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Abstract

The purpose of this work is to study a gen-
eralisation of Dung’s abstract argumentation
frameworks that allows representing recursive
attacks, that is, a class of attacks whose targets
are other attacks. We do this by developing a
theory of argumentation where the classic role
of attacks in defeating arguments is replaced by
a subset of them, which is extension dependent
and which, intuitively, represents a set of “valid
attacks” with respect to the extension. The
studied theory displays a conservative generali-
sation of Dung’s semantics (complete, preferred
and stable) and also of its principles (conflict-
freeness, acceptability and admissibility). Fur-
thermore, despite its conceptual differences, we
are also able to show that our theory agrees
with the AFRA interpretation of recursive at-
tacks for the complete, preferred and stable se-
mantics.

1 Introduction

Argumentation has become an essential paradigm for
Knowledge Representation and, especially, for reasoning
from contradictory information [1; 11] and for formaliz-
ing the exchange of arguments between agents in, e.g.,
negotiation [2]. Formal abstract frameworks have greatly
eased the modelling and study of argumentation. For
instance, a Dung’s argumentation framework (AF) [11]
consists of a collection of arguments interacting with
each other through an attack relation, enabling to deter-
mine “acceptable” sets of arguments called extensions.

A natural generalisation of Dung’s argumentation
frameworks consists in allowing high-order attacks that
target other attacks. Here is an example in the legal
field, borrowed from [3].

Example 1. The lawyer says that the defendant did
not have intention to kill the victim (Argument b). The

∗The second author is funded by the Centre Interna-
tional de Mathématiques et d’Informatique de Toulouse
(CIMI) through contract ANR-11-LABEX-0040-CIMI within
the program ANR-11-IDEX-0002-02.

prosecutor says that the defendant threw a sharp knife
towards the victim (Argument a). So, there is an at-
tack from a to b. And the intention to kill should be
inferred. Then the lawyer says that the defendant was in
a habit of throwing the knife at his wife’s foot once drunk.
This latter argument (Argument c) is better considered
attacking the attack from a to b, than argument a itself.
Now the prosecutor’s argumentation seems no longer suf-
ficient for proving the intention to kill. This example is
represented as a recursive framework in Fig. 1.
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c

Figure 1: An acyclic recursive framework

Another example, borrowed from [4; 9], will be taken
as a running example.

Example 2. Suppose Bob is making decisions about
his Christmas holidays, and is willing to buy cheap last
minute offers. He knows there are deals for travelling to
Gstaad (g) or Cuba (c). Suppose that Bob has a prefer-
ence for skiing (p) and knows that Gstaad is a renowned
ski resort. However, the weather service reports that it
has not snowed in Gstaad (n). So it might not be pos-
sible to ski there. Suppose finally that Bob is informed
that the ski resort in Gstaad has a good amount of artifi-
cial snow, that makes it anyway possible to ski there (a).
The different attacks are represented on Fig. 2. �

A semantics for these classes of recursive frameworks
has been first introduced in [14] in the context of prefer-
ences in argumentation frameworks, and latter studied
in [4] under the name of AFRA (Argumentation Frame-
work with Recursive Attacks). This version describes
abstract argumentation frameworks in which the inter-
actions can be either attacks between arguments or at-
tacks from an argument to another attack. A transla-
tion of an AFRA into an AF is defined by the addition
of some new arguments and the attacks they produce or
they receive. Note that AFRA have been extended in
order to handle recursive support interactions together
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Figure 2: Bob’s dilemma: arguments are in circle and
attacks in square.

with recursive attacks [9; 10]. However, when supports
are removed, these approaches go back to AFRA.

A similar work is described in [7] using the addition
of meta-arguments that enable to encode the notions of
“grounded attack” and “valid attack”. The notion of
grounded attack is about the source of the attack and
the notion of valid attack is about the link between the
source and the target of the attack (i.e. the role of
the interaction itself). Despite the intuitive results ob-
tained by these approaches regarding complete, stable or
grounded extensions, it somehow changes the role that
attacks play in Dung’s frameworks.

