then, if the

unexpected event “Event1” reoccurs in the future, activity A2 (and followed by A3 and A4)

will be activated as a possible solution. The decision-making point based on event “D3” is

stored into the knowledge base as a XOR node (with the event “Event1” in the event list

attribute).

Towards an agile methodology for industrial problem solving

Valentina María Llamas

106

4.3 Conclusion

The lifecycle of an agile problem-solving process was defined in this chapter. Such a lifecycle,

based on CBR principles, allows to define and to execute an agile problem-solving process.

The importance of knowledge and experience capitalization and reuse principles along the

agile lifecycle has been outlined.

First, the agile problem-solving process needs to be characterized. For this purpose, a set of

tags is defined by the process manager, the person in charge of the definition and the

execution of the agile lifecycle, and constrained with cost and delay limits defined by

stakeholders. The defined set of tags allows to filter the experience base in order to retrieve

past experiences with similar characteristics to the current process. A set of indicators

regarding filtered experiences is proposed to the process manager in a V0 dashboard, which,

along with the set of scenarios in the knowledge base will constitute the process first

version. The first version of the process is proposed to users as a guideline to be used during

process execution. During the process execution, at decision-making points, decision

dashboards compile the information regarding filtered scenarios in order to support decision

making. Moreover, the rationale of each decision is stored in order to allow its consultation

during future processes. Finally, the agile process is stored into the experience base. In the

case that the structure of the process does not match any existing scenario, and once

validated by the knowledge expert, a new scenario is created in the experience and

knowledge bases.

The treatment of unexpected events was described at the end of this chapter. Such an

extension of the model allows the process to be agile in order to respond to events that

were not considered when defining nominal scenarios for executing the process.

Unexpected events create decision-making points based on event, which allow decision

makers to define how to treat such an event. The process lifecycle is the same for decisions

based on event, except for the storage step which needs special treatment. When an

unexpected event has been treated (the process has been updated to face this problem), the

solution is memorized within the corresponding experience in order to be reused if the same

kind of event reoccurs.

Valentina María Llamas

107

5. ILLUSTRATION BASED ON AN INDUSTRIAL SITUATION

In the previous chapters the agile problem-solving process model has been detailed. In order

to validate and to improve such a model, its application to the real case of a company is

described in this section.

The case study was conducted at a surface treatment company dedicated to the

aeronautical sector. The company performs activities such as surface treatment, painting,

non-destructive testing and chemical milling. The company Axsens-bte and the laboratory

LGP-ENIT have come to work together with this surface treatment company in the

framework of a collaborative project.

The work conducted in the company consisted mainly on two steps, first the interview of the

quality department employees about different problems that they had needed to overcome.

Second, ProWhy, a computer-based platform used to trace and to solve problems, was

consulted to analyse the problems solved and traced within it. Both inputs were considered

to simulate a knowledge and experience base for the company, and afterwards, to recreate

the agile lifecycle for solving a problem. In order to describe the case study, knowledge and

experience bases are presented in section 5.1, and the agile lifecycle is introduced from

section 5.2 to section 5.6.

5.1 Knowledge and experience base

Interviews to the quality department employees (see interview template in Appendix 2)

were conducted with two main purposes. First, the determination of the problem-solving

approach (or approaches) deployed within the company. Second, the collection of real

problem-solving cases in order to build the experience and knowledge bases. Two types of

problem-solving methods were identified. First, the method 8D is used within the company

in three situations: 1) when the resolution of the problem is demanded and/or its treatment

is followed by customers, 2) when the problem is complex, and/or 3) when the problem has

reoccurred several times. Second, the method to treat all other problems is called Non-

Conformity treatment (NC). Moreover, all 8D-problems are stored in the software ProWhy,

designed to structure, store and share information about problem solving.

The knowledge and the experience bases were created from collected information. The

knowledge and the experience bases, corresponding to the type of process problem solving

are illustrated in Figure 46. Activities performed to solve problems are: A1: Start immediate

containment, A2: Build the team, A3: Define problem, A4: Complete and optimize

containment actions, A5: Identify root causes, A6: Define and select permanent corrective

actions, A7: Implement permanent corrective actions and check effectiveness, A8:

Standardize and transfer the knowledge, A9: Recognize the team and close, and A10: Define

and apply immediate preventive actions.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

108

Figure 46: Knowledge and experience base for the type of process: Problem solving

Scenario S1 of the experience base corresponds to the execution of an 8D problem-solving

process. S2 corresponds to the non-conformity method. Finally, S3 corresponds to a

combination of both methods (i.e. the 8D method is followed until activity A7, but instead of

performing A8 and A9, A10 corresponding to the NC method is performed).

Then, each problem collected from the company is treated as an experience and tags are

defined in order to characterize each process. Table 12 shows all the experiences contained

in the experience base for the type of process “problem solving” including their tags. For the

experiences corresponding to S3, it has been decided that T1=8D since the process is

considered as a simplified 8D.

For instance, E12 refers to a problem detected by the customer. The reference printed into a

big panel was not the correct reference as per specifications. The customer demanded the

problem to be solved with an 8D process. The following steps were performed in order to

solve the problem:

- Activity A1: In order to immediate contain the problem, all the suspected panels in

progress were isolated to control that the printed reference corresponded to the

actual part reference.

- Activity A2: A multifunctional team was defined to treat the problem.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

109

- Activity A3: The problem was described. The panel was painted with an incorrect

tooling. Both tooling are similar and have similar references.

- Activity A4: The incorrect tooling used to paint the part was safely stored to avoid

people using it.

- Activity A5: The identified and validated root causes are: The tooling used had no

“poka-yoke” system (i.e. it could be incorrectly used). Operators did not verify the

reference of the tooling (i.e. it could be easily confused with other similar tooling).

- Activity A6: Two actions were identified: Incorporating a “poka-yoke” system to the

tooling, and reminding the instructions to all operators.

- Activity A7: The verification of the corrective actions was not performed. However,

the problem did not reappear.

- Activity A8: In order to standardize the knowledge acquired beyond the scope of this

single problem, “poka-yoke” systems were added to all reference-painting tooling.

- Activity A9: The team was thanked for their work and the 8D process was formally

closed.

Another example is E21. A dimensional problem was detected in a big part, at the control

area of the company. The chemical treatment was not correctly performed, and it resulted in

a difference of the thickness of the part. It was decided to treat this problem with the NC

method. The following steps were performed:

- Activity A1: One immediate action was defined: all the parts in progress were

selected to be controlled.

- Activity A5: The root cause of the problem was identified and validated: The points of

electrical contact were modified.

- Activity A6: The corrective actions are: 1) Modification of the assembly line. 2)

Perform a chemical analysis of all the parts that present a difference on their

thickness with regards to the requirement (identified during A1).

- Activity A7: The actions were validated.

- Activity A10: A preventive action was defined and immediately applied: All of the

acceptance criteria were displayed on each work station (i.e. points of electrical

contact for each part).

Scenario Experience T1 T2 T3 T4

S1

E11 8D Quality Big panel Part falling

E12 8D Quality Small panel Tooling

E13 8D Quality Big panel Dimensional

E14 8D Quality Big panel Painting

E15 8D Quality Small part Electrical crash

E16 8D Quality Big part Dimensional

E17 8D Quality Chemical milling line Line stoppage

S2
E21 NC Quality Big part Dimensional

E22 NC Quality Small part Painting

E23 NC Quality Small part Dimensional

Towards an agile methodology for industrial problem solving

Valentina María Llamas

110

E24 NC Quality Small panel Part falling

S3
E31 8D Quality Small part Dimensional

E32 8D Quality Big part Painting

E33 8D Quality Small panel Part falling

Table 12: Experiences tags

Taxonomies for the set of tags are illustrated in Figure 47. The taxonomy for process models

(used for tag T1) is presented in Figure 47a, in this case, there are two types of problem-

solving processes (8D and NC). The taxonomy for enterprise departments (used for tag T2) is

shown in Figure 47b, in this study only the Quality department is considered. The taxonomy

for the type of product (used for tag T3) is illustrated in Figure 47c. As several parts are

painted and chemically treated in this company, for simplification reasons the types of

products are classified into panels (big metallic parts) and parts (all the other parts), the

third category is the chemical milling line. Finally, the taxonomy for the types of problems

(used for tag T4) is presented in Figure 47d. The problem may have occurred to a part or it

can be related to its environment.

Figure 47: Tags taxonomy

An insight was given on the problem-solving processes stored into the knowledge and

experience base of the company. In the next sections a new problem is treated following the

agile lifecycle introduced in chapter 4.

