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Abstract. This paper describes a novel pendulum decay test for determining the

transmission efficiency of chain drives. The test involves releasing a pendulum with

an initial potential energy and measuring its decaying oscillations, under controlled

conditions the decay reveals the losses in the transmission to a high degree of accuracy.

The main advantage over motorised rigs is that there are significantly fewer sources

of friction and inertia and hence measurement error. The pendulum rigs have an

accuracy around 0.6% for the measurement of coefficient of friction, giving an accuracy

of transmission efficiency measurement around 0.012%. A theoretical model of chain

friction combined with the equations of motion enables coefficient of friction to be

determined from the decay rate of pendulum velocity. The pendulum rigs operate at

relatively low speeds. However, they allow an accurate determination of the coefficient

of friction to estimate transmission efficiency at higher speeds. The pendulum rig

revealed a previously undetected rocking behaviour in the chain links at very small

articulation angles. In this regime, the link interfaces were observed to roll against

one another rather than slide. This observation indicates that a very high efficiency

transmission can be achieved if the articulation angle is very low.
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1. Introduction: Background to chain testing techniques

Roller chains are a very common and important power transmission device used widely

in industry. They are also used widely in transportation systems such as vehicles and

elevators. The measurement of transmission efficiency is important to enable the devel-

opment of higher efficiency chains and for quality control of existing chains. Maintaining

and improving the transmission Current chain efficiency test rigs typically use an elec-

tric motor to turn the drive sprocket and an electric motor to apply a braking torque

to the driven sprocket[1] of a chain drive system. Torque or force transducers are used

to measure the efficiency of power transmission. These test rigs have several particular
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disadvantages. Firstly, the accuracy of their efficiency measurement is limited due to

friction in the roller bearings and couplings and also due to torque ripples in the motor.

In addition, the extra rotating components add inertia which, even with careful charac-

terisation, applies a damping effect and reduces the available measurement bandwidth.

Motorised rigs also involve testing of chains with typically over 100 links and hence

do not give the option of measuring the efficiency of individual links. Understanding

efficiency at link level is important for understanding the effect of variables such as

manufacturing tolerances.

Typical chain drives have an efficiency of between 95% and 98%. In order to clearly

identify improvements in efficiency it is desirable to measure efficiency to better than

0.1% uncertainty. The prior art in the field of chain drive energy loss measurement

tends to focus on mechanised transmission dynamometer methods. Much of the work

that has been carried out comes from the domain of commercial and hobbyist cycling,

however there have been several academic studies including the much referenced work

of Spicer [2] who claims an accuracy of ±0.2% for his results subject to short term noise

and ±0.3% for application to real-world scenarios. In his thesis, Lodge [3] recognises

that for these types of rigs, the level of accuracy is dependent on operating regime and

presents a series of torque dependent values for accuracy of his experimental apparatus,

these range from ±0.3% to ±0.5% over the bulk of the operating envelope of his equip-

ment.

The use of a decaying pendulum to measure energy loss has been successfully ap-

plied in a number of fields, either measuring losses in a system via the decay in multiple

cycles or during a single swing. For example, Eng et al. [4] estimated drag coefficients of

an underwater vehicle using a model of the vehicle being swung in a tank and measuring

decay over multiple cycles. By contrast, Rosenthal and Ungermah [5] incorporated a

specimen in the rod of the pendulum itself to examine its dynamic viscoelastic tensile

behaviour. This would manifest itself as a change in frequency as well as a decay in

amplitude, resulting in quite involved analysis. Medical science often models joints,

especially knee joints, as pendula in order to characterise joint stiffness arising from

various conditions. For example, Valle et al. [6] use a pendulum test of the knee to

assess rheumatoid arthritis patients, while Noble et al. [7] use a similar approach in

horses. The use of pendulum tests to assess frictional properties through energy loss is

used in the British Standard for assessing floor grippiness, BS 7976 [8]. In this last case,

the energy loss is measured over a single swing, where a representative rubber sample

strikes the floor under test tangentially at bottom dead centre.
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2. Methods

2.1. Single Link Pendulum Test (SLPT)

A schematic of the single link pendulum test rig is shown in Figure 1. The rig simulates

the articulation of a single chain link as it engages and disengages with the sprocket.

This articulation is known to be the main source of energy loss in a chain [9].

Figure 1: Schematic of the single chain link pendulum test

The pendulum consists of a rigid bar in a vertical orientation with a pivot point at

the top and a mass at the bottom. The pivot is a link from a chain under test. When

the mass is released from a non-stable initial condition, it oscillates about the pivot,

causing the system to continually exchange potential energy with kinetic energy. In

practice, the amplitude of the oscillation decays due to energy loss, mainly from sliding

friction in the chain link as the pendulum swings.

The initial angular offset of the pendulum must be less than half the circular tooth

pitch angle of the sprocket in order to avoid impact with the sprocket teeth. For a 16T

sprocket the circular tooth pitch angle is 22.5◦, hence an initial angle of less than half

this value must be chosen.

