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Abstract 
Many researches focus on piezoelectric ice protection systems with the objectives to develop light and 

low consumption electromechanical systems for de-icing. These systems use vibrations, generated by 

the excitation of flexural, extensional or coupled resonance modes, to produce tensile stresses in the 

ice or shear stresses at the interface ice/support in order to remove ice. The objectives of this work are 

to analyse flexural and extensional resonance modes according to important design drivers for this 

type of systems: resonance frequency range, generation of tensile and shear stresses, electromechanical 

coupling factor, damping and fracture propagation. A final comparison gives pro and cons of each 

mode type for each design drivers for helping the designer of piezoelectric ice protection systems. 

1. Introduction 

1.1 State of the art on piezoelectric ice protection systems  

Ice accretion on aircraft in flight can lead to lift decrease, drag increase, thrust reduction, risk of stalling or even 

engine failure owing to ice ingestion. These conditions can happen when the air contains humidity in the form of 

super cooled water droplets. Many systems have been implemented today on airplane using hot air from engines, 

pressure into deformable leading edge or heating electric devices. All of these systems consume a lot of energy and 

require maintenance. Some others devices like electro-impulse de-icing have been more recently introduced. 

Nevertheless, they required heavy actuators and power supply that limit their interest. An interesting alternative is to 

use the resonance frequencies of the iced structure in order to reduce the actuator size and the power consumption. 

These frequencies can be excited by piezoelectric actuators. Compared to other electromechanical actuators like 

voice coils, these actuators present the advantage to allow generation of vibrations on a very large bandwidth. A lot 

of research have studied two main resonance mode types: extensional corresponding to in plane displacements [1..6] 

and flexural corresponding to out of plane displacements [7..9]. The resonance frequency of these modes has been 

observed from low frequency (several Hz) [12..17] to medium (kHz) [1..9] or high frequency (MHz) [10][11]. Most 

of these studies show interesting experimental results by removing ice on all or part of the support. However, the ice 

fracture understanding is not yet well acquired and the mode type, the frequency range, the de-icing mechanisms are 

not yet fully compared and explained in order to optimize the system.  

1.2 Objectives of the study 

The global objective of our research project is to complete the existing studies [1]...[19] by identification of the main 

physical mechanisms and design drivers involved during the de-icing by piezoelectric devices. In order to ensure the 

ability to de-ice, an electromechanical ice protection system must be able not only to initiate fractures in the ice or at 

interface ice/support but also to propagate them. To design efficient resonant ice protection systems enabling fracture 

initiation, the resonance frequencies of each mode type need to be analyzed according to: 

- the ability for generating the minimum tensile or shear stresses which can lead to the initiation of fractures (cracks 

with tensile stress and delamination with shear stress) 

- the vibration amplitudes allowing to reach these stresses. The supply voltage and power required for generating 

these displacements depend on the damping of the structure. 
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- the electromechanical coupling factor between the structure with the ice and the actuator which is an indicator of 

the ability of the system to convert electrical energy in a useful way. 

Once the frequencies are analyzed for enabling fracture initiation, the second step in the design of efficient resonant 

ice protection systems concerns the assessment of the resonance mode for propagating the fractures.  

We can see that many parameters take part in the design process: resonance frequency range to generate tensile and 

shear stresses, electromechanical coupling factor, damping and fracture propagation. In this paper, our objective is to 

assess these significant parameters for their ability to initiate and propagate fractures for 2 types of resonance modes: 

extensional and flexural resonance modes. 

1.3 Outlines of the study 

This study relies on modelling and experimental results. The paper starts with an introduction of the modelling 

assumptions and of the test specimen used in the experiments. In section 3, flexural and extensional resonance modes 

that are both used in piezoelectric de-icing systems already experimented are studied: their frequency range is 

analysed, as well as the stresses and strains that they can develop. Then, in section 4, the force factor and 

electromechanical coupling factor are computed and analysed according to the types of modes. Section 5 focuses on 

the damping ratio and quality factor and highlights the differences between the flexural and extensional resonance 

modes. The issue of fracture propagation is addressed in section 6 through the analysis of experimental results. 