5.2 Step 1. Definition of the process scope

A new problem occurs within the surface treatment company. The problem is that a part,

ready to be sent to the customer, has fallen from its metallic support. After examination by

the final control employee, it has been decided to send the part to the customer since no

Towards an agile methodology for industrial problem solving

Valentina María Llamas

111

damage has been noticed. However, the root cause of the part falling needs to be

determined in order to avoid its recurrence. The process manager designated for this agile

process is the quality manager.

First, the quality manager needs to characterize the process. For this purpose, the table

presented in Figure 46 is completed. The method used will be a priori the “NC” method (tag

T1), since the problem does not seem complex, it has not impacted the client, and it is the

first time it appears on this part. The problem will be solved by the quality department (tag

T2). The type of product is a big part (tag T3) and the type of problem is part falling (tag T4).

As there is no major requirement for either of the tags, the manager decides to set all tags as

flexible in order to retrieve several similar past cases. The global similarity threshold is set at

0.8.

Figure 48: Definition of the process context

Moreover, constraints need to be defined during this step. The quality and the

manufacturing manager set the constraints: the cost should not be more than 600€ and the

maximum delay is of 8 hours. However, since cost and delay are flexible constraints, the

process (quality) manager defines the level of acceptance as: for cost α=0.33, and for delay

β =1, as illustrated in Figure 49.

Figure 49: Cost and delay constraints

Once that the process is characterized and the constraints are set, the experience filtering

Towards an agile methodology for industrial problem solving

Valentina María Llamas

112

step, described in the next section, is performed.

5.3 Step 2. Experience filtering

In order to filter the experience base, the current process tags are considered in order to

compute the similarity between them and the tags of each experience. For this purpose, the

similarity formula of Wu and Palmer (see equation (3)) is used.

Table 13 shows the similarity values between the tags of each experience and the target tags

(defined in the second row of the table). Once that similarity has been computed, global

similarity is computed for each experience using the GOWA operator (see equation (4)).

Global similarity is presented in the sixth column of Table 13.

Scenario Experience T1 T2 T3 T4 Global
similarity

Simg
TT NC Quality Big part Part falling

Flexible/Non-flexible? F F F F

S1

E11
8D Quality Big panel Part falling

0.8
Sim=0.67 Sim=1 Sim=0.5 Sim=1

E12
8D Quality Small panel Tooling

0.7
Sim=0.67 Sim=1 Sim=0.5 Sim=0.5

E13
8D Quality Big panel Dimensional

0.7
Sim=0.67 Sim=1 Sim=0.5 Sim=0.5

E14
8D Quality Big panel Painting

0.7
Sim=0.67 Sim=1 Sim=0.5 Sim=0.5

E15
8D Quality Small part Electrical crash

0.8
Sim=0.67 Sim=1 Sim=0.75 Sim=0.75

E16
8D Quality Big part Dimensional

0.8
Sim=0.67 Sim=1 Sim=1 Sim=0.5

E17
8D Quality Chemical milling line Line stoppage

0.8
Sim=0.67 Sim=1 Sim=0.57 Sim=0.75

S2

E21
NC Quality Big part Dimensional

0.9
Sim=1 Sim=1 Sim=1 Sim=0.5

E22
NC Quality Small part Painting

0.8
Sim=1 Sim=1 Sim=0.75 Sim=0.5

E23
NC Quality Small part Dimensional

0.8
Sim=1 Sim=1 Sim=0.75 Sim=0.5

E24
NC Quality Small panel Part falling

0.9
Sim=1 Sim=1 Sim=0.5 Sim=1

S3

E31
8D Quality Big panel Dimensional

0.7
Sim=0.67 Sim=1 Sim=0.5 Sim=0.5

E32
8D Quality Big part Painting

0.8
Sim=0.67 Sim=1 Sim=1 Sim=0.5

E33
8D Quality Small panel Part falling

0.8
Sim=0.67 Sim=1 Sim=0.5 Sim=1

Table 13: Compute of similarity

In order to perform the filtering of experiences, since there are not any non-flexible tags, the

global similarity of each experience is considered. All experiences that have a global

Towards an agile methodology for industrial problem solving

Valentina María Llamas

113

similarity inferior to 0.8 are discarded. Then, experiences E12, E13, E14 and E31 are discarded.

Then, after removing experiences E12, E13, E14 and E31, the filtered scenarios corresponding to

this agile process are obtained (Figure 50).

Figure 50: “Filtered” experience base

Once that the filtering of experiences is performed, the first version of the process needs to

be defined and adapted. The adaptation of the process first version is detailed in the next

section.

5.4 Step 3. Adaptation of the first version of the process

During this step, the first version of the process is adapted by the process manager. For this

purpose, the available scenarios from the knowledge base for the type of process “Problem

solving” are considered, and the V0 dashboard is created in order to help the process

manager to adapt the first version of the process.

First, the cost and delay values for the filtered experiences are considered (Table 14).

Scenario

Experience c (€) d (hours)

S1

E11 1000 16

E15 500 16

E16 600 12

E17 2000 32

S2

E21 600 8

E22 400 12

E23 800 16

E24 600 12

S3
E32 500 8

E33 400 12

Table 14: Cost and delay values for filtered experiences

In order to create the dashboard, the cost and delay probabilities for the filtered scenarios

need to be computed. The “Probability” column of Table 15 presents the probabilities of

Towards an agile methodology for industrial problem solving

Valentina María Llamas

114

each value of cost and delay for each scenario. Moreover, the compatibility between such

cost and delay values and the constraints needs to be computed with equations (1) and (2).

Compatibility values are presented in the “Compatibility” column of Table 15. Finally, the

global cost and delay compatibility for each scenario is computed as the sum of the product

of probabilities and compatibilities for cost and delay, as presented in the “Global

compatibility” column.

Scenario Probability Compatibility Global compatibility

S1

Pc(1000)=0.25 Cα(1000;600)=0

Comp (Cs1;600)=0.5
Pc(500)=0.25 Cα(500;600)=1

Pc(600)=0.25 Cα(600;600)=1

Pc(2000)=0.25 Cα(2000;600)=0

Pd(16)=0.5 Cβ(16;8)=0

Comp (Ds1;8)=0.125 Pd(12)=0.25 Cβ(12;8)=0.5

Pd(32)=0.25 Cβ(32;8)=0

S2

Pc(600)=0.5 Cα(600;600)=1

Comp (Cs2;600)=0.75 Pc(400)=0.25 Cα(400;600)=1

Pc(800)=0.25 Cα(800;600)=0

Pd(8)=0.25 Cβ(8;8)=1

Comp (Ds2;8)=0.5 Pd(12)=0.5 Cβ(12;8)=0.5

Pd(16)=0.25 Cβ(16;8)=0

S3

Pc(500)=0.5 Cα(500;600)=1
Comp (Cs3;600)=1

Pc(400)=0.5 Cα(400;600)=1

Pd(8)=0.5 Cβ(8;8)=1
Comp (Ds3;8)=0.75

Pd(12)=0.5 Cβ(12;8)=0.5

Table 15: Cost and delay probability and compatibility values – V0 dashboard

Then, considering such values and the available scenarios from the knowledge base, the V0

dashboard can be constructed. The V0 dashboard for this agile process is introduced in

Figure 51.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

115

Figure 51: V0 dashboard

Towards an agile methodology for industrial problem solving

Valentina María Llamas

116

The process manager uses the V0 dashboard to adapt the first version of the process. Even if

S3 presents good compatibility values, the manager decides not to consider such indicators

as the best ones since the scenario does not correspond to the process model “NC” which

was defined as the target tag. On the other hand, S2 is considered more adapted to this

problem since cost and delay indicators match the constraint values well. Also, all available

experiences for S2 match the target tags (since Nexp0 is equal to Nexp1, then no experience

was discarded). This result conforms to the characterization of the process, since the

manager had defined the process model as “NC”, which corresponds to S2. Also, this result

seems correct since an 8D process, used to treat more complex problems, is usually longer

and more expensive than a NC process. Then, the process manager defines S2 as the

preferred (but not mandatory) path to perform the process.

When the first version of the process is defined, the process can be executed. The process

execution phase is described in the next section.

5.5 Step 4. Process execution. Continuous adaptation

Users will execute the process using the first version defined by the process manager as a

baseline. The execution of the process is described in this section. Let us consider that one of

the quality department employees (user) will be in charge of this problem-solving process.

This user takes into consideration the first version of the process defined by the process

manager, which includes a preferred scenario for its execution, and begins to execute the

process. When decision-making points D1 and D2 are reached, the decision dashboard needs

to be constructed. However, in order to ensure understanding of this step, two different

cases are proposed and developed during the agile lifecycle steps 4 and 5 (see Figure 26,

chapter 4). The first case regards a normal execution of the process, and the second case

considers the occurrence of an unexpected event.