Example 3. Consider the argumentation framework
corresponding to Fig. 3. According to Dung’s theory, this

a α b

Figure 3: A simple Dung’s framework

framework has three conflict-free sets: ∅, {a} and {b}.
On the other hand, {a, b} is a conflict-free set accord-
ing to AFRA because the attack α is not in the set. In
fact, in AFRA, such an argumentation framework can
be turned into an AF by converting α into a new argu-
ment as in Fig. 4. In this new framework, it is easy to

a α b

Figure 4: AF framework for AFRA of Fig. 3

observe that {a, b} is considered conflict-free in AFRA
because there is no attack between a and b. In some
sense, the connection between an attack and its source
has been lost. As another example of this behaviour, the
set {α, b} is not AFRA-conflict-free despite the fact that
the source of α, the argument a, is not in the set. �

In this paper, we study an alternative semantics for
argumentation frameworks with recursive attacks based
on the following intuitive principles:

P1 The role played in Dung’s argumentation frame-
works by attacks in defeating arguments is now
played by a subset of these attacks, which is exten-
sion dependent and represents the “valid attacks”
with respect to that extension.

P2 It is a conservative generalisation of Dung’s frame-
work for the definitions of conflict-free, admissible,
complete, preferred, and stable extensions.

For instance, in the proposed semantics, the conflict-
free extensions of the framework of Fig. 3 are precisely
Dung’s conflict-free extensions: ∅, {a} and {b}. Besides,
as we will see later, the attack α is valid with respect
to all three extensions because it is not the target of
any attack. It is worth noting that, despite its concep-
tual difference with respect to AFRA, we are able to
prove an one-to-one correspondence between our com-
plete, preferred and stable extensions and the corre-
sponding AFRA extensions, in which the set of “accept-
able” arguments are the same. This offers an alternative
view for the semantics of recursive attacks that we be-
lieve to be closer to Dung’s intuitive understanding.

2 Background

Definition 1. A Dung’s abstract argumentation frame-
work (D-framework for short) is a pair AF = 〈A,R〉
where A is a set of arguments and R ⊆ A × A is a
relation representing attacks over arguments. �

For instance, the graph depicted in Fig. 3 corresponds
to the D-framework AF3 =〈A3, R3〉 with the set of argu-
ments A3 ={a, b} and the attack relation R3 ={(a, b)}.

Definition 2. Given some D-framework AF = 〈A,R〉
and some set of arguments S ⊆ A, an argument a ∈ A
is said to be

i) defeated w.r.t. S iff ∃b ∈ S such that (b, a) ∈ R, and
ii) acceptable w.r.t. S iff for every argument b ∈ A with

(b, a) ∈ R, there is c ∈ S such that (c, b) ∈ R. �

To obtain shorter definitions we will also use the follow-
ing notations:

Def (S) def= { a ∈ A

∣

∣ ∃b ∈ S s.t. (b, a) ∈ R }

Acc(S) def= { a ∈ A

∣

∣ ∀b ∈ A, (b, a)∈R implies b∈Def (S) }

respectively denote the set of all defeated and acceptable
arguments w.r.t. S.

Definition 3. Given a D-framework AF = 〈A, R〉, a
set of arguments S ⊆ A is said to be

i) conflict-free iff S ∩ Def (S) = ∅,
ii) admissible iff it is conflict-free and S ⊆ Acc(S),

iii) complete iff it is conflict-free and S = Acc(S),
iv) preferred iff it is ⊆-maximal1 admissible,
v) stable iff it is conflict-free and S ∪ Def (S) = A. �

Theorem 1 ([11]). Given a D-framework AF = 〈A, R〉,
the following assertions hold:

i) every complete set is also admissible,
ii) every preferred set is also complete, and

iii) every stable set is also preferred. �

For instance, in Example 3, the argument a is accepted
w.r.t. any set S because there is no argument x ∈ A such

1With ⊆ denoting the standard set inclusion relation.



that (x, a) ∈ R. Furthermore, b is defeated and non-
acceptable w.r.t. the set {a}. Then, it is easy to check
that {a} is stable (and, thus, conflict-free, admissible,
complete and preferred). The empty set ∅ is admissible,
but not complete; and the set {b} is conflict-free, but not
admissible.

3 Semantics for recursive attacks

Definition 4. A recursive argumentation framework
RAF = 〈A,K,s,t〉 is a quadruple where A and K are
(possibly infinite) disjunct sets respectively representing
arguments and attack names, and where s : K −→ A
and t : K −→ A ∪ K are functions respectively mapping
each attack to its source and its target. �

For instance, the argumentation framework of Ex-
ample 3 corresponds to RAF3 = 〈A3, K3, s3, t3〉 where
A3 = {a, b}, K3 = {α}, s3(α) = a and t3(α) = b.
In general, given any D-framework AF = 〈A,R〉, we
may obtain its corresponding argumentation framework
RAF = 〈A,K,s,t〉 by defining a set of attack names
K={α(a,b)

∣

∣ (a, b) ∈ R }. Functions s and t are straight-
forwardly defined by mapping each attack (a, b) ∈ R as
follows: s(α(a,b)) = a and t(α(a,b)) = b.

