

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18796

To link to this article : DOI : 10.1007/978-981-10-1627-1_53
URL : https://doi.org/10.1007/978-981-10-1627-1_53

To cite this version : Chevalier, Max and El Malki, Mohammed
and Kopliku, Arlind and Teste, Olivier and Tournier, Ronan
Document-oriented data warehouses : complex hierarchies and
summarizability. (2016) In: International Symposium on Ubiquitous
Networking (UNet 2016), 30 May 2016 - 1 June 2016 (Casablanca,
Morocco).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/146504061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Document-oriented data warehouses : complex

hierarchies and summarizability

Max Chevalier
1
, Mohammed El Malki

1,2
, Arlind Kopliku

1
,

Olivier Teste
1
, Ronan Tournier

1

1
 Université de Toulouse, IRIT (UMR 5505), 118 route de Narbonne, Toulouse France

2
 Capgemini, 109 avenue du Général Eisenhower, BP 53655- 31036 Toulouse, France

{Max.Chevalier,Mohammed.ElMalki,Arlind.Kopliku,

Olvier.Teste,Ronan.Tournier}@irit.fr

Abstract: There is an increasing interest in implementing data warehouses with

NoSQL document-oriented systems. In the ideal case, data can be analysed on

different dimensions and dimensions follow strict hierarchies that we can use to

roll-up and drill-down on analysis axes. In this paper, we deal with non-strict

and non-covering hierarchies, common issues in data warehousing a.k.a. sum-

marizability issues. We show how to model these hierarchies in document-

oriented systems and we propose an algorithm that can deal with summarizabil-

ity issues. The new approach is tested and compared to existing approaches.

Keywords: data warehouses, document-oriented systems, NoSQL, summariza-

bility

1! Introduction

There is an increasing interest in implementing data warehouses with NoSQL systems

[19] including document-oriented systems such as MongoDB [5]. NoSQL systems are

an interesting alternative to relational databases (RDBMS), because they offer inter-

esting scaling, replication and flexibility features. Until now, the different studies

have focused on modelling issues, instantiation and OLAP cuboids. The management

of complex hierarchies [6,12] is an important issue in data warehousing. We introduce

in this paper the management of complex hierarchies and summarizability issues with

document-oriented data warehouses.

In OLAP settings, it is common to analyse data on different dimension combina-

tions. During analysis, we can drill-down or roll-up at different levels of detail using

the hierarchy of dimensions. It is common to have irregularities in these hierarchies

such as non-strict hierarchies and non-covering hierarchies. The latter are also the

cause of summarizability issues i.e. we cannot drill-down or roll-up in data. Several

solutions have been proposed for summarizability issues, but these solutions are

adapted to the relational model [6, 7,8,11,18] With these solutions, it is necessary to

alter original schemas and to override attribute values to act as arrays. NoSQL sys-

tems have interesting features that can useful for dealing with complex hierarchies.

This is the scope of this paper.

In particular, document-oriented systems are an interesting case study for manag-

ing complex hierarchies. They support atomic attributes as well as the complex attrib-

utes (nested records, arrays, …) for storing the data. Document-oriented systems are

one of the most popular classes of NoSQL approaches [5]. Data is stored in docu-

ments and documents are grouped in collections [5,3]. Documents have a flexible

schema. They contain key-value pairs where keys act as metadata (they represent the

data structure). Values can be of simple data type (strings, numbers, dates…), but they

can also be arrays or sub-documents. Documents within the same collection can have

different schemas. Document-oriented systems have been shown to work well for

implementing data warehouses. They can scale horizontally and exploit parallel com-

putation for faster querying. However, until now, the management of complex hierar-

chies and summarizability issues have not been treated with NoSQL systems in an

OLAP setting.

In this context, we extend our previous work on data warehouses implementation

with document-oriented systems. We introduce support for storing complex hierar-

chies and support for data summarization on the complex hierarchies. Our new con-

tribution can be summarized as follows:

we show how we can easily store complex hierarchies in documents

We propose an algorithm for summarizability issues in document-oriented data ware-

houses. We compare our algorithm to other state-of-the-art algorithms

The rest of this paper is structured as follows. In the next section, we introduce the

data warehouse basic notions, the multidimensional data model and the complex hier-

archies issues. Then, we propose our approach for modelling, storing and dealing with

complex hierarchies. In the following section, we propose experimental work to vali-

date our work. We summarize related work and we end with conclusions.