5.5.1 Case 1- Normal execution of the process

First, the problem needs to be contained (activity A1). For this purpose, the first

containment action is to perform a deep control the fallen part to verify that it is not

damaged. The second action is to control the zone where the incident was produced, in

order to ensure that there is no evident cause that could be treated to avoid other parts

falling. Finally, once that no damages were found on the part, it is sent to the customer in

order to avoid a delay on delivery.

After performing A1, a decision-making point is reached, as illustrated in Figure 52. The user

needs to decide which action to choose helped by the decision dashboard. Indicators must

be computed for the decision dashboard. For this purpose, the cost and delay of each

activity must be considered. Since A1 has already been performed (i.e. the activity state is

“finished”), its real cost and delay values are considered.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

117

Figure 52: Evolution of the agile process

Table 16 shows the cost and delay of every activity for each filtered experience. The lowest

rows of Table 16 indicate the global values of cost and delay for each experience, computed

considering the real value of the current activity A1 plus the remaining values of the

activities from each experience.

Considering the updated cost and delay values for each experience, probabilities and

compatibilities can be computed. Cost and delay probabilities, compatibilities and global

compatibilities are presented in Table 17.

Indicators must also be computed for the action view of the dashboard. For this purpose, all

scenarios that go through each action need to be identified. For action a1 (the action that is

followed by activities A1 and A2 performed in parallel), the scenarios that go through it are:

S1 and S3. For the action a2 (the action that is followed by activity A5) only one scenario is

identified: S2. In order to build the dashboard, all cost and delay values for each action are

defined as the union of all the values corresponding to each scenario that pass through the

action. Then, the probability and compatibility values can be computed as Table 18 indicates.

Considering the computed probability and compatibility values, the dashboard for decision

D1 is built (Figure 53).

Towards an agile methodology for industrial problem solving

Valentina María Llamas

118

Activity

Real E11 E15 E16 E17 E21 E22 E23 E24 E32 E33

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

A1 100 1 -

A2 - - 100 2 50 2 50 1 100 2 - - - - - - - - 50 1 50 2

A3 - - 100 2 50 2 50 2 200 4 - - - - - - - - 50 1 50 1

A4 - - 100 2 50 2 50 1 200 4 - - - - - - - - 50 1 50 1

A5 - - 200 2 100 2 100 2 500 6 200 2 100 4 200 4 200 4 100 1 50 2

A6 - - 100 2 50 2 100 2 500 6 100 2 100 3 200 4 100 3 100 1 50 2

A7 - - 100 2 50 2 100 2 200 4 100 2 100 3 200 4 100 3 50 1 50 2

A8 - - 100 1 50 1 50 0.5 100 2 - - - - - - - - - - - -

A9 - - 100 1 50 1 50 0.5 100 2 - - - - - - - - - - - -

A10 - - - - - - - - - - 100 1 50 1 100 2 100 1 50 1 50 1

Total
Cost 1000 550 650 2000 600 450 800 600 550 450

Delay 15 15 12 31 8 12 15 12 8 12

Table 16: Cost and delay values for all activities at decision point D1

Towards an agile methodology for industrial problem solving

Valentina María Llamas

119

Table 17: Cost and delay probability and compatibility values – D1 dashboard, scenario view

Action Probability Compatibility Global compatibility

a1

Pc(1000)=0.167 Cα(1000;600)=0

Comp (Ca1;600)=0.625

Pc(550)=0.333 Cα(550;600)=1

Pc(650)=0.167 Cα(650;600)=0.75

Pc(2000)=0.167 Cα(2000;600)=0

Pc(450)=0.167 Cα(450;600)=1

Pd(15)=0.333 Cβ(15;8)=0.125

Comp (Da1;8)=0.375
Pd(12)=0.333 Cβ(12;8)=0.5

Pd(31)=0.167 Cβ(31;8)=0

Pd(8)=0.167 Cβ(8;8)=1

a2

Pc(600)=0.5 Cα(600;600)=1

Comp (Ca2;600)=0.75 Pc(450)=0.25 Cα(450;600)=1

Pc(800)=0.25 Cα(800;600)=0

Pd(8)=0.25 Cβ(8;8)=1

Comp (Da2;8)=0.53125 Pd(12)=0.5 Cβ(12;8)=0.5

Pd(15)=0.25 Cβ(15;8)=0.125

Table 18: Cost and delay probability and compatibility values – D1 dashboard, action view

Scenario Probability Compatibility Global compatibility

S1

Pc(1000)=0.25 Cα(1000;600)=0

Comp (Cs1 ;600)=0.4375
Pc(550)=0.25 Cα(550;600)=1

Pc(650)=0.25 Cα(650;600)=0.75

Pc(2000)=0.25 Cα(2000;600)=0

Pd(15)=0.5 Cβ(15;8)=0.125

Comp (Ds1;8)=0.1875 Pd(12)=0.25 Cβ(12;8)=0.5

Pd(31)=0.25 Cβ(31;8)=0

S2

Pc(600)=0.5 Cα(600;600)=1

Comp (Cs2;600)=0.75 Pc(450)=0.25 Cα(450;600)=1

Pc(800)=0.25 Cα(800;600)=0

Pd(8)=0.25 Cβ(8;8)=1

Comp (Ds2;8)=0.53125 Pd(12)=0.5 Cβ(12;8)=0.5

Pd(15)=0.25 Cβ(15;8)=0.125

S3

Pc(550)=0.5 Cα(550;600)=1
Comp (Cs3;600)=1

Pc(450)=0.5 Cα(450;600)=1

Pd(8)=0.5 Cβ(8;8)=1
Comp (Ds3;8)=0.75

Pd(12)=0.5 Cβ(12;8)=0.5

Towards an agile methodology for industrial problem solving

Valentina María Llamas

120

Figure 53: D1 dashboard (1/2)

Towards an agile methodology for industrial problem solving

Valentina María Llamas

121

Figure 53 (continuation): D1 dashboard (2/2)

Considering D1 dashboard, the user decides to respect the preferred scenario defined by the

process manager. The rationale of the decision should be described, for simplicity reasons it

is not illustrated. Action 2 is followed, then the activity A5 (identification of the root causes)

is performed. A second version of the process is created indicating this change (Figure 54).

Let us consider that the process is executed following S2 until the decision-making point D2.

Two actions are available in D2, the first one regards scenario S1, and the second one groups

scenarios S2 and S3. The same steps are followed in order to compute cost and delay values

for the construction of D2 dashboard, which will be proposed to the user to help decision

making. Table 19, Table 20 and Table 21 present the updated cost and delay values, and the

compute of probability and compatibility for scenario and action views. Considering such

values, D2 dashboard is built (Figure 55).

Towards an agile methodology for industrial problem solving

Valentina María Llamas

122

Activity Real E11 E15 E16 E17 E21 E22 E23 E24 E32 E33

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

A1 100 1 -

A2

A3

A4

A5 200 4 -

A6 100 2 -

A7 100 2 -

A8 - - 100 1 50 1 50 0.5 100 2 - - - - - - - - - - - -

A9 - - 100 1 50 1 50 0.5 100 2 - - - - - - - - - - - -

A10 - - - - - - - - - - 100 1 50 1 100 2 100 1 50 1 50 1

Total
Cost 700 600 600 700 600 550 600 600 550 550

Delay 11 11 10 13 10 10 11 10 10 10

Table 19: Cost and delay values for all activities at decision point D2 - normal execution of the process

Towards an agile methodology for industrial problem solving

Valentina María Llamas

123

Figure 54: Versions V0 and V1 of the process

Scenario Probability Compatibility Global compatibility

S1

Pc(600)=0.5 Cα(600;600)=1
Comp (Cs1;600)=0.75

Pc(700)=0.5 Cα(700;600)=0.5

Pd(10)=0.25 Cβ(10;8)=0.75

Comp (Ds1;8)=0.594 Pd(11)=0.5 Cβ(11;8)=0.625

Pd(13)=0.25 Cβ(13;8)=0.375

S2+3

Pc(600)=0.5 Cα(600;600)=1
Comp (Cs2;600)=1

Pc(550)=0.5 Cα(550;600)=1

Pd(10)=0.833 Cβ(10;8)=0.75
Comp (Ds2;8)=0.7291

Pd(11)=0.167 Cβ(11;8)=0.625

Table 20: Cost and delay probability and compatibility values – D2 dashboard, scenario view- normal
execution of the process

Action Probability Compatibility Global compatibility

a1

Pc(600)=0.5 Cα(600;600)=1
Comp (Ca1;600)=0.75

Pc(700)=0.5 Cα(700;600)=0.5

Pd(10)=0.25 Cβ(10;8)=0.75

Comp (Da1;8)=0.594 Pd(11)=0.5 Cβ(11;8)=0.625

Pd(13)=0.25 Cβ(13;8)=0.375

a2

Pc(600)=0.5 Cα(600;600)=1
Comp (Ca2;600)=1

Pc(550)=0.5 Cα(550;600)=1

Pd(10)=0.833 Cβ(10;8)=0.75
Comp (Da2;8)=0.7291

Pd(11)=0.167 Cβ(11;8)=0.625

Table 21: Cost and delay probability and compatibility values – D2 dashboard, action view- normal
execution of the process

Towards an agile methodology for industrial problem solving

Valentina María Llamas

124

Figure 55: D2 dashboard – normal execution of the process

Towards an agile methodology for industrial problem solving

Valentina María Llamas

125

The user decides to follow action 2 in order to complete the “NC” method. However, one of

the values for this action does not respect the constraints set by the stakeholders. The

constraint that specifies that delay should not be longer than 8 hours is not satisfied by any

of the available values of the delay distribution. Then, this constraint needs to be negotiated

before continuing the process. Let us consider that the quality manager decides that this

constraint can be released. Then, activity A10 (definition of preventive actions) is performed

and the last version of the process is created, as indicates Figure 56.