If it is assumed that the pendulum consists of a light inextensible rod of length l

with a lumped mass m attached at its end, the force balance for the system is written

in equation (1). A small amount of rearrangement gives a nonlinear second order ODE,

which for small angles where sin θ ≈ θ is of the standard form shown in equation (2),
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allowing the deduction of the undamped natural frequency ω for small angles (3).

mlθ̈ +mg sin θ = 0 (1)

θ̈ + ω2θ = 0 (2)

ω =

√
g

l
(3)

The frictional losses in the chain link can be represented as damping terms in the

dynamic equation. In addition, the aerodynamic losses add another nonlinearity, in the

form of a quadratic speed term. Although aerodynamic losses are very small, typically

less than 1% of the chain losses, they are still modelled and taken into account when

calculating transmission efficiency.

The characteristics of the experimental rig are:

• Pendulum length ≈ 0.6m

• Pendulum frequency ≈ 0.63Hz

• Initial pendulum angle < 10◦

• Chain tension: up to 1kN

The number of oscillations experienced during a decay test depends on the type of

chain, the initial offset angle of the pendulum and the mass of the pendulum. Standard

roller chains typically experience around 140 oscillations involving sliding friction, whilst

a pendulum hung on a knife edge can experience several thousand oscillations.

The motion of the pendulum results in a small force fluctuation in the chain due

to the variation of centripetal force with speed. For example, a pendulum with a mass

of 50kg centred at a radius of 0.6m has a period of approximately 1.55 seconds and,

assuming simple harmonic motion, a peak angular velocity when released from an initial

angle of 11◦ of about 0.7rads−1, leading to a force fluctuation with a maximum ampli-

tude of about 5%.

The available chain tension is high enough to simulate most bicycle, motorbike and

car timing chain applications. It should be noted that the articulation speeds in the

pendulum tests are low compared to those experienced in most power transmission ap-

plications. Typical peak oscillation speeds for the pendula are around 1.0rads−1, whilst

the driving chain ring of a bicycle at 30kph articulates the chain at about 3.13rads−1

and the timing chain in a car may experience articulations in excess of 300rads−1. How-

ever, power loss is more dependent on chain tension than on speed and lower speeds are

more conducive to achieving high accuracy in testing. It is expected that significantly

elevated temperatures will affect the chain link coefficient of friction. While the tests in

this paper have been conducted at room temperature, if high-temperature performance
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was of interest, the relatively compact nature of the apparatus, and the absence of ex-

ternally applied loads or driving forces, means the experiment could be easily replicated

in a controlled environment such as a thermal chamber.

2.2. Single Link Pendulum Test Dynamic Model

The basic premise on which efficiency, η, is calculated is to compare the work done by

the bearing losses during a pendulum oscillation with the total system energy at the

start of that cycle.

η = 1− WD∑
KE + PE|start

(4)

where WD is work done over the cycle and the denominator is the total system energy

for the pendulum at the start of the oscillation, which is the sum of the kinetic (KE)

and potential (PE) energies at the start of the measuring period. The dynamic equation

of motion of the pendulum may be written down as equation (5).

Jθ̈ = Mgravity(θ)−Maero(θ̇)−Marticulation(θ, θ̇) (5)

where Mgravity(θ) is a driving moment due to pendulum weight and the terms Maero(θ̇)

and Marticulation(θ, θ̇) are the loss terms due to aerodynamic effects and friction in the

chain’s pin-bush interface respectively. J is the moment of inertia of the rotating parts

of the pendulum rig and Θ̈ is the angular acceleration of the pendulum system. With-

out these losses, the pendulum would oscillate indefinitely under the influence of gravity.

The pendulum is set in motion by releasing it from rest at an angle θ from the

vertical, providing it with an initial gravitational potential energy (GPE).

GPE = mgh = (1− cos θ)mgl (6)

The dynamic equation of the pendulum also implies work done over a cycle. By

integrating over one oscillation period, from t = t0 to t = t1 , the work done by the

losses in each cycle is given by equation (7), which integrates the power losses Paero and

Particulation with respect to time t from

WD =

∫ t1

t0

[
Paero(θ̇) + Particulation(θ, θ̇)

]
dt (7)

where the instantaneous loss powers during the oscillation are: Paero(θ̇) = θ̇(t)Maero(θ̇)

and Particulation(θ, θ̇) = θ̇(t)Marticulation(θ, θ̇). By measuring peak speed, at the bottom-

dead-centre position of the pendulum, work done may be calculated as the difference in

kinetic energy at this point of travel as follows in equation (8).
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WD =
1

2
Jθ̇2(t1)− 1

2
Jθ̇2(t0) (8)

Thus the total work done between the pendulum being released and coming to rest at

its stable equilibrium is the sum of the work done overcoming the bearing losses and

the small aerodynamic drag, and is equal to the initial potential energy, as follows in

equation (9)

GPE =

∫ rest

release

Losses dt (9)

Figure 2: Illustration of a pendulum composed of elemental masses of cross sectional

area Ac, density ρm and length dr

The moment of inertia of the pendulum is calculated by modelling the pendulum

as a solid composed of circular cross sections about a radius of length R with its origin

at the centre of rotation O. This arrangement is illustrated in Figure 2 and is described

as follows in equations (10) and (11)

J =

∫ R

0

r2zdm (10)

=

∫ R

0

ρmAc(rz)r
2
zdr (11)

where the standard form of the second moment of inertia in equation (10) is the in-

tegral with respect to a unit mass which is then rewritten as a function of the cross

sectional area Ac(rz) at a given radius rz and the density of the cross section ρm, so that
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dm = ρmAc(rz)dr. This allows integration with respect to the radius in equation (11).

