
                          Kent, C., Lamberts, K., & Patton, R. (2018). Cue quality and criterion setting
in recognition memory. Memory and Cognition, 46(5), 757-769.
https://doi.org/10.3758/s13421-018-0796-6

Peer reviewed version

Link to published version (if available):
10.3758/s13421-018-0796-6

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via SPRINGER at https://link.springer.com/article/10.3758%2Fs13421-018-0796-6 . Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/146503585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3758/s13421-018-0796-6
https://doi.org/10.3758/s13421-018-0796-6
https://research-information.bris.ac.uk/en/publications/cue-quality-and-criterion-setting-in-recognition-memory(e59a9066-1211-4a1c-8760-081c6501aced).html
https://research-information.bris.ac.uk/en/publications/cue-quality-and-criterion-setting-in-recognition-memory(e59a9066-1211-4a1c-8760-081c6501aced).html


 

 

 

 

Running header: Cue Quality and Criterion Setting 

 

Cue Quality and Criterion Setting in Recognition Memory  

 

Christopher Kent 

University of Bristol 

Koen Lamberts 

University of York 

Richard Patton 

University of Bristol 

 

Corresponding author: 

Christopher Kent 

University of Bristol 

12a Priory Road 

Bristol, BS8 1TU 

United Kingdom 

Email: c.kent@bristol.ac.uk  

mailto:c.kent@bristol.ac.uk


 

 

Abstract 

Previous studies on how people set and modify decision criteria in old-new recognition tasks (in 

which they have to decide whether or not a stimulus was seen in a study phase) have almost 

exclusively focussed on properties of the study items, such as presentation frequency or study list 

length.  In contrast, in the three studies reported here, we manipulated the quality of the test cues 

in a  scene recognition task, either by degrading through Gaussian blurring (Experiment 1) or by 

limiting presentation duration (Experiment 2 and 3). In experiments 1 and 2, degradation of the test 

cue led to worse old-new discrimination. Most importantly, however, participants were more liberal 

in their responses to degraded cues (i.e., more likely to call the cue “old”), demonstrating strong 

within-list, item-by-item, criterion shifts. This liberal response bias toward degraded stimuli came at 

the cost of increasing the false alarm rate while maintaining a constant hit rate. Experiment 3 

replicated Experiment 2 with additional stimulus types (words and faces) but did not provide 

accuracy feedback to participants. The criterion shifts in Experiment 3 were smaller in magnitude 

than Experiment 1 and 2 and varied in consistency across stimulus type, suggesting, in line with 

previous studies, that feedback is important for participants to shift their criteria. 
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Cue Quality and Criterion Setting in Recognition Memory 

People often make old-new recognition decisions about stimuli that differ perceptually from the 

original visual experience.  In addition to changes in viewpoint, occlusion or illumination, the 

stimulus material itself can be degraded in a number of ways.   In this article, we report three 

experiments in which we studied the effects of stimulus degradation on old-new recognition 

judgments for visual scenes, words, and faces.  In particular, we were interested in studying whether 

and how people adjust their decision criterion in response to a degraded test presentation. Criterion 

setting is an important area for understanding how people make recognition judgements and 

continues to provide a rich test bed for models of recognition memory (e.g. , Cox & Shiffrin, 2012; 

Hicks & Starns, 2014; Starns, Ratcliff, & White, 2012; Starns, White, & Ratcliff, 2010, 2012).  

However, very few studies have looked at changes in criterion setting due to item specific properties 

at test, instead manipulating properties at study (e.g. item or list strength). 

One study to look at the impact of test stimulus degradation on recognition performance is 

Wolfe and Kuzmova (2011),  who demonstrated that a significant reduction in stimulus resolution 

(from 256 x 256 pixels at study to 32 x 32 pixels at test) still allowed for efficient old-new 

recognition, confirming results previously obtained by Uttl, Graf, and Siegenthaler (2007).  Still, 

despite the robust nature of recognition, it is clear that there must be a level of test item 

degradation so severe that it leads to a significant decline in recognition performance, and we set 

out to explore what form that decline takes.  

Many current accounts of recognition memory are based on some version of signal 

detection theory (SDT; see Malmberg, 2008).  In such accounts, it is usually assumed that the 

stimulus generates a familiarity signal (corresponding to the value of a random variable with a 

particular distribution), and if this signal exceeds a criterion value, an “old” decision is made.  

Recognition models differ in their characterization of the familiarity variable (some models assume 



 

 

that there are other variables at play as well, e.g., Mandler, 1991), but the nature of the task lends 

itself exceptionally well to a characterization in terms of a signal-criterion comparison. 

Within this framework, degradation of a test stimulus can have several possible effects.   

Degradation can lead to weaker familiarity signals for old test items, which would result in poorer 

discriminability of old and new test items.  Test item degradation could also affect the variance of 

the signal distribution.  Finally, degradation of the test stimulus could induce change in the criterion 

that underlies old-new decisions.  It is well known that criterion setting can depend on various 

characteristics of stimulus items and on procedural variables (see Hockley, 2011, for a review).  For 

example, it has been demonstrated that more memorable items are judged against a more 

conservative criterion than less memorable items (e.g., Hirshman, 1995), and that more liberal 

criteria are applied to delayed test items compared to immediate test items (Singer & Wixted, 2006).  

