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S1. Supplementary discussion 

 

Note: all references are listed in the main text. 

 

S1.1. Supplementary discussion of data acquisition 

The main factors that led to incomplete data acquisition were related to overlaps of fish, 

reflections on the water surface and our stringent condition that all individuals had to be 

tracked for data to be used. Improved video quality and tracking technology that has been 

developed since the data for this study were collected would help to address the data 

acquisition issues we faced (Dell et al., 2014). 

 

S1.2. Numerical robustness of likelihood maximization 

Following established methodology (e.g. Langrock et al., 2014), we performed the maximum 

likelihood fit of our models by numerically minimising the negative log-likelihood of models 

using the function ‘nlm’ in the R programming environment (version 3.01; R Core Team, 

2012). The number of parameters in our models (in particular model 3) meant the likelihood 

functions were potentially highly complex. Consequently, the convergence results of our 

optimisation routine could be sensitive to the starting values used for the model parameters. 

To increase the robustness of our maximum likelihood estimation (MLE), we performed it on 

ten distinct and randomly chosen sets of starting values for the model parameters. We then 

selected the highest likelihood from these ten replicate MLEs (if they differed across sets of 

starting values). We used the same set of ten starting values for parameters in all MLEs. 

Starting values for the means and standard deviations of speed distributions associated with 

different states were sampled from U(0.001,4.0) (a uniform distribution taking values 

between 0.001 cm/s and 4.0 cm/s) for guppies and from U(0.001,20.0) for sticklebacks.  

Similarly, the starting values for the parameters related to the transition probabilities were 

sampled from U(0.7,1.0) and U(0.001,0.2) for diagonal and off-diagonal entries of the 

transition probability matrix, respectively. Subsequently, this randomly generated matrix was 

normalised to ensure transition probabilities for each state in the model summed up to one. 
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S2. Supplementary tables 

 

Table S1: Parameter estimates from maximum likelihood fits to the guppy data of the three 

statistical models. Models 2 and 3 are HMMs and include estimated transition probabilities. 

The notation pxy denotes the probability of a transition from state x to state y. Consequently, 

pxx denotes the probability of remaining in state x. Parameters are rounded to two significant 

figures, except for very small transition probabilities in model 3. 

 

Parameter Description Estimates 

Model 1  AIC= 1,560,057 

μ Gamma mean 2.31 cm/s 

σ Gamma standard deviation 2.92 cm/s 

Model 2  AIC= 1,204,308 

μ1, μ2 Gamma mean for states 1 

and 2 

3.05 cm/s, 0.22 cm/s 

σ1, σ2 Gamma standard deviation 

for states 1 and 2 

2.40 cm/s, 0.30 cm/s 

 Transition probabilities p11=0.98 p12=0.02 

p21=0.06 p22=0.94 
 

Model 3  AIC= 1,196,784 

μ1, μ2 Gamma mean for states 1 

and 2 

2.96 cm/s, 0.20 cm/s 

σ1, σ2, σ3 Gamma standard deviation 

for states 1, 2 and 3 

2.34 cm/s, 0.27 cm/s, 1.24 cm/s 

 Transition probabilities p11=0.95 p12=0.01 p13=0.04 

p21=0.05 p22=0.95 p23=2.61x10-27 

p31=0.44 p32=6.75x10-8 p33=0.56 
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Table S2: Parameter estimates from maximum likelihood fits to the stickleback data of the 

three statistical models. We use the same notation as in Supplementary table S1. 

Parameter Description Estimates 

Model 1  AIC= 1,717,081 

μ Gamma mean 11.60 cm/s 

σ Gamma standard deviation 8.33 cm/s 

Model 2  AIC= 1,567,679 

μ1, μ2 Gamma mean for states 1 

and 2 

15.67 cm/s, 6.38 cm/s 

σ1, σ2 Gamma standard deviation 

for states 1 and 2 

4.58 cm/s, 5.21 cm/s 

 Transition probabilities p11=0.94 p12=0.06 

p21=0.06 p22=0.94 
 

Model 3  AIC= 1,503,395 

μ1, μ2 Gamma mean for states 1 

and 2 

14.45 cm/s, 5.59 cm/s 

σ1, σ2, σ3 Gamma standard deviation 

for states 1, 2 and 3 

4.06 cm/s, 4.92 cm/s, 3.20 cm/s 

 Transition probabilities p11=0.75 p12=0.01 p13=0.24 

p21=0.02 p22=0.86 p23=0.12 

p31=0.14 p32=0.07 p33=0.79 
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S3. Supplementary figures 

