

Fowler, E., Kong, C., Hancox, J., & Cannell, M. (2018). Late Ca2+ Sparks and Ripples During the Systolic Ca2+ Transient in Heart Muscle Cells. *Circulation Research*, *122*, 473-478. https://doi.org/10.1161/CIRCRESAHA.117.312257

Publisher's PDF, also known as Version of record

License (if available): CC BY Link to published version (if available): 10.1161/CIRCRESAHA.117.312257

Link to publication record in Explore Bristol Research PDF-document

This is the final published version of the article (version of record). It first appeared online via AHA at https://doi.org/10.1161/CIRCRESAHA.117.312257 . Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

SHORT COMMUNICATION

Late Ca²⁺ Sparks and Ripples During the Systolic Ca²⁺ Transient in Heart Muscle Cells

Ewan D. Fowler, Cherrie H.T. Kong, Jules C. Hancox & Mark B. Cannell

School of Physiology, Pharmacology & Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.

Running title: Late Ca²⁺ Sparks and Ripples in Heart

Subject Terms:

Basic Science Research Calcium Cycling/Excitation-Contraction Coupling Myocardial Biology Physiology

Address correspondence to:

Dr. Mark B Cannell School of Physiology, Pharmacology & Neuroscience Faculty of Biomedical Sciences University of Bristol University Walk Bristol BS8 1TD +44 (0) 117 331 1894 United Kingdom mark.cannell@bristol.ac.uk

In November 2017, the average time from submission to first decision for all original research papers submitted to *Circulation Research* was 11.99 days.

ABSTRACT

<u>Rationale</u>: The development of a refractory period for Ca^{2+} spark initiation after Ca^{2+} release in cardiac myocytes, should inhibit further Ca^{2+} release during the action potential (AP) plateau. However, Ca^{2+} release sites that did not initially activate, or which have prematurely recovered from refractoriness might release Ca^{2+} later during the AP and alter the cell-wide Ca^{2+} transient.

<u>**Objective:**</u> To investigate the possibility of late Ca^{2+} spark (LCS) activity in intact isolated cardiac myocytes using fast confocal line scanning with improved confocality and signal to noise.

<u>Methods and Results</u>: We recorded Ca^{2+} transients from cardiac ventricular myocytes isolated from rabbit hearts. APs were produced by electrical stimulation and rapid solution changes were used to modify the L-type Ca^{2+} current. After the upstroke of the Ca^{2+} transient, late Ca^{2+} sparks (LCS) were detected which had increased amplitude compared to diastolic Ca^{2+} sparks. LCS are triggered by both L-type Ca^{2+} channel activity during the action potential plateau, as well as by the increase of cytosolic Ca^{2+} associated with the Ca^{2+} transient itself. Importantly, a mismatch between SR load and L-type Ca^{2+} trigger can increase the number of LCS. The likelihood of triggering a LCS also depends on recovery from refractoriness that appears after prior activation. Consequences of LCS include a reduced rate of decline of the Ca^{2+} transient and, if frequent, formation of microscopic propagating Ca^{2+} release events (Ca^{2+} ripples). Ca^{2+} ripples resemble Ca^{2+} waves in terms of local propagation velocity but spread for only a short distance due to limited regeneration.

<u>Conclusions</u>: These new types of Ca^{2+} signalling behaviour extend our understanding of Ca^{2+} mediated signalling. LCS may provide an arrhythmogenic substrate by slowing the Ca^{2+} transient decline as well as by amplifying maintained Ca^{2+} current effects on intracellular Ca^{2+} and consequently Na^+/Ca^{2+} exchange current.

Keywords:

Heart, Ca^{2+} sparks, excitation-contraction coupling, cytosolic Ca^{2+} , calcium signaling, cardiomyocyte, cardiac myocyte

11

Nonstandard Abbreviations and Acronyms:

NT	Normal Tyrode superfusion solution
LCS	late Ca ²⁺ sparks
Jsr	junctional sarcoplasmic reticulum
AP	Action potential
ECC	excitation-contraction coupling
LTCC	L-type Ca^{2+} channels
ICC	intraclass correlation coefficient

INTRODUCTION

Cardiac excitation-contraction coupling (ECC) is mediated at the cellular level by the nearsynchronous activation of $\sim 10^4$ microscopic Ca²⁺ release events called Ca²⁺ sparks (1, 2). This occurs because the cardiac action potential (AP) opens L-type Ca²⁺ channels (LTCC) in the surface membrane to produce a local increase in Ca²⁺ which in turn opens Ca²⁺-sensitive channels (ryanodine receptors, RyR) in the adjacent junctional sarcoplasmic reticulum membrane (jSR) (3). The spatial restrictions associated with this "local control" mechanism provide this signal transduction pathway both high gain and stability (1, 4) and forms the cornerstone of our current understanding of ECC, explaining the time- and voltagedependence of the regenerative Ca^{2+} release process (5-7). Ca^{2+} sparks normally occur with very high probability at the start of the Ca^{2+} transient (8, 9) and Ca^{2+} release during the Ca^{2+} spark is terminated in ~10 ms, probably via SR depletion dependent processes (10). The cytoplasmic Ca^{2+} concentration then returns towards resting levels in a few hundred milliseconds as Ca^{2+} is pumped back into the SR (via SERCA2a) and across the surface membrane (mainly via NCX) (4, 11, 12). This currently accepted view of ECC has led to changes in the time course of Ca^{2+} decline being generally attributed to changes in SERCA2a and NCX activities with smaller contributions from a sarcolemmal Ca^{2+} -ATPase and mitochondria (13, 14). However, continued SR release (or leak) should oppose SR re-uptake and slow the time course of the Ca^{2+} transient, as seen in a phospholamban knockout mice with CamKIIδc overexpression (15).