Finally the conclusion presents a comparison of each mode type with pro and cons for each design drivers. 

2. Modelling assumptions and experimental setup  

2.1 Ice mechanical properties 

The ice characteristics are one of the first requirements to develop the de-icing system model. Ice mechanical 

properties are not always easy to estimate because there are several types of ice depending on the temperature and 

the size of the droplets. Furthermore, the ice is rarely perfectly homogeneous. Nevertheless, it is possible to 

distinguish three categories: glaze, mixed and rime ice. The glaze ice is formed at higher temperature (below 0°C) 

with a slow solidification speed which gives a transparent color to the ice. The rime ice freezes much faster at lower 

temperature or with smaller droplets. Air bubbles are trapped during icing process which gives a white color at this 

material. The ice elastic properties considered for different types of ice are presented in Table 1. These values come 

from data given in [20..24]. In this paper, the mechanical properties of glaze ice are considered for numerical and 

analytical simulation.  

In addition to the elastic mechanical properties, the values of cohesive tensile strength and adhesive shear strength 

are necessary to predict the ice fractures. For our study, we consider the values of Table 2 issued from [20..25]. The 

values are high since our tests are performed in a freezer and not with atmospheric ice. 

 

Table 1: Elastic mechanical properties of the glaze mixed and rime ice 

 Glaze ice Mixed ice Rime ice 

Young’s modulus (GPa) 9.33 6.3 2.5 

Poisson’s ratio 0.33 0.33 0.28 

Density (kg/m3) 917 800 600 

 

Table 2: Tensile and adhesive shear strength of ice 

 Freezer ice 

Tensile strength (MPa) 3 

Adhesive shear strength (MPa) 1 

2.2 Analytical model assumption  

In order to develop analytical analysis, the support with ice is considered as a thin multilayer beam (1D model). This 

section summarizes the equations already presented in previous works [19][26]. For more details on their 

assumptions and establishments, the reader can refer to the corresponding papers.  Mode shapes are assumed to be 

identical to a uniform beam. Figure 1 shows the beam under study where: 

 x is the transverse position over the beam of length a ; 
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 n is the number of anti-nodes for the considered mode ; 

  is the pulsation of  the considered mode ; 

 halu, hice, hn are respectively the thickness of the aluminum beam, the thickness of the ice beam and the position of 

the neutral line for the flexural mode, 

 U(x) and W(x) are respectively the in-plane displacements (for extensional modes) and out-of-plane 

displacements (for flexural modes); 

 calu , cice , alu and ice are respectively the Young’ modulus and the density for the aluminum beam and the beam. 

 

a)  

b)  

Figure 1: Element of the beam under study 

For flexural modes, the position of the neutral line ℎ𝑛 can be obtained by assuming that the tensile force in a section 

is zero. This results in:  

ℎ𝑛 =
1

2

𝑐𝑎𝑙𝑢ℎ𝑎𝑙𝑢
2 − 𝑐𝑖𝑐𝑒ℎ𝑖𝑐𝑒

2

𝑐𝑎𝑙𝑢ℎ𝑎𝑙𝑢 + 𝑐𝑖𝑐𝑒ℎ𝑖𝑐𝑒

 

 

(1) 

The beam is studied as a simply supported beam. Nevertheless, it will be shown (part 3.2) that the behavior is 

approximately the same for a free beam for the frequency range of our study (medium and high frequency). 

2.3 De-icing test specimen  

In order to conduct experimental tests, a specimen is configured. It consists of an aluminium plate of size 

154x52x1.5 mm
3
 with two ceramic bonded in the middle (Figure 2). One ceramic is used as a sensor and the other as 

an actuator. The sensor is symmetric to the actuator in order to analyse all the excited modes. The plate is tested with 

a constant ice layer formed in a freezer. The plate is hold with two nylon wires and the boundary conditions are 

considered as free. This configuration is not particularly optimised but the objective of the tests is here to excite the 

maximum of resonance frequency in order to test their efficiency for de-icing.  
 

