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PYRIT: Polynomial Ring Transforms for Fast Erasure Coding

Jonathan Detchart, Jérôme Lacan

ISAE-Supaéro, Université de Toulouse, France

In today’s storage systems, erasure codes are
widely used and provide excellent reliability to fail-
ures. But in return, this kind of technique is limited
by the complexity of the arithmetic used. Most of
the complexity of erasure codes consist in making
linear combinations over a finite field.

Multiplication of field elements can be done us-
ing the xor-based representation or a lookup table
(LUT). Thanks to special SIMD instructions, LUT
is, in most cases the fastest implementation.

We propose the first erasure code based on ring
structures: PYRIT (PolYnomial RIng Transform).
Our solution replaces the multiplication in a finite
field by the multiplication in a bigger ring, and uses
special transforms between fields and rings. Making
multiplications into a ring allows to reduce the com-
plexity of the coding and the decoding processes.
This also allows some optimizations which are not
possible when using a classic xor based implemen-
tation (with multiplication in a field).

Rather than multiplying elements of a finite field,
we use isomorphic functions between a field and a
bigger ring to transform each field element into a
ring element using the following properties:

The finite field with 2m elements has the form
F2m = F2[x]/(p(x)) where p(x) is an irreducible bi-
nary polynomial of degree m.

The polynomial p(x) is necessarily a divisor of a
polynomial x

n +1. Let R2,n denote the ring R2,n =
F2[x]/(xn + 1). It can be shown that the ideal A =
((xn + 1)/p(x)) of R2,n is isomorphic to F2m . This
means that working in a field is (mathematically)
equivalent to working in a (ideal of the) ring.

For polynomials p(x) which have an All-One struc-
ture, like e.g. 1 + x + x

2 + x

3 + x

4, or an Equally-
Space structure like e.g. 1 + x

3 + x

6, we propose
three methods to make the correspondence between
a field and a ring: (1) Embedding, where we just

consider a field element as a ring element, (2) Par-
ity, which consists in adding a parity bit, and (3)
Sparsest representation, which chooses the sparsest
ring element corresponding to the field element. By
extending [2], we apply these functions to the di�er-
ent types of data of the coding process: source data,
encoding/decoding matrices and repair data.

Thanks to the ring structure, the xor-based rep-
resentation of elements is only composed of cyclic
diagonals. Moreover, sparse coding matrices can
be obtained by choosing the adequate field-to-ring
transform. This significantly decreases both encod-
ing and decoding complexities.

By fully exploiting these two properties, we pro-
pose a simple but fast xor-based implementation
based on ring operations. Indeed, by unrolling the
xor operations, the encoding and decoding speeds
can be improved by up to 200% compared to the
best known implementations [1]. The figure below
shows the performance of a code with parameters
(n,k) = (12,8) (i.e. 12 encoding blocks from 8 source
blocks) on an Intel Skylake i6500 3.2 GHz with 16
GB RAM).
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Context

Erasure codes are used in storage systems to cope with failures.They
are based on linear combinations carried out in finite fields.
Problem: multiplications in a finite field are complex.

Objective
Make coding operations as fast as possible by making multiplica-
tions in a ring.

»
Proposal

Pyrit (PolYnomial RIng Transform): the first erasure code based
on ring structures.

1 Moving from a field to a bigger ring.
2 Making multiplications in this ring.
3 Going back from a ring to a field.

Correspondence between a field and a ring

For n odd, if x

n≠1 = �l

i=1pi

(x), where p

i

are irreducible polynomials,
the ring R2,n

= F2[x]/(xn + 1) is equal to the direct sum of the
minimal ideals A

i

= ((xn + 1)/p

i

(x)) for i = 1, . . . , l.
The finite field F2m = F2[x]/(p

i

(x)), where m is the degree of
p

i

(x), is isomorphic to the ideal A

i

.

∆ working in a field is (mathematically) equivalent to working in
a (ideal of the) ring.

For polynomials p

i

(x) which have the property:
• AOP (All-one polynomials) e.g. 1 + x + x

2 + x

3 + x

4

• ESP (Equally Spaced polynomials), e.g. 1 + x

3 + x

6

We propose three methods to make the correspondence between a
field and a ring:

• Embedding: just consider a field element as a ring element
• Parity: add a parity bit
• Sparsest representation: choose the sparsest ring element

corresponding to the field element
We apply these functions for the di�erent types of data of the
coding process: source data, encoding/decoding matrices and repair
data. This can be seen as an extension of [2].

Field vs ring xor-based representations

Improving processing speed

ring operations are faster than field ones:
• Number of xor operations: the sparsest method builds

low-density matrices (gain of 18% above)
• Data organization: the modulo is just a cyclic shift: the

elements are only composed by cyclic diagonals:
• smaller representation in memory
• less branches in the code
• more unrolling

• Easy scheduling: thanks to the cyclic representation of the
matrix elements

These properties allowed us to build a simple and fast C implemen-
tation.

Coding and decoding speeds are compared to [1] (the fastest imple-
mentation we know for erasure codes) for parameters (n, k) = (12, 8)
(i.e. 12 encoding blocks from 8 source blocks) and (60, 40) in figure
below.
Hardware: Intel CPU Skylake i6500 3.2 GHz with 16 GB DRAM.
Our implementation can increase speed by more than 200 %.
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