METHODS

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Ventricular cardiomyocytes from New Zealand White rabbits were field stimulated at 0.5 Hz at 1.2x threshold at 22°C. To avoid possible problems associated with cell dialysis, whole-cell patch camp techniques were not used. Cell movement artefacts were prevented by adding 10 mmol/L 2,3-butanedione monoxime (BDM) to NT. It should be noted that late Ca^{2+} sparks were also seen in the absence of BDM and at 37°C (see Online Figure I). BDM may modify the relative importance of triggers for Ca^{2+} sparks in the experiments shown here (see Online Supplement). Fast block of L-type Ca^{2+} channels was achieved by local superfusion with Cd^{2+} (10 or 100 µmol/L) plus 1 µmol/L sulforhodamine-B in NT from a pressurized micropipette, the fluorescence of which allowed determination of the local concentration of Cd^{2+} (and hence degree of LTCC block).

More extensive Methods are given in the Online Supplement

RESULTS

By using high sensitivity detectors and improved confocality, we have been able to detect additional Ca^{2+} release events ("late Ca^{2+} sparks") during the entire time course of the cellular Ca^{2+} transient. The left panel in Fig. 1A shows a typical Ca²⁺ transient recorded from a ventricular myocyte using confocal line scanning (9), and the right panel shows a high-pass filtered and contrast enhanced version of this image in which these late Ca²⁺ sparks (LCS) can be seen more clearly. Individual LCS (Fig. 1B) had an increased amplitude compared to diastolic Ca²⁺ sparks (Fig. 1C), but did not exhibit any changes in duration (~40 ms) or spatial full width at half maximum (~1.8 µm) (data not shown). The increase in amplitude of the LCS can be explained by a reduction in cytoplasmic Ca^{2+} buffering power due to cytoplasmic Ca^{2+} binding sites (such as troponin) becoming occupied during the Ca^{2+} transient (14). A simple, obvious, explanation for the genesis of the late Ca²⁺ sparks would be that they arise from jSR that was either not activated during the upstroke of the Ca²⁺ transient or was uncoupled or 'orphaned' (17) from t-tubules (which carry the AP to the cell interior). To examine this idea, we labelled t-tubules (Fig. 1D) and measured the Euclidian distance to the LCS centroid (Fig. 1E) and compared the latencies for the upstroke of the Ca²⁺ transient at LCS sites to overall Ca^{2+} transient latency (Fig. 1F). Perhaps unexpectedly, LCS occurred close to t-tubules and at positions where the Ca^{2+} transient developed with a shorter than average latency (p<0.05). This suggests that LCS usually arise from sites that are not 'orphaned' but are, in fact, well coupled, a view also

supported by the presence of an extensive t-tubule network (top and middle panels Fig. 1D) that did not show any signs of the disruption associated with orphaning (17).

Following activation, Ca²⁺ spark sites enter a refractory period (18, 19) which should oppose any secondary activation. The spontaneous Ca^{2+} spark refractory period has been estimated by analysing the inter- Ca^{2+} spark interval from ryanodine-modified rat (18) or CamKII δc overexpressing mouse (15) myocytes. We performed a similar analysis on LCS sites: Fig. 2A shows two LCS sites with different inter-LCS intervals. Initial LCS (red arrows) followed the AP evoked Ca²⁺ transient with a latency distribution shown as in Fig. 2B. Only a few LCS are seen shortly after the onset of the Ca²⁺ transient but this increases and reaches a peak before declining with a half time of ~500 ms which is very similar to the half time of the whole-cell Ca^{2+} transient (also shown in Fig. 2B behind the histogram bars) in this species at room temperature (20). The time between the first and second LCS (blue arrows Fig. 2A) is shown in Fig. 2C and the amplitude of the second event compared to the first is shown in Fig. 2D. Since LCS amplitude restitution matches the reported rabbit jSR refilling time course (19), jSR refilling probably determines LCS amplitude recovery. In this regard, LCS behave similarly to ryanodine-stimulated diastolic Ca^{2+} sparks (18). By dividing Ca^{2+} spark probability by an exponential fit, the first and second LCS activation probability can be derived (18). It is apparent that the LCS activation probability is (essentially) the same for both the first and second LCS (Fig. 2E) suggesting that recovery from refractoriness is a dominant factor in their genesis –but what is their trigger?

During the long plateau phase of the AP, LTCCs continue to open stochastically (21, 22) and might trigger LCS as individual release sites recover from their refractory period. If this is the case, one might predict that LTCC inhibition should reduce the number of LCS. As illustrated in Fig. 3A, blocking ~75% of LTCCs with extracellular Cd^{2+} (a fast LTCC open-state blocker (23)) paradoxically increased the number of LCS (Fig. 3C). However, straight-forward interpretation of this experiment is complicated by the block of LTCCs during the upstroke of the AP reducing jSR site activation (Fig. 3D). This effect would increase release site availability because fewer sites would then be refractory at later times. Importantly, these data also show that the increased number of LCS produced in this condition make a significant contribution to the time course of the Ca^{2+} transient (Fig. 3B.E). To remove the complication arising from changes in the number of jSR release sites activated during the AP, we rapidly applied a higher concentration of Cd²⁺ just after the upstroke of the Ca²⁺ transient to selectively block later LTCC openings. To show the effect of such early LTCC blockade clearly, we show an exemplar (Fig. 3F) that had a higher rate of LCS production shortly after the upstroke of the Ca^{2+} transient which contributed to an extended rising phase which can be seen under condition of lower SR load (e.g. (21)). The time of arrival and local concentration of Cd²⁺ was measured by fluorescently labelling the solution with sulforhodamine-B which, with the K_d for Ca^{2+} block, allowed us to estimate that ~90% LTCCs should be blocked after the upstroke of the Ca^{2+} transient (Fig. 3G). This reduced the number of LCS, but only by 40% (Fig. 3H) supporting the idea that LCS can also be triggered by the rise in cytosolic Ca^{2+} during the Ca^{2+} transient. As expected, the application of Cd^{2+} shortly after the stimulus and upstroke of the AP had no effect on the amplitude of the Ca^{2+} transient (Fig. 3I) but slightly shortened its duration (Fig. 3G, J), which is likely to be due to AP shortening (24) (due to LTCC blockade) and the reduced number of LCS.