The instantaneous value of Mgravity is given by:

Mgravity =

∫ R

0

rzg sin θdm (12)

=

∫ R

0

ρmAc(rz)rzg sin θdr (13)

The moment about the pivot due to gravity is derived from an expression integrated

with respect to mass, along the pendulum radius in equation 12, where θ is the angle of

the pendulum from vertical and g is the gravitational constant. The infinitesimal mass

element is written as a function of cross sectional area and density as in equation (11).

The derivation of the moment due to aerodynamic drag is given in equations (14) to

(17), beginning with the integration over the radius of the pendulum of an infinitesimal

slice of the tangential aerodynamic drag force acting at a given radius.

Maero =

∫ R

0

rzdFaero(rz) (14)

=

∫ R

0

rz

(
1

2
ρaCdv

2
tan

)
dAf (rz) (15)

=
1

2

∫ R

0

rzρaCdWf (rz)v
2
tandr (16)

=
1

2

∫ R

0

r3zρaCdWf (rz)θ̇
2dr (17)

The tangential drag force for a slice of pendulum dFaero(rz) =
(
1
2
ρaCdv

2
tan

)
dAf (rz)

where ρa is the density of air, Cd the drag coefficient of the cross sectional profile of

the slice and vtan = θ̇rz is the tangential velocity. The frontal area may be written as

dAf (rz) = Wf (rz)dr where Wf (rz) is the width of the cross sectional profile at radius

rz. These properties allow the expression to be rewritten as equation (17).

The level of the bearing losses is dependent on whether the chain link is in pin-

articulation mode or bush-articulation mode. For the sake of simplicity, the expression

for frictional loss due to pin-articulation is presented in equation (18). The derivation

of this expression and an explanation of the two modes of articulation may be found in

section 22.4 of this paper where former work by Lodge [9] is reiterated.

Marticulation =
Fpin(θ)µpinrpin√

1− µ2
pin

(18)
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where Fpin is the load on the link, µpin is the coefficient of friction of the pin-bush

interface and rpin is the radius of the pin. In the case of this test, the load on the link

is the combination of weight due to gravity and tension due to centripetal acceleration

of the pendulum. For a composite pendulum, the force at the pin due to centripetal

acceleration of the pendulum, Fcen is calculated by integrating the pendulum elements

along the radial axis, presented in equation (19):

Fcen =

∫ R

0

rz θ̇
2dm (19)

The bearing force in the pin, Fpin is equal to the tension in the rod due to the combination

of Fcen and the component of the weight of the pendulum acting parallel to the shaft.

|Fpin(θ̇, θ)| = Fcen +mg cos θ (20)

The pendulum used in the SLPT system is a composite of cylindrical weights and

supports, as illustrated in Figure 1. This means that the volume, mass and frontal area

of the pendulum may be defined by the radius of its cross section rc at a given distance

from the pivot rz. For example, a 0.5m long circular bar of diameter 0.010m teminated

by a circular weight of thickness 0.010m and diameter 0.3m with another, smaller weight

of thickness 0.040m and diameter 0.120m stacked on it would be written:

rc(rz) =


0.010, 0 < rz 6 0.36

0.120, 0.36 < rz 6 0.40

0.030, 0.4 < rz 6 0.5

(21)

The dynamic model presented in this section may be used to compute the expected

rate of decay of the pendulum for a given loading, initial condition, coefficient of friction

and aerodynamic profile. This allows a comparison with the measured rate of decay,

allowing the pin-bush interface losses to be inferred from the measured data.

2.3. Measurement Methods

Two different measurement schemes were investigated for observing the states of the

pendula during testing. One uses a wireless inertial measurement unit to determine

angular (and tangential) accelerations, whilst the other makes use of a doppler laser

vibrometer to measure velocity of the pendula. The main advantage of the inertial unit

is that it outputs angular velocity directly. The main advantage of the laser system is

that it does not require any equipment to be attached to the pendulum and therefore

does not increase the physical size of the pendulum. However, the laser system neces-

sitates some additional data processing. Both systems were tested and found to be of
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sufficient accuracy but the laser system was chosen in order to keep the pendulum as

slim as possible, thus reducing the aerodynamic drag.

The doppler laser vibrometer used to measure velocity is very accurate. However,

it should be noted that the measurement is on a straight line, and therefore not always

tangential to the pendulum. It may be shown, in equations (22) to (25), that the var-

ious parallax errors cancel each other out so that no correction is needed to determine

rotational velocity.

The tangential velocity of the part of the pendulum passing through a given

horizontal plane is proportional to the distance from the pivot to that plane along

the centreline of the pendulum. Therefore,

vtan = θ̇(rL1 + ∆rL) (22)

where rL1 is the radius at which the vertical pendulum crosses the laser line and ∆rL is

the change in radius due to the non-vertical attitude of the pendulum, these dimensions

are illustrated in Figure 1. The radius rL at which the pendulum and laser line cross

may be written as a function of the angle of the pendulum, allowing the .

vtan = θ̇
( rL1

cos θ

)
(23)

However, the LDV measures only the horizontal component of the velocity:

vmeas = vtan cos θ (24)

The two trigonometric functions cancel one another out as follows:

vmeas = θ̇
( rL1

cos θ

)
cos θ = θ̇rL1 (25)

2.4. Chain Friction Model

The test rigs give a measure of frictional losses without knowledge of the source of fric-

tion in the chain drive. However, it is useful to model chain friction because this enables

the calculation of the coefficient of friction at the sliding interfaces. This coefficient of

friction can be used to predict energy loss and hence efficiency for other drive configu-

rations, speeds and loads.

