
 Brook, J., Cuadrado, F., Deliot, E., Guijarro, J., Hawkes, R. J., Lotz, M., ...
Wilcock, L. (2018). Loom: complex large-scale visual insight for large
hybrid IT infrastructure management. Future Generation Computer Systems,
80, 47-62. https://doi.org/10.1016/j.future.2017.08.013

Peer reviewed version

Link to published version (if available):
10.1016/j.future.2017.08.013

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at https://www.sciencedirect.com/science/article/pii/S0167739X16303843?via%3Dihub#d1e355.
Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1016/j.future.2017.08.013
https://doi.org/10.1016/j.future.2017.08.013
https://research-information.bris.ac.uk/en/publications/loom(3376078a-b501-458f-9f61-5539679fe5e8).html
https://research-information.bris.ac.uk/en/publications/loom(3376078a-b501-458f-9f61-5539679fe5e8).html

Loom: Complex Large-Scale Visual Insight for Large
Hybrid IT Infrastructure Management

James Brooka, Felix Cuadradob, Eric Deliota, Julio Guijarroa, Rycharde
Hawkesa, Marco Lotza, Romaric Pascala, Suksant Sae-Lora, Luis M. Vaqueroc,∗,

Joan Varvennea, Lawrence Wilcocka

aHewlett Packard Enterprise
bSchool of Electronic Engineering and Computer Science of Queen Mary University of London

cDepartment of Computer Science. University of Bristol

Abstract

Interactive visual exploration techniques (IVET) such as those advocated by Shnei-
derman and extreme scale visual analytics have successfully increased our under-
standing of a variety of domains that produce huge amounts of complex data. In
spite of their complexity, IT infrastructures have not benefited from the applica-
tion of IVET techniques.

Loom is inspired in IVET techniques and builds on them to tame increasing
complexity in IT infrastructure management systems guaranteeing interactive re-
sponse times and integrating key elements for IT management: Relationships be-
tween managed entities coming from different IT management subsystems, alerts
and actions (or reconfigurations) of the IT setup. The Loom system builds on two
main pillars: 1) a multiplex graph spanning data from different ITIMs; and 2) a
novel visualisation arrangement: the Loom “Thread” visualisation model.

We have tested this in a number of real-world applications, showing that Loom
can handle million of entities without losing information, with minimum context
switching, and offering better performance than other relational/graph-based sys-
tems. This ensures interactive response times (few seconds as 90th percentile).
The value of the “Thread” visualisation model is shown in a qualitative analysis
of users’ experiences with Loom.

Keywords:
management, cloud, scale, visualization, complexity, extreme scale visual

∗Corresponding author: luis.vaquero@hpe.com

Preprint submitted to Future Generation Computer Systems August 12, 2017

analytics, visual analytics

Highlights

• Interactive insight extraction techniques can help to tame full stack IT man-
agement complexity

• Interactive insight extraction techniques need to be extended for manage-
ability software. This is the role of the “Thread” visualisation model:

– reduces context switches and minimises text on screen

– minimises text on screen and avoids edge crossings, which tend to
clutter the screen in densely connected graphs

– creates IT infrastructure overviews for large IT installations by sum-
marising IT entities status and highlighting relationships on managed
entities of interest

– deals with alerts as first-class citizens

– enables IT operators to execute actions to change the current state of
the IT infrastructure

– works on touch-enabled displays with radically different form factors

• An extended multiplex graph powers the “Thread” visualisation model

• The extended multiplex graph delivers interactive response times (few sec-
onds)

• Loom excels at aggregating data and on relational queries to these aggrega-
tions

• Loom builds on the advantages of interactive visual exploration techniques
by enabling interactive spotting of relationships between aggregations of
managed entities

2

1. Introduction

Information Technology (IT) infrastructures produce a myriad of messages
and alerts that a human operator receives in order to make an assessment and
execute some action that takes the IT infrastructure management (ITIM) system
to a normal operating mode.

Many IT issues in an infrastructure are never analysed and resolved. This
results in apparently benign early symptoms of failure (e.g. low priority alerts)
being ignored until they have caused major problems. For example, an unusually
slow drive tends to be ignored until the database running on it becomes unusable
and transactions fail.

Most companies deal with this problem by continuously refining a set of
thresholds on well-known metrics (Service Level Agreements, SLAs). This strat-
egy has proven to be extremely efficient and effective when all services rely on a
single ITIM in relatively modern IT setups [1].