Figure 2: Test specimen: an aluminum plate with two ceramics bonded in the middle of the plate (one as a sensor, the 

other as an actuator) 
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y 
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3. Analysis of the frequency range and types of modes for initiating ice fractures 

The purpose of this part is to understand how the fracture can be initiated in the ice depending on the frequency and 

the types of modes (flexural or extensional). The frequency range of the flexural and extensional modes is 

investigated here with the numerical model. The types of modes and their efficiency for the de-icing initiation are 

analysed with the analytical model that allows computing the stresses generated for all the resonance frequencies. 

3.1 Frequency range of the flexural and extensional modes  

A modal analysis of the modelled plate is firstly implemented with the finite element software Ansys© in order to 

report the different types of modes that can be excited and their frequency range. The study is performed from 100Hz 

to 50kHz, which corresponds to the frequency range of our electronic supply. The ice layer thickness is assumed to 

be constant and the numerical applications are made for 2mm. The computed mode shapes can be classified in two 

groups (Figure 3): the in-plane displacement modes as extensional modes and the out-of-plane displacement modes 

as flexural modes.  

 

 

Figure 3: The two main mode types observed by modal analysis: flexural mode (a) and extensional mode (b) 

The flexural mode can be composed of vibration nodes through the longitudinal or transversal axis or both (Figure 

3.a). n is considered as the number of nodes in the longitudinal axis and m the number of nodes in the transversal 

axis.  

The extensional modes considered here are only composed of nodes in the longitudinal axis. More complex 

extensional modes exist but they will not be studied here. n is considered as the number of nodes in the longitudinal 

axis (blue area in Figure 3.b). It is possible to notice that extensional modes do not generate only in-plane 

displacements. Out-of-plane displacements are also generated along the longitudinal axis. Figure 4 gives all the 

resonance frequencies for the extensional and flexural modes depending on their number of longitudinal and 

transversal nodes.  

Figure 4 shows that the resonance frequencies increase with the number of nodes in transversal (m) or in longitudinal 

direction (n). Flexural modes exist for low frequencies (from less than 1 kHz) although extensional modes are 

present only above 15 kHz. For a given frequency range, extensional modes are less numerous than flexural modes. 

 

 

Figure 4: Resonance frequencies depending on the number of nodes in the longitudinal and transversal directions for 

the extensional and flexural modes (results from FEM analysis) 
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3.2 Developments and analysis of analytical models of stresses and strains for initiating ice fractures 

To design a de-icing system, a strength criterion has to be implemented. Indeed, the ice should be sufficiently 

deformed to reach strengths that can detach ice accumulations on surfaces. Two mechanisms of fracture are possible: 

cracking in the ice layer due to tensile stress or delamination at the interface between the substrate and the ice due to 

shear stress (Figure 5).  

 

 
Figure 5: Cracking and delamination mechanisms due to the deformation of the ice and the support with the 

piezoelectric de-icing system. 

In order to simplify the analytic models, the beam is considered as simply supported. This hypothesis is checked by 

the numerical model used previously. A free and a simply supported plate are implemented in Ansys© and the 

resonance frequencies depending on the number of longitudinal nodes are computed and presented in Figure 6. The 

two nodes generated by the simply supported boundary conditions are taken into account in the value of n. 

An even node number corresponds to a symmetric mode which is not affected by the symmetric boundary 

conditions. The difference between the free and simply supported case is more visible for the anti-symmetric modes 

(13% of resonance frequency error for extensional modes and 6% for flexural modes). Nevertheless, the error is 

assumed to be negligible and the simple supported beam assumption is used to simplify the model.  

 

 
Figure 6: Resonance frequencies depending on the number of node in the longitudinal direction for the extensional 

and flexural mode with free and simply supported boundary conditions (results from FEM analysis). 