Most chain drives use a bush-roller chain. These chains consist of two types of link:

an outer link of two plates joined by two pins and an inner link made of two plates and

two bushes. In addition to the two links there is a roller which acts as a bearing bush
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Figure 3: Exploded model of a bush-roller chain inner and outer link showing key

components

between the inner link bush and the sprocket, as illustrated in Figure 3.

In a normal power transmission application, one side of the chain is under load

whilst the other is slack, or at least is only subjected to pre-load. The chain will wrap

on to the driving sprocket on the taught side and off again on the slack side, whilst

the opposite is true for the driven sprocket. Work is done due to sliding friction at

the interface between pin and bush (or the bush and the roller) when a link articulates

under load. At any instant in time there are two links that are articulating under load.

One is where the chain articulates off of the driven sprocket and the second is where

the chain articulates onto the driving sprocket.

Because there are two types of link in a roller chain, a link articulation can be

either a pin articulation or a bush articulation. A schematic of these articulations is

shown in Figure 4. Sliding takes place between a link that is stationary when viewed

from the sprocket’s frame of reference and the link which is rotating. When the rotating

link is the outer link, the sliding takes place only at the pin-bush interface as shown in

Figure 4a. When the rotating link is the inner link, sliding takes place at the bush-roller

interface as well as the pin-bush interface, as illustrated in Figure 4b. The reason for

this is that the roller is pressed against the sprocket and so the bush must slide against

the pin and the roller.

The analysis presented in this paper is for the pin articulation case, since this is

simpler and provides a clearer illustration of the methods being employed. It should

also be noted that it is possible for a chain to experience sliding between the side-plates.
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(a) Pin articulation (b) Bush articulation

Figure 4: Schematic of pin articulation and bush articulation.

However, in a well aligned system, this is negligible so it is ignored for the purposes of

this analysis.

The computation of normal load on the interface between either the pin and bush

or bush and roller is necessary to allow the calculation of the coefficient of friction from

pendulum decay data. Figure 5 shows a vector diagram of the loads at the pin-bush

interface. This illustrates the simplest quasi-static model of forces on the link as devel-

oped by Binder [10]. The total load transmitted by the link is the vector sum of the

tension in the tight span of the chain and in the link wrapped on to the sprocket Fc and

Fcf and is equal to the vector sum of the normal force at the contact point, F0 and the

tangential friction at the contact point F0µ, whose combined magnitude is Fpin. The

relationship between Fpin and the normal interface force required in the friction model

is given in equations (26) and (27).

Fpin = Fc + Fcf (26)

F0 =
|Fpin|√
1 + µ2

(27)

The expression for bearing loss torque in the pin-bush or bush-roller interface is

thus derived in equation (28) as the frictional force due to normal load acting at the

radius of the pin outer surface, rpin.
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Figure 5: Force summation at pin joint between two links, including the tangential force

due to friction.

Marticulation = rpinµF0 (28)

Marticulation =
Fpin(θ)µrpin√

1− µ2
(29)

2.5. Computing Coefficient of friction from the SLPT

For the pin-articulating case, the coefficient of friction at the pin-bush interface may be

computed as a function of the measured acceleration‡ by simply substituting equation

(29) for Marticulation and rearranging equation (5):

Jθ̈ +Maero(θ̇)−Mgravity(θ) = Marticulation (30)

µpin =
F (θ̇, θ)√

1 + F 2(θ̇, θ)
(31)

where the forces and moments on the link are grouped in equation (32):

F (θ̇, θ) =
Jθ̈ +Maero −Mgravity

rbi|Fpin(θ)|
(32)

and |Fpin(θ)| is the magnitude of the vector of force on the pin at the current angle

θ. The practical implementation of such a design of estimator would ideally be via a

Kalman filter or some other similar method to reduce errors due to measurement un-

certainty.

‡ Note that when using a laser to measure the motion of the pendulum, the measured state is velocity.

Thus in order to avoid differentiating a digital output, a system of filters is used to compute the friction

coefficient. This arrangement is presented in Appendix Appendix A
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The pendulum test gives a direct measurement of the coefficient of friction between

the pin and the bush whilst simulating chain articulation at slow speeds. By measuring

the decay of the oscillations it is possible to calculate the energy lost at each cycle due to

sliding friction and aerodynamic effects. This energy loss can be equated with the work

done at the sliding interface of the pin-bush, thus allowing the coefficient of friction to

be calculated. The coefficient of friction can then be used to calculate the efficiency of

a particular transmission.

Figure 6: Several oscillations of simple

harmonic decay from time t0 to t1.

The energy lost in each cycle is given

by:

Wpin|t1t0 = ∆T −WAero|t1t0(33)

where ∆T is the change in kinetic energy

of the system. The peak velocity, shown

by the thick bounding line in figure 7,

allows the peak kinetic energy to be

computed for each pendulum cycle.