LCS production is a part of a continuum of behaviour that spans the low spontaneous Ca^{2+} spark rate during diastole (~1 per 100 µm/s scanned) to very high rates (~10⁴ per 100 µm/s) during the upstroke of the Ca^{2+} transient (8, 9). Normally, Ca^{2+} sparks interact weakly (25) but when SR and cytoplasmic Ca^{2+} levels increase, Ca^{2+} waves can develop from the sequential recruitment of Ca^{2+} spark sites (26). The spatio/temporal relationship between LCS site activation (Fig. 4A) was analysed by calculating autocorrelograms (Fig. 4B). In most of our experiments, such autocorrelation analysis showed only a time dependent relationship between spark sites, reflecting the refractory period (Fig. 4C) described earlier. However, in a subset of cells that were more highly Ca^{2+} loaded (Fig. 4D), the autocorrelogram showed multiple peaks indicating that some LCS were both spatially and temporally correlated (Fig. 4E). The right panel of Fig. 4D illustrates the chevron patterns in LCS production that can be seen by eye and analysis of the 2D autocorrelogram showed an apparent propagation velocity between LCS sites ~114 μ m/s (Fig. 4F), similar to typical macroscopic Ca²⁺ wave propagation velocities (26, 27). We call these novel propagating LCS events "Ca²⁺ ripples" as (i) they are smaller in amplitude, (ii) do not propagate over the entire cell and (iii) occur during the declining phase of the Ca²⁺ transient, although they are clearly related to the well-known phenomenon of Ca²⁺ waves which can occur during the diastolic period in cardiac myocytes (3, 26, 27).

DISCUSSION

The presence of LCS during the normal Ca²⁺ transient has important implications for understanding the complex interplay of SR Ca^{2+} release site activation, refractoriness, SR Ca^{2+} reuptake and triggers for CICR (see Online Figure II). Reduced LTCC activation can not only disrupt the initial phase of Ca^{2+} release, leading to dyssynchrony (28, 29), but also increase the number of LCS which can slow the decline of the Ca^{2+} transient. It is notable that reduced LTCC activation can also occur with pathological changes in ttubules (30), APs (13) or signal transduction cascades (3). Increased SR leak in a CamKII& overexpressing mouse model has been shown to slow the decline of the Ca^{2+} transient and some LCS activity during the Ca^{2+} transient can be seen in Fig. 7 of that paper (15). These results are also consistent with the ability of release sites to recover from refractoriness sufficiently quickly for some fraction to become reactivated either by cytosolic Ca^{2+} or LTCCs. While some uncertainty exists in the relative roles of cytoplasmic Ca^{2+} . LTCC and NCX in triggering LCS and their effect on the Ca²⁺ transient time course (an uncertainty compounded by BDM used to inhibit movement artefacts -see Online Supplement) it is clear LCS production will be sensitive to all of these triggers. In the case of heart failure, any increase in LCS production could exacerbate the existing problem of slowed Ca^{2+} re-uptake due to decreased SERCA2a activity (31). Further complexity is added by the changes in Ca^{2+} transient time course also affecting LTCC gating via prolongation of the AP due to NCX-generated current during the declining phase of the Ca²⁺ transient (13) as well as the differential responses of coupled and uncoupled release sites (32).

Under normal conditions, LCS production is initially inhibited by the refractory period following Ca^{2+} spark activation (18), but the time course of recovery is shorter than the duration of the plateau of the AP during which a sizeable LTCC current flows. Thus LCS are more likely to occur late in the AP and by slowing the decline of the Ca^{2+} transient may contribute to the antagonism between inward NCX current and repolarization reserve (13). As illustrated in Online Figure II, some pathological changes in the ECC cycle could increase the probability of LCS which, in turn, may prolong the duration of the Ca^{2+} transient (15) and AP duration. This forms a new positive feedback pathway that will promote AP prolongation and further Ca^{2+} influx via LTCC, further destabilizing Ca^{2+} cycling and increasing all forms of Ca^{2+} leak (33).

While more work is needed to fully explore the implications of the novel results presented here, it is now apparent that SR Ca^{2+} release in the form of late Ca^{2+} sparks can continue at lower rates throughout the cardiac Ca^{2+} transient rather than solely during the upstroke of the Ca^{2+} transient as usually modelled.

ACKNOWLEDGEMENTS

This work was supported by the British Heart Foundation (grant RG/12/10/29802) and Medical Research Council (MR/N002903/1).

DISCLOSURES

None.