It is worth noting that our definition allows the ex-
istence of several attacks between the same arguments.
Though this does not make any difference for frameworks
without recursive attacks, for recursive ones, it allows
representing attacks between the same arguments that
are valid in different contexts. For instance, in the exam-
ple of Figure 5, there are two attacks between a and b,

c γ α

a b

d δ β

Figure 5: A recursive framework representing attacks in
different contexts

namely α and β, which represent different contexts as
they are attacked by different arguments.

Definition 5 (Structure). A pair A = 〈S, Γ〉 is said to
be a structure of some RAF = 〈A,K,s,t〉 iff it satisfies:
S ⊆ A and Γ ⊆ K. �

Intuitively, the set S represents the set of “acceptable”
arguments w.r.t. the structure A, while Γ represents the
set of “valid attacks” w.r.t. A. Any attack2 α ∈ Γ is un-
derstood as non-valid and, in this sense, it cannot defeat
the argument or attack that it is targeting.

For the rest of this section we assume that all def-
initions and results are relative to some given frame-
work RAF = 〈A,K,s,t〉. We extend now the definition

2By Γ def= K\Γ we denote the set complement of Γ.

of defeated arguments (Definition 2) using the set Γ in-
stead of the attack relation R: given a structure of the
form A = 〈S, Γ〉, we define:

Def (A) def= { a∈A
∣

∣ ∃α ∈ Γ, s(α)∈S and t(α)=a } (1)

In other words, an argument a ∈ A is defeated w.r.t. A
iff there is a “valid attack” w.r.t. A that targets a and
whose source is “acceptable” w.r.t. A. It is interesting to
observe that we may define the attack relation associated
with some structure A = 〈S, Γ〉 as follows:

RA
def= { (s(α), t(α))

∣

∣ α ∈ Γ } (2)

and that, using this relation, we can rewrite (1) as:

Def (A) def= { a ∈ A
∣

∣ ∃b ∈ S s.t. (b, a) ∈ RA } (3)

Now, it is easy to see that our definition can be obtained
from Dung’s definition of defeat (Definition 2) just by
replacing the attack relation R by the attack relation
RA associated with the structure A, or in other words,
by replacing the set of all attacks in the argumentation
framework by the set of the “valid attacks” w.r.t. the
structure A, as stated in P1. Analogously, by

Inh(A) def= { α ∈ K
∣

∣ ∃b ∈ S s.t. (b, α) ∈ RA } (4)

we denote a set of attacks that, intuitively, represents
the “inhibited attacks3” w.r.t. A.

We are now ready to extend the definition of accept-
able argument w.r.t. a set (Definition 2):

Definition 6 (Acceptability). An element x ∈ (A ∪ K)
is said to be acceptable w.r.t. some structure A iff every
attack α ∈ K with t(α) = x satisfies one of the following
conditions: (i) s(α) ∈ Def (A) or (ii) α ∈ Inh(A). �

By Acc(A), we denote the set containing all acceptable
arguments and attacks with respect to A. We also define
the following order relations that will help us defining
preferred structures: for any pair of structures A = 〈S, Γ〉
and A′ = 〈S′, Γ′〉, we write A ⊑ A′ iff (S ∪ Γ) ⊆ (S′ ∪ Γ′)
and we write A ⊑ar A

′ iff S ⊆ S′. As usual, we say that a
structure A is ⊑-maximal (resp. ⊑ar-maximal) iff every
A

′ that satisfies A ⊑ A′ (resp. A ⊑ar A
′) also satisfies

A
′ ⊑ A (resp. A′ ⊑ar A).