Table 3 synthetizes the analytical formulas derived from previous assumptions to compute strains and stresses in the 

ice, in the aluminum support and at the interface ice/support. The formulas of the peak out-of-plane shear stress were 

obtained by isolating an element of ice of thickness dx subjected to elastic forces, inertial forces and shear forces at 

the interface ice/support. The resonance frequencies were obtained by Rayleigh method using the expression of the 

strains to estimate the kinetic and potential energies. 

 

These formulas show that the tensile stress in the ice is maximal at the displacement nodes for extensional modes and 

at the displacement anti-nodes for the flexural modes. The maximum shear stress at the interface ice/support is 

located at the displacement node for the flexural mode and the displacement anti-node for the extension. This means 

that it is difficult to couple the two types of stress in the same zone if only one resonance mode is used. 

 

 

 

0E+00

1E+04

2E+04

3E+04

4E+04

5E+04

6E+04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

R
e

so
n

an
ce

 f
re

q
u

e
n

cy
 (H

z)
 

n (number of longitudinal node) 

Extensional mode simply
supported

Extensional mode free

Flexural mode m=0 simply
supported

Flexural mode m=0 free

Ice 

Support 

                crack 

Delamination 



Pierrick Rouset, Marc Budinger, Valérie Pommier-Budinger 

     

Table 3: 1D modes formula for simply supported boundary conditions 

 Extensional modes Flexural modes 

Displacement 𝑢(𝑥, 𝑡) = 𝑈(𝑥) 𝑠𝑖𝑛 𝜔𝑡

=  𝑈0 𝑠𝑖𝑛
𝑛𝜋𝑥

𝑎
𝑠𝑖𝑛 𝜔𝑡 

𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝑠𝑖𝑛 𝜔𝑡 = 𝑊0 𝑠𝑖𝑛
𝑛𝜋𝑥

𝑎
𝑠𝑖𝑛 𝜔𝑡 

𝑢(𝑥, 𝑡) = −𝑧
𝜕𝑤

𝜕𝑥
= −𝑧𝑊0

𝑎

𝑛𝜋
𝑐𝑜𝑠

𝑛𝜋𝑥

𝑎
𝑈(𝑠𝑖𝑛 𝜔𝑡) 

Peak tensile strain 
𝜀𝑥 =

𝜕𝑈(𝑥)

𝜕𝑥
= 𝑈0

𝑛𝜋

𝑎
𝑐𝑜𝑠

𝑛𝜋𝑥

𝑎
 𝜀𝑥 =

𝜕𝑈(𝑥)

𝜕𝑥
= 𝑊0𝑧 (

𝑛𝜋

𝑎
)

2

𝑠𝑖𝑛
𝑛𝜋𝑥

𝑎
 

Peak tensile stress 

in ice 
𝜎𝑥 = 𝑐𝑖𝑐𝑒𝜀𝑥 = 𝑐𝑖𝑐𝑒𝑈0

𝑛𝜋

𝑎
𝑐𝑜𝑠

𝑛𝜋𝑥

𝑎
 𝜎𝑥 = 𝑐𝑖𝑐𝑒(ℎ𝑖𝑐𝑒 + ℎ𝑛) (

𝑛𝜋

𝑎
)

2

𝑊0 𝑠𝑖𝑛
𝑛𝜋𝑥

𝑎
 

Peak tensile stress 

in aluminum 
𝜎𝑥 = 𝑐𝑎𝑙𝑢𝜀𝑥 = 𝑐𝑎𝑙𝑢𝑈0

𝑛𝜋

𝑎
𝑐𝑜𝑠

𝑛𝜋𝑥

𝑎
 𝜎𝑥 = 𝑐𝑎𝑙𝑢(ℎ𝑎𝑙𝑢 − ℎ𝑛) (

𝑛𝜋

𝑎
)

2

𝑊0 𝑠𝑖𝑛
𝑛𝜋𝑥

𝑎
 

Peak out-of-plane 

shear stress at the 

interface 

ice/support 

𝜏𝑥𝑧

= (𝜌𝑖𝑐𝑒𝜔2 − 𝑐𝑖𝑐𝑒 (
𝑛𝜋

𝑎
)