REFERENCES

- 1. Cannell MB, Cheng H, Lederer WJ. The control of calcium release in heart muscle. *Science*. 1995; 268:1045–1049.
- 2. Cheng H, Lederer WJ, Cannell MB. Calcium Sparks Elementary Events Underlying Excitation-Contraction Coupling in Heart-Muscle. *Science*. 1993;262:740–744.
- 3. Bers DM. Cardiac excitation-contraction coupling. *Nature*. 2002;415:198–205.
- 4. Bers DM. Calcium fluxes involved in control of cardiac myocyte contraction. *Circ Res.* 2000;87:275–281.
- 5. Bers DM. Calcium Signaling in Cardiac Ventricular Myocytes. *Ann NY Acad Sci.* 2005;1047:86–98.
- 6. Cannell MB, Kong CHT. Local control in cardiac E–C coupling. *J Mol Cell Cardiol*. 2012;52:298–303.
- 7. Hoang-Trong TM, Ullah A, Jafri MS. Calcium Sparks in the Heart: Dynamics and Regulation. *Res Rep Biol.* 2015;6:203–214.
- 8. Inoue M, Bridge JHB. Ca2+ sparks in rabbit ventricular myocytes evoked by action potentials: involvement of clusters of L-type Ca2+ channels. *Circ Res.* 2003;92:532–538.
- 9. Cannell MB, Cheng H, Lederer WJ. Spatial non-uniformities in [Ca2+]i during excitationcontraction coupling in cardiac myocytes. *Biophys J*. 1994;67:1942–1956.
- 10. Zima AV, Picht E, Bers DM, Blatter LA. Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion. *Circ Res.* 2008;103:e105–15.
- 11. Crespo LM, Grantham CJ, Cannell MB. Kinetics, stoichiometry and role of the Na-Ca exchange mechanism in isolated cardiac myocytes. *Nature*. 1990;345:618–621.
- 12. Dibb KM, Graham HK, Venetucci LA, Eisner DA, Trafford AW. Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart. *Cell Calcium*. 2007;42:503–512.
- 13. Bers DM, Despa S. Cardiac Myocytes Ca2+ and Na+ Regulation in Normal and Failing Hearts. *J Pharmacol Sci.* 2006;100:315–322.
- 14. Berlin JR, Bassani JW, Bers DM. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. *Biophys J.* 1994;67:1775–1787.
- 15. Guo T, Zhang T, Ginsburg KS, Mishra S, Brown JH, Bers DM. CaMKII&C slows [Ca]i decline in cardiac myocytes by promoting Ca sparks. *Biophys J.* 2012;102:2461–2470.
- 16. Cooper PJ, Soeller C, Cannell MB. Excitation-contraction coupling in human heart failure examined by action potential clamp in rat cardiac myocytes. *J Mol Cell Cardiol*. 2010;49:911–917.
- 17. Song L-S, Qua Z, Karmac A. Orphaned ryanodine receptors in the failing heart. *Proc Natl Acad Sci.* 2006;103:4305.
- 18. Sobie EA, Song L-S, Lederer WJ. Local recovery of Ca2+ release in rat ventricular myocytes. *J Physiol.* 2005;565:441–447.
- 19. Brochet D, Brochet DXP, Yang D, Di Maio A, Lederer WJ, Franzini-Armstrong C, Cheng H. Ca2+ blinks: Rapid nanoscopic store calcium signaling. *Proc Natl Acad Sci.* 2005;102:3099–3104.
- 20. Bassani JW, Bassani RA, Bers DM. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. *J Physiol*. 1994;476:279–293.
- 21. Grantham CJ, Cannell MB. Ca2+ influx during the cardiac action potential in guinea pig ventricular myocytes. *Circ Res.* 1996;79:194–200.
- 22. Yuan W, Ginsburg KS, Bers DM. Comparison of sarcolemmal calcium channel current in rabbit and rat ventricular myocytes. *J Physiol*. 1996;493:733–746.
- 23. Lansman JB, Hess P, Tsien RW. Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. *J Gen Physiol.* 1986;88:321–347.
- 24. Cannell MB, Berlin JR, Lederer WJ. Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. *Science*. 1987;238:1419–1423.
- 25. Izu LT, Banyasz T, Balke CW, Chen-Izu Y. Eavesdropping on the social lives of Ca(2+) sparks.

Biophys J. 2007;93:3408–3420.

- 26. Cheng H, Lederer MR, Lederer WJ, Cannell MB. Calcium sparks and [Ca2+]i waves in cardiac myocytes. *Am J Physiol*. 1996;270:C148–59.
- 27. Wier WG, Cannell MB, Berlin JR, Marbán E, Lederer WJ. Cellular and subcellular heterogeneity of [Ca2+]i in single heart cells revealed by fura-2. *Science*. 1987;235:325–328.
- 28. Litwin SE, Zhang D, Bridge JH. Dyssynchronous Ca(2+) sparks in myocytes from infarcted hearts. *Circ Res.* 2000;87:1040–1047.
- 29. Heinzel FR, MacQuaide N, Biesmans L, Sipido K. Dyssynchrony of Ca2+ release from the sarcoplasmic reticulum as subcellular mechanism of cardiac contractile dysfunction. *J Mol Cell Cardiol*. 2011;50:390–400.
- 30. Ibrahim M, Gorelik J, Yacoub MH, Terracciano CM. The structure and function of cardiac t-tubules in health and disease. *Proc Biol Sci.* 2011;278:2714–2723.
- 31. Armoundas AA, Rose J, Aggarwal R, Stuyvers BD, O'Rourke B, Kass DA, Marban E, Shorofsky SR, Tomaselli GF, Balke CW. Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. *Am J Physiol Heart Circ Physiol*. 2007;292:H1607–18.
- 32. Belevych AE, et al. (2017) The role of spatial organization of Ca(2+) release sites in the generation of arrhythmogenic diastolic Ca(2+) release in myocytes from failing hearts. *Basic Res Cardiol* 2017;112:44.
- 33. Bovo E, Mazurek SR, Blatter LA, Zima AV. Regulation of sarcoplasmic reticulum Ca²⁺ leak by cytosolic Ca²⁺ in rabbit ventricular myocytes. *J Physiol*. 2011;589:6039–6050.