∆T =
1

2
J(θ̇20 − θ̇21) (34)

and WAero is the work done by aerody-

namic drag:

WAero|t1t0 =

∫ t1

t0

ρaAfCdθ̇
2dt (35)

The work done by sliding friction at the pin may also be written as a function

of bearing force F0, bush inner radius rbi, coefficient of friction µp and total angular

displacement αm|t1t0 for a period of time from t0 to t1:

Wpin =
F0µp√
1 + µ2

p

rbiαm (36)

This may be rearranged to give an expression for coefficient of friction µp in terms

of measurands from the experiment:

µp =
X√

1−X2
(37)

where:

X =
∆T −WAero|t1t0

rbiαm

(38)
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is the function of angles and angular speeds given in equation (31). The friction values

determined in this way correlate well with the experimental work carried out by Spicer

[2] and Lodge [3]. Some example results are presented in section 3.3.

3. Results

3.1. Sliding phase of decay

A typical velocity decay profile is shown in Figure 7. It may be seen from the figure

that there are two different phases of the decay. The first phase of decay, which has a

relatively steep gradient, is caused by sliding friction at the pin-bush interface whereas

the second phase of decay is caused by rolling friction within the link, as it rocks at very

low amplitude with no slip.
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Figure 7: An illustration of a typical decay profile showing the energy consumed by

sliding interface friction in the first portion and by rocking only in the second portion.

3.2. Rocking phase of decay

When sliding stops, friction stops the pendulum finding its perfectly vertical position.

This residual friction moment then induces a rocking motion which has not previously

been reported. The rocking motion continues for many minutes. The initial amplitude

of this secondary phase is directly related to the level of sliding friction.

The decay of this secondary phase is a measure of the coefficient of rolling friction.

Because the coefficient of rolling friction is an order of magnitude lower than sliding

friction, this decay is extremely slow. The amplitude of this second phase of oscillation

is typically about 0.5◦. The implication of this is that for a chain-sprocket system to

be operating in the very low-loss rocking regime only would necessitate a chain-ring

of about 720 teeth. For a 1
2
” pitch chain, this ring would be about 2.9m in diameter.

For a significantly smaller pitch chain, or a chain with notably reduced pin-size, this
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dimension would be reduced§.

3.3. Comparative results and consistency

Table 1 gives an example of single link pendulum test results for five different pin-links

of the same chain. The chain was of pitch 0.5” and width 0.125” and was lubricated ac-

cording to the manufacturers guidelines. The results show that there can be significant

variation in friction between the different links of a chain. This variation can only be

detected with a test rig that deals with single links.

Table 1: A comparison of coefficients of friction of five different chain links with a very

high level of consistency between link performance, σ = 0.93%

Pin

number

Decay time (s) Rate of angular

acceleration

(◦s−2)

Coefficient of

friction

1 243.89 -0.2349 0.1090

2 201.28 -0.2212 0.1081

3 200.43 -0.2417 0.1066

4 210.24 -0.2416 0.1070

5 199.94 -0.1919 0.1074

The single link test rig demonstrates very good repeatability of experimental results.

When comparing raw results with the mean for a particular test case, the coefficient

of determination, R2 is typically greater than 0.9. An example is given in Table 2,

listing the coefficients of determination when the results of five identical experiments

are compared with the mean of their results. The oscillations are aligned and only a

period of decay covered by all five results is compared.

Table 2: Comparison of R2 values for five repetitions of an SLPT decay experiment

Test Number R2 value

1 0.9666

2 0.9569

3 0.9405

4 0.9842

5 0.9571

§ For a knife-edge bearing, the entire motion is in the rocking regime
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3.4. Accuracy of measurements

The single link pendulum test is able to have a very high measurement accuracy. With

an effective aerodynamic and inertia model, and operating in still air, the accuracy

should be limited only by the system used to measure the motion of the pendulum. In a

controlled environment, the influence of aerodynamic load on the system is at most 3%

of the total loss during the peak speed of the fastest swing. The influence of this term

rapidly degrades to be negligible as the peak velocity reduces and it is compensated

for by a well characterised aerodynamic model for the rig. This aerodynamic term is

computed and accounted for when calculating friction losses.

The most appropriate way to quote the accuracy of the test methods proposed in

this paper is to compute an absolute uncertainty based on the accuracy with which

the parameters defining the measurand may be determined. In the case of the pendu-

lum, several lengths, masses or densities and aerodynamic characteristics are treated

as ‘known’ parameters to allow the measurand, energy lost in the chain joint, to be

computed from the recorded velocity profile of the pendulum.

By using the methods set out in JCGM 100:2008 [11], it is possible to combine

the measurement uncertainty of each of the constituent measurements to determine an

overall uncertainty. Since it is reasonable to assume that lengths and masses will be

measured using the same device, it is necessary to assume that measurements in these

two classes will not be fully independent of one another. This necessitates the use

of a more general method for combining uncertainties. Thus the formulation used to

determine the combined variance should be:

u2c(y) =
N∑
i=1

N∑
j=1

∂f

∂xi

∂f

∂xj
u(xi, xj) (39)

where xi and xj are estimates of the measurements Xi and Xj and u(xi, xj) is the es-

timated covariance associated with a pair of measurements xi and xj. The expression

Y = f(X1, X2, ..., XN) describes the relationship between the measurand and the indi-

vidual measurable values Xn.