The process is over and its last version needs to be stored. Step 5 describes the storage step

(see section 5.6.1). The next section illustrates another process execution case, when an

unexpected event occurs.

Figure 56: Versions V0, V1 and V2 of the process -– normal execution of the process

5.5.2 Case 2- Execution of the process guided by an unexpected event

Let us consider that the execution of the problem-solving process started in the same

manner that the process presented in section 5.5.1, the activity A1 is performed in order to

contain the problem. The same actions are achieved: the fallen part is controlled to identify

possible damages, the zone where the incident occurred is controlled, and the part is sent to

Towards an agile methodology for industrial problem solving

Valentina María Llamas

126

the customer to avoid delays.

Then, decision-making point D1 is reached, and the same decision dashboard illustrated in

Figure 53 is proposed to the user. Like in the previous section, the user decides to choose S2

to continue the process, creating the second version of the process illustrated in Figure 54.

Then, activity A5, the determination of the root causes of the problem needs to be

performed. While information was being collected in order to define the root cause of the

problem (A5), the customer contacts the quality department of the company to report that

the received part does not respect the painting requirements and that it will be sent back to

the company. This unexpected event affects the execution of the agile process since it needs

an immediate treatment. A decision-making point based on event (De1) is immediately

created in order to define what to do next (activity A5 is set as “unfinished”).

It is decided that the most urgent action to take is to repair the part in order to deliver it to

the customer in order to avoid further delays. For this purpose, the activity A11: “Definition

of corrective actions” is created. It considers: First, the application of non-destructive testing

on the part to verify that the problem is only painting-related; Second, controlling the

painting to determine possible gaps with the requirement; and Third, preparing and

repainting the part. Decision makers decide that, once A11 is over, A5 can be resumed and

the process can go back to its normal structure (A6, A7, etc.). Then, a new version of the

process is created, as illustrated in Figure 57.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

127

Figure 57: Versions V0, V1 and V2 of the process – unexpected event

Towards an agile methodology for industrial problem solving

Valentina María Llamas

128

Activity

Real E11 E15 E16 E17 E21 E22 E23 E24 E32 E33

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

Cost
(€)

Delay
(hour)

A1 100 1 -

A2

A3

A4

A5 230 5 -

A11 150 3 -

A6 100 2 -

A7 100 2 -

A8 - - 100 1 50 1 50 0.5 100 2 - - - - - - - - - - - -

A9 - - 100 1 50 1 50 0.5 100 2 - - - - - - - - - - - -

A10 - - - - - - - - - - 100 1 50 1 100 2 100 1 50 1 50 1

Total
Cost 880 780 780 880 780 730 780 780 730 730

Delay 15 15 14 17 14 14 15 14 14 14

Table 22: Cost and delay values for all activities at decision point D2- unexpected event

Towards an agile methodology for industrial problem solving

Valentina María Llamas

129

Let us now consider that activities A11, A5, A6 and A7 have been performed and that

decision-making point D2 is reached. Table 22, Table 23 and Table 24 present the updated

values of cost, delay, probability and compatibility for the process. In Table 22, the row

corresponding to A11 is incorporated. The values presented in the last row of Table 22 show

that the unexpected event impacted the process by increasing cost and delay global values.

Scenario Probability Compatibility Global compatibility

S1

Pc(880)=0.5 Cα(880;600)=0
Comp (Cs1;600)=0.05

Pc(780)=0.5 Cα(780;600)=0.1

Pd(15)=0.5 Cβ(15;8)=0.125

Comp (Ds1;8)=0.563 Pd(14)=0.25 Cβ(14;8)=0.25

Pd(17)=0.25 Cβ(17;8)=0

S2

Pc(780)=0.75 Cα(780;600)=0.1
Comp(Cs2;600)=0.1625

Pc(730)=0.25 Cα(730;600)=0.35

Pd(14)=0.75 Cβ(14;8)=0.25
Comp (Ds2;8)=0.21875

Pd(15)=0.25 Cβ(15;8)=0.125

S3
Pc(730)=1 Cα(730;600)=0.35 Comp (Cs3;600)=0.35

Pd(14)=1 Cβ(14;8)=0.25 Comp (Ds3;8)=0.25

Table 23: Cost and delay probability and compatibility values – D2 dashboard, scenario view-
unexpected event

Action Probability Compatibility Global compatibility

a1

Pc(880)=0.5 Cα(880;600)=0
Comp (Ca1;600)=0.05

Pc(780)=0.5 Cα(780;600)=0.1

Pd(15)=0.5 Cβ(15;8)=0.125

Comp (Da1;8)=0.563 Pd(14)=0.25 Cβ(14;8)=0.25

Pd(17)=0.25 Cβ(17;8)=0

a2

Pc(780)=0.5 Cα(780;600)=0.1
Comp (Ca2;600)=0.225

Pc(730)=0.5 Cα(730;600)=0.35

Pd(14)=0.833 Cβ(14;8)=0.25
Comp (Da2;8)=0.229

Pd(15)=0.167 Cβ(15;8)=0.125

 Table 24: Cost and delay probability and compatibility values – D2 dashboard, action view-
unexpected event

Considering such information, D2 dashboard can be constructed (Figure 58). The cost and

delay values for both actions (a1 and a2) do not respect the constraints set by the

stakeholders. The constraint that specifies that delay should not be longer than 8 hours is

not satisfied by any of the available values of the delay distributions. Moreover, the

constraint specifying that cost should not be more than 600€ is not satisfied by any of the

available values of the cost distributions. Then, these constraints need to be negotiated

before continuing the process. Let us consider that the quality manager decides that both

constraints can be released. Then, activity A10 (definition of preventive actions) is

performed and the last version of the process is created, as indicates Figure 59.

Once that the process has been completely carried out, it is stored in the knowledge and/or

experience base. The storage step is detailed in the next section.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

130

Figure 58: D2 dashboard - – unexpected event (1/2)

Towards an agile methodology for industrial problem solving

Valentina María Llamas

131

Figure 58 (continuation): D2 dashboard – unexpected event (2/2)

Towards an agile methodology for industrial problem solving

Valentina María Llamas

132

Figure 59: Versions V0, V1, V2 and V3 of the process

Towards an agile methodology for industrial problem solving

Valentina María Llamas

133

5.6 Step 5. Storage in the Knowledge/experience base

The last version of the process needs to be stored in the experience base and, if the

structure of the process has changed, in the knowledge base. The storage step is described

in this section. Both cases described in section 5.5, normal execution of the process and

occurrence of an unexpected event, are treated separately in sections 5.6.1 and 5.6.2.

5.6.1 Case 1- Normal execution of the process

The process manager considers the last version of the process to define if there is a change

in the structure of the process. As illustrated in Figure 60, the structure of the last version of

the process corresponds to the structure of scenario S2. It means that the current process is

stored into the experience base as a new experience linked to S2. Then, as shown in Table

25, the experience base is updated with the new experience, which is now available for its

future reuse.