Data warehouses and complex hierarchies

2! Data warehouses, the multidimensional model, cuboids

To ease data analysis and decision making, it is common to centralize them in data

warehouses [4]. These latter are suitable for on-line analysis called OLAP (On-Line

Analytical Processing [9]). In this setting, data is modelled with a multidimensional

model composed of measurable facts and analysis dimensions. Several analysis topics

(called facts) regroup a set of indicators (called measures). The values of these indica-

tors are observed by different analytical axes, also called dimensions. These dimen-

sions are composed by attributes, which represent different levels of detail, which are

themselves organized into hierarchies.

The traditional example in data warehouses concerns sales as the fact and dimen-

sions like customer, date, supplier. For the sake of change, we will use another exam-

ple from social media OLAP, more precisely the analysis of the tweets (microblogs).

In figure 1, we show the multidimensional schema. The tweet is analysed according to

three dimensions: Time, User and Subject. One of the analysis measures is the popu-

larity of a tweet (the number of times a tweet has been retweeted). At different analy-

sis levels, we may wish to have the total amount of retweets grouped by topic or by

category or by month or year. The measures can be observed, for example based on

the “time” dimension with three detail levels (day, month, year) organized in a hierar-

chy with “day” the lower detail level, “month” at a higher level and so on. The hierar-

chies are useful structures that are employed to ease the pre-calculation of induced

agglomeration (for example, calculate the annual sales from the weekly values). Gen-

erally, the situations in the real world are modelled according to the simple hierar-

chies. The associations between the different levels of one simple hierarchy are the

type “one-to-many”, e.g. one category many sub-categories.

Below, we provide some formalization on the multidimensional data model and

OLAP cuboids:

A multidimensional schema, namely E, is defined by (F
E
, D

E
, Star

E
) where:

F
E
={F1,…, Fn} is a finite set of facts, D

E
={D1,…, Dm} is a finite set of dimensions,

Star
E
: F

E
 →!"

#
 is a function that associates facts of F

E
 to sets of dimensions along

which it can be analyzed (!"
#

is the power set of D
E
).

A fact, F∈F
E
, is defined by (N

F
, M

F
) where: N

F
 is the name of the fact,

M
F
={f1(m1),…, fv(mv)} is a set of measures, each associated with an aggregation func-

tion fi.

A dimension, denoted Di∈D
E
 (abusively noted as D), is defined by (N

D
, A

D
, H

D
)

where: N
D
 is the name of the dimension, A

D
={$%

",…,$&
"}∪{id

D
, All

D
} is a set of di-

mension attributes, H
D
={'%

",…,()
"} is a set hierarchies.

A hierarchy of the dimension D, denoted Hi∈H
D
, is defined by (N

Hi
, Param

Hi
,

Weak
Hi

) where: N
Hi

 is the name of the hierarchy; *+,+-./ 01

2345 6%
./ 5 7 5 68/

./ 5 9::4 ;is an ordered set of vi+2 attributes which are called parame-

ters of the relevant graduation scale of the hierarchy, ∀k∈[1..vi], <=
>? ∈A

D
;

Weak
Hi

: Param
Hi

 →!@
ABCDEDFG?

 is a function associating with each parameter possi-

bly one or more weak attributes.

An OLAP cuboid O is derived from E, O = (F
O
,D

O
) such that: F

O
 is a fact derived

from F (F∈F
E
) with a subset of measures, M

O
⊆M

F
; D

O
⊆!HIDE

#JKL⊆D
E
 is a subset of

dimensions of D
E
. More precisely, D

O
 is one of the combinations of the dimensions

associated to the fact F (Star
E
(F)).

If we generate OLAP cuboids using all dimension combinations of one fact, we have

an OLAP cuboid lattice (also called a pre-computed aggregate lattice or cube).