In some circumstances, criterion shifts can occur trial by trial (e.g., Heit, Brockdorff, & Lamberts, 

2003; Hockley & Niewiadomski, 2007), although these shifts may lag considerably behind changes in 

the decision environment (Brown & Steyvers, 2005).  Participants' subjective perception of task 

difficulty (related to perceived memorability of study lists) has also been shown to impact on 

criterion placement (Bruno, Higham, & Perfect, 2009) and there appear to be reliable individual 

differences (e.g., Aminoff et al., 2012, Kanter & Lindsay, 2012, 1014).  Together, these results led us 

to expect that, if a criterion shift occurs in response to variation in test item quality, participants will 

use a more conservative criterion for high-quality test items (i.e., they would need a stronger 

familiarity signal before declaring a test item “old”) than for low-quality test items, where a more 

liberal criterion would apply.  The shift would reflect participants’ anticipation of stronger familiarity 

signals from high-quality old test items than from low-quality old test items (e.g., Brown, Lewis, & 

Monk, 1977).  Such a criterion shift would be compatible with the results of a relevant study by 

Hockley, Hemsworth, and Consoli (1999).  When participants studied normal face stimuli and then 

carried out a recognition task with normal faces and with degraded faces (wearing sunglasses), a 



 

 

mirror effect occurred (see Glanzer & Adams, 1985), with degraded test stimuli producing lower hit 

rates and higher false-alarm rates (Hockley et al., 1999). 

 We carried out three old-new recognition experiments.  In the study phase of the 

experiments, the participants observed a number of images (scenes in all three experiments, and 

also faces and words in Experiment 3).   In the subsequent test phase, images that had been 

presented at study (Old items) were intermixed with unseen images (New items).  The participants 

were asked to decide for each test item whether it was old or new.   In all experiments, some of the 

test images were degraded. Unlike the experiments in Hockley et al. (1999), the whole stimulus was 

degraded, similar to the study by Wolfe and Kuzmova (2011).  In Experiment 1, the degradation was 

done through low-pass Gaussian filtering, blurring the images.  In Experiment 2 and 3, short 

exposure durations were used to reduce perceptual quality.  At short exposure durations, coarse 

stimulus information is likely to be more available for further processing than fine-grained 

information (e.g., Fabre-Thorpe, 2011), and so we expected to find similar degradation effects across 

experiments.  In addition, Experiment 1 and 2 gave trial-by-trial feedback about performance 

(correct/incorrect) at test, whereas Experiment 3 did not provide participants with feedback. 

 

Experiment 1 

Method 

Participants. Thirty nine (29 female) students and research staff from the University of 

Bristol and the University of Warwick participated either in return for course credit or as a volunteer. 

Mean age was 21:3 and all reported normal or corrected-to-normal vision. 

Materials. Stimuli were presented on a Cathode Ray Tube monitor set to 1152 x 864 

controlled via a Pentium class PC running custom written software. Responses were made via a 

mouse connected to the Universal Serial Bus controller of the PC. Stimuli consisted of 128 digital 

photographs of real world scenes taken of four subjects (32 images of each; 2 from each were 

reserved for presentation at the beginning and end of the study list to control primacy and recency 



 

 

effects): traffic scenes, woodland scenes, buildings, and rivers. For the blurred images we applied a 

low-pass Gaussian filter with a standard deviation of 25 pixels.  The complete set of stimuli is 

available on request from the second author. 

Design and Procedure. Test cue quality was manipulated within participants. Sixty old and 

sixty new stimuli were randomly selected from the 120 images for each participant. Of each of the 

60 old and 60 new stimuli, 30 were randomly selected to be blurred.  

 Participants sat alone in a quiet room at a distance of 100 cm from the monitor. The study 

phase consisted of 68 stimulus presentations. Four stimuli, which were not later tested, were 

presented at the start of the list and at the end of the list; these were used to reduce the impact of 

primacy and recency effects. Each study stimulus was presented for 2,000 ms, with an inter-stimulus 

interval of 500 ms consisting of a neutral grey screen.  After the study phase, participants were 

asked to select a mouse button for their ‘old’ responses (the other button being used for ‘new’ 

responses). The test phase then started. Each trial started with the presentation of a black central 

fixation cross on a grey background for 500 ms, followed by a blank grey screen for 100 ms.  The test 

stimulus then appeared, and was displayed until the response was given. Participants were informed 

they should respond as quickly and as accurately as possible. Once participants had made an 

old/new response they were presented with a confidence rating screen, in which they clicked on one 

of four text boxes to indicate how confident they were in the correctness of their response: ‘Guess’, 

‘Maybe’, ‘Probably’, and ‘Definitely’. ‘Correct’/’Wrong’ feedback was then provided centrally for 750 

ms.  Blurred and Clear stimuli were randomly intermixed. The experiment lasted approximately 15 

minutes per participant. 

Results and Discussion 

We first analysed the old/new decision data, without taking into account the confidence 

ratings. Table 1 summarizes the response proportions in the Clear and Blurred conditions, 

respectively, across all participants.  Unlike Hockley et al. (1999), we did not observe a strong mirror 

effect across non-degraded and degraded test stimuli.  The hit rates for clear and blurred old items 



 

 

were very similar, with only slightly more errors in the blurred condition, t(38) = 1.00, p = .33.  