Figure 60: Last version of the process and Experience base

Scenario Experience T1 T2 T3 T4

S1

E11 8D Quality Big panel Part falling

E12 8D Quality Small panel Tooling

E13 8D Quality Big panel Dimensional

E14 8D Quality Big panel Painting

E15 8D Quality Small part Electrical crash

E16 8D Quality Big part Dimensional

E17 8D Quality Chemical milling line Line stoppage

Towards an agile methodology for industrial problem solving

Valentina María Llamas

134

S2

E21 NC Quality Big part Dimensional

E22 NC Quality Small part Painting

E23 NC Quality Small part Dimensional

E24 NC Quality Small panel Part falling

E25 NC Quality Big part Part falling

S3
E31 8D Quality Small part Dimensional

E32 8D Quality Big part Painting

E33 8D Quality Small panel Part falling

Table 25: Updated experiences tags

5.6.2 Case 2- Execution of the process guided by an unexpected event

When an unexpected event has occurred, in order to store the process, the attributes of the

nodes need to be updated. First, the activities impacted by the occurrence of the event,

denominated “Event1”, are identified. The impacted activities are all those specially created

because of the event, and those which were performed after the event. For this process

such activities are: A11, A5, A6, A7, and A10. For those activities, their attributes need to be

updated including the event “Event1” into the event list attributes. The list of events for

activities A5, A6, A7 and A10 contained the event “None” (the activities were activated

during the standard execution of the process), and, now, event “Event1”. However, A11 only

contains the event “Event1” in the event list attributes, which means that the activity is

inhibited during the standard execution of the process. Then, if “Event1” reoccurs, all

impacted activities will become “activated” in order to help decision making. Moreover, the

decision-making point based on event De1 is stored into the knowledge base as a XOR node.

Such node only contains the event “Event1” in the event list attributes.

In order to store the process, its structure is considered. It does not correspond to any

existing scenario in the knowledge base. Then, a new scenario S4 needs to be created. The

knowledge base is updated with the new scenario, as illustrated in Figure 61. The process is

also stored as a new experience, linked to S4, into the experience base (lower part of Figure

61).

Towards an agile methodology for industrial problem solving

Valentina María Llamas

135

Figure 61: Updated knowledge and experience base

Towards an agile methodology for industrial problem solving

Valentina María Llamas

136

5.7 Conclusion

A real case conducted at a surface treatment company was studied in this chapter and used

to inspire an illustration of the proposed approach. It enhanced comprehension of all the

concepts from the agile model. Information collected from interviews and from existing data

bases were analysed in order to create the knowledge and experience base of the company.

For this purpose, experiences were given with tags and indicators. Once that the knowledge

and experience base were built, a new case was treated following the agile lifecycle.

First, the problem was characterized through a set of tags. Also, the process indicators were

defined. Second, the experience filtering step was conducted taking into consideration the

defined target tags. The first version of the process was then defined and adapted by the

process manager. During process execution two cases were described. First, the standard

execution of the process was considered. Second, the treatment of an unexpected event was

detailed. Finally, the storage into the knowledge and experience bases was defined for both

situations.

The complete knowledge and experience base could be used as a basis for the company.

Moreover, the complete agile lifecycle could be incorporated into the company problem-

solving strategy. This would improve problem-solving processes through the addition of

agility to better adapt each process to its context and to respond to change when needed.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

137

6. CONCLUSION

This thesis work focuses on the lack of agility of problem-solving processes in nowadays

organisations. In order to tackle such problem, an agile problem-solving process model

based on experience and knowledge capitalization and reuse is proposed and applied to a

company real case. The concepts introduced in this document are synthesized below.

In order to clearly state the objectives of the research, a literature review was conducted.

The three main research pillars were introduced in chapter 2. First, the concepts of agility in

different application domains were presented, and their key characteristics and principles

were considered and adapted to define an agile process. Second, knowledge and experience

capitalization and reuse principles were introduced. An agile process is guided by such

mechanisms, which allows the capitalization of experiences and their reuse in order to

support future decision making. Third, problem solving concepts and methods were

outlined. Such processes are taken into consideration in this work because of their dual

nature (mixed structured and exploratory activities). Three of the most used methods in

industry were used: PDCA, 8D, DMAIC. It has been concluded that agile principles could help

problem-solving processes to be more flexible and adapt to changes in their environment.

Also, while knowledge and experiences capitalization and reuse principles are currently

applied to problem-solving processes (during the standardization step), they should be

simplified in order to reinforce knowledge and experiences reuse.

The theoretical bases of the model were introduced in chapter 3. An agile process was

defined. Its key elements are activities, decision-making points, versioning system, and roles.

The knowledge and experience capitalization and reuse mechanisms were presented

followed by the concepts of types of processes, scenario and experience. The agile process

characterization elements, the tagging system and indicators were described.

In chapter 4, the agile lifecycle, based on CBR principles, was proposed. The five steps that

allow the definition of the agile process, its execution until its storage into the knowledge

and experience bases were described. The first step regards the characterization of the

process using a dedicated tagging system and the definition of constraints. The second step

considers the retrieval and filtering of past experience using semantical similarity, then, only

experiences considered similar to the current process are retrieved for further steps. In step

three, a first version of the process is built using the complete process model from the

knowledge base, which is adapted using a decision support dashboard. The fourth step

regards the execution of the agile process. Using the first version of the process as a

guideline, at each decision-making point, decision makers decide the way forward supported

by decision dashboards. In the fifth and last step, the process is stored into the experience

and knowledge bases. If the process structure matches an existing scenario, it is stored as a

new experience. If it does not match, the knowledge expert needs to validate the new

scenario to be added into the knowledge base. During each step, an illustrative example was

Towards an agile methodology for industrial problem solving

Valentina María Llamas

138

described in order to clarify the concepts.

In chapter 5, a real case application was described. The case study was conducted into the

quality department of a surface treatment company. Problem solving data was collected

through interviews and data-base consultation in order to build the company knowledge and

experience bases. Considering such information, a new problem was defined. The problem-

solving process was characterized through a set of tags and indicators (step 1). Experience

filtering was performed considering the current process tags and the past experience tags

(step 2). The first version of the process was adapted by the process manager supported by

the decision dashboard (step 3). Such a first version was followed by the user in order to

execute the process (step 4). During the step four, two cases were described. The first one

regards the execution of a standard problem-solving process, and the second one describes

the treatment of an unexpected event that occurred during the process execution. Finally,

the process is stored into the knowledge and experience base (step 5), for the two cases

described in step 4.

The proposed agile problem solving model contributes to the problem described in the first

chapter of this work regarding the lack of agility of most problem-solving processes. Our

model provides agility to problem-solving processes through supported decision making and

reconfiguration capabilities. The defined agile lifecycle allows users to retrieve past similar

situations in order to define and/or adapt their current process according to the best

practices already performed within the company. The process execution is continuously

guided and supported, mostly during decision-making points, due to relevant information

compiled into decision-dashboards. Moreover, the agile lifecycle ensures that when the

process has been carried out it is properly stored in the KB/EB in order to ensure its future

reuse.

The application of the agile problem solving model contributed to its improvement and to

the definition of some limits of our work. The perspectives and further work for our research

were defined taking into consideration such limits. Perspectives are related to the

methodology proposed by the model, the mechanisms and algorithms necessary to deploy

such methodology and the application of the model to industrial companies. They are listed

next according to an estimated horizon: short, medium and long-term.

Four perspectives were identified to be deployed in the short term:

 One of the agile principles most applied in nowadays companies is agile

management. Some of the most widespread practices consider that teams are self-

organized, work in autonomy and a comfortable work environment will lead to better

results. A first approach to agile management was considered in this work. For

instance, it has been said that when users execute the process, they use the first

version defined by the process manager as a guideline. Then, the process manager

Towards an agile methodology for industrial problem solving

Valentina María Llamas

139

states the guidelines for the work and the team work in autonomy. However, more

work could be done to include further agile management principles to problem-

solving processes.

 The advice of experts should be better integrated into the knowledge/experience

bases. For instance, regarding scenarios cost and delay values, there is a special case

that needs to be clarified and properly defined. It has been said that the cost and

delay values of a scenario considered to compute V0, correspond to probability

distributions of past experiences. However, when the experience base is empty, i.e.

no process has ever been performed before, the process manager needs to define

expected cost and delay values for each scenario based on an expert criteria. Then, V0

dashboard would be computed from those nominal cost and delay values.

 The state of an activity was considered as finished or unfinished in this work.

Moreover, when an unexpected event occurs during the execution of an activity,

such activity can be resumed after treating the unexpected event, or the next activity

can be performed. In the case where the same activity is resumed, it has been

considered that the activity was unfinished. However, the amount of completion of

the activity was not considered. Further work needs to be done to determine an

algorithm that integrates the activity progress. Then, the activity could be

characterized in a more accurately manner, and it could be resumed at the exact

same point that it was stopped by the unexpected event.

 A major point of improvement of the agile problem solving model could be to collect

feedback regarding its implementation in industry. It could be interesting to analyse

comments and questions arising from users when they implement the complete agile

lifecycle.

The two medium-term perspectives linked to this work are described next:

 A multicriteria probability could be computed for each scenario in order to class

them and to determine the most appropriate one with regards to the current

process. For this purpose, several criteria could be considered such as the cost and

delay of the process (already used in this study). Then, at each decision point, all

criteria could be weighted in order to select in the first place the most suitable

scenario, and then a classification of the remaining scenarios.