 

 

 
Supplementary figure S1: Permutation test results for the improvement in AIC between 

models 2 and 3 for (a) guppy and (b) stickleback data. We test whether the change in AIC, 

denoted ΔAIC, between models 2 and 3 is larger than expected by chance. The figure shows 

ΔAIC on a natural logarithm-scale. We test the hypothesis that the observed ΔAIC (shown as a 

vertical blue dashed line) is no larger than we would expect under random pairings of 

individual speeds and nearest neighbour speeds. We fit model 3 to randomised data in which 

these speed pairings have been shuffled and record if ΔAIC of this model fit compared to 

model 2 was larger than ΔAIC observed for the original data. Each histogram shows the ΔAIC 

obtained from n=100 repetitions of this randomisation procedure. ΔAIC from data 

randomisations is always substantially lower than the observed ΔAIC, leading to p-values of 

0. 
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Supplementary figure S2: Robustness analysis for parameter estimates from model 3 for the 

guppy data. We randomly select 30% of all data points and remove them before fitting the 

model. We perform n=100 repetitions of this procedure which leads to a distribution of 

parameter estimates. These distributions for the 11 parameters required for model 3 are 

shown in panels (a)-(k). Parameters are indicated on the x-axis label. Blue vertical dashed 

lines in panels indicate the parameter estimate for the full data set. In panels, we indicate the 

difference between the parameter estimate for the full data and the mean parameter estimate 

from our randomisation procedure. We find that the parameter estimates for the non-social 

behavioural states in model 3 are robust to reducing the amount of available data (panels a-d, 

f-i). Parameters describing the social state change somewhat under our randomisation 

procedure (panels e, j, k). One explanation for this reduced robustness in parameter estimates 

could be the low frequency of social behaviour (about 1% of all data points, see main text). 
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Supplementary figure S3: Robustness analysis for parameter estimates from model 3 for the 

stickleback data. The data are displayed in the same way as in supplementary figure S2. 

There is no evidence for substantial shifts in parameter estimates when 30% of data points are 

removed, as described above. 

 



7 

 

 
Supplementary figure S4: Cumulative distribution functions for individual speeds in the 

Viterbi-decoded states from the fit of model 3 to the guppy data. We repeat the analysis 

shown in figure 4(a-c) in the main text, but for a step of 0.5 s (a-c) and a step of 2.0 s (d-f) 

between consecutive data points. The Pearson’s correlation coefficients in the data at lags 0.5 

s and 2.0 s are 0.65 and 0.42, respectively. The number of data points n obtained is shown in 

each panel. Panels (a,d) and (b,e) show the Viterbi-decoded speed distributions in states 1 and 

2, respectively. Panels (c,f) show data for the social state 3. Insets show the corresponding 

distributions on the same x-axis as the main plot. We indicate the number of data points n 

used in each panel. Results are qualitatively similar to the ones presented in the main text. 
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Supplementary figure S5: Same as figure S4, but for stickleback data. We repeat the 

analysis shown in figure 4(d-f) in the main text, but for a step of 0.5 s (a-c) and a step of 2.0 s 

(d-f) between consecutive data points. The Pearson’s correlation coefficients in the data at 

lags 0.5 s and 2.0 s are 0.78 and 0.56, respectively. Results are qualitatively similar to the 

ones presented in the main text, with the exception of panel (c). This indicates that the speed 

distribution in the social state (state 3) has three modes when considering data points 0.5 s 

apart. However, it should be noted that for this time step, the data are highly auto-correlated, 

which we do not account for in our models. 
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Supplementary figure S6: Examples for guppy (a-c) and stickleback (d-f) trajectories with 

Viterbi-decoded states from the fit of model 3 to the data. We show trajectories constructed 

from 10 regularly spaced positions over 10.0 s with a step of 1.0 s between consecutive data 

points. Trajectories for different fish are shown in different colours and increasing symbol 

sizes on trajectories indicates the progression of time. Fish IDs (colours) are not preserved 

across the figure panels. The symbols used for inferred behavioural states are shown in panel 

(a). Tank boundaries are indicated in grey. We show the same guppy data as in figure 1 in the 

main text. Stickleback data are from the first experimental trial conducted. Panels (d), (e) and 

(f) show trajectories starting 21.4 s, 177.7 s and 188.7 s after the start of the trial. In the 

guppy trajectories, states 1 and 2, as well as infrequent changes between these states can be 

seen in panels (a-c). The stickleback trajectories, panels (d-f), show all three behavioural 

states, as well as changes between states. 

 

 

 