2

) ℎ𝑖𝑐𝑒𝑈0 𝑠𝑖𝑛
𝑛𝜋𝑥

𝑎
 

𝜏𝑥𝑧 = 𝑐𝑎𝑙𝑢 (
𝑛𝜋

𝑎
)

3 (ℎ𝑎𝑙𝑢 − ℎ𝑛)2 − ℎ𝑛
2

2
𝑊0 𝑐𝑜𝑠

𝑛𝜋𝑥

𝑎
 

Angular 

frequency 𝜔 = 𝜋
𝑛

𝑎
(

𝑐𝑖𝑐𝑒ℎ𝑖𝑐𝑒 + 𝑐𝑎𝑙𝑢ℎ𝑎𝑙𝑢

𝜌𝑖𝑐𝑒ℎ𝑖𝑐𝑒 + 𝜌𝑎𝑙𝑢ℎ𝑎𝑙𝑢

)
1/2

 𝜔 = 𝜋2 (
𝑛

𝑎
)

2

(
𝐸𝐼

𝜌𝑖𝑐𝑒ℎ𝑖𝑐𝑒+𝜌𝑎𝑙𝑢ℎ𝑎𝑙𝑢
)

1/2

 with 

𝐸𝐼 =
𝑐𝑎𝑙𝑢

3
(ℎ𝑛

3 + (ℎ𝑎𝑙𝑢 − ℎ𝑛)3)

+
𝑐𝑖𝑐𝑒

3
((ℎ𝑛 + ℎ𝑖𝑐𝑒)3 − ℎ𝑛

3) 

 

The tensile strength and the adhesive shear strength given in Table 2 can be used in the formulas of the peak tensile 

stress in ice and of the peak out-of-plane shear stress at the interface formula (Table 4) to compute the amplitude 𝑊0 

and 𝑈0 leading respectively to the initiation of delamination or cracking. The computed displacements are plotted 

according to the frequency in Figure 7. The flexural and extensional modes require much more displacements at low 

frequency than at high frequency. In fact the distance between anti-nodes at low frequency is longer and requires 

more displacement in order to generate the same bend radius than at high frequency and thus reached the same 

stresses. Furthermore, the amplitude leading to the initiation of fractures at fixed frequency is higher for extensional 

modes than for flexural modes, which means that flexural modes generate more stress in the ice for a given 

displacement. In order to minimize displacements and reduce consumption, it is more interesting to use flexural 

modes to initiate a delamination or fracture. 

 

 

 

Figure 7: Amplitude required for initiating cracks in the ice or delamination at the interface ice/support according to 

the frequency for extensional and flexural modes 
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4. Force factor and electromechanical coupling factor 

The objective of this part is to calculate the force factor and the electromechanical coupling factor in order to study 

the impact of the actuator size on the electromechanical conversion.  

4.1 Piezoelectric and electromechanical equations 

The local piezoelectric equations are defined as:  

 









SeEεD

eEScT
tS

E

  (2) 

with T the stress vector, E the electric field vector, D the electric displacement field vector, S the strain vector, c
E
, e 

and 
S
ε  the piezoelectric coupling matrices. 

The reduced model of a structure with piezoelectric actuators comprises a mechanical equation and an electrical 

equation. The model presented here comes from [19]. The model reduced to one mode is written: 

 








VCNqq

NVKqqDqM

oC

s


  (3) 

 

where q is the modal displacement, M the modal mass, K the modal stiffness, qc  the electrical charge, V the voltage, 

Ds the modal damping, N the modal electromechanical coupling force factor, and Co the modal turned-off capacity. 

The force factor N is directly linked to the piezoelectric effects. In order to maximize the displacement with the 

minimum voltage, a mode with a high force factor is desired. The objective here is to calculate the force factor value 

for each mode type. This factor is estimated for a given point by using the second equation and calculating the 

electrical charge qC on the electrodes for a zero voltage V=0 and the deformation q of the selected point.  