 A direct application of the agile problem solving model could be to apply its principles

into the existing problem solving platform ProWhy. A new module of the software

could be created including the agile lifecycle steps. Then, the process could be

properly characterized into the tool, similar previous experiences could be proposed

by the tool to create a V0, the process execution could be followed through the

software interface and finally, the problem-solving process could be stored into

ProWhy database.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

140

Finally, three long-term perspectives were identified for further works.

 One of the ten agility key concept is collaboration. As it has been said in chapter 2,

even if collaboration was considered out of the scope of this research work, it is an

interesting perspective for further work. Agile processes should be collaborative, not

only within the company perimeter but also with customers and suppliers. Sharing

information between actors could be useful to anticipate further problems and risks,

and the possibility to work in a cooperative way could enable faster and more

efficient resolution of problems. Moreover, a PhD thesis is being performed between

Axsens-bte and LGP-ENIT regarding the subject of collaboration.

 Risk analysis could be performed within the agile process. When users arrive to a

decision-making point, the probability of occurrence of unexpected events could be

added into the decision dashboard based on past experiences. This could be done by

considering information available in the knowledge base such as the scenarios linked

to a given event.

 The agile process model introduced in this work is focused on problem-solving

processes due to their dual (structured/exploratory) nature. However, authors

believe that the model can be generalized to other types of business processes. The

model simplicity and user-focused elements could help to define other agile

processes that could follow an adapted agile lifecycle. For instance, the model could

be applied to two types of process: i) new product development processes which are

performed in an innovation context, then, agility could be used to improve the

alternate stable/instable periods of development (Wieder et al., 2007), ii) the bidding

process (Sylla et al., 2017), where incremental versions of the final document are

created in order to define the final version corresponding to the offer for the

potential customer.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

141

PUBLICATIONS RELATED TO THIS PHD WORK

Llamas V., Coudert T., Geneste L., Romero Bejarano J. C. and De Valroger A., Experience

reuse to improve agility in knowledge-driven industrial processes, IEEE International

Conference on Industrial Engineering and Engineering Management (IEEM'16), Bali,

Indonesia, December 4-7, 2016, pp. 651-655.

Llamas V., Coudert T., Geneste L., Romero Bejarano J.C., De Valroger A., Proposition of an

agile knowledge-based process model, 8th Internatial conference on Manufacturing

Modelling, Management, and Control, MIM'2016, Volume 49, Issue 12, 2016, Pages 1092-

1097, 28-30 june, 2016, Troyes.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

143

REFERENCES

A

Aalst, W.M.P. van der, Hofstede, A.H.M. ter, Weske, M., 2003. Business Process
Management: A Survey, in: Aalst, W.M.P. van der, Weske, M. (Eds.), Business Process
Management, Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 1–
12.

Aamodt, A., Plaza, E., 1994. Case-Based Reasoning - Foundational Issues, Methodological
Variations, and System Approaches. Ai Commun. 7, 39–59.

Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J., 2003. New directions on agile
methods: a comparative analysis, in: 25th International Conference on Software
Engineering, 2003. Proceedings. Presented at the 25th International Conference on
Software Engineering, 2003. Proceedings., pp. 244–254.

Agarwal, A., Shankar, R., Tiwari, M.K., 2007. Modeling agility of supply chain. Ind. Mark.
Manag. 36, 443–457.

Agarwal, A., Shankar, R., Tiwari, M.K., 2006. Modeling the metrics of lean, agile and leagile
supply chain: An ANP-based approach. Eur. J. Oper. Res. 173, 211–225.

Alvarado, M., Bañares-Alcántara, R., Trujillo, A., 2005. Improving the Organisational Memory
by recording decision making, rationale and team configuration. J. Pet. Sci. Eng.,
Intelligent Computing in Petroleum Engineering 47, 71–88.

B

Balaji, M., Velmurugan, V., Sivabalan, G., Ilayaraja, V.S., Prapa, M., Mythily, V., 2014. ASCTM
Approach for Enterprise Agility. Procedia Eng., “12th Global Congress on
Manufacturing and Management” GCMM - 2014 97, 2222–2231.

Battistella, C., De Toni, A.F., De Zan, G., Pessot, E., 2017. Cultivating business model agility
through focused capabilities: A multiple case study. J. Bus. Res. 73, 65–82.

Beck, K., 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional.

Béler, C., 2008. Modélisation générique d’un retour d’expérience cognitif. Application à la
prévention des risques (phd).

Béler, C., Desforges, X., 2007. EXPERIENCE FEEDBACK, FROM CASES TO KNOWLEDGE. IFAC
Proc. Vol., 4th IFAC Conference on Management and Control of Production and
Logistics 40, 43–48.

Bergmann, R., 2002. Experience management: Foundations, development methodology, and
Internet-based applications. Springer.

Bergmann, R., Gil, Y., 2014. Similarity assessment and efficient retrieval of semantic
workflows. Inf. Syst. 40, 115–127.

Bhote, K.R., 1991. World Class Quality: Les 7 outils Shainin de la qualité. Dunod, Paris.
Boehm, B.W., 1988. A Spiral Model of Software Development and Enhancement. Computer

21, 61–72.
Boon Sin, A., Zailani, S., Iranmanesh, M., Ramayah, T., 2015. Structural equation modelling

on knowledge creation in Six Sigma DMAIC project and its impact on organizational
performance. Int. J. Prod. Econ. 168, 105–117.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

144

C

Cambridge University Press, 2017. Cambridge English Dictionary. URL
http://dictionary.cambridge.org/dictionary/english/ (accessed 5.4.17).

Choo, A.S., Nag, R., Xia, Y., 2015. The role of executive problem solving in knowledge
accumulation and manufacturing improvements. J. Oper. Manag. 36, 63–74.

Christopher, M., 2000. The Agile Supply Chain: Competing in Volatile Markets. Ind. Mark.
Manag. 29, 37–44.

Conboy, K., Fitzgerald, B., 2004. Toward a Conceptual Framework of Agile Methods, in:
Extreme Programming and Agile Methods - XP/Agile Universe 2004. Presented at the
Conference on Extreme Programming and Agile Methods, Springer, Berlin,
Heidelberg, pp. 105–116.

Czinki, A., Hentschel, C., 2016. Solving Complex Problems and TRIZ. Procedia CIRP, Structured
Innovation with TRIZ in Science and Industry: Creating Value for Customers and
Society 39, 27–32.

D

Dalkir, K., 2013. Knowledge Management in Theory and Practice. Routledge.
Davenport, T.H., 1993. Process Innovation: Reengineering Work Through Information

Technology. Harvard Business School Press, Boston, MA, USA.
de Mast, J., Lokkerbol, J., 2012. An analysis of the Six Sigma DMAIC method from the

perspective of problem solving. Int. J. Prod. Econ., Compassionate Operations 139,
604–614.

Debauche, B., Mégard, P., 2004. BPM Business Process Management : Pilotage métier de
l’entreprise. Hermes Science Publications, Paris.

Deming, W.E., 2000. The New Economics for Industry, Government, Education, 2nd edition.
ed. MIT Press, Cambridge.

Dove, R., 1994. Tools for Analyzing and Constructing Agility.
Dubois, D., Fargier, H., Prade, H., 1996. Possibility theory in constraint satisfaction problems:

Handling priority, preference and uncertainty. Appl. Intell. 6, 287–309.
Duret, D., Pillet, M., 2011. Qualité en production: De l’ISO 9000 à Six Sigma. Editions Eyrolles.

F

Fey, V.R., Rivin, E.I., Vertkin, I.M., 1994. Application of the Theory of Inventive Problem
Solving to Design and Manufacturing Systems. CIRP Ann. - Manuf. Technol. 43, 107–
110.

Fowler, M., Highsmith, J., 2001. The Agile Manifesto. Softw. Dev. 28–32.

G

Gill, A.Q., 2015. Agile enterprise architecture modelling: Evaluating the applicability and
integration of six modelling standards. Inf. Softw. Technol. 67, 196–206.

Goldman, S.L., 1995. Agile Competitors and Virtual Organizations: Strategies for Enriching
the Customer. Van Nostrand Reinhold.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

145

Gruber, T.R., 1993. A translation approach to portable ontology specifications. Knowl.
Acquis. 5, 199–220.

H

Highsmith, J., 2013. Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. Addison-Wesley.

I

IAQG (International Aerospace Quality Group), 2016. EN 9136 - Aerospace Series – Root
Cause Analysis and Problem Solving (9S Methodology). ASD-STAN.

IAQG (International Aerospace Quality Group), 2014. Chapter 7.4: Root Cause Analysis and
Problem Solving, in: Supply Chain Management Handbook (SCMH).

Ilevbare, I.M., Probert, D., Phaal, R., 2013. A review of TRIZ, and its benefits and challenges in
practice. Technovation 33, 30–37.