Unfortunately, there are several factors that set most IT setups apart from this
ideal scenario:

• the IT infrastructure is the reflection of the history of a corporation and it
tends to include many ITIMs that have been added over decades

• the extreme abundance of open source ITIMs released by all sorts of com-
panies in an attempt to reduce costs, make recruitment easier, commoditise
competing solutions, and/or share some knowledge back with the commu-
nity

• high heterogeneity of the software stack running on the IT infrastructure
(tools for accounting, relationships with suppliers, provisioning, provenance,
human resources, and many other) makes management more difficult

• the continued effort towards setting programmable infrastructure that was
started by virtualisation/cloud technologies and is continued by “container-
isation”, software defined network and network function virtualisation

• miniaturisation of the user interfaces taking us from a world of “mobile
first” to a situation closer to a “mobile only” where the ability to touch to
manage the infrastructure is increasingly appealing

All these factors foster:

3

• the appearance of hidden interdependences (switching a host off with HPE
iLO will kill the Kubernetes containers running on it but these two systems
are not necessarily connected)

• the presence of partially overlapped functions so that an IT operator can
exert the same effect via a different ITIM. One could, for instance, shut-
down a container by directly using Docker or by invoking an appropriate
Kubernetes command.

Hiring more administrators and increased automation (like testing, building
and deploying [2]) have been the responses to cope the increased complexity of
modern IT setups. In spite of these strategies, considerable human effort is still
required to oversee and authorise semi-automated decisions, and full automation
is often times only possible after careful human analysis of management data [3] .

Unfortunately, we have reached a point where increasing the number of ad-
ministrators is simply not enough. Current projections estimate there will be 80
billion connected devices by 20201. The number of servers a single sysadmin can
manage range from 100 to 20000 depending on the complexity of the IT setup.
This maps to 80-16000 times the number of U.S. majors in computer science in
20122.

Poorly managed infrastructures result in security problems (e.g. unpatched de-
vices attacked on well-known vulnerabilities), operational issues (e.g. slow times
to deploy or upgrade a running service) and, eventually, in poor user satisfaction
and profit losses.

Visual analytics (VA) is the “science of analytical reasoning facilitated by in-
teractive visual interfaces” [4]. Extreme-Scale Visual Analytics (ESVA) focuses
on large scale complex and possible multi-sourced data [5]. ESVA establishes
a close interplay between 1) a fast (often in-memory) analytics backend capa-
ble of merging data from several sources to create insightful summaries and 2)
fine interactive visualisations that promote exploration of summarised data and
quick extraction of details of interest. Thus, ESVA enables humans to focus their
full perceptual and cognitive abilities on the analytical process and extract action-
able insight from complex data [5, 6]. Similar guidelines to deliver interactive

1http://www.forbes.com/sites/gilpress/2014/08/22/internet-of-things-by-the-numbers-market-
estimates-and-forecasts/

2http://archive2.cra.org/uploads/documents/resources/
taulbee/CS Degree and Enrollment Trends 2010-11.pdf

4

exploratory tolls are also advocated by Shneiderman in his famous mantra [11]:
”Overview first, zoom and filter, then details-on-demand”. We refer to these as
interactive visual exploration techniques (IVET).

While these techniques have been widely applied across disciplines [7, 5], IT
infrastructure management has remained indifferent to their advancements except
for a few position statement papers that claim that a new breed of systems (known
as “Data Visualization Management Systems”) is needed to increase collaboration
between visualisation and data infrastructures [8, 9].

IT management requires to build on interactive visual exploration techniques
to cope with information overload. In addition, there are some peculiarities of IT
management that have not been explored by current IVET solutions:

• alerts also need to be summarised and visualised together with the elements
of the IT infrastructure they are associated with

• spotting sources of problems and filtering noise in IT management makes
it essential to highlight relationships across managed entities in different
ITIMs. For instance,“discovering a failure in network link A caused errors
in application X via server 1”

• IT management is not just about extracting insight from management data:
the ability to exert “Actions” to change the state of the many ITIMs in the in-
frastructure in a coordinated way becomes critical to reduce cognitive over-
load

• as many IT operators can be “on the go” and access the management in-
terfaces from displays with different form factors, the ability to touch on
representations of the managed entities becomes increasingly interesting

Our system, Loom3, is the first system that:

• 1) enables interactive touch-enabled exploration. This is possible thanks
to a new graph model that includes managed IT nodes and aggregations of
interest, which result from queries by the user. Loom can manage data from
several ITIMs, creating multiplex aggregated graphs.

3The name comes from the metaphor that summarising information can help users “weave”
their own “tapestries” rendering a custom overview of the ITIMs in their IT setup.