Definition 7. A structure A = 〈S, Γ〉 is said to be:

i) conflict-free iff S∩Def (A)=∅ and Γ∩Inh(A)=∅,
ii) admissible iff it is conflict-free and

(S ∪ Γ) ⊆ Acc(A),
iii) complete iff it is conflict-free and Acc(A) = (S ∪Γ),
iv) preferred iff it is a ⊑-maximal admissible structure,
v) arg-preferred iff it is a ⊑ar-maximal preferred

structure,

vi) stable4 iff S = Def (A) and Γ = Inh(A). �

Example 1 (cont’d) Let RAF be the recursive argu-
mentation framework corresponding to Fig. 6 (Fig. 6 is
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Figure 6: An acyclic recursive framework

Fig. 1 completed with the attack names). It is easy to
check that this framework has a unique complete, pre-
ferred and stable structure A = 〈{a, b, c}, {β}〉. Further-
more, there are nine admissible structures that are not
complete: 〈{a, c}, {β}〉, 〈{b, c}, {β}〉, 〈{a}, {β}〉, 〈{c}, {β}〉,
〈∅, {β}〉, 〈{a, c},∅〉, 〈{a},∅〉, 〈{c},∅〉 and 〈∅,∅〉. There are
also other conflict-free structures that are not admis-
sible: 〈∅, {α, β}〉, 〈{a}, {α, β}〉, 〈{b}, {α, β}〉, 〈{a, b}, {β}〉,
〈{b}, {β}〉, 〈{a, c}, {α}〉, 〈{b, c}, {α}〉, 〈{a}, {α}〉, 〈{b}, {α}〉,
〈{c}, {α}〉, 〈∅, {α}〉, 〈{a, b},∅〉, 〈{a, b, c},∅〉, 〈{b, c},∅〉 and

〈{b},∅〉. �

It is worth to mention that preferred and arg-preferred
structures do not necessarily coincide, since there exist
preferred structures that do not contain a maximal set
of arguments as shown by the following example:

Example 4. Let RAF be the argumentation framework
corresponding to the the graph depicted in Figure 7. Both

a α b

β

Figure 7: A RAF in which preferred and arg-preferred
structures do not coincide

A = 〈{a, b}, {β}〉 and A′ = 〈{a}, {α, β}〉 are preferred
structures of RAF, but only the former contains a max-
imal set of arguments and thus A is the unique arg-
preferred structure. �

We show now5 that, as in Dung’s argumentation the-
ory, there is also a kind of Fundamental Lemma for
argumentation frameworks with recursive attacks. For
the sake of compactness, we will adopt the following
notations: Given a structure A = 〈S, Γ〉 and a set
T ⊆ (A ∪ K) containing arguments and attacks, by
A∪ T

def= 〈S ∪ (T ∩ A), Γ ∪ (T ∩ K)〉 we denote the result
of extending A with the elements in T .

Lemma 1 (Fundamental Lemma). Let A = 〈S, Γ〉 be
an admissible structure and x, y ∈ Acc(A) be any pair

3We will deepen about the intuition of inhibited attacks
in Section 6.

4By Def (A) def= A\Def (A) we denote the non-defeated

arguments. Similarly, by Inh(A) def= K\Inh(A) we denote

the non-inhibited attacks. Note also that S = Def (A) and

Γ = Inh(A) already implies conflict-freeness.
5The proofs of propositions, lemmas, theorems given in

this paper can be found in [8].

of acceptable elements. Then, (i) A′ = A ∪ {x} is an
admissible structure, and (ii) y ∈ Acc(A′). �

Moreover, admissible structures form a complete partial
order with preferred structures as maximal elements:

Proposition 1. The set of all admissible structures
forms a complete partial order with respect to ⊑. Fur-
thermore, for every admissible structure A, there exists
an (arg-)preferred one A′ such that A ⊑ A′. �

The following result shows that the usual relation be-
tween extensions also holds for structures.

Theorem 2. The following assertions hold:

i) every complete structure is also admissible,

ii) every preferred structure is also complete, and

iii) every stable structure is also preferred. �

Example 5. As a further example, consider the frame-
work RAF corresponding to Fig. 8. This framework

a α b

β γ

c

Figure 8: A cyclic recursive framework

has a unique complete and (arg-)preferred structure A =
〈{a, c}, {γ}〉, but no stable one. Note that α and β are
neither acceptable nor inhibited w.r.t. A: β is not inhib-
ited because b is not in the structure, so α is not accept-
able. α is not inhibited because β is not in the structure.
And β is not acceptable because b is not defeated (as α
is not in the structure). �

Example 2 (cont’d) Consider the framework RAF
represented in Fig. 2. This framework has a unique
complete, preferred and stable structure: A0 =
〈{a, g, p}, {α, ǫ, γ, δ}〉. Among the 63 admissible struc-
tures, we find A1 = 〈{a}, {ǫ}〉, A2 = 〈{a}, {ǫ, δ}〉, and
A3 = 〈{a}, {α, ǫ, γ, δ}〉. �

4 Relation with AFRA

In this section, we establish correspondences between
our semantics for recursive attacks and the semantics
for AFRA. In [4] a recursive framework is turned into a
Dung’s framework by adding new arguments and attacks
using the following notion of defeat:

Definition 8 (Defeat). Let RAF = 〈A,K,s,t〉. An attack
α ∈ K is said to directly defeat x ∈ A ∪ K iff t(α) = x.
It is said to indirectly defeat β ∈ K iff α directly defeats
s(β). Then, α is said to defeat x ∈ A ∪ K iff α directly
defeats x or α indirectly defeats x. �

For instance, in Example 5, it is easy to see that α di-
rectly defeats b and indirectly defeats γ. Hence, α defeats
both b and γ. Attacks β and γ directly defeat α and β,
respectively. It has been shown in [4] that AFRA exten-
sions can be characterized as the extensions of a Dung’s



framework whose new set of arguments contains both
arguments and attacks and whose new attack relation is
the defeat relation of Definition 8. In this sense, under

a α b

β γ

c

Figure 9: AF framework for AFRA framework of Ex. 5

AFRA, the argumentation framework of Example 5 is
turned into the one in Fig. 9 and it can be checked that
it has a unique complete and preferred extension {a, c}
and no stable one. We recall next the formal definitions
of AFRA from [4]:

Definition 9. Let RAF = 〈A,K,s,t〉 and E ⊆ (A ∪ K).
Then, an element x ∈ (A ∪ K) is said to be AFRA-
acceptable w.r.t. E iff for every α ∈ K that defeats x,
there is β ∈ E that defeats α. �

Definition 10 (AFRA-extensions). Let RAF =
〈A,K,s,t〉 and a set E ⊆ (A ∪ K), E is said to be:

i) AFRA-conflict-free iff ∄α, x ∈ E s.t. α defeats x,
ii) AFRA-admissible iff E is AFRA-conflict-free and

each element of E is AFRA-acceptable w.r.t. E,
iii) AFRA-complete iff it is AFRA-admissible and ev-

ery x ∈ (A ∪ K) which is AFRA-acceptable w.r.t. E
belongs to E,

iv) AFRA-preferred iff it is a ⊆-maximal
AFRA-admissible extension,

v) AFRA-stable iff it is AFRA-conflict-free and, for
every x ∈ (A ∪ K), x < E implies that x is defeated
by some α ∈ E. �

As illustrated by Example 3, AFRA does not preserve
Dung’s notion of conflict-freeness.

Observation 1. AFRA is not a conservative generali-
sation of Dung’s approach. �

In order to characterize the relation between our ap-
proach and AFRA, we will need the following notation.
Given some structure A = 〈S, Γ〉, by

EA
def= S ∪ { α ∈ Γ

∣

∣ s(α) ∈ S }

we denote its corresponding AFRA-extension.
Note that the AFRA-extension corresponding to a

given structure only contains the attacks of the struc-
ture whose source belongs to the structure. The other
attacks of the structure do not appear in the AFRA-
extension. Intuitively, this selection is motivated by the
fact that any attack in an AFRA-extension directly car-
ries a conflict against its target, even if its source is not
accepted, something which we avoid in our framework.

Proposition 2. Let RAF = 〈A,K,s,t〉 and a struc-
ture A = 〈S, Γ〉, the following assertions hold:

i) if A is conflict-free, then EA is AFRA-conflict-free,

ii) if A is admissible, then EA is AFRA-admissible,
iii) if A is complete, then EA is AFRA-complete,
iv) if A is preferred, then EA is AFRA-preferred,
v) if A is stable, then EA is AFRA-stable. �

For the converse of Prop. 2, we need to introduce some
extra notation: Given some set E ⊆ (A ∪ K), by
SE

def= (E ∩ A), we denote the set of arguments of E .
Then, considering the structure A′ = 〈SE , (E ∩ K)〉, by

ΓE
def= (E ∩K) ∪ { α∈(Acc(A′)∩K)

∣

∣ s(α)<E } (5)

we denote the set of “valid attacks” with respect to E .
Finally, by AE

def= 〈SE , ΓE〉, we denote the structure corre-
sponding to some AFRA-extension E . Here, we have to
add attacks that do not belong to the AFRA-extension.
Intuitively, this is due to the fact that, in AFRA, an at-
tack is not acceptable whenever its source is not accept-
able [4, Lemma 1]. Hence, we need to add to the struc-
ture all those attacks that are non-AFRA-acceptable
only because of attacks towards their source.