NLINE FIRST

FIGURE LEGENDS

Figure 1. Late Ca²⁺ sparks (LCS) during the decay of evoked Ca²⁺ transients.(A) High resolution recordings (confocal pinhole set to 1 Airy unit) of Ca²⁺ release during normal Ca²⁺ transients (left) at 0.5 Hz. Image enhancement by subtraction of the low-pass filtered transient shows LCS more clearly (white boxes) (right). (B) Comparison Ca²⁺ sparks at rest (top left) and LCS (top right) showed high spatiotemporal similarity. The temporal profiles of averaged events (23 Ca²⁺ sparks and 18 LCS) show LCS have a similar time course to resting Ca²⁺ sparks in the same cell (bottom). (C) Average LCS amplitude was greater than resting Ca²⁺ sparks (*p<0.05, **p<0.01, 196 LCS, 42 diastolic n/N = 12/6). (D) Di-8-ANEPPS labelling of t-tubules (top) was used to calculate a distance map to nearest t-tubule (middle). The line scan position is indicated by the white line and the location of LCS by white circles. LCS occurred near t-tubules and at regions with early evoked Ca²⁺ release (bottom). (E) The median distance to nearest t-tubule was shorter for LCS sites than the cell average distance (n/N = 11/5). Kolmogorov-Smirnov test. (F) Ca²⁺ transient latency at sites with LCS was shorter than the cell average latency (n/N = 28/8). *p<0.05.

Figure 2. Restitution and refractory behaviour of LCS. Time and amplitude restitution of LCS reveal their SR load dependence. (A) The interval of successive LCS arising from the same location (top), and their relative amplitudes were measured in background-subtracted recordings (bottom). (B) The probability density function of LCS following evoked Ca²⁺ release was similar to the time course of the normalised average Ca²⁺ transient (solid colour behind histogram bars) and decreased exponentially from the maxima (red line). (C) The probability of a second LCS at the same site had a similar time-dependence to the first LCS (B) (D) After the first LCS the amplitude of the second LCS increased with a time constant, $\tau = 77$ ms. (E) The probability of LCS activation (P_{LCS}) was essentially the same following evoked Ca²⁺ release (red) or after a prior LCS (blue) (p = 0.86, extra sum-of-squares F test). (B) 350 LCS from n/N = 19/9, (C&D) 79 LCS pairs from n/N = 10/8.

Figure 3. Effects of LTCC block reveals additional triggers for LCS. Blocking LTCC before or after evoked Ca²⁺ release shows LCS can be triggered by late LTCC activity. (A) Line scan recordings of consecutive Ca²⁺ transients in normal Tyrode's (NT) and in NT + 10 μ mol/L Cd²⁺. The extracellular solution was rapidly changed between contractions to preserve SR load. Cd²⁺ application produced more spatial non-uniformities in early Ca²⁺ release and increased the number of LCS. (B) The Ca²⁺ transient decay was clearly delayed in Cd²⁺. (C) Cd²⁺ increased mean LCS frequency by ~40 %. (D) Cd²⁺ slightly decreased the Ca²⁺ transient amplitude and (E) increased its duration compared to NT. (F) Rapid application of NT + 100 μ mol/L Cd²⁺ (after the Ca²⁺ transient upstroke) preserved early Ca²⁺ release but decreased the number of LCS. (G) The Ca²⁺ transient upstroke was preserved in Cd²⁺ (green line) compared to NT (blue). (H) Mean LCS frequency was reduced by ~40 % by Cd²⁺. (I) Average Ca²⁺ transient amplitude was not reduced by rapid Cd²⁺ application while the Ca²⁺ transient duration was decreased slightly (J) (p = 0.05). (C-E) n/N = 15/5, (H-J) n/N = 12/4. **p<0.01, ***p<0.001 paired t-test.

Figure 4. Late Ca²⁺ sparks can interact to form "Ca²⁺ ripples". (A) Unprocessed high resolution recording showing multiple LCS. (B) The autocorrelogram of (A) reveals the time-dependence between repeating events (indicated by yellow arrow), with a mean delay of 145 ms, as highlighted in (C). (D) (left) Further pacing resulted in increased Ca²⁺ load and many more LCS. The right panel emphasizes how LCS appear to trigger additional sites forming multiple propagating Ca²⁺ ripples (marked by yellow chevron overlays). (E) The 2D autocorrelogram shows that some LCS have both temporal and spatial relationships to other LCS. (F) Calculation of propagation velocities in the 2D autocorrelation showed a dominant peak at ~114 µm/s. Points indicated in (C) and (F) were highly significant (p < 10⁻⁵) (blue lines show mean \pm 5SD of scrambled data).

NOVELTY AND SIGNIFICANCE

What Is Known?

- Ca²⁺ transients are due to near-synchronous Ca²⁺ release from internal stores soon after the upstroke of the action potential.
- Ca^{2+} changes during the Ca^{2+} transient reflect the balance of release and uptake mechanisms with the latter dominating the time course of the decline in Ca^{2+} .
- Ca²⁺ dysregulation in cardiac muscle cells influences contraction strength and can promote fatal arrhythmias

What New Information Does This Article Contribute?