4.2 Force factors  

In order to simplify the computations, the geometries and ceramic positions of Figure 8 are assumed for the flexural 

and extensional modes. The calculations are done according one anti-node in free condition for the extensional mode 

and in antisymmetric condition for the flexural mode. The actuator is taken into account and the ceramic length is 

configurable along the x axes and constant along the y and z axis. The extensional mode is assumed to be only along 

the x axis and without parasitic flexural mode.  

 

     
Figure 8: Simplified model for the force factor calculation: extensional mode (a) and flexural mode (b) 

In this configuration, the electric displacement field and electric field vectors have only one non-zero component 

along y axis. It can be written here with scalar notation D and E. The electric field E into the ceramic cannot be 

assumed to be constant for a zero voltage according to the finite element simulation. It is possible to write 

0/  yD due to the absence of free charge thanks to Gauss theorem. In this way, the electric displacement field D 

is constant on the thickness of the ceramic but is function of the position x. D is thus egal to the average value along 

the y axis. The equation expressing D can be approximated by the following scalar equation: 

 eSED
S

    (4) 

Lpzt 

a/n 
z 

halu 

hpzt 

hice 

x Aluminium (ρalu, calu) 

Ice (ρice, cice) 

Ceramic (ρpzt, cpzt) 

a/n 

Lpzt z 

halu 

hpzt 

hice 

hn x 
Aluminium (ρalu, calu) 

Ice (ρice, cice) 

Ceramic (ρpzt, cpzt) 

(a) (b) (a) 
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where 𝑒 = −𝛾𝑒33 + (1 − 𝛾)𝑒31 is the sum of 𝑒33 (strain along y axis) and 𝑒31  (strain along y axis) multiplied by 𝛾 

(Poisson coefficient). The average of (4) in the thickness of the ceramic gives: 

 

 





PZThnhaluh

nhaluh
PZTPZT

SS

dzyxs
h

e
h

V
SeExDD ),(

1
)(   (5) 

with 
PZT

h the thickness of the PZT ceramic. 

The electric displacement field D becomes: 

 a

xn
U

a

n
exDext


sin)( 0

  (6) 
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xn
hh

h
W
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n
exD
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PZT
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2
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0
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   (7) 

extD  and flexD the electric field displacement for extensional and flexural modes. 

The integration of the electric displacement field on the ceramic surface gives the electrical charge allowing to  

estimate the force factor:  

 
a

ln
eb

q

q
N

pztc

ext 2
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   (9) 

 

with 
ext

N  and 
flex

N the force factor of an extensional mode and a flexural mode. 

It is now possible to represent, Figure 9, the force factor depending on the ratio between the actuator length and the 

length between anti-nodes (equations (8),(9)).  Figure 9 shows that the force factor is maximum for a ratio of 1 when 

the actuator has the same length as the distance between two nodes (node to node length). Moreover, equations (8) 

and (9) show that the force factor for flexural mode increases with the number of nodes n while the force factor for 

the extensional mode is constant with n. The force factor of an extensional mode can be always considered as higher 

than for the force factor of a flexural mode. Nevertheless, it is not possible to conclude with the comparison of these 

two values because the force factor doesn’t express the capacity of vibration generation on the same displacement. 

Figure 9 shows also that the force factor can be degraded if the length of the actuator is higher than node-to-node 

length.  The Figure 10 shows the anti-node length according to the frequency and highlights for flexural modes the 

risks of underutilization of volume of ceramics at high frequency due to the small node to node length. 

 

 
Figure 9: Force factor depending on the ceramic length for flexural and extensional mode for n =10 
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Figure 10: Node to node length according to the frequency for the plate under study 

4.3 Electromechanical coupling factor  

The electrical and mechanical equation given by (3) can be presented in the form of a diagram (Figure 11) which 

corresponds to the equivalent electric behaviour of a transducer defined by the simplified diagram RLC//C0. In this 

diagram, M and K are the modal mass and the stiffness of the mode. 
 