Proposition 3. Given a RAF = 〈A,K,s,t〉 and a set
E ⊆ (A ∪ K), the following assertions hold:

i) if E is AFRA-conflict-free, then AE is conflict-free,
ii) if E is AFRA-admissible, then AE is conflict-free,

iii) if E is AFRA-complete, AE is a complete structure,
iv) if E is AFRA-preferred, AE is a preferred structure,
v) if E is AFRA-stable, AE is a stable structure. �

It is worth to emphasise that for an AFRA-admissible ex-
tension, Proposition 3 only ensures that the correspond-
ing structure AE is a conflict-free structure. In fact, there
exist AFRA-admissible extensions, whose corresponding
structures are not admissible. For instance, consider-

a α b β c

Figure 10: A Dung’s framework with two attacks

ing the argumentation framework of Fig. 10, the set
{α, c} is AFRA-admissible, but the corresponding struc-
ture 〈{c}, {α, β}〉 is not an admissible structure (since a
is not in the structure). This discrepancy follows from
the fact that, in AFRA, α defeats β despite of the ab-
sence of a while in our approach attacks whose source is
not accepted cannot defeat other arguments or attacks.
This difference disappears if we consider what we call
closed sets. We say that E ⊆ (A ∪ K) is closed iff every
attack α ∈ (E ∩ K) satisfies s(α) ∈ E .

Proposition 4. Let E be a closed AFRA-admissible ex-
tension. Then, AE is an admissible structure. �

Note that for conflict-freeness and admissibility, the
correspondence is not necessarily one-to-one. For in-
stance, A = 〈{a, c}, {α}〉 and A′ = 〈{a, c}, {α, β}〉 are
both admissible structures of the framework of Fig. 10
and both of them correspond to the same AFRA-
admissible extension EA = EA′ = {a, c, α}. Recall that β
is acceptable w.r.t. A′ because it is not attacked. How-
ever, it is not AFRA-acceptable w.r.t. {a, c, α, β} be-
cause, in AFRA, α defeats β and α is not itself defeated



(in fact, {a, c, α, β} is not even AFRA-conflict-free). On
the other hand, note that only A′ is a complete struc-
ture. In fact, for complete structures the correspondence
is one-to-one.

Let us denote by Afra(·) the function mapping each
structure A to its corresponding AFRA-extension EA.

Proposition 5. The following assertions hold:

i) if E is AFRA-complete (or just a closed AFRA-
conflict-free extension), then Afra(AE) = E, and

ii) if A is a complete structure, then AAfra(A) = A. �

Theorem 3. The function Afra(·) is a one-to-one cor-
respondence between the sets of all complete (resp. pre-
ferred and stable) structures and the set of all AFRA-
complete (resp. preferred and stable) extensions. �

Note that given the one-to-one correspondence be-
tween preferred structures and AFRA-preferred exten-
sions, there are AFRA-preferred extensions that do not
correspond to arg-preferred ones and thus, they do not
contain a maximal set of arguments. For instance,
{a, b, β} and {a, α} are both AFRA-preferred extensions
in Example 4, but only the former contains a maximal
set of arguments.

An interesting consequence of Theorem 3 and Propo-
sition 12 in [4] is that complexity for RAFs’ semantics
does not increase w.r.t. Dung’s frameworks. That is,
credulous acceptance w.r.t. the complete, preferred and
the stable semantics is NP-complete. Sceptical accep-
tance w.r.t. the preferred (resp. stable) semantics is
ΠP

2 -complete (resp. coNP-complete) [12].

Example 2 (cont’d) For the framework repre-
sented in Fig. 2, there is a unique AFRA-complete,
AFRA-preferred and AFRA-stable extension: E =
{a, g, p, α, ǫ, γ}. Note that δ < E whereas E = EA0

. In-
deed, no AFRA-admissible extension contains δ. Anal-
ogously, we have EA1

= EA2
= EA3

= {a, ǫ}. More-
over, among the AFRA-admissible extensions, we find
{a, g, ǫ, γ} which is not closed. The associated structure
A4 = 〈{a, g}, {ǫ, γ}〉 is not an admissible structure.

5 Conservative generalisation

As mentioned in the introduction, our theory aims to
be a conservative generalisation of Dung’s theory (P2).
Indeed, given the one-to-one correspondence between
complete, preferred and stable structures and their cor-
responding AFRA-extensions and between the latter
and Dung’s extensions [4] in the case of non-recursive
frameworks, it immediately follows that there exists a
one-to-one correspondence between complete, preferred
and stable structures and their corresponding Dung’s ex-
tensions.