However, for new items, the false alarm rate was higher in the blurred condition (.442) than in the 

clear condition (.227), t(38) = 8.39, p < .001, SEM = 0.03, d = 1.35. Sensitivity (da) and criterion (ca) 

values under a standard Gaussian SDT model were calculated (we used RscorePlus, Harvey, 2010, for 

all signal detection analyses).  As expected, da was significantly higher in the clear condition (0.92 

95%CI± 0.09)1 than in the blurred condition (0.31 ± .08; difference = 0.61 ±0.09), showing that 

blurring was effective in reducing cue quality.  In addition, there was a significant difference in bias 

between the conditions (difference = 0.27 ±0.07), with participants using a more conservative 

criterion in the clear condition (c = 0.23) than in the blurred condition (c = -0.03). 

To better understand the nature of the criterion shift, we extended the analysis to include 

the confidence rating data. The confidence ratings for old and new responses were combined to 

construct a single 8-point scale, with 1 meaning “definitely new” and 8 meaning “definitely old”.  On 

this scale, a value of 4 corresponded to a "guess" rating following a new response, and a value of 5 

represented a "guess" rating following an old response.  Figure 1 shows the proportions of responses 

in the eight confidence categories, as a function of stimulus type (clear vs blurred, and old vs new).  

Not surprisingly, the observers were more reluctant to express high confidence in correct responses 

in the blurred condition than in the clear condition.   The data on the eight-point- scale were then 

used to construct z-ROC curves, on the basis of transformed hit and false alarm rates across different 

levels of confidence (see Macmillan & Creelman, 2005). Figure 2 shows the z-ROCs for the clear and 

blurred test items.  As expected, the z-ROC for the Clear condition shows greater overall 

discriminability than that for the Blurred condition. 

To obtain criterion estimates, a conventional approach is to estimate a separate decision 

criterion for each pair of adjacent scores on the scale (Macmillan & Creelman, 2005).  For an eight-

point scale, this implies that 7 criteria have to be estimated.  The criterion estimates were obtained 

using a variation of the Marquardt method to find maximum-likelihood parameter estimates 

(Harvey, 2010).  The psychophysical model assumed Gaussian distributions and allowed for unequal 



 

 

variances of the “old” and “new” signal distributions.  In each condition (Clear or Blurred), nine 

parameters were estimated (seven criteria, and the mean and variance of the “old” signal 

distribution, assuming without loss of generality that the “new” distribution is standard normal).  

Figure 3 shows an overview of the estimated distributions and criteria for Clear and Blurred test 

items.   The estimated criterion values differ between Clear and Blurred test items (the horizontal 

bars at the top of each criterion line show the 95% CI around the estimated value), with generally 

more conservative settings in the Clear condition than in the Blurred condition.   

A crucial question is why the observed criterion values were chosen.  Confidence criteria can 

be set according to different principles (see Stretch & Wixted, 1998).  A pattern in which the criteria 

are spread further apart in the condition with the smaller discriminability is qualitatively compatible 

with a likelihood-ratio principle (Stretch & Wixted, 1998), according to which participants maintain a 

constant ratio between the likelihood of a test item being "old" versus "new" for each confidence 

criterion, across all test conditions.  We computed log-likelihood ratios for each of the criteria in the 

two conditions in Experiment 1, using the equivalent of Equation A4 in Stretch and Wixted (1998).  

As shown in Figure 4, the likelihood ratios differ between the Clear and Blurred conditions, and the 

results therefore do not support the idea that criteria are set to maintain constant likelihood ratios 

(note that this conclusion rests on the assumption that the standard deviation of the ‘‘new” 

distribution is the same between conditions).  Instead, the criteria seem to reflect the observers' 

desire to maintain a constant hit rate (as shown in Table 1), combined with a general reduction in 

confidence for the blurred stimuli.  It is remarkable that the observers were willing to tolerate a high 

false-alarm rate in the blurred condition to maintain a steady hit rate.  This suggests that, in the 

blurred condition, false alarms (saying "old" to new stimuli) were seen as less problematic than 

misses (i.e., saying "new" to old stimuli).  We will consider the reasons for this in the General 

Discussion. 

 

Experiment 2 



 

 

Experiment 2 was a designed as a replication of Experiment 1.  However, instead of blurring, short 

exposure duration was used to degrade the stimulus percept.   

Method 

Participants. Twenty five (22 female) students from the University of Warwick participated 

in return for course credit. Mean age was 19:3 and all reported normal or corrected-to-normal 

vision. 

Materials. The equipment was identical to Experiment 1. We used the same 128 stimuli, but 

participants only ever saw the clear stimuli. 

Design and Procedure. The design and procedure were identical to Experiment 1, with the 

following exception: In the test phase, instead of using blurred stimuli, we displayed clear stimuli in 

the Short condition for 500 ms, and in the Long condition for 2,000 ms, before removing the 

stimulus from screen. The stimuli assigned to the Short and Long conditions were randomized per 

participant. 

Results and Discussion 

Table 1 shows the proportion of new and old responses as a function of exposure duration.  