Fig 1 A multidimensional conceptual schema allowing the analysis of Tweets

2.1! Complex hierarchies

In the real world, it is often the case when hierarchies are irregular. We say that the

hierarchy is complex when it is a non-strict hierarchy and/or a non-covering hierarchy

[6]. We will illustrate and define the above.

In figure 2, we show an example of complex hierarchy. The example is taken from

an OLAP application on Twitter. The subject is one of the analysis dimensions and its

attributes form a hierarchy id-topic-category-all. We can see that the tweet “P1” has

two topics “Foot” and “Tennis”; the topic “Tennis” falls within two categories

“Sport” and “Activity”. This corresponds to a many-to-many relationship on tweet-

topic and topic-category. This is called non-strict hierarchy.

The tweet P3 has no topic, but it falls within the category “Activity”. This corresponds

to a one-to-any relationship ([1..0-*]) on tweet-topic. This is called non-covering

hierarchy. Now, we can define:

•! A hierarchy is said to be non-strict when a child of a given level can have

more than a parent of the superior level [11,15].

•! A hierarchy is said to be non-covering if a dimension value can have no di-

rect upper parent [11,15].

The complex hierarchies cause summarizability issues [13, 10] i.e. it is not easy to

perform drill-down and roll-up analysis on data, because of potential missing or re-

dundant information. One element can be considered several times or none when

computing a pre-aggregate (for example the sum of measures by category when a

product appears in multiple categories).

Let us illustrate the summarizability issues with our example from figure 2. If we

count re-tweets by topic (Figure 2), we obtain a total of 110 while the exact total is

62. The tweets P1 and P2 have been counted several times (twice each) which distorts

the calculation of aggregates. If we wish to have the amount of re-tweets by category

for the aggregate results at the level of topics (Figure 2), we obtain a result of 162 in

place of 62. The topic Tennis is attached to two categories. Furthermore, the errone-

ous aggregate results at the level of topics are reflected in the superior hierarchical

!"#"$%
&'("

!"# $%&'()*"+ ,--

$%&'(."/*

0123$4

)*+,"-.

2%567 8"'*9%+# ,--

/".0"".1-

&0"".

!"#$$%!"#!"#$$%$%"

&"#$$%!"#&'($)%"&"*+$%"&,-./$0%$%"

,%1)"#$$%&!"#$$%'!#&'($)%"&"*+$%"&,-./$0%$

23"4

."/*:

;"&9:

<*&=6'6>*:

,--

;%7"'6%&:

?+6*&@=18

!"'*18

levels.

Fig 2 Example of non-strict and non-covering hierarchy and summarizability issues

3! Complex hierarchies and document-oriented systems

3.1! Document-oriented data model formalism

Document-oriented systems store documents in collections and are key-value stores.

A unique key identifies every document (the value) that will be called identifier. The

document is itself a set of key-value pairs. Keys define the structure of the document

and act as meta-data. Each value can be an atomic value (number, string, date…), a

sub-document or an array. Documents within documents are called sub-documents or

nested documents. We distinguish the document instance from the document struc-

ture/schema. The document structure/schema corresponds to a generic document

without atomic values i.e. only keys. A document instance belongs to a collection C

and has an identifier, id. We refer to this document as C(id). We use the following

symbols: “:” separates keys from values, “[]” denotes arrays, “{ }” denotes docu-

ments and a comma “,” is used to separate key-value pairs from each other. Using this

notation, we provide an example of a document instance:

User (30001): {

name: “John Smith”,

addresses: [{city: “London”, country: “UK”},

 {city: “Paris”, country: “France”}],

phone: {prefix: “0033”, number: “61234567”}}

This example document belongs to the “User” collection, it has 30001 as identifier

and it contains keys such as “name”, “addresses”, “phone”. The addresses value is an

array of sub documents and the phone value is a sub-document.

3.2! Mapping the multidimensional model and complex hierarchies

The formalism that we have defined earlier allows us to define a mapping from the

conceptual multidimensional model to each of the logical models defined above.