5

• 2) a new interactivity model where elements in the frontend are mapped to
entities in the backend but only an abstract representation and a summary
of the managed IT infrastructure elements are sent to the frontend.

• 3) a set of internal optimisations that make Loom capable of coping with
large heterogeneous scale IT installations in interactive response times (less
than 30 seconds).

The rest of this paper is structured as follows: Section 2 presents how Loom
builds on visual interactivity and exploration techniques for large full stack IT
setups containing several ITIMs. After presenting the main functionalities and
the fine orchestration required between frontend and backend, we present Loom
design in Section 3. The advantages of Loom are exemplified with two use cases
in Section 4. We evaluate Loom in terms of performance and user experience and
present the results in Section 5. Loom is compared with state of the art systems in
Section 6. The main conclusions are summarised in Section 7.

2. The Loom Visual Insight Extraction Model for Large-scale IT Manage-
ment

Corporate IT users have been characterised in enterprise usability studies [10].
Loom caters for two of them. Advanced users (also referred to as “hackers”in [10])
are in charge of pulling data from several data sources and specifying how less
tech-savvy users (“application users” as defined in [10]) would use the data reach-
ing the user interface (UI). We will stick to the “hacker” / “application user” ter-
minology for the remaining of this manuscript.

This section presents Loom from the point of view of these two types of users
and highlights reveals how large-scale IT management is made exploratory and
interactive by a closer interplay between UI and backend, as anticipated by recent
position papers [8, 9].

2.1. The Application User: Visualising the IT Infrastructure
2.1.1. Summarisation + Homogeneisation

Loom enables the creation of summaries of unprecedented numbers of man-
aged entities coming from different ITIMs.

Figure 1 shows the main building block of Loom, the “Thread”4.

4We are aware the term is heavily overloaded in computer science, but in this paper we

6

Figure 1: Example of “Thread” and its constituent elements: “Fibres”

On the UI side. A “Thread” is nothing more than a rectangle5 containing visual
representations of managed entities of the same type (e.g. OpenStack Virtual Ma-
chines, VMs), see Figure 1. When the number of managed entities is too large to
fit in the screen, Loom performs aggregations on the managed entities so that a
user can interact with them in a touch-enabled display. Loom also automatically
rolls up the properties of the entities contained in an aggregation to create sum-
maries (e.g. Loom extracts statistics on numeric properties of the entities in the
same aggregation).

Each of the dashed-line rectangles inside the visual “Thread” in Figure 1 is
referred to as a “Fibre”. “Fibres” can represent either an individual managed
entity (e.g. a VM) or an aggregation of entities of the same type (a set of VMs).
The length of a “Fibre” in a “Thread” is proportional to the number of managed
entities it contains (and the resolution of the display).

“Threads” also include a “Thread” header, as shown on the left hand side of
Figure 1. This header includes information about the type of entity contained in
the “Thread” and if we are seeing an aggregation of entities or plain entities in the
“Fibres” it contains.

metaphorically refer to it in the purest traditional sense of the word: one of the lengths of yarn
forming the warp or weft of a woven fabric.

5Many other layout arrangements are possible, like a circle.

7

On the backend. Managed entities of the same type are kept in an indexed collec-
tion. When no aggregations are needed on the UI (“Fibres” correspond to single
managed entities), this backend collection is uniquely mapped to its visual repre-
sentation as a “Thread”.

Whenever the number of entities is too large to remain touchable on the dis-
play employed by the user, Loom backend creates aggregated “Fibre” objects. A
“Fibre” can also be the result of a specific query performed by a user to explore
the state of the IT infrastructure. Each backend “Fibre” keeps a set of pointers to
the managed entities it contains and a set of summary properties resulting from
the roll-up of the entities contained in the “Fibre”.

When the managed entities belong to one or more ITIMs, Loom merges them
in a single “Thread” if it detects they have the same attributes. This is key to
enable the display of overlapped functionality across ITIMs as a single pane of
glass (e.g. VMs in different OpenStack installations are represented in the same
visual “Thread”).

2.1.2. Exploration
When confronted with a sea of options and false positive alerts, ITIMs opera-

tors often need to perform exploratory queries to find their way and distil the root
cause of the incident they are handling.

On the UI side. Loom provides a “query customisation” menu that enables users
to control the type of operators applied to the managed entity/ies.

By selecting the sequence of operators to be applied to one or more “Threads”
users can visually construct a “Thread query” that returns a more informative
arrangement of the managed entities in that “Thread”.