Mirroring the effect of blurring in Experiment 1, the hit rate was almost identical at both exposure 

durations, t(19) = 0.69, p = .50, but the false-alarm rate was much higher in the Short condition, t(19) 

= 9.24, p < .001, SEM = 0.04, d = 2.08.  da was significantly lower on Short exposure trials (0.45 ±0.12) 

than on Long exposure trials (1.12 ±0.13; difference = 0.66, ±0.09). The criterion c also differed 

between the conditions (c = -0.28 for the Short and c =0.23 for the long condition, difference = 0.51, 

±0.11), implying that judgments were more liberal in the short exposure condition, replicating the 

effect of blurring in Experiment 1. 

Figure 5 shows the confidence ratings for new and old stimuli as a function of exposure 

duration.  The ratings were calculated in the same way as for Experiment 1.  The pattern of 

responses is similar to that in Experiment 1.  The participants were more reluctant to express high 



 

 

confidence (i.e., respond in categories near 1 or 8) in the short exposure condition than in the long 

exposure condition.  The z-ROCs (see Figure 6) also look similar to those from Experiment 1. 

On the basis of the choices and the confidence ratings, seven criteria were estimated in the 

same way as for Experiment 1.  The criteria are shown in Figure 7, and the corresponding log-

likelihood ratios in Figure 8.  There is a clear shift towards more liberal criteria in the short exposure 

condition, but there is again no evidence for the likelihood-ratio principle.  Altogether, the results of 

Experiment 2 are remarkably similar to those from Experiment 1, despite the use of a different 

method for degrading the perceptual quality of the stimuli.   

  The results from the two experiments and the model-based analyses demonstrate that 

degradation of test items (by blurring or by limiting exposure duration) affected the criterion for 

deciding whether a stimulus had been seen before or not.  If the test item was degraded, a more 

liberal criterion setting was used.  Moreover, the criterion shift occurred at all reported levels of 

confidence in the recognition judgments.  The question that arises immediately is why the 

participants shifted criteria in this way.  Why were degraded items more likely to be declared "old" 

than non-degraded items? 

We have ruled out an explanation in terms of likelihood-ratio preservation; the participants 

did not set confidence criteria to maintain a constant ratio of the likelihoods that a test item was old 

or new.  Instead, the effect of the criterion shift was that the hit rate (correct recognition of old 

items) remained almost constant across all items in each experiment, whereas the false-alarm rate 

(incorrect recognition of new items) was considerably higher for degraded items.  To understand this 

pattern of results better, it is helpful to consider hit and false-alarm rates for degraded and non-

degraded test items at each level of expressed confidence, as shown in Figures 9 (Experiment 1)  and 

10 (Experiment 2).  In both experiments, hit rates were higher at higher levels of confidence, with 

relatively small differences in hit rates between non-degraded and degraded test items.  False alarm 

rates, on the other hand, showed a different pattern.  In both experiments, the difference in false-

alarm rates between non-degraded and degraded items was much greater at high levels of 



 

 

confidence.  The observers maintained similar hit rates across levels of degradation at the expense 

of variation in the false-alarm rates.  The criterion shifts we observed are consistent with an 

interpretation in terms of anticipated strength of the familiarity signal for old items.  If the 

participants expected that old degraded stimuli would not feel as familiar as old non-degraded 

stimuli, they would shift their criteria to ensure that the weaker familiarity signal still produced a 

good number of hits for old items.  Observers would be prepared to tolerate the higher false-alarm 

rates for new items to achieve consistent hit rates for old items.  In a more general sense, the results 

would thus provide another example of a criterion shift because of variation in perceived task 

difficulty (e.g., Bruno et al., 2009).  

 

Experiment 3 

 

In Experiments 1 and 2, we gave participants accuracy feedback after each response, which 

would have provided a cue as to the task difficulty for each item type and may have facilitated the 

criterion shift. Previous research indicates that feedback is necessary for participants to demonstrate 

substantial criterion shifts (Estes & Maddox, 1995; Rhodes & Jacoby, 2007; Verde & Rotello, 2007). 

For example, Verde and Rotello (2007) failed to find a criterion shift in four experiments involving 

strong and weak study items (through manipulating stimulus frequency and duration) in which the 

test block was split by item type, even when they cued strength by using different semantic 

categories for strong and weak items. In a fifth experiment Verde and Rotello provided accuracy 

feedback and found sizeable criterion shifts.  In Experiment 3, we test whether the criterion shifts 

observed in Experiment 1 and 2 were contingent on the availability of immediate accuracy feedback.  

Experiment 3 was a replication of Experiment 2, without accuracy feedback given to participants. In 

addition, we used three stimulus types (the scenes from Experiments 1 and 2, faces, and words) to 

further test the generality of the results from Experiments 1 and 2.  

 



 

 

Method 

 Participants. Thirty three (23 female) students from the University of Bristol and members 

of the Bristol public participated voluntarily. Mean age was 31 and all participants reported normal 

or corrected-to-normal vision and were fluent English speakers. 

 Materials. The equipment was identical to that in Experiments 1 and 2. Stimuli consisted of 

80 woodlands scenes, 80 faces, and 80 words (randomly assigned to Old and New stimuli for each 

participant). The scenes were similar to the woodlands scenes used in Experiment 1 and 2. We used 

both male and female face stimuli (including hair and external features) chosen from the Glasgow 

Unfamiliar Face Database (Burton, White, and McNeill, 2010) that were not highly confusable. We 

selected 6-letter words from the MRC Psycholinguistic Database (Coltheart, 1981) with a Kücera-

Francis frequency ranging from 10 to 13. Words were presented in the centre of the screen in size 48 

Arial font. 