The data model that we will propose is inspired by our previous work [3]. It takes into

account that document-oriented implementations of data warehouses work better with

flat models i.e. one fact and its dimensions are stored in one collection. This is differ-

ent from RDBMS where we normalize data and we have one table for the fact and

one table per dimension.

Our mapping can be explained in two steps:

(i) For a given fact, all dimension attributes are nested under the respective attrib-

ute name and all measures are nested in a subdocument with key “measures”. This

model is inspired from our work. This corresponds to the following mapping:

•! Each conceptual star schema (one F
i
 and their dimensions Star

E
(F

i
)) is

translated in a collection C. !

•! The fact Fi is translated in a compound attribute Att
CF

. Each measure mi is

translated into a simple attribute Att
SM

. !

•! Each dimension Di ∈ Star
E
(F

i
) is converted into a compound attribute

Att
CD

 (i.e. a nested document). Each attribute Ai ∈ A
D
 (parameters and

weak attributes) of the dimension Di is converted into a simple attribute

Att
A
 contained in Att

CD
. !

!

(ii) For attributes within complex hierarchies, we use arrays. There are three cases:

In this case, the attribute can have no values (non-strict hierarchy)

•! The attribute value has no value i.e. non-covering hierarchy !

•! The attribute value has one value i.e. normal behavior !

•! The attribute value has many values i.e. non-strict hierarchy!

Below, there is an example from the Twitter case study. A combination of fact

and dimensions will be stored in one document that looks as the following:

{

"User": {

"user_id": "1704005545",
"user_screen_name": "ann2thingelse",

"user_friends_count": "150",

"user_utc_offset": "28800",

"user_time_zone": "Irkutsk",
"user_created_at": "Tue Aug 27 07:16:41 +0000 2013",

"user_lang": "ko",

"user_location": ""

},

"Time": {

"id": "619883842770370560",
"created": "Sat Jul 11 14:59:59 +0000 2015",

"timestamp": "1436626799658",

"day": "11",

"month": "6",
"year": "2015"

},

"Subject": [{"topic": "football", "category":["football", "Activity]"},

 {"topic": "senat", "category": ["Politycs"]}],

Fact": {
"Retweet_c": "15"

}

}

3.3! Algorithm for managing complex hierarchies

In this section, we propose an algorithm that can deal with non-strict and non-

covering hierarchies.

Let C be a collection corresponding to an OLAP cuboids or detailed data. We will

interest to one dimension d and a potentially complex hierarchy H. The data in C is

described at some level of granularity; we suppose the lowest level of granularity

corresponds to some attribute a. Our goal is to group data on another dimension at-

tribute from H that stands higher in the hierarchy, say attribute b.

Furing aggregation, we suppose we want to apply sum(m) an aggregation function on

one measure m.

We suppose data is modelled with the mapping we have defined earlier i.e. dimen-

sion attribute values within complex hierarchies will be stored with arrays.

To preserve summarizability, we propose on the data model we have proposed the

following:

Non-strict hierarchies resolution: The problem with non-strict hierarchies is that

we aggregate measures multiple times when we have multiple values in the groub_by

dimension attribute. To deal with this issue we propose the use of two varia-

bles/fields:

 – The real value, which will be displayed for analysis. The real aggregation

value is obtained, while aggregating all the measures m from the parent attributes of

a
H
 in b

H
. This value is calculated without taking into account the number of parents

for each child attribute.

 – The aggregate value: which, it, will be used uniquely for calculating the

superior hierarchical level. The aggregate value is calculated differently. For each

attribute a, the algorithm calculates the number of parents it has in b
H
 that we call

parents(a). If the child attribute has a single parent (|parents(a)|=1) the measure will

be aggregated one time. If the attribute has several parents (|parents(a)|>1), the algo-

rithm will count the number of parents P (the number of elements in the array) then

add the measure aggregated value sum(m) will be divided by the number of parents

|parents(a)|. In this way the measure will not be aggregated as many times as that of

the parents.

Non-covering hierarchies: For treating non-covering hierarchies, we use classical

approach, that regroup all the orphan values in an artificial value called others. For

example, for an aggregation hierarchical level b
H
 a others value is created and con-

tains all the orphan values of the hierarchical level a
H
. This solution is used already in

the relational model [7, 8].