International Organizational for Standardization, 2015. ISO 9001: Quality management
systems — Requirements.

Izza, S., Imache, R., Vincent, L., Lounis, Y., 2008. An approach for the evaluation of the agility
in the context of enterprise interoperability. Springer, New York.

J

Jabrouni, H., 2012. Exploitation des connaissances issues des processus de retour
d’expérience industriels (phd).

Jabrouni, H., Kamsu-Foguem, B., Geneste, L., Vaysse, C., 2011. Continuous improvement
through knowledge-guided analysis in experience feedback. Eng. Appl. Artif. Intell.,
Semantic-based Information and Engineering Systems 24, 1419–1431.

James, M., 2010. Scrum Reference Card | Scrum Reference Card.

K

Kamsu Foguem, B., Coudert, T., Béler, C., Geneste, L., 2008. Knowledge formalization in
experience feedback processes: An ontology-based approach. Comput. Ind.,
Enterprise Integration and Interoperability in Manufacturing Systems 59, 694–710.

Kast, R., 1993. La théorie de la décision. La Découverte.
Katayama, H., Bennett, D., 1999. Agility, adaptability and leanness: A comparison of concepts

and a study of practice. Int. J. Prod. Econ. 60–61, 43–51.
Kepner, C., Tregoe, B., 1982. The new rational manager. John Martin Publishing Ltd.
Kettunen, P., 2009. Adopting key lessons from agile manufacturing to agile software product

development—A comparative study. Technovation 29, 408–422.
Kidd, P.T., 1996. Agile manufacturing: a strategy for the 21st century, in: IEE Colloquium on

Agile Manufacturing. Presented at the IEE Colloquium on Agile Manufacturing, p. 1/1-
1/6.

Kolodner, J., 1993. Case-Based Reasoning. Morgan Kaufmann.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

146

L

Lechner, C., Floyd, S.W., 2007. Searching, Processing, Codifying and Practicing – Key Learning
Activities in Exploratory Initiatives. Long Range Plann. 40, 9–29.

Liebowitz, J., 2001. Knowledge management and its link to artificial intelligence. Expert Syst.
Appl. 20, 1–6.

Lin, C.-T., Chiu, H., Chu, P.-Y., 2006. Agility index in the supply chain. Int. J. Prod. Econ. 100,
285–299.

Linderman, K., 2003. Six Sigma: a goal-theoretic perspective. J. Oper. Manag. 21, 193–203.
Lindstrom, L., Jeffries, R., 2004. Extremme Programing and Agile Software Development

Methodologies, Information Systems Management.

M

Malakooti, B., 2012. Decision making process: typology, intelligence, and optimization. J.
Intell. Manuf. 23, 733–746.

Manifesto for Agile Software Development, 2001. URL https://agilemanifesto.org/
McCauley, R., 2001. Agile development methods poised to upset status quo. SIGCSE Bull. 33,

14–15.
McGuinness, D.L., 2002. Ontologies come of age. Spinn. Semantic Web Bringing World Wide

Web Its Full Potential 171–194.
Minor, M., Bergmann, R., Görg, S., 2014. Case-based adaptation of workflows. Inf. Syst. 40,

142–152.

N

Nagel, R.N., Dove, R., 1991. 21st Century Manufacturing Enterprise Strategy: An Industry-Led
View. DIANE Publishing.

Newell, A., Simon, H.A., 1972. Human problem solving. Prentice-Hall, Englewood Cliffs, NJ.
Nuseibeh, B., 2001. Weaving together requirements and architectures. Computer 34, 115–

119.

P

Palmer, S.R., Felsing, J.M., 2002. A practical guide to feature-driven development. Upper
Saddle River, N.J. ; [Great Britain] : Prentice Hall PTR.

Peral, J., Maté, A., Marco, M., 2017. Application of Data Mining techniques to identify
relevant Key Performance Indicators. Comput. Stand. Interfaces 50, 55–64.

Prashar, A., 2017. Adopting PDCA (Plan-Do-Check-Act) cycle for energy optimization in
energy-intensive SMEs. J. Clean. Prod. 145, 277–293.

Process Classification Framework | APQC, 2015. URL https://www.apqc.org/pcf

Q

Qumer, A., Henderson-Sellers, B., 2008. An evaluation of the degree of agility in six agile
methods and its applicability for method engineering. Inf. Softw. Technol. 50, 280–

Towards an agile methodology for industrial problem solving

Valentina María Llamas

147

295.

R

Rakoto, H., 2004. Intégration du retour d’expérience dans les processus industriels :
application à Alstom Transport (phd).

Raschke, R.L., 2010. Process-based view of agility: The value contribution of IT and the
effects on process outcomes. Int. J. Account. Inf. Syst. 11, 297–313.

Raschke, R.L., David, J.S., 2009. Business process agility.
Ray, G., Barney, J.B., Muhanna, W.A., 2004. Capabilities, business processes, and competitive

advantage: choosing the dependent variable in empirical tests of the resource-based
view. Strateg. Manag. J. 25, 23–37.

Ren, J., Yusuf, Y.Y., Burns, N.D., 2009. A decision-support framework for agile enterprise
partnering. Int. J. Adv. Manuf. Technol. 41, 180–192.

Riesenberger, C.A., Sousa, S.D., 2010. The 8D Methodology: An Effective Way to Reduce
Recurrence of Customer Complaints? Lect. Notes Eng. Comput. Sci. 2185, 2225–2230.

Robey, D., Ross, J.W., Boudreau, M.-C., 2002. Learning to Implement Enterprise Systems: An
Exploratory Study of the Dialectics of Change. J Manage Inf Syst 19, 17–46.

Romero Bejarano, J.C., 2013. Collaborative problem solving within supply chains: general
framework, process and methodology. University of Toulouse.

Royce, W.W., 1987. Managing the Development of Large Software Systems: Concepts and
Techniques, in: Proceedings of the 9th International Conference on Software
Engineering, ICSE ’87. IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 328–
338.

S

Sambamurthy, V., Bharadwaj, A., Grover, V., 2003. Shaping Agility through Digital Options:
Reconceptualizing the Role of Information Technology in Contemporary Firms. MIS Q.
27, 237–263.

Sanchez, L.M., Nagi, R., 2001. A review of agile manufacturing systems. Int. J. Prod. Res. 39,
3561–3600.

Sangari, M.S., Razmi, J., Zolfaghari, S., 2015. Developing a practical evaluation framework for
identifying critical factors to achieve supply chain agility. Measurement 62, 205–214.

Schreiber, G.T., Akkermans, H., 2000. Knowledge Engineering and Management: The
CommonKADS Methodology. MIT Press, Cambridge, MA, USA.

Schwaber, K., 2004. Agile Project Management with Scrum. Microsoft Press.
Schwaber, K., Beedle, M., 2002. Agile Software Development with Scrum.
Schwaber, K., Sutherland, J., 2001. The Scrum Guide.
Seddon, P.B., Calvert, C., Yang, S., 2010. A Multi-project Model of Key Factors Affecting

Organizational Benefits from Enterprise Systems. MIS Q 34, 305–328.
Seethamraju, R., Krishna Sundar, D., 2013. Influence of ERP systems on business process

agility. IIMB Manag. Rev. 25, 137–149.
Seethamraju, R., Seethamraju, J., 2009. Entreprise system and Business Process Agility - A

Case Study, in: Paper Presented at the 42nd Hawaii International Conference on
System Sciences. pp. 1–12.

Sharifi, H., Zhang, Z., 1999. A methodology for achieving agility in manufacturing

Towards an agile methodology for industrial problem solving

Valentina María Llamas

148

organisations: An introduction. Int. J. Prod. Econ. 62, 7–22.
Shewhart, W.A., 1930. Economic Quality Control of Manufactured Product1. Bell Syst. Tech.

J. 9, 364–389.
Stapleton, J., 1997. DSDM, Dynamic Systems Development Method: The Method in Practice.

Cambridge University Press.
Swenson, K.D., von Rosing, M., 2015. Phase 4: What Is Business Process Management?, in:

The Complete Business Process Handbook. Elsevier, pp. 79–88.
Sylla, A., Vareilles, E., Coudert, T., Kirytopoulos, K., Aldanondo, M., Geneste, L., 2017.

Readiness, feasibility and confidence: how to help bidders to better develop and
assess their offers. Int. J. Prod. Res. 0, 1–19.

T

Tarhan, A., Yilmaz, S.G., 2014. Systematic analyses and comparison of development
performance and product quality of Incremental Process and Agile Process. Inf.
Softw. Technol., Performance in Software Development 56, 477–494.