In determining the accuracy of the measurement method for coefficient of friction,

both direct Type A and indirect Type B methods have been used. The details of the

measurement accuracy calculation are presented in Appendix C. Type B methods were

used to combine individual measurement accuracies for the different components of the

energy loss computation and these are presented in the top part of Table 3. Type A

methods were then used to determine the overall measurement accuracy of a coefficient

of friction calculation, based on the determined input uncertainty model. Details of this

process are given in Appendix C.
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For the case using the parameters in the first part of table 3 to describe

measurements of the rig, an uncertainty value of 6.31 × 10−4 is achieved on a

measurement of coefficient of friction of 0.1, representing a relative accuracy of about

0.6%. Since the coefficient of friction is related to the efficiency of a chain drive as a

factor of the term Ploss in equation (40), a small bounds of error on this value translates

to a small bounds of error on the overall system efficiency calculation.

Table 3: Typical uncertainty parameters for bearing loss measurement in the SLPT

experiments

Variable (units) Typical Value Uncertainty

Angular Displacement

(rad):

0.175 -0.02

Angular Velocity

(rads−1):

1.1 1.33e-4

Angular Acceleration

(rads−2):

1.0 4.79e-3

Mass(kg): 45 0.001

Length(m): 0.3 0.0005

rpin (mm): 3.4 0.004

Coefficient of friction 0.1 0.000631

Since chain friction losses are typically 2% of transmission power, 0.6% accuracy on

friction measurements translates to approximately 0.012% accuracy on the computed

transmission efficiency of the drive system.

3.5. Monte-Carlo simulation for Method A determination of Uncertainty on coefficient

of friction calculation

Method A is the more suitable uncertainty computation method for the coefficient of

friction because the complete computation of coefficient of friction from its constituent

measurements is quite complicated. Since the practical rig may be easily simulated,

it is not difficult to use a Monte-Carlo simulation to determine a statistical model for

output uncertainty, based on the known uncertainties of the input measurements, thus

producing a simulated direct uncertainty calculation by method A.

Simulating the rig requires the implementation of the dynamic models described

in section 2.2 of this paper. The measured parameters are modified by adding a

randomly generated value according to the uncertainty model for that parameter. The

model states and parameters are then used to compute the coefficient of friction as

described in equation (31). A normally distributed error based on the performance of

the measurement hardware is added to the measured states. A statistical analysis of

the outputs after a large number of simulations is provided in table 4. The uncertainty
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of coefficient of friction determined in this way, with a large enough sample size, may

be considered representative of the real performance of the method. The distribution

of the noise and errors on the coefficient of friction may be used in online estimation

methods for the coefficient of friction parameter, for example, as the statistical model

in a Kalman filter or similar estimation algorithm design.

Table 4

Measurand
Mean Uncer-

tainty
σ Uncertainty

Peak Uncer-

tainty

F (coefficient of Friction) 6.31× 10−4 1.73× 10−4 9.44× 10−4

3.6. Aerodynamic influence

An experiment was carried out to confirm that the aerodynamic losses were very small

in comparison to sliding friction in the chain. The experiment involved running a test

with and without a bluff fairing attached to the pendulum . The fairing increases the

total frontal area of the pendulum by 3.2 times, causing an increase in aerodynamic

drag. However, it should be noted that the load is spread across a significant radius

from the pivot so the increase in load is not proportional to the increase in frontal area.

Five decay tests were carried out on a well lubricated chain with and without a

bluff fairing and with almost exactly the same mass. The tests were conducted in the

sliding-friction dominated regime. The results showed that there is a slight measurable

nonlinearity which can be correlated to a speed squared aerodynamic term. The decay

rate data illustrating this are presented in Figure 8.

Curves were fitted automatically in Matlab to the two sets of data. Examining

Figure 8, the constant decay component due to friction and independent of speed is

visibly more significant than the velocity squared term from which the aerodynamic

contribution may be inferred. The aerodynamic loss, manifesting itself as magnitude of

acceleration, without the fairing is slightly less than that with the fairing in place, with

v2 terms of 2.8× 10−4 and 3.8× 10−4 respectively.

3.7. Very high efficiency chains

Figure 9 shows decay results for two very high efficiency chains in comparison to a

normal roller chain. One of the high efficiency chains consists of a bush with needle roller

bearings. The second high efficiency chain consists of a knife-edge bearing in the chain

link. The results show that by replacing sliding friction with rolling friction, very low

levels of losses are achieved. In the case of the knife-edge bearing, over 3000 pendulum

swings were recorded over a period of one hour. This result actually underestimates

the performance because aerodynamic drag is a significant factor in the decay of the

pendulum for chains with very high efficiency.
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Figure 8: Comparison of decay rates for two pendula with different aerodynamic profiles

Figure 9: Comparison of decay rates for three pendula with different bearings. The knife

edge may be assumed to be decaying mostly due to aerodynamic influence, illustrating

clearly how little influence this has on the pendulum compared to a conventional plain

bearing.

4. Discussion

The ability to measure coefficient of friction in a chain link accurately allows models

for whole drive-line efficiency to be effectively deployed for assessing power transmission

system design. In addition, the development of energy measurement methods using a
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pendulum system is not restricted to single links or bearings, but may be used to test

entire systems.