Algorithm SCHS: Algorithm pseudocode for aggregating data (summing) on a

measure groupig by a dimension attribute of potential complex hiearchy

MN6OPQRSRTTRSU::VWP2UNRUXR3UWO-VNPYRPUR+RWOZU23RUXR3+PR

+,+-RQR,+-VPV,ROYV3RXU,R+[[,V[+P2UNR

\U,R]^_R`aRbR3UR R

R R MXR3UWcZ0RdRPeVNRR

R R R 3UWcZRfRgVh*+,+-JUPeV,LR

R R R iO-9[[j3UWcZkl03UWc-R

R R R iO-mV+:j3UWcZkl03UWc-R

R R n:YVR

R R R \U,RoR2NR3UWcZR

R R R R pqrstt u l0 R
vwxcF

yvwxczDEDFy
R

R R R R pqr{|$} u l0 R]^_crR

R R nN32XR

nN3R

4! Experiments

4.1! Experimental setup

We propose two sets of experiments.

The first set is about instantiating a data warehouse with the data model we pro-

posed. We use for this purpose data from the Twitter case study. We load data and we

study performance on a set of OLAP queries.

The second set of experiments is about validating our algorithm for data summariza-

tion with complex hierarchies. We also compare our approach to two approaches from

state-of-the-art namely:

─!The approach of Pederson and al [12]: an approach that is considered as a reference

approach for the summarizability issues

─!The approach of Hachicha and al [6]; that also uses a correction strategy when

aggregating.

These two approaches are meant for the relational model; we have adapted them

for document-oriented systems.

Hardware: The experiments are done on a cluster composed of 6 PCs, (4 core-i5,

8GB RAM, 2TB disks, 1Gb/s network), each being a worker node and one node acts

as dispatcher.

Dataset: The data is obtained with the Twitter API for data streaming. Tweets are

returned in JSON data format with each tweet having 67 data fields. We process

tweets to follow the data model we have defined earlier. We also add a dimension

called subject that has as attributes topic and category. These extra data is fictional

and we introduce here arbitrarily non-strict hierarchy issues and non-covering hierar-

chy issues.

Queries: We test our approach to implemente the conceptuel model to logical

model, on 3 query sets. Three query sets are created with 3 queries per set. The query

complexity increases from Q1 to Q3. Q1 involves 1 dimension, Q2 involves 2

dimensions and Q3 involves 3 dimensions.

4.2! Experimental results: Data warehouse instantiation and validation

In the first set of experiments, we have concentrated in transforming and loading data

into MongoDB with the pre-defined model of data.

After loading data, we focus on interrogation. In the following table, we show query

execution times on 9 queries on 5 different settings: 1 shard, 2 shards, 3 shards, 4,

shards, 5 shards. We can observe that augmenting the number of shards reduces the

query time. This is easy to explain. The query is executed in parallel across shards.

Table 1 Query execution times at different configuration with 400 millions documents, in se-

conds

#shards/query 1 shard 2 shards 3 shards 4 shards 5 shards

Q1.1 1070 1042 824 598 497

Q1.2 702 658 433 402 326

Q1.3 697 655 433 408 324

Q2.1 687 656 433 351 286

Q2.2 687 656 433 351 286

Q2.3 687 656 433 352 285

Q3.1 695 676 433 360 285

Q3.2 693 675 433 352 285

Q3.3 693 676 432 353 285

4.3! Experimental results 2: Data summarization with complex hierarchies

In this section, we show results on data summarization (aggregation) using algorithms

that fix summarizability issues on complex hierarchies. We compare our approach to

the approaches of Hachicha and Pedersen. Results are shown in Table 2 and Table

3. We use two different settings. In the first setting, we consider one configuration

server and one data shard (Table 2). In the second setting, we consider one configura-

tion server and 5 data shards (Table 3).

We show in the tables, the execution time to compute a pre-aggregate (OLAP cuboid)

on given dimension combinations. We build cuboids on top of each other i.e. we will

compute a cuboid from another existing cuboid that is closer to its granularity of data.