 Procedure. The procedure was identical to Experiment 2, with a few modifications. First, in 

the Short condition, stimuli were shown for 50 ms, instead of 500 ms. Second, participants were 

asked to respond ‘New’, ‘Know’, or ‘Remember’ by mouse clicking on the relevant box displayed on 

screen after the stimulus display, instead of responding ‘New or ‘Old’. For the purposes of this study, 

we collapse ‘Know’ and ‘Remember’ responses into ‘Old’ responses to enable comparison with 

Experiments 1 and 23. Most importantly, participants were not given feedback as to the accuracy of 

their response. Instead the next trial started after a 500 ms inter-trial delay once the confidence 

judgement had been given. Stimulus type was randomly interleaved at both study and test. 

Results and discussion 

 Table 2 shows the hit and false-alarm rates for the three stimulus type in the Short and Long 

exposure duration conditions of Experiment 3. A 3 (Stimulus Type) x 2 (Duration) repeated measure 

analysis of variance (ANOVA) indicated a reliable main effect of Stimulus Type, F(2, 64) = 7.16, p = 



 

 

.002, MSE = .029, 𝜂𝑝
2 = .18, with a higher hit rate for Words (.72) and Faces (.71) than for Scenes 

(.62). Importantly, there was a main effect of Duration on hit rate, F(1, 32) = 17.73, p < .001, MSE = 

.016, 𝜂𝑝
2 = .40, with a higher hit rate in the Long condition (.72) than in the Short condition (.65). 

There was also an interaction between Stimulus Type and Duration, F(2, 64) = 3.38, MSE = .012, 𝜂𝑝
2 = 

.096, with the largest Duration effect for the Face stimuli. Because of the interaction we analysed 

each stimulus type separately.  There was no reliable difference in hit rate between the Short and 

Long conditions for the Scene stimuli, t(32) = 1.40, p = .170, and for the Word stimuli,  t(32) = 2.00, p 

= .054, replicating the findings from Experiment 1 and Experiment 2. However, for the Face stimuli 

there was an effect of Duration, t(32) = 4.47, p < .001, SEM = .030, d = 0.79, with a higher hit rate in 

the Long condition (.76) compared with the Short condition (.64). 

A similar analysis for the false-alarm rates showed no difference across Stimulus Type, F(2, 

64) = 2.13, p = .127, a main effect of Duration, F(1, 32) = 6.00, p = .020, MSE = .019, 𝜂𝑝
2 = .16, with 

more false-alarms in the Short condition (.38) compared to the Long condition (.34), replicating 

Experiments 1 and 2. There was also an interaction between Stimulus Type and Duration, F(2, 64) = 

4.54, MSE = .014, 𝜂𝑝
2 = .12, with the difference in false-alarm rate greatest for the Scene stimuli. We 

analysed the false-alarm rates separately for each stimulus type. For the Scene stimuli, there were 

more false alarms in the Short condition (.43) than in the Long condition (.32), t(32) = 2.65, p = .012, 

SEM = .042, d = .46. For the Face stimuli, there were also more false alarms in the Short condition 

(.42) compared to the Long condition (.36), t(32) = 2.09, p = .044, SEM = .030, d = .36. However, for 

the Word stimuli, there was no difference in false-alarm rates between Durations, t(32) = 1.11, p = 

.276.  

Overall, the pattern of results is similar to that in Experiments 1 and 2, with the exception of 

the hit rate for face stimuli and false-alarm rate for the word stimuli. However, the hit rates did have 

a tendency to be higher for the Long duration condition and false-alarm rate differences were much 

smaller than those observed in Experiments 1 and 2. The average difference in hit rates between the 



 

 

Short and Long condition was .02 for Experiment 2, and .08 for Experiment 3. The average difference 

in false-alarm rates was .34 in Experiment 2 and .05 in Experiment 3. 

For the Scene stimuli, da was higher in the Long condition (0.82 ±.11) than the Short 

condition (0.37 ±.12; difference = 0.45 ±0.13). For the Face stimuli, da was also higher in the Long 

condition (1.12, ±.12) than in the Short condition (0.53 ±.11; difference = 0.59 ±0.13). However, for 

the Word stimuli, the difference between the Long condition (1.16 ±0.12) and the Short condition 

was not statistically reliable (1.06 ±0.12; difference= 0.10 ±0.13). This may reflect the fact that 

unmasked words can typically be identified after just 60 ms of exposure (e.g., Rayner, Liversedge, 

White, & Vergilino-Perez, 2003). For the Scene stimuli, there was a reliable difference in bias 

between the Long condition (c = 0.05 ±0.003) and Short condition (c = -0.04 ±0.003, difference= 0.09 

±0.004) with participants using a more liberal criterion in the short condition. The same pattern of 

bias was found for the Face stimuli (Short = -0.20 ±0.003; Long = -0.08 ±0.003; difference= 0.11 

±0.004) and Word stimuli (Short = -0.11 ±0.003; Long = 0.002 ±0.003; difference= 0.12 ±0.004). Thus, 

despite the lack of difference in discriminability between the Long and Short conditions for the Word 

stimuli, participants still shifted their criteria, presumably because of the perceived increased 

difficulty of the Short condition. 