Turban, E., Aronson, J.E., Liang, T.-P., 2004. Decision Support Systems and Intelligent Systems
(7th Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

V

Valle, S., Vázquez-Bustelo, D., 2009. Concurrent engineering performance: Incremental
versus radical innovation. Int. J. Prod. Econ. 119, 136–148.

Van Rees, R., 2003. Clarity in the usage of the terms ontology, taxonomy and classification.
CIB Rep. 284 432–9.

Vokurka, R.J., Fliedner, G., 1998. The journey toward agility. Ind. Manag. Data Syst. 98, 165–
171.

von Rosing, M., Foldager, U., Hove, M., von Scheel, J., Falk Bøgebjerg, A., 2015a. Working
with the Business Process Management (BPM) Life Cycle, in: The Complete Business
Process Handbook. Morgan Kaufmann, Boston, pp. 265–341.

von Rosing, M., von Scheel, J., Gill, A.Q., 2015b. Applying Agile Principles to BPM, in: Scheel,
M. von R.-W.S. von (Ed.), The Complete Business Process Handbook. Morgan
Kaufmann, Boston, pp. 553–577.

von Scheel, H., von Rosing, M., Fonseca, M., Hove, M., Foldager, U., 2015. Phase 1: Process
Concept Evolution, in: The Complete Business Process Handbook. Morgan Kaufmann,
Boston, pp. 1–9.

W

Weber, B., Wild, W., 2005. Towards the agile management of business processes, in: Althoff,
K.D., Dengel, A., Bergmann, R., Nick, M., RothBerghofer, T. (Eds.), Professional
Knowledge Management. Springer-Verlag Berlin, Berlin, pp. 409–419.

Weber, B., Wild, W., 2004. An Agile Approach to Workflow Management, in: In Proceedings
of Modellierung 2004.

Wieder, C., Blanco, E., Le Dain, M.-A., Trebucq, B., 2007. How to evaluate the NPD process
agility in an intensive innovation context. Presented at the International Conference
on Engineering Design (ICED’07).

Towards an agile methodology for industrial problem solving

Valentina María Llamas

149

Wu, Z., Palmer, M., 1994. Verbs Semantics and Lexical Selection, in: Proceedings of the 32Nd
Annual Meeting on Association for Computational Linguistics, ACL ’94. Association for
Computational Linguistics, Stroudsburg, PA, USA, pp. 133–138.

Y

Yager, R.R., 2004. Generalized OWA Aggregation Operators. Fuzzy Optim. Decis. Mak. 3, 93–
107.

Yusuf, Y.Y., Sarhadi, M., Gunasekaran, A., 1999. Agile manufacturing:: The drivers, concepts
and attributes. Int. J. Prod. Econ. 62, 33–43.

Z

Zorn, T.E., Taylor, J.R., 2004. Knowledge Management and/as Organizational
Communication. Presented at the Key Issues in Organizational Communication,
Routledge, pp. 96–99.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

151

APPENDIX

Towards an agile methodology for industrial problem solving

Valentina María Llamas

153

Appendix 1

Manifesto for Agile Software Development (“Manifesto for Agile Software Development,”

2001)

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Principles behind the Agile Manifesto (“Manifesto for Agile Software Development,” 2001)

We follow these principles:

 Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

 Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

 Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference for shorter periods of time.

 Business people and developers must work together daily throughout the project.

 Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

 The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.

 Simplicity--the art of maximizing the amount of work not done--is essential.

 The best architectures, requirements, and designs emerge from self-organizing

teams.

At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behaviour accordingly.

Towards an agile methodology for industrial problem solving

Valentina María Llamas

155

Appendix 2

Interview support: Identification and description of problem-solving processes

ABSTRACT

In order to survive to the unstable and highly changing market-place, modern organisations need to
adapt their business processes to be more agile. Such is, particularly, the case of problem solving
processes. Problem solving is a key activity that companies perform on a daily basis to improve
quality and to obtain sustainable and continuous improvement. Such processes are built following
standard rigid frameworks as Plan, Do, Check, Act (PDCA), Define, Measure, Analyse, Improve,
Control (DMAIC), or 8 Disciplines (8D)/ 9 Steps (9S). In these methods, the generalization and reuse
of knowledge is facilitated by standardization. However, it is sometimes difficult to react to
unexpected events due to over-constrained standards. Then, a need arises to define a problem
solving process sufficiently structured but not over constrained by standards, which can be
reconfigured and adapted to unexpected situations, and that is based on experience feedback
principles.

This thesis work describes a proposition of an agile problem solving process driven by the reuse of
experiences and knowledge. For this purpose, based on Case-Based Reasoning (CBR) principles, the
complete lifecycle of an agile problem solving process is proposed. Following the five steps that
compose the agile lifecycle, the agile process can be defined, executed and stored in a dedicated
knowledge and experience base. An application of the model to a specific problem solving process of
a surface treatment company is presented. The process is analysed, deploying the complete agile
lifecycle. It is shown how the standard problem solving method used within the company could
become more agile through the application of our method.

Keywords: Problem Solving, Agility, Business Process Management, Experience Feedback, Knowledge
Management.

RESUME

Les organisations d’aujourd’hui ont besoin d’être plus agiles afin de survivre dans des marchés
fluctuants et instables. C’est le cas particulier des processus de résolution de problèmes. La
résolution de problèmes est une activité clé que les entreprises réalisent quotidiennement afin
d’améliorer leur qualité et de réussir l’amélioration continue globale. Ces processus sont construits à
partir des standards cadrés tels que le Plan, Do, Check, Act (PDCA), Define, Measure, Analyse,
Improve, Control (DMAIC), ou le 8 Disciplines (8D)/ 9 Steps (9S). Dans ces méthodes, la généralisation
et la réutilisation des connaissances sont facilitées par la standardisation. Cependant, les standards
ayant tendance à contraindre fortement les processus, il est parfois difficile de réagir face à des
évènements imprévus ou même de s’écarter pour mieux répondre aux besoins. Ainsi, le besoin de
processus de résolution de problèmes suffisamment structurés mais pas sur-contraints par des
standards apparaît. Un tel processus doit pouvoir être reconfiguré et adapté à des situations
inattendues et se baser sur des méthodes de retour d’expérience.

Cette thèse décrit la proposition d’un processus agile de résolution de problèmes guidé par le retour
d’expériences et les connaissances. A cet effet, le cycle de vie d’un processus agile de résolution de
problèmes, basé sur les principes du Case-Based Reasoning (CBR), est proposé. Au travers des cinq
étapes d’un cycle de vie agile, le processus peut être défini, réalisé et stocké dans des bases
d’expériences et de connaissances spécifiques à des fins de réutilisation. L’application du modèle à
un processus de résolution de problèmes dans une entreprise de traitement de surface est
présentée. Le processus est analysé en déployant le cycle de vie agile. Il est montré comment la
méthode standard de résolution de problèmes utilisée au sein de l’entreprise peut devenir plus agile
grâce à l’application de notre méthode.

Mots clés: Résolution de problèmes, Agilité, Gestion de processus d’entreprise, Retour d’expérience,
Gestion des connaissances.

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	List of Figures
	List of Tables
	1. INTRODUCTION
	1.1 Business processes
	1.2 Problem-solving processes
	1.3 Problem statement and objectives
	1.4 Structure of the document

	2. STATE OF THE ART
	2.1 Introduction
	2.2 Agility Concepts
	2.3 Knowledge and experience capitalization and reuse
	2.4 Problem Solving
	2.5 Synthesis and Contributions

	3. INFORMATION MODEL FOR AGILITY
	3.1 Introduction
	3.2 Definition of the concepts of the agile process
	3.3 Agile process versioning system
	3.4 Roles within the agile process
	3.5 Knowledge and Experience-Driven Process
	3.6 Illustration of an agile process
	3.7 Conclusion

	4. AGILE LIFECYCLE MODEL
	4.1 The agile process lifecycle
	4.1.1 Step 1. Definition of the process scope
	4.1.2 Step 2. Experience filtering
	4.1.3 Step 3. Adaptation of the first version of the process
	4.1.4 Step 4. Process execution. Continuous adaptation
	4.1.5 Step 5. Storage in the Experience/Knowledge Base

	4.2 Decision making based on event
	4.3 Conclusion

	5. ILLUSTRATION BASED ON AN INDUSTRIAL SITUATION
	5.1 Knowledge and experience base
	5.2 Step 1. Definition of the process scope
	5.3 Step 2. Experience filtering
	5.4 Step 3. Adaptation of the first version of the process
	5.5 Step 4. Process execution. Continuous adaptation
	5.6 Step 5. Storage in the Knowledge/experience base
	5.7 Conclusion

	6. CONCLUSION
	PUBLICATIONS RELATED TO THIS PHD WORK
	REFERENCES
	APPENDIX
	Appendix 1
	Appendix 2
	ABSTRACT
	RESUME