We observe the following results. In the average case, our approach works faster

than the other approaches from state-of-the-art. We also observe that it is faster to

compute top-level cuboids i.e. cuboids that group on few dimensions and top-level

attributes. This is easy to explain, because there is less data. In this case, our ap-

proach performance is comparable with state-of-the-art approaches.

The above observations are true on both settings: single shard and multiple shards.

We can confirm once again that sharding makes computation faster.

Table 2 Cuboids computation times (in seconds) compared on different approaches on single

shard setting with 400 millions documents

Aggregate Pedersen Hachicha SCHC

topic-day-location 21070 19070 18892

topic-month 12067 12067 11857

category-month-location 167 63 64

year-category 109 48 51

avg 33143 31248 30864

Table 3 Cuboids computation times (in seconds) compared on different approaches on 5 shards

setting with 400 millions documents

Aggregate Pedersen Hachicha SCHC

topic-day-location 903 808 604

topic-month 597 534 486

category-month-location 36 23 12

year-category 34 15 10

avg 1570 1308 1112

5! Related Work

In 1997, the summarizability has studied for the first time on multidimensional data

by Lenz and Shoshani [10]. Since then, three approaches for treating the complex

hierarchies have been proposed.

The first approach involves schema normalization. In this solution, two solutions

are proposed. For the first, the authors propose to resolve the problem at the concep-

tual level while defining the rules of constraint and of implementation of the concep-

tual model towards the logic model [7]. In the second solution of normalization, the

principle is to separate the correct hierarchies from the hierarchies susceptible to

cause aggregate calculation errors. In this context, [11] propose to put the non-strict

hierarchies in the new tables, called joint tables also called separated tables by Mali-

nowski and Zimanyi [11]. In 2008, Mazon and al, proposed a conceptual model nor-

malized UML, separating the different associations [13].

In the second approach, data is transformed for treatment of the complex hierar-

chies. This approach requires the modification of the fact-dimension instances. Peder-

son and al were the first to propose a solution for this perspective [15] . Three algo-

rithms were thus proposed, Makecover which is responsible for making the covered

data. Makestrict, is responsible for transforming the multiple hierarchies to the simple

hierarchies. For each element having multiple parents, a parent composed from the

fusion of its parents is created and inserted between the two. The last algorithm

Makeonto is used to manage onto hierarchies [11] In similar work based on the solu-

tion from Pederson, Mansmann and Scholl [10] present a visual tool OLAP which

allows for normalizing, browsing and visualizing the different levels of a hierarchy .

In their graphic structure, each level of the hierarchy is modeled by a directory.

The third solution has to detect the non-strict hierarchies and non-covering hierar-

chies, and resolve them at the moment of aggregate computation. These solutions are

often accompanied by implementation of operators. In 2005, Horner and Song [7]

suggest a script to detect the measures already computed but without ever implement-

ing them. Hachicha and Darmont [6], consider the managing of the summarazibility

issues in the documents XML and propose a projection operator which returns a zero

result in the case of non-strict hierarchies. In a similar way, Hachicha and Darmont,

while drawing from the work of Pederson, propose an operator which operates in

multidimensional data XML, by grouping the parents of an element for a single hy-

brid parent.

The representation of complex hierarchies in conventional relational DBMS turns

out to be very complicated, even more so with the explosion of massive data, the ba-

ses of relational data shows the benefits of difficulty in management of such massive

data. This is why, in this article, we take an interest in a new solution, the systems

NoSQL, which seems to respond to the problem of massive data [19] in particular the

system document-oriented.

6! Conclusions

In this paper, we have studied complex hierarchies and summarization issues in the

context of document-oriented implementations of data warehouses.

First, we have proposed a set of rules to automatically translate the conceptual mul-

tidimensional schema at the level of logic NoSQL document oriented systems. Fur-

thermore we have conducted a set of experiments to study the loading processes and

interrogation. Then, we have tested our approach on datasets with Twitter tweets.

Different volumes have been used. We have used MongoDB as the data base NoSQL.

The first results show that our approach offers the best results and the best analysis.