On the other hand, this is not the case when
we consider only conflict-freeness or admissibility.
As mentioned in the introduction, {a, b} is an
AFRA-conflict-free extension of the non-recursive argu-
mentation framework of Example 3. From Proposition 3,
this implies that the corresponding structure 〈{a, b},∅〉,
is a conflict-free structure.

It is worth to note that, in Dung’s argumentation
frameworks, every attack is considered as “valid” in the
sense that it may affect its target. The following defini-
tion strengthens the notion of structure by adding a kind
of reinstatement principle on attacks, that forces every
attack that cannot be defeated to be “valid”.

Definition 11 (D-structure). A d-structure A = 〈S, Γ〉
is a structure that satisfies (Acc(A) ∩ K) ⊆ Γ. �

Definition 12. A conflict-free (resp. admissible, com-
plete, preferred, stable) d-structure is a conflict-free
(resp. admissible, complete, preferred, stable) structure
which is also a d-structure. �

As a direct consequence of Definition 7, we have:

Observation 2. Every complete structure is also a
d-structure. �

Observation 2 plus Theorem 3 immediately imply the
existence of a one-to-one correspondence between com-
plete (resp. preferred or stable) d-structures and their
corresponding AFRA and Dung’s extensions. In order
to establish a correspondence between conflict-free (resp.
admissible) d-structures and their corresponding Dung’s
extensions, we need to define what it means for a set of
arguments to be an extension of some recursive frame-
work.

Definition 13 (Argument extensions). A set of argu-
ments S ⊆ A is conflict-free (resp. admissible, com-
plete, preferred, stable) iff there is some Γ ⊆ K such
that A = 〈S, Γ〉 is a conflict-free (resp. admissible, com-
plete, preferred, stable) d-structure. �

Definition 13 allows us to talk about sets of argu-
ments instead of structures. Before formalising the fact
that Definition 13 characterizes a conservative general-
isation of Dung’s argumentation framework, we define
the attack relation associated with some framework in a
similar way to the attack relation associated with some
structure: RRAF

def= { (s(α), t(α))
∣

∣ α ∈ K }. Note that,
since every structure A = 〈S, Γ〉 satisfies Γ ⊆ K, it
clearly follows that RA ⊆ RRAF. We also precise what
we mean by non-recursive framework:

Definition 14 (Non-recursive framework). A frame-
work RAF = 〈A,K,s,t〉 is said to be non-recursive iff
RRAF ⊆ A×A. �

That is, non-recursive frameworks are those in which
no attack targets another attack. Given a non-recursive
framework RAF, it is easy to observe that AF =
〈A, RRAF〉 is a D-framework (Definition 1). In this sense,

by RAFD def= 〈A, RRAF〉, we denote the D-framework as-
sociated with some RAF.

Observation 3. Every d-structure A = 〈S, Γ〉 of any
non-recursive framework satisfies Γ=K. �

Theorem 4. A set of arguments S ⊆ A is conflict-free
(resp. admissible, complete, preferred or stable) w.r.t.
some non-recursive RAF (Definition 13) iff it is conflict-
free (resp. admissible, complete, preferred or stable)

w.r.t. RAFD (Definition 3). �



Due to Observation 2, it follows directly that:

Corollary 1. A structure A = 〈S, K〉 is complete (resp.
preferred, stable) w.r.t. a non-recursive RAF (Defini-
tion 7) iff S is complete (resp. preferred or stable) w.r.t.

RAFD (Definition 3). �

It is worth to note that the notion of d-structure
provides alternative semantics for the principles of
conflict-freeness and admissibility.

Example 1 (cont’d) Among the conflict-free struc-
tures that are not admissible, only five are conflict-free
d-structures: 〈∅, {α, β}〉, 〈{a}, {α, β}〉, 〈{b}, {α, β}〉,
〈{a, b}, {β}〉, 〈{b}, {β}〉. Similarly, among the admissi-
ble structures that are not complete, only five are admis-
sible d-structures: 〈{a, c}, {β}〉, 〈{b, c}, {β}〉, 〈{a}, {β}〉,
〈{c}, {β}〉 and 〈∅, {β}〉. �

Example 2 (cont’d) There are admissible structures
w.r.t. the framework represented in Fig. 2 that are not
d-structures: for instance A1 and A2. Indeed, each d-
structure must contain the attacks thas are not targeted
by any other attack, that is, {ǫ, α, δ}. Moreover each
d-structure containing a must also contain γ. �

6 Inhibited attacks

In this section, the intuition behind the concept of inhib-
ited attacks is deepened and precisely defined. Indeed,
we may expect that attacks that are inhibited do not
have any effect on their targets, that is, we may remove
them without modifying the condition of the structure.