- Late Ca²⁺ release events in the form of "late Ca²⁺ sparks" (LCS) can occur during the Ca²⁺ transient and delay its decay.
- LCS arise from Ca²⁺ release sites that have recovered from their earlier activation and are triggered by late opening(s) of Ca²⁺ channels and by cytosolic Ca²⁺ itself.
- LCS can produce microscopic waves of Ca^{2+} release (" Ca^{2+} ripples") by partially regenerative, sequential, LCS activation which may further prolong the Ca^{2+} transient.

 Ca^{2+} regulation in cardiac muscle cells critically influences the contraction and electrical activity of the heart. The near-synchronous cell-wide activation of Ca^{2+} sparks early during an action potential produces the Ca^{2+} transient upstroke. Consequent depletion of Ca^{2+} stores inhibits further Ca^{2+} release, so Ca^{2+} removal pathways are generally thought to determine the time course of Ca^{2+} transient decay and restoration of resting conditions. Release sites which fail to activate, or recover more quickly from prior release, could be activated to slow the Ca^{2+} transient decay and promote electrical instability. Using high resolution recordings, novel late Ca^{2+} sparks (LCS) were detected during action potential-evoked Ca^{2+} transients. LCS were triggered by late Ca^{2+} channel openings as well as the increased cytosolic Ca^{2+} during the Ca^{2+} transient decay and may even interact to form microscopic propagating Ca^{2+} release events (" Ca^{2+} transient decay and may even interact to form microscopic propagating Ca^{2+} release which modulate LCS production may have future clinical relevance.

Late Ca²⁺ Sparks and Ripples During the Systolic Ca²⁺ Transient in Heart Muscle Cells Ewan D Fowler, Cherrie H Kong, Jules Hancox and Mark B Cannell

Circ Res. published online December 27, 2017; *Circulation Research* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2017 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at: http://circres.ahajournals.org/content/early/2017/12/26/CIRCRESAHA.117.312257 Free via Open Access

> Data Supplement (unedited) at: http://circres.ahajournals.org/content/suppl/2017/12/26/CIRCRESAHA.117.312257.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation Research* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation Research* is online at: http://circres.ahajournals.org//subscriptions/

SUPPLEMENTAL MATERIAL

Detailed Methods

Animals

All experiments were performed in accordance with the UK Home Office Animals (Scientific Procedures) Act 1986 and with approval by the University of Bristol ethics committee. Left ventricular epicardial myocytes were obtained from adult male New Zealand white rabbit (2-2.5 kg) hearts after full anaesthesia (50 mg/kg sodium pentobarbital i.v.) and euthanasia. Enzymatic dissociation was carried out using 1 mg/ml collagenase II (Worthington), 0.05 mg/ml protease (type XIV Sigma) and 0.1 mmol/L Ca^{2+} , as described previously (1).

Solution changes and local perfusion

Experiments were performed in a modified Tyrode's solution (NT) (containing, in mmol/L: 133 NaCl, 5 KCl, 1 NaH₂PO₄, 10 HEPES, 10 glucose, 1.8 CaCl₂, 1 MgCl₂, pH 7.4 with NaOH) at 22±1°C. Solution changes were performed by local superfusion of cells in the recording chamber. A pressurized micropipette and a custom-made valve system allowed rapid exchange (half time < 40 ms) of the cell bathing solution synchronised to electrical stimulation. The superfusion pipette contained NT solution supplemented with 10 or 100 μ mol/L CdCl₂ (from a 10 mmol/L stock in water) and 1 μ mol/L sulforhodamine B. The time course of solution exchange was monitored during Ca²⁺ line scan recordings by alternating the excitation wavelength between 488 and 543 nm for each line, while collecting emission at 492-600 and >600 nm.

The fractional block of LTCC by Cd^{2+} was calculated from the Hill equation with half-maximal inhibition occurring at 2.14 µmol/L and a Hill coefficient of 0.74 (2). The onset of LTCC block during solution exchange was calculated from the normalised change in the sulforhodamine B fluorescence signal. Note that Cd^{2+} is a weak blocker of NCX (by <1 % and 15 %, at 10 and 100 µmol/L respectively (2)) and TTX-sensitive Na⁺ channels (by <1 % and 23 %, at 10 and 100 µmol/L respectively (3)). Cd²⁺ was chosen over organic pharmacological blockers because LTCC block by Cd²⁺ is rapid and not voltage or use-dependent.

Confocal Ca²⁺ line scan recording

Cells were loaded with 5 μ mol/L Fluo-4-AM for 15 min, washed in NT and then allowed to rested for >10 min to allow time for de-esterification. Ca²⁺ sparks and transients were recorded in line scan mode using an inverted confocal microscope (LSM 880, Zeiss) with a 1.4 NA 63x oil immersion lens. Excitation light was provided by a 488 nm argon laser and fluorescence emission collected at 492-600 nm. Ca²⁺ line scans were recorded with the pinhole set to <2 Airy units, at a pixel size of 0.1-0.2 μ m/pixel and with a scan speed of 1-2 ms per line. GaAsP photodetectors were used to increase the sensitivity of Ca²⁺ spark detection. Ca²⁺ line scans were recorded with the pinhole set to <2 Airy units, pixel size <0.2 μ m/pixel and scan speed of 1-2 ms/line. The local concentration of Cd²⁺ was measured from the included sulforhodamine-B fluorescence which was excited at 543 nm and emission at >600 nm.