As for future work we hope to conduct investigations at the level of columns ori-

ented models. These two latter use the versioned values a very interesting point for

updating data warehouses.

7! References

1.! Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, Ronan Tournier. Im-

plementation of multidimensional databases in column-oriented NoSQL systems (ADBIS

2015), Springer, p. 79-91

2.! Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R., Implementing Multidi-

mensional Data Warehouses into NoSQL, 18
th

 Int. Conf. on Enterprise Information Sys-

tems (ICEIS 2016) .

3.! Max Chevalier, Mohammed El Malki, Arlind Kopliku, Olivier Teste, Ronan Tournier. Im-

plementing Multidimensional Data Warehouses into NoSQL (ICEIS 2015).

4.! G. Colliat. OLAP, relational, and multidimensional database systems. SIGMOD Record

25(3), ACM, pp. 64.69, 1996.

5.! Dede, E., Govindaraju, M., Gunter, D., Canon, R. S., Ramakrishnan, L., 2013. Perfor-

mance evaluation of a mongodb and hadoop platform for scientific data analysis. 4
th

Workshop on Scientific Cloud Computing, ACM, pp. 13–20.

6.! Hachicha, M., C. Kit, et J. Darmont (2012). A Novel Query-Based Approach for Addres-

sing Summarizability Issues in XOLAP. In COMAD’12, Pune, India, pp. 56–67. CSI.

7.! Horner, J., I.-Y. Song, et P. P. Chen (2004). An Analysis of Additivity in OLAP Systems.

In DOLAP’04, Washington, DC, USA, pp. 83–91. ACM.

8.! Hurtado, C. A., C. Gutiérrez, et A. O. Mendelzon (2005). Capturing Summarizability with

Integrity Constraints in OLAP. ACM Trans. Database Syst. 30(3), 854–886.

9.! R. Kimball and M. Ross. The Data Warehouse Toolkit: The Definitive Guide to Dimen-

sional Modeling. John Wiley & Sons, 3rd ed., 2013.

10.! Lenz, H.-J. et A. Shoshani (1997). Summarizability in OLAP and Statistical Data Bases. In

SSDBM’97, Olympia, Washington, USA, pp. 132–143. IEEE Computer Society.

11.! Malinowski, E. et E. Zimányi (2006). Hierarchies in a multidimensional model : From

conceptual modeling to logical representation. Data & Knowledge Engineering 59(2),

348–377.

12.! Mansmann, S. et M. H. Scholl (2007). Empowering the OLAP Technology to Support

Complex Dimension Hierarchies. Int. Journal of Data Warehousing and Mining 3(4), 31–

50.

13.! Mazón, J.-N., J. Lechtenbörger, et J. Trujillo (2009). A survey on summarizability issues

in multidimensional modeling. Data & Knowledge Engineering 68(12), 1452–1469.

14.! Morfonios, K., Konakas, S., Ioannidis, Y., Kotsis, N., 2007. R-OLAP implementations of

the data cube. ACM Computing Survey, 39(4), p. 12.

15.! Pedersen T., Jensen Ch., Dyreson C. A foundation for Capturing and Quering Complex

Multidimensional Data. Information Systems, 26(5): 383-423, 2001

16.! Rafanelli, M. et A. Shoshani (1990). STORM : A Statistical Object Representation Model.

In SSDBM’90, Charlotte, USA, Volume 420 of LNCS. Springer.

17.! Ravat, F., Teste, O., Tournier, R., Zurfluh, G.: Graphical Querying of Multidimensional

Databases. In: 11th East-European Conf. on Advances in Databases and Information Sys-

tems (ADBIS), Springer-Verlag, LNCS 4690, pp.298–313 (2007).

18.! Stonebraker, M., New Opportunities for New SQL, in Communications of the ACM,

55(11), ACM, pp. 10–11, 2012.

19.! M. Stonebraker, S. Madden, D.J. Abadi, S. Harizopoulos, N. Hachem and P. Helland. The

end of an architectural era: (it's time for a complete rewrite). 33
rd

Int. conf. on Very large

Data Bases (VLDB), ACM, pp. 1150-1160, 2007.