4.1. Computing Chain Efficiency

If the coefficient of friction has been calculated then this can be used to predict the

efficiency of a drive for any combination of sprockets. The coefficient of friction of the

link bearing allows the efficiency of power transmission in the chain to be computed

for a given load. A generalised statement of system efficiency is given in equation (40)

whilst the expressions for input and loss powers are given in equations (41) and (42)

respectively. It is significant to note that since the magnitude of energy dissipation and

thus power loss is dependent on the load in the pin, the efficiency of the system is also

dependent on the loading case, and also the sizing of the components, since this defines

relative angular speeds and loading angles.

η = 1− Ploss

Pin

(40)

Pin = F0R1θ̇1 (41)

Ploss = F0µ
rpin + rbo

2

θ̇1 + θ̇2
2

(42)

where R1 is the radius of the driving sprocket, θ̇1 and θ̇2 are the rotational velocities of

the driving and driven sprockets respectively, and rbo is the radius of the bush - roller

interface; other nomenclature is the same as elsewhere in the paper. An assumption is

made that since the pin roller and bush are the same material, the coefficient of friction

at the interface is the same and its effect may be averaged as in equation (42). Were

this not the case, an adjustment to the formulation would be required. Thus an overall

expression for the efficiency of the drive may be written in equation (43):

η = 1−
[
rpin + rboµ

2R1

(
1 +

N1

N2

)]
(43)

where N1/N2 is the ratio of the number of teeth on the driving and driven sprockets.

The load on the bearing F0 is also a function of the sprocket size for a given torque.

The relationship of the normal load F0 to the force in individual links is illustrated in

Figure 5. Numerous models exist of the tension in the links of a chain, including those

proposed by Binder [10], Naji and Marshek [12], Troedsson and Vedmar [13][14] and

Lodge [9].

4.2. Testing an entire power transmission system using the pendulum method

The pendulum decay concept can be applied not just to a single link but also to a

whole drive system. A schematic of a pendulum decay test rig for a two-sprocket drive

system is shown in Figure 10. This test rig has been designed and manufactured and
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Figure 10: Testing a complete chain drive

system using a pendulum
Figure 11: The dual sprocket pendulum test

rig for assessing the performance of an entire

chain drive.

used for testing roller chains. In this case there is a need for bearings to support the

two sprocket shafts and these bearings introduce additional friction into the pendulum

system. However, ultra-low friction knife-edge bearings are used and their friction level

is calibrated. The losses in the knife-edge bearings can be characterised by experimen-

tation by carrying out a pendulum test without chain tension.

This experimental arrangement has the advantage that it decouples tension in the

chain from the pendulum dynamics, as the transmission system is tensioned using a

turnbuckle in the support frame. The results from this experimental apparatus have an

averaging effect on chain losses because there are typically four chain links articulating at

any one time. This method can also be used to test the efficiency belt-drive transmissions

since it allows the pre-tension to be altered and does not necessitate the drive being split.

5. Conclusion

A novel pendulum test rig has been developed that gives transmission efficiency mea-

surements without the use of force or torque transducers. Efficiency is calculated from
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the rate of decay of the swinging pendulum. A friction model for a chain link is pre-

sented that allows a coefficient of friction to be derived from the rate of decay of the

pendulum. This enables efficiency to be calculated at other loads and speeds for a given

chain. The simplicity of the single link pendulum test leads to an accuracy of around

0.6%. This translates to an accuracy of transmission efficiency measurement of typically

0.012%. The new method allows much more accurate measurement of the energy loss

in a chain drive than the prior art in this field, whilst much of the work is proprietary

and guarded by the industry, Spicer [2] appears to quote ±0.3% for operating under

‘normal’ conditions.

This level of accuracy of measurement on the numerically small parameter

describing coefficient of friction allows the theoretical overall efficiency of a chain drive

system to be computed to a high degree of accuracy. The pendulum rig has also allowed

the observation of a previously unreported rocking behaviour in the chain links at

low articulation angles, rather than the sliding normally experienced at the interface

between links. The energy dissipated through rocking is much less than through sliding

friction, resulting in a visibly slower deceleration of the pendulum at low oscillation

magnitudes. A chain drive designed to maximise efficiency would therefore seek to

reduce the articulation angle as much as possible, for example by increasing tooth count

on both the driving and driven sprockets.
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Appendix A. Velocity measurement filtering

In order to avoid numerical difficulties arising from differentiating the digital velocity

measurement generated by the laser doppler vibrometer, a system of first order filters

may be applied. These are of the form given for a generic value n in equation (A.1),

and allow the filtered angular acceleration to be written as a function of the angular

velocity and the filtered angular velocity, as in equation (A.2).

nf = kṅf − nf (A.1)

θ̈f =
θ̇ − θ̇f
k

(A.2)

These expressions may be implemented in a computer simulation using only numerical

integration, thus avoiding computational problems with differentiation.

Appendix B. Measurement Hardware and Associated Uncertainties

Table B1 details the manufacturers’ quoted accuracy performance for measurement

hardware the authors believe to be the current state of the art for the measurement

ranges required to implement the experiment detailed in this paper.

Appendix C. Method B Measurement uncertainty calculation for

coefficient of bearing friction

Measurement uncertainty calculations for the SLPT are detailed in this section.