Figure 11 shows the confidence ratings for each Stimulus type for each Duration condition. 

For the Scenes and Faces, the pattern is similar to that shown in Figure 1 (Experiment 1) and Figure 5 

(Experiment 2) with participants more reluctant to express higher levels of confidence (1 or 8) in the 

Short conditions compared to the Long conditions. However, for the Word stimuli the patterns 

across both Short and Long exposures were very similar, with only a slightly greater reluctance (a 

reduction of 6%) to use the extreme responses in the Short condition. Figure 12 shows the Z-ROC 

curves for each stimulus type and each exposure duration. Again, for the Scenes and Faces the 

pattern is very similar to Figure 2 (Experiment 1) and Figure 6 (Experiment 2) apart from for the 

Word stimuli, where the two Z-ROC curves lie on top of each other, reflecting the lack of difference 



 

 

in discriminability between the Long and Short exposures. Figure 13 shows the seven criteria 

estimates for each exposure and stimulus type and the corresponding log-likelihood ratios are given 

in Figure 14. For the Scene and Face stimuli the patterns are similar to Figures 3 and 4 (Experiment 1) 

and Figures 7 and 8 (Experiment 2), except for the central response criteria, which do not shift much 

between the Short and Long exposures. For the Word stimuli, the criteria were largely the same in 

both the Short and Long conditions, with the Log Likelihood ratio preserved, except for the two most 

extreme criteria (‘Definitely Old’ and ‘Definitely New’). Overall, the pattern of results from the 

Scenes and Faces is broadly similar to Experiment 1 and 2, but for Words the test cue degradation 

appeared to have been less effective, presumably because participants were able to encode the 

word within the 50 ms presentation window in the Short condition. 

 

General Discussion 

Across the three experiments, we found evidence for within subject, trial-by-trial, criterion 

shifts in response to degradation of a test cue. The criterion shifts were largest when feedback was 

available (Experiments 1 and 2) and diminished when feedback was absent (Experiment 3). 

Experiments 1 and 2 did not produce mirror effects similar to those obtained by Hockley et al. 

(1999).  However, in a recent follow-up study, Vokey and Hockley (2012) demonstrated that the 

previously observed mirror effects for partially obscured faces actually consists of two separable 

processes (differences in discrimination and changes in decision criteria), and are therefore more 

complex than initially assumed.   Still, Vokey and Hockley (2012) came to the conclusion that their 

participants were likely to have adopted a more liberal criterion for degraded test items.  Analysis of 

Experiments 1 and 2 apparently provide strong evidence in support of that conclusion, using 

different stimuli (scenes), degrading the whole stimulus, and using two different methods of 

degradation, both avoiding the confounds that occurred in the original study by Hockley et al. (1999; 

see Vokey & Hockley, 2012, for a discussion). Experiment 3, however, showed more typical mirror 

effects with lower hit rates and higher false alarms in the degraded conditions as well as criterion 



 

 

shifts (except for the Words which showed slightly more false alarms in the non-degraded 

condition). Experiment 3 therefore provides evidence that feedback is important. When accuracy 

feedback was not given, the criterion shifts were smaller, but, unlike previous experiments (e.g. 

Verde & Rotello, 2007), there were still reliable shifts in criteria (at least for the faces and scenes) 

despite the lack of feedback. Feedback presumably acts to provide a clearer insight into the 

differential levels of performance across trials types (durations), and hence allows participants to 

better gauge the need for differential criteria depending on the trial type. This has important 

implications for real-world applications, where immediate and consistent feedback is usually not 

available. 

In the modelling, we have assumed that familiarity of new degraded and non-degraded test 

items is the same, by assuming identical means and variances of the no-signal distributions.  An 

alternative assumption (following Vokey & Hockley, 2012) could be that new degraded items are less 

familiar than new non-degraded items.  In the SDT modelling, this assumption would be 

implemented by allowing the non-signal distribution means and variances to vary between degraded 

and non-degraded items.  However, such a generalized model cannot be identified, which is 

problematic and the main reason for assuming identical no-signal distributions.  Regardless, the 

(untested) distributional identity assumption is by no means problematic for our conclusions about 

criterion shifts.  If it is the case that new degraded stimuli are less familiar than new non-degraded 

stimuli, the results could only be explained if the criterion shifts were even stronger than we have 

inferred.  In that sense, the equal-familiarity assumption is a safe assumption to make. 

However, it is also possible that the New degraded items are in fact more familiar than New 

non-degraded items, perhaps because the degradation removes or prevents encoding of critical 

distinguishing features2. Such a pattern of results would be compatible with differentiation models 

of episodic memory (e.g. McClelland & Chappell, 1998; Shiffrin & Steyvers, 1997) in which the list 

strength mirror effect is due to the stronger encoding of more memorable items (increasing the hit 

rate) which reduces the similarity to New items following a strong list (reduced false alarm rate; see 



 

 

Criss, 2006, for an overview). Thus, when a degraded New item is shown, it appears more familiar 

than a non-degraded New item, increasing the likelihood of a false alarm. Because there was no 

manipulation at encoding, all Old items have the same level of encoding and thus, according to 

differentiation models, the hit rate should not be different between degraded and non-degraded 

items. The data from Experiment 1 and 2 do not allow us to conclusively rule out this explanation. 