Fluorescence image processing

Non-cell background fluorescence from an area adjacent to the cell was subtracted from recordings. Variations in fluorescence due to dye loading was minimised by normalising fluorescence (F) to resting fluorescence during a 100 ms quiescent period immediately before stimulation (F₀). The F/F_0 recording was converted into units of [Ca²⁺] using the self-ratio method (4):

$$[Ca^{2+}]_i = \frac{KR}{(K/[Ca^{2+}]_{rest}) - R + 1}$$

Where *K* is the *in vivo* affinity of Fluo-4 for Ca^{2+} (K_d ~1000 nmol/L), *R* is the self-ratio fluorescence (F/F₀), and $[Ca^{2+}]_{rest}$ is the resting Ca^{2+} concentration (~100 nmol/L) (5).

During systolic Ca^{2+} transients, the increased cytosolic $[Ca^{2+}]$ presents a challenge for the detection of LCS due to the reduced contrast of fluorescent Ca^{2+} dyes at high cytosolic $[Ca^{2+}]$. To partially ameliorate this problem, the low-frequency time-averaged fluorescence in xt line scan recordings was subtracted from the F/F₀ recording. A low-pass quadratic Savitsky-Golay filter (window size ~301 ms) was applied along the *t* dimension, for every point in the *x* dimension. These filter values were found to effectively suppress background fluorescence variation due to the underlying Ca^{2+} transient, while preserving the morphology and enhancing detectability of LCS.

Ca²⁺ spark detection

 Ca^{2+} sparks were detected using an automated optimal filter algorithm implemented in MATLAB (described in detail elsewhere (6)). Briefly, the algorithm cross-correlated the flattened line scan recording with a model Ca^{2+} spark and the location with the greatest correlation was identified. Following a test for significance, the centroid and amplitude of the underlying Ca^{2+} spark was then measured and recorded. The Ca^{2+} spark identification process was repeated until the significance of the maximum correlation fell below the threshold of significance. Ca^{2+} spark full-width at half maximum and full-duration at half maximum were measured in the flattened line scan recordings. Ca^{2+} spark amplitude was measured in the original F/F₀ or $[Ca^{2+}]$ line scan recordings at the location of detected Ca^{2+} sparks.

Ca²⁺ transient analysis

 Ca^{2+} transient latency was defined as the time between electrical stimulation and when cytosolic $[Ca^{2+}]$ was >5 standard deviations above the resting Ca^{2+} signal. Ca^{2+} transient latency was measured at every point along the scan line. Ca^{2+} transient duration was measured as the full-duration at half maximal fluorescence (time from 50 % peak to 50 % decay of the Ca^{2+} transient).

T-tubule imaging and processing

The t-tubule system in the area surrounding the Ca²⁺ line scan recording was imaged by labelling the sarcolemma with di-8-ANEPPS from a stock 1 mmol/L solution (in DMSO) added directly to the cell recording chamber (final concentration 1 μ mol/L) for 2-3 min. A stack of *xy* images above and below the recording focal plane was recorded using 488 nm excitation and emission collected at >600 nm.

3D stacks of t-tubule images were deconvolved using a model point spread function for the microscope objective which was derived from images of 100 nm fluorescent beads. A 3D t-tubule detection algorithm was implemented in MATLAB by the authors (who can be contacted for further details). The resulting data was then skeletonized in 3D in MATLAB (Skeleton 3D, version 1.12).

The origin of Ca^{2+} sparks in three dimensions (*xyz*) is uncertain in line scanning due to the spatial spread of Ca^{2+} sparks from sites just outside the scanned line. To minimize this problem, the t-tubule skeleton was collapsed to form a maximal intensity projection of the region $\pm 2 \mu m$ above and below, and $\pm 1 \mu m$ adjacent to the line scan region to capture the possible location of all closely coupled jSR release sites. The Euclidean distance from the apparent LCS centroid to nearest t-tubule was calculated from this maximal intensity projection.

LCS propagation/interaction analysis using 2D autocorrelation

2D autocorrelation was used to analyze the temporal and spatial relations between late Ca^{2+} sparks and Ca^{2+} ripples in Ca^{2+} line scan records. The autocorrelogram axes represent time (lag) and space (displacement), hence the distance and angle of structures relative to the origin of the autocorrelogram corresponds to the dominant frequency and velocity of LCS propagation in the form of Ca^{2+} ripples. The autocorrelation values in the time domain were measured from the origin and normalised to the autocorrelation value at the origin. The angle from the origin to the peaks of the autocorrelation correspond to propagation velocities of Ca^{2+} ripples (~50-250 µm/s).

To test whether the apparent peaks in the autocorrelogram were significant, we scrambled the data and repeated the autocorrelation. This was repeated 5 times to compute a mean and standard deviation for equivalent uncorrelated data.

Statistical Analysis

Data were tested for normality using the Shapiro-Wilk test and in cases where data were skewed, the test was reapplied to log-transformed data. Paired t-tests were performed on normally distributed original data or the transformed data. Differences between cumulative frequencies were tested using the Kolmogorov-Smirnov test. Curve fits of LCS probability (P_{LCS}) were compared using the extra sum-of-squares F test. Results are presented as mean \pm SEM. The number of cells (n) and animals (N) used for each experiment are given in figure legends as n/N. *p*<0.05 was considered to be the limit of statistical confidence. A nested hierarchical approach was used to examine possible clustering effects in Fig. 1 and the ICC was found to be only 0.14 (7).

Supplemental Text

Effects of BDM.