C0 

L=M/ N
2 

Ceq= N
2
/ K  

R=/ N
2 

V 

 

Figure 11: Equivalent electric scheme of a transducer [28] 

The coupling factor can be defined as an energy ratio which expresses the ability to transform electrical energy into 

mechanical energy. As described in [28], the coupling factor of the ceramic can be defined as:  
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The stiffness can be obtained with the potential energy. The potential energy of the ceramic is considered as 

negligible. The potential energy Ui can be written as: 
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The potential energies for extensional modes (Uext) and flexural modes (Uflex) are written as:  
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The stiffness for extensional modes (Kext) and flexural modes (Kflex) are deduced from the expressions of potential 

energy: 
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Finally, the coupling factor can be obtained from equations (10), (11), (12) using the stiffness from equations 

(16)(17) and the force factor computed in the last section. The coupling factor is independent from frequency and 

plotted according to the ratio between the actuator length and the node to node length (Figure 12). The coupling 

factor seems to reach a maximum for a given ratio of actuator length by node to node length. In fact, if the actuator 

length corresponds to 0.7 times the node to node length, the coupling factor and thus the actuator efficiency is 

optimal for flexural and extensional modes. Furthermore, the coupling factor is higher for a flexural mode than an 

extensional mode which means that flexural mode is more efficient whatever the actuator length. Therefore, the 

flexural modes have a clear positive benefit in terms of coupling factor and energy conversion. 

 
Figure 12: Coupling factor according to the ratio between the actuator length and the node to node length for flexural 

and extensional modes  

 

5. Damping and quality factor 
 

This section discusses on the damping ratio which is a characteristic of the structure that influences the voltage for 

supplying the actuator in order to obtain the required displacements for fracture initiation and propagation. The 

higher the damping ratio is, the higher the voltages of the actuators must be, and consequently the higher is the 

consumption. 

5.1. Sources of damping 

This part concerns the study of the different losses linked to the vibratory state of the plate. The extensional and 

flexural modes are compared in order to minimize the specific power needed to compensate the mechanical losses. 

Various causes can introduce damping in the structure. The sources of the mechanical loses are presented in Table 4 

[29][30]. 

 

Table 4: Sources of the mechanical losses 

Mechanical losses                           Source 

Viscous fluid losses When vibrating in a fluid, a plate is perturbed by viscosity and 

mass density of the environment. 

Acoustic losses The vibration of the plate in the fluid creates an acoustic pressure 

which propagates into the fluid. 

Support losses The vibrations produce a mechanical work on the support and 

losses. 

Thermo-elastic losses  Losses are caused by the material heating due to vibration. 
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Viscoelastic material Polymers composed (glue) of long molecular chains have 

viscoelastic properties. 

Micro-slipping and pumping effect  The dynamic forces which occur in structures whose jointed (or 

riveted) parts may slide or generate air pumping effect during 

dynamic loading are associated with energy dissipation. 

 

The damping is mainly driven by support losses, thermo-elastic losses and viscoelastic material (possibly due to the 

glue). Viscous fluid losses and acoustic losses appear to be negligible with the studied geometry [31]. Furthermore, 

micro-slipping is considered as negligible and support losses are not considered here since the plate is in free 

conditions. 

 

The damping is linked to the quality factor Q which expresses the vibration intensification at the resonance:  
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where M is the modal mass,K the modal stiffness and Ds the modal damping. 

More generally, the quality factor is the ratio between the total energy stored due to the elastic deformation and the 

energy dissipated per cycle described as:  
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5.2. Quality factor measurement 

The parameter Q is interesting because it experimental value is simply evaluated with:  
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with 
dB

f
3

 the -3dB bandwidth and 
res

f the resonance frequency. 