However, the importance of feedback in modulating the pattern of false alarms and hit rates (from 

Experiment 3) is consistent with a flexible decision process, rather than as a consequence of 

differential encoding. Experiment 3 demonstrated a (albeit smaller) criterion shift (measured by c) 

across all stimulus types between the short and long duration conditions. For the scene and face 

stimuli there was also evidence of individual confidence criteria shifting. The scene stimuli largely 

followed the pattern of Experiment 1 and 2, with hit rate remaining constant across durations, but 

the false alarm rate higher in the short duration compared to the long duration condition. The face 

stimuli however, showed a more typical mirror effect, with both a change in the hit rate and false 

alarm rate across conditions. Although the word stimuli showed a small criterion shift (measured by 

c), there was no effect on either the hit rate or the false alarm rate, and minor changes in individual 

confidence criteria. Thus, it appears possible that there are stimulus-specific effects, such that 

participants can hold multiple criterion across both cue quality and stimulus type. But it is likely that 

the difference in discriminability between the cue quality conditions determines whether 

participants maintain multiple criterion within a stimulus type or not rather than stimulus type per 

se.  

Better understanding the role of strategic shifts in the decision process is clearly an 

important goal for future studies in deciding between competing models of episodic memory. Our 

initial explanation that participants attempt to hold the hit rate constant for scene stimuli 

(Experiments 1, 2) does not appear to generalise to other stimulus types (words and faces, 

Experiment 3). It might be that providing explicit feedback allows participants to shift their criteria 

for words and faces as well (especially if the differences in discriminability between the cue quality 



 

 

conditions is large). If the words were sufficiently dissimilar and the duration insufficiently short to 

impact encoding at test, then we might expect (as we observed) no differences in discriminability or 

significant criteria shifts. For faces and scenes however, where discriminability was lower in the 

short duration condition, this may encourage a shift in criteria. This does not explain why the mirror 

effect was observed for faces but not scenes, but this result should be interpreted with caution given 

that the pattern of hits and false alarm rates for the scene stimuli did move in the direction of a 

mirror effect. The scene stimuli had the lowest level of discriminability across all experiments, and 

this is likely to encourage participants to use different criteria, especially with a perceived (and 

actual) large difference between short and long duration trials. This perceived difference in 

discriminability is likely to be a factor in determining the size of criteria shifts, and would have been 

smallest in Experiment 3, perhaps contributing to the smaller and less consistent criterion shifts. 

 Our results may have important implications for realistic old-new recognition tasks, such as 

those that may occur in forensic circumstances.  While it is well established that encoding factors 

(such as distance and lighting of an object) can have an impact on recognition judgments in forensic 

settings (e.g. Loftus & Harley, 2005) it is less well understood how perceptual factors at retrieval 

impact on recognition. Our findings show that, for example, if a witness were asked to identify a 

vehicle involved in a hit-and-run collision on the basis of a poor-quality image, the probability of a 

false positive identification would be higher than if a high-quality image were used, even in the 

absence of feedback. Future work will need to establish how this generalises to other stimulus types. 
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Footnotes 

1 We report ±95% confidence intervals throughout where appropriate. 

2 We thank two anonymous reviewers for pointing this out. 

3 As expected correct Remember responses (i.e. Remember to Old stimuli) were associated with 

greater confidence than correct Know responses (i.e. Know to Old stimuli), 62% ‘Definitely 

Confident’ versus 15% ‘Definitely Confident’, for the Remember and Know responses respectively. 

For Old stimuli across all stimulus types and durations, participants used the Know response on 31% 

of trials, and the Remember response on 37% of trials. Across stimulus types, for all correct ‘Old’ 

responses (i.e. Remember or Know to Old stimuli) the proportion of Know responses was greater in 

the Speeded (53%) condition than in the Unspeeded (39%) condition. Across durations, for all 

correct ‘Old’ responses, there were more Know responses for Scenes (57%) than for Faces (45%) 

than Words (36%). 
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Table 1. Hit and False Alarm Rates to Clear and Blurred Stimuli in Experiment 1 and Long and Short 

Stimuli in Experiment 2.  

 Experiment 1 Experiment 2 

 Clear Blurred Long Short 

Hit Rate .610 

.227 

.584 

 .442 

.658 

.192 

.680 

.533 False Alarm Rate 

  



 

 

Table 2. Proportion of Hit and False Alarm Rates for Experiment 3. 

 Scenes Faces Words 

 Long Short Long Short Long Short 

Hit Rate .64 .60 .78 .64 .75 .70 

False Alarm Rate .32 .43 .36 .42 .33 .30 

 

  



 

 

Figure List 

Figure 1. Proportion of responses at each confidence level for Old Stimuli (broken lines) and New 

Stimuli (filled lines) in the Clear (top panel) and Blurred (bottom panel) conditions of Experiment 1. 

 

Figure 2. Z-ROC curves calculated on the seven confidence ratings for the Clear (filled lines) and 

Blurred (broken lines) conditions from Experiment 1. 

 

Figure 3. Estimated distributions and criteria for Clear (top panel) and Blurred (bottom panel) test 

items from Experiment 1. Distributions to the right are Old Stimuli and distributions to the left New 

Stimuli. The seven criteria are shown as vertical lines. The horizontal lines show the standard errors 

of the criterion estimates. 