Example 6. Let RAF be the recursive argumentation
framework of Fig. 6 and A = 〈{a, b, c}, {β}〉 its unique
complete structure. It is easy to check that α is inhibited
w.r.t. A because c and β belong to the structure and α is
the target of β. According to the above intuition, we may
expect that this would imply that there is a “somehow”
corresponding structure A′ which is complete w.r.t. some
RAF′ obtained by removing α. Note that, in this case,
removing α also implies removing β because there can-
not be attacks without target. In fact, the resulting RAF′

is a recursive framework with arguments {a, b, c} and no
attack. It is easy to check that A′ = 〈{a, b, c},∅〉 is com-
plete (also preferred and stable) w.r.t RAF′ and that it
shares with A the set of “acceptable” arguments. �

Let us now formalise this intuition:

Definition 15. Given some framework RAF and two
different attacks β, α, we define: β ≺ α iff there is some
chain of attacks δ1, δ2, . . . δn such that δ1 = β, δn = α
and t(δi) = δi+1 for 1 ≤ i < n. �

For instance, in the argumentation framework of
Fig. 6, we have that β ≺ α. On the other hand, neither
α ≺ β, nor β ≺ α hold for the argumentation framework
of Fig. 10. Note that ≺ is the empty relation for any
non-recursive framework. As usual, by ° we denote the
reflexive closure of ≺.

Given an attack α, and a set of attacks Γ, by Γ−α def=
Γ\{ β ∈ K

∣

∣ β ° α } we denote the set of attacks

obtained by removing the attack α from Γ. Further-
more, by RAF−α = 〈A, K−α, s−α, t−α〉, with s−α and
t−α the restrictions of s and t to K−α, we denote
the framework obtained by removing the attack α from
RAF = 〈A,K,s,t〉. Similarly, by A−α = 〈S, Γ−α〉 we de-
note the structure obtained by removing the attack α
from the structure A = 〈S, Γ〉.

Example 1 (cont’d) Let RAF be the recursive ar-
gumentation framework of Fig. 6. Then RAF−α =
〈A,∅, s−α, t−α〉 with A = {a, b, c} because β ≺ α im-
plies that β < K−α. Furthermore, if A = 〈{a, b, c}, {β}〉,
then A−α = 〈{a, b, c},∅〉 which is a stable structure of
RAF−α. �

Proposition 6 below formalises the intuitions presented
in the previous example.

Proposition 6. Let RAF be some framework, A be some
conflict-free (resp. admissible, complete, preferred, sta-
ble) structure and α ∈ Inh(A) be some inhibited attack
w.r.t. A. Then, A−α is a conflict-free (resp. admissible,
complete, preferred, stable) structure of RAF−α. �

7 Conclusion and future works

In this work we have extended Dung’s abstract argu-
mentation framework with recursive attacks. One of the
essential characteristics of this extension is its conser-
vative nature with respect to Dung’s approach (when
d-structures are considered). The other one is that se-
mantics are given with respect to the notion of “valid at-
tacks” which play a role analogous to attacks in Dung’s
frameworks. The notions of “grounded attack” and
“valid attack” have been introduced in [7]. However,
these notions have been encoded through a two-step
translation into a meta-argumentation framework. In
the first step, a meta-argument is associated to an at-
tack, and a support relation is added from the source of
the attack to the meta-argument. In the second step,
a support relation is encoded by the addition of a new
meta-argument and new attacks. So [7] uses a method
for flattening a recursive framework. As a consequence,
extensions contain different kinds of argument. In con-
trast, we propose a theory where valid attacks remain
explicit, and distinct from arguments, within the notion
of structure. Despite these differences with respect to
other generalisations, we proved a one-to-one correspon-
dence with AFRA-extensions in the case of the complete,
preferred and stable semantics, while retaining a one-to-
one correspondence with Dung’s frameworks in the case
of conflict-free and admissible extensions.

For a better understanding of the RAF framework,
future work should include the study of other seman-
tics (stage, semi-stable, grounded and ideal), extend-
ing our approach by taking into account bipolar inter-
actions [9; 16] (case when arguments and attacks may
be attacked or supported), and enriching the translation
proposed by [5; 6; 13; 15] from Dung’s framework into
propositional logic and ASP, in order to capture RAF.
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