For our test specimen, the quality factor is thus measured for the different resonance frequencies available on the 

used frequency range. The experimental results are presented in Figure 13. It shows that the quality factors increase 

with the frequency. The quality factor for the extensional mode is approximately two to three times higher than 

flexural mode which means that the damping is much lower for the extensional mode. The measured quality factors 

are quite high because the tests are performed for a plate in free conditions. There are thus no losses in the support. 

 

 

Figure 13: Experimental quality factor results depending on the frequency for different thickness 
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5.3 Analysis of quality factors 

The global quality factor of a structure composed of several parts can be estimated, for a mode, knowing : 
-  the quality factor of the material of each part (in our case: Q=1000 for the ice, Q=1000 for the aluminum, Q=25 

for the piezoelectric actuator in PIC151 and Q=10 for the epoxy glue) 

- the elastic energy Ui of each part that can be computed with a modal analysis of FEM software, 
and using the formula: 

 






i

i

i

Q

U

U
Q  (21) 

The difference in the quality factors can be easily explained by the difference of the elastic energy repartition in 

flexural and extensional modes. Figure 14 shows that the elastic energy in the piezoelectric ceramic is larger, 

compared to the other parts of the structure, for flexural modes than for extensional modes. Indeed, for flexural 

modes, the ceramic is far from the neutral line and its strain is thus important. As the piezoelectric material has a low 

quality factor compared to the other material, if it has a relative high elastic energy, relation (21) shows that the 

quality factor of the structure is low.  

 

 
Figure 15: Explanation of the difference of quality factor between flexural and extensional mode 

 

6. Experimental results concerning fracture propagation  
 

Figure 7 shows that the tensile strength is reached before the shear strength for flexural and extensional modes. 

Consequently, cracks are more likely to appear first in the de-icing process. Once the cracks are initiated, the 

question arises if they propagate or not in the ice and if they can be followed by delamination at the interface 

ice/support. In this last section, experimental results for three resonance modes of the plate under study are presented 

to observe what happens after the crack initiation (Figure 16). For the two flexural modes, only cracks are observed. 

For the mode at 15kHz with in-planes and out-of-planes displacements, cracks and delamination can be observed. 

The modal analysis performed to study the plate, shows that elastic energy stored in this mode is more important than 

for the flexural modes. This allows a propagation of the cracks through the ice and delamination of the interface 

ice/support with the same vibratory amplitude as the one computed to initiate the fracture, without any extra energy.  

 

  
 

 

 
Flexural 10 kHz 

 
Flexural 26 kHz 

 
“Extensional” 15 kHz 

 

Figure 16: Experimental tests 
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7. Comparison and conclusion  
 

This article has proposed to analyze important features to be taken into account for the design of resonant 

piezoelectric ice protection systems. Using analytical and numerical models, as well as experimental tests results, 

flexural and extensional resonance modes that are used to generate vibrations and stresses in the ice or at the 

interface ice/support were analyzed according to: resonance frequency range, generation of tensile and shear stresses, 

electromechanical coupling factor, damping and fracture propagation. Table 5 summarizes the main results 

concerning these criteria. It shows that flexural modes are interesting in terms of frequency bandwidth, to work at 

low frequencies, for generation of tensile and shear stress and to obtain a good electromechanical coupling. On 

another side, the extensional modes, which are very present in the ultrasonic frequency bandwidth, have higher force 

factor, lower damping and can initiate and propagate the fractures with the same level of energy.  Recommending the 

use of a particular mode is still difficult. The idea that comes to mind is to couple the use of these two modes in order 

to exploit their respective advantages.  

 

Table 5: Advantages and drawback of each mode depending on the criteria studied 

Criteria Flexural modes Extensional modes 

Frequency range  Large frequency range 

 Noisy if under 20 kHz 

 Few resonance modes often 

higher than 20 kHz 

 Silent tests 

Tensile and shear stress 

generation 

 Generate more easily tensile 

and shear stress at given frequency 

 Need more displacements to 

generate stresses 

 

Electromechanical coupling  Best coupling factor  High force factor with high 

frequency (ceramic size) 

Damping   Best quality factor 

Energy for fracturation   Best fracturation 
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