BDM is not a specific inhibitor of muscle contraction (8) and partially inhibits many of the key Ca^{2+} transport systems in cardiomyocytes. It has been shown to affect NCX (9), Ca^{2+} channels (10) and weakly enhances PP1 and/or PP2A phosphatase activity (the latter at 100 mmol/l) (11). A reduction in LTCC availability should increase the probability of LCS as shown in Fig. 3a. On the other hand, 10 mM BDM can reduce SR Ca^{2+} content with only small effects on the amplitude of the Ca^{2+} transient (12). Therefore, BDM may alter the exact relationship between triggers and the consequent Ca^{2+} release but is clearly not the cause of LCS activity seen here (see Online Figure I).

Supplemental Figures and Figure Legends

Online Figure I . Examples of LCS production at 37°C. The left hand panel shows unprocessed data in the absence of BDM with some clear LCS indicated by blue arrows. Note the presence of a movement artifact showing the contraction of the cell. For comparison, some diastolic Ca^{2+} sparks are also indicated (red arrows). Plots of average amplitudes show similar behavior to the data shown in Figure 1. On the right, the pacing rate was increased to 2Hz at 37°C (with BDM to avoid the movement artifact) and, while the increased Ca^{2+} transient amplitude decreases contrast and increases Poisson noise, LCS can still be discerned.

Online Figure II. Mechanisms for interactions between Ca^{2+} sparks, LCS and the ECC cycle. During the cardiac AP, Ca^{2+} enters the cell via LTCC (seen macroscopically as I_{Ca}) which causes the nearsynchronous release of Ca^{2+} from jSR by Ca^{2+} -induced Ca^{2+} release (CICR). Activated SR junctions enter a refractory state where further release is prevented due to depletion of SR Ca^{2+} . Ca^{2+} -dependent inactivation (CDI) of LTCC may also decrease the probability of LCS. Cytosolic Ca^{2+} is re- sequestered by SERCA2a, refilling the SR. During the AP plateau, LTCC may (re-)open and may trigger LCS if the SR release sites were triggered during the AP or else recovered from the refractory state. Inward current generated by NCX will prolong the AP and increase the duration of I_{Ca} . By delaying the decline of the Ca^{2+} transient, LCS may promote additional LCS which may take the form of Ca^{2+} ripples, if SR load is sufficient and SR release not refractory. The non- LTCC triggered probability of LCS triggering can be described by an equation of the form $f<Ca^{2+}_{cyt}> x g< Ca^{2+}_{SR}>$ where f and g describe the cytosolic and SR dependencies of Ca^{2+} spark initiation. This may account for ~60% of LCS in normal cells (the remainder being due to LTCC activity). In disease, the pathological changes in the ECC cycle can increase the probability of LCS which, in turn, may prolong the duration of the Ca^{2+} transient and AP duration forming a new positive feedback pathway.

Supplemental References

- 1. Cooper PJ, Soeller C, Cannell MB. Excitation-contraction coupling in human heart failure examined by action potential clamp in rat cardiac myocytes. *J Mol Cell Cardiol* 2010;49:911–917.
- 2. Hobai IA, Bates JA, Howarth FC, Levi AJ. Inhibition by external Cd2+ of Na/Ca exchange and Ltype Ca channel in rabbit ventricular myocytes. *Am J Physiol: Heart Circ Physiol* 1997;272:H2164–H2172.
- 3. DiFrancesco D, Ferroni A, Visentin S, Zaza A. Cadmium-induced blockade of the cardiac fast Na channels in calf Purkinje fibres. *Proc Roy Soc Lond, B* 1985;223:475–484.

- 4. Cannell MB, Cheng H, Lederer WJ. Spatial non-uniformities in [Ca2+]i during excitationcontraction coupling in cardiac myocytes. *Biophys J* 1994;67:1942–1956.
- 5. Wier WG, Cannell MB, Berlin JR, Marbán E, Lederer WJ. Cellular and subcellular heterogeneity of [Ca2+]i in single heart cells revealed by fura-2. *Science* 1987;235:325–328.
- 6. Kong CHT, Soeller C, Cannell MB. Increasing Sensitivity of Ca2+ Spark Detection in Noisy Images by Application of a Matched-Filter Object Detection Algorithm. *Biophys J* 2008;95(12):6016–6024.
- Sikkel MB, Francis DP, Howard J, Gordon F, Rowlands C, Peters NS, Lyon AR, Harding SE, MacLeod KT. Hierarchical statistical techniques are necessary to draw reliable conclusions from analysis of isolated cardiomyocyte studies. *Cardiovasc Res*. 2017;113:1743–1752. doi:10.1093/cvr/cvx151.
- 8. Sellin LC, McArdle JJ. Multiple effects of 2,3-butanedione monoxime. *Pharmacol Toxicol* 1994;74(6):305–313.
- 9. Watanabe Y, Iwamoto T, Matsuoka I, Ohkubo S, Ono T, Watano T, Shigekawa M, Kimura J. Inhibitory effect of 2,3-butanedione monoxime (BDM) on Na(+)/Ca(2+) exchange current in guinea-pig cardiac ventricular myocytes. *Br J Pharmacol*. 2001;132:1317–1325.
- 10. Chapman RA. The effect of oximes on the dihydropyridine-sensitive Ca current of isolated guinea-pig ventricular myocytes. *Pflugers Arch* 1993;422:325–331.
- Zimmermann N, Boknik P, Gams E, Gsell S, Jones LR, Maas R, Neumann J, Scholz H. Mechanisms of the contractile effects of 2,3-butanedione-monoxime in the mammalian heart. *Naunyn-Schmied Arch Pharmacol.* 1996;354:431–436.
- 12. Adams W, Trafford AW, Eisner DA. 2,3-Butanedione monoxime (BDM) decreases sarcoplasmic reticulum Ca content by stimulating Ca release in isolated rat ventricular myocytes. *Pflugers Arch* 1998;436:776–781.