 

Figure 4. Log-likelihood ratios for each confidence criterion (c) in the Clear and Blurred conditions of 

Experiment 1. 

 

Figure 5. Proportion of responses at each confidence level for Old Stimuli (broken lines) and New 

Stimuli (filled lines) in the Long (top panel) and Short (bottom panel) exposure conditions of 

Experiment 2. 

 

Figure 6. Z-ROC curves calculated on the seven confidence ratings for the Long (filled lines) and Short 

(broken lines) exposure conditions from Experiment 2. 

 

Figure 7. Estimated distributions and criteria for Long (top panel) and Short (bottom panel) exposure 

conditions from Experiment 2. Distributions to the right are Old Stimuli and distributions to the left 

New Stimuli. The seven criteria are shown as vertical lines. The horizontal lines show the standard 

errors of the criterion estimates. 



 

 

 

 

Figure 8. Log-likelihood ratios for each confidence criterion (c) in the Short and Long exposure 

conditions of Experiment 2.  

 

Figure 9. Proportion of False Alarms (top panel) and Hits (bottom panel) as a function of confidence 

level for the Clear (broken line) and Blurred (filled line) conditions in Experiment 1. 

 

Figure 10. Proportion of False Alarms (top panel) and Hits (bottom panel) as a function of confidence 

level for the Long (broken line) and Short (filled line) conditions in Experiment 2. 

 

Figure 11. Proportion of responses at each confidence level for Old Stimuli (broken lines) and New 

Stimuli (filled lines) in the Long (left panel) and Short (right panel) conditions of Experiment 3 for 

each Stimulus type (rows). 

 

Figure 12. Z-ROC curves calculated on the seven confidence ratings for the Long (filled lines) and 

Short (broken lines) conditions from Experiment 3 for each Stimulus type. 

 

Figure 13. Estimated distributions and criteria for Long (top row) and Short (bottom row) test items 

from Experiment 3 for each stimulus type (column). Distributions to the right are Old Stimuli and 

distributions to the left New Stimuli. The seven criteria are shown as vertical lines.  The horizontal 

lines show the standard errors of the criterion estimates. 

 



 

 

Figure 14. Log-likelihood ratios for each confidence criterion (c) in the Long and Short conditions of 

Experiment 3 for each stimulus type. 



 

 

 

Figure 1. Proportion of responses at each confidence level for Old Stimuli (broken lines) and New 

Stimuli (filled lines) in the Clear (top panel) and Blurred (bottom panel) conditions of Experiment 1. 
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Figure 2. Z-ROC curves calculated on the seven confidence ratings for the Clear (filled lines) and 

Blurred (broken lines) conditions from Experiment 1. 
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Figure 3. Estimated distributions and criteria for Clear (top panel) and Blurred (bottom panel) test 

items from Experiment 1. Distributions to the right are Old Stimuli and distributions to the left New 

Stimuli. The seven criteria are shown as vertical lines.  The horizontal lines show the standard errors 

of the criterion estimates. 
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Figure 4. Log-likelihood ratios for each confidence criterion (c) in the Clear and Blurred conditions of 

Experiment 1. 
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Figure 5. Proportion of responses at each confidence level for Old Stimuli (broken lines) and New 

Stimuli (filled lines) in the Long (top panel) and Short (bottom panel) exposure conditions of 

Experiment 2. 
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Figure 6. Z-ROC curves calculated on the seven confidence ratings for the Long (filled lines) and Short 

(broken lines) exposure conditions from Experiment 2. 
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Figure 7. Estimated distributions and criteria for Long (top panel) and Short (bottom panel) exposure 

conditions from Experiment 2. Distributions to the right are Old Stimuli and distributions to the left 

New Stimuli. The seven criteria are shown as vertical lines.  The horizontal lines show the standard 

errors of the criterion estimates. 
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Figure 8. Log-likelihood ratios for each confidence criterion (c) in the Short and Long exposure 

conditions of Experiment 2.  

  



 

 

 

Figure 9. Proportion of False Alarms (top panel) and Hits (bottom panel) as a function of confidence 

level for the Clear (broken line) and Blurred (filled line) conditions in Experiment 1. 
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Figure 10. Proportion of False Alarms (top panel) and Hits (bottom panel) as a function of confidence 

level for the Long (broken line) and Short (filled line) exposure conditions in Experiment 2. 
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Figure 11. Proportion of responses at each confidence level for Old Stimuli (broken lines) and New 

Stimuli (filled lines) in the Long (left panel) and Short (right panel) conditions of Experiment 3 for 

each Stimulus type (rows). 

  



 

 

 

Figure 12. Z-ROC curves calculated on the seven confidence ratings for the Long (filled lines) and 

Short (broken lines) conditions from Experiment 3 for each Stimulus type. 



 

 

 

Figure 13. Estimated distributions and criteria for Long (top row) and Short (bottom row) test items from Experiment 3 for each stimulus type (column). 

Distributions to the right are Old Stimuli and distributions to the left New Stimuli. The seven criteria are shown as vertical lines.  The horizontal lines show 

the standard errors of the criterion estimates.  
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Figure 14. Log-likelihood ratios for each confidence criterion (c) in the Long and Short conditions of 

Experiment 3 for each stimulus type. 

 

 

 