Numerical calculations are performed for an example experimental system using

measurement equipment the authors believe to represent the current state of the art.

The coefficient of friction is expressed in equation (C.1):

Y =
Mgravity(θ)−Maero(θ̇)− Jθ̈

rpin|Fpin(θ, θ̇)|
(C.1)
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Table B1

Measurement Hardware Abs. Uncertainty

Length Faro Edge CMS 2.40× 10−5m

Mass Adam Eclipse EBL6202i 1.00× 10−5kg

Velocity
Polytec OFV-5000 with OFV-505 head,

VD-06 velocity decoder
1.00× 10−8ms−1

Displacement
Polytec OFV-5000 with OFV-505 head,

DD-500 displacement decoder
5.00× 10−14m

Pin Diameter
Mitutoyo.293-345-30 (293-345) D

MATIC EXT. MICROMETER
1.00× 10−6m

where all the symbols have the meanings given elsewhere in the paper. For ease of

examination of the individual measurements making up each part of this expression, let

it be subdivided into parts:

Y =
C −B − A

D
(C.2)

where:

A = Jθ̈ = mr2cα (C.3)

B = Maero(θ̇) = ACDr
2
zwzẋ

2 (C.4)

C = Mgravity(θ) = rcmg sin θ (C.5)

D = rpin|Fpin(θ, θ̇)| = rpin|mg + Fcen| (3.6a)

= rpinm(g2 + 2grcω
2 + r2cω

4)
1
2 (3.6b)

where the pendulum is modelled as a lumped mass m at a radius rc for simplicity, and

the aerodynamic term as a point load defined by the profile (rzwz) and aerodynamic

coefficients (grouped to ACD = ρaCd) acting at a radius rz. The gravity term is de-

fined in terms of the angle theta, and throughout the expressions (C.3) to (3.6b) the

higher derivatives of the angle are written as a function of the linear velocity or acceler-

ation measurement (as appropriate) and the radius at which that measurement is taken.

In order to combine the measurement uncertainties for each sub-expression (C.3)

to (3.6b) according to equation (39) and the guidelines in JCGM 100:2008 [11], the

partial derivatives with respect to each measured variable need to be taken. These are

presented in equations (3.7a) to (3.10d):
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∂A

∂m
= r2cα (3.7a)

∂A

∂rc
= 2mrcα (3.7b)

∂A

∂α
= mr2c (3.7c)

∂B

∂ACD

= r2zwzẋ
2 (3.8a)

∂B

∂rz
= 2ACDrzwzẋ

2 (3.8b)

∂B

∂wz

= ACDr
2
z ẋ

2 (3.8c)

∂B

∂ẋ
= 2ACDr

2
zwzẋ (3.8d)

∂C

∂m
= grc(sin θ) (3.9a)

∂C

∂rc
= gm(sin θ) (3.9b)

∂C

∂θ
= gmrc cos θ (3.9c)

Assuming that the gravitational constant does not introduce any additional uncertainty:

∂D

∂m
= rpin(g2 + 2grcω

2 + r2cω
4)

1
2 (3.10a)

∂D

∂rpin
= m(g2 + 2grcω

2 + r2cω
4)

1
2 (3.10b)

∂D

∂rc
= rpin

m

2
(g2 + 2grcω

2 + r2cω
4)−1/2(2gω2 + 2rcω

4) (3.10c)

∂D

∂ω
= rpin

m

2
(g2 + 2grcω

2 + r2cω
4)−1/2(4grcω + 4r2cω

3) (3.10d)

These partial derivatives are combined using a vectorised form of the sum in equation

(39), which is summarised in equations (3.11a) to (3.11c):

u2c(f) =
~∂F

∂xn

[UT
NUN ◦RN ]

~∂F

∂xn

T

(3.11a)

~∂F

∂xn

=
[

∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]
(3.11b)

UN =
[
u1 u2 · · · un

]
(3.11c)

where f represents the function describing the measurand, xn is the nth individual

measured variable and un is the uncertainty associated with that variable. The matrix

RN contains the correlation coefficients rn(xi, xj) for the uncertainties ui, uj, where

−1 ≤ rn(xi, xj) ≤ +1 and rn(xi, xj) = 0 for uncorrelated measurements.

rn(xi, xj) =
u(xi, xj)

u(xi)u(xj)
(3.12)

For each of the sub-elements of the measurand expression, the uncertainties and relative

uncertainties are as follows in TableC1, assuming the state of the art in measurement

hardware is employed, as detailed in Table B1.

It may be observed from equations (3.7a) to (3.10d) that the uncertainties of each

sub-measurand scale with the states on which they depend. Therefore, to reduce the

uncertainty, it is desirable to take measurements at lower amplitudes. Practically this
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Table C1

Sub-Measurand

% Uncertainty

(small magni-

tude states)

A (Jα) 0.00743

B (Aero) 0.02880

C (Gravity) 0.3541

D (Bearing Force) 0.0000560

also avoids the risk of chain bounce. It is also important to avoid coefficient of friction

measurement in the ‘rocking’ regime of the chain described in Figure 7. With these

two requirements accounted for, the uncertainty measurements in this and the following

section have been determined for 30 seconds of oscillation immediately prior to the

rocking regime being entered.