By default, Loom provides a “NoOP” operation (Figure 2 top) that creates
aggregations of managed entities in an arbitrary manner so that they are compliant
with the form factor of the device used to visualise the results.

Query construction is as simple as selecting operations from a combo box on
the UI and concatenating them as needed (see bottom part of Figure 2). In this ex-
ample, an application user would filter OpenStack VMs by operating system when
this equals to ‘Ubuntu’, and then group them by region. If after these two opera-
tions there were more resulting “Fibres” (aggregations of OpenStack VMs by re-
gion) than recommended to keep touchable “Fibres” on screen, then the “NoOP”
would tell Loom backend to create arbitrary aggregations of OpenStack regions.
In the example in the Figure, we assumed there were just 3 different regions in
our OpenStack installation.

8

Figure 2: Example of “Thread” query customisation.

The operations at hand are those provided by Loom by default or a set of
operations written by the “hacker” user:

• Aggregation: group by, string similarity clustering (e.g. K-means), hierar-
chical geographical clustering (e.g. based on polygons or 2D grid projec-
tions), deciles, percentiles and the like.

• Visualisation: “NoOp” (a hierarchical aggregation that limits maximum
number of fibres (entities/aggregations) in a thread, and thereby on screen,
to a client-specified number), limit drill down (same as “NoOP” but man-
aged entities are placed in fibres so that the number of clicks to reach man-
aged entities when drilling down is minimised).

• Other: free-text based search, regex-based search, predicate-based filtering,
sort by, community detection, geographical analysis, etc.

• “Hacker” defined: custom operations needed to handle a particular type of
data. For instance, the location of fleets of mobile devices of an organisation
can be clustered by location or communities of devices can be found using
custom clustering and community-detection techniques (see next section).

On the backend: internal abstractions. Loom dynamically creates an extended
graph by recursively connecting new “Fibres” resulting from applying operations
to previously created “Fibres”.

9

Figure 3 (top) shows an example of how the graph is extended6. From a graph
of OpenStack VMs, we want to get rid of non-Ubuntu VMs. Two new “Fibres”
(which effectively become graph nodes themselves) are connected by containment
relationships (dashed red lines) to all graph nodes that meet that predicate (OS =
‘Ubuntu’). It can also be observed how these aggregations of managed entities
would be displayed as “Threads” and “Fibres” on the UI.

Figure 3: Example of “Thread” query customisation on the Loom graph: extensions.

6Note that graph node, graph extension, “Fibre” and aggregation indicate the same concept:
an aggregation of managed entities or other aggregations (a “Fibre”) that is added as a node to a
graph of other “Fibres”, effectively creating an extension of the graph.

10

The second part of the pipeline (bottom part of Figure 3) takes all the Open-
Stack VMs that are contained in the newly formed ‘Ubuntu’ graph node as an
input and creates three new extensions (graph nodes/“Fibres”) from it. These are
based on the region the VM are located at. These three new graph nodes are, in
turn, connected to the managed entities they contain (dashed red lines) and to the
“parent graph node they originated from (OS = ‘Ubuntu’); black dotted lines show
parenthood relationships between the ’Ubuntu’ “Fibre” and the 3 newly generated
children “Fibres” (EMEA, US, APA). It can also be observed how these aggre-
gations of managed entities would be displayed as “Threads” and “Fibres” on the
UI.

The “Fibre” resulting from the last operation is the one sent back to the UI. All
others (like the ‘Ubuntu’ one in the example) are memoised and are, thus, sharable
across queries and users.

2.1.3. Overview
According to Shneiderman [11], a single “Thread” would not be sufficient

to create overviews (“Tapestries”) that can be used to explore data coming from
different ITIMs.

When dealing with issues, IT operators often need to find relationships be-
tween different elements in the infrastructure. Finding relationships between in-
dividual managed entities becomes more complex as the scale and connectivity of
the graph increase. The number of potential paths between entities grows expo-
nentially.

This becomes more complex when the UI displays aggregations/summaries7.
Keeping and maintaining links of aggregations of managed entities to the entities
they contain needs to be well structured so that relationships can be found in
interactive times and user queries resulting in new aggregations (or changes in the
data from the backend ITIM) are easy to add/update.

Loom is unique in its ability to spot relationships between aggregations of
managed entities in interactive response times. Figure 4 shows how related “Fi-
bres” are highlighted when a user clicks or taps on a “Fibre” on the UI.

On the UI side. Overviews (“Tapestries”) are created by lining together several
visual “Threads”. Showing relationships between thousands of managed entities
is not possible in a single pane of glass. Thus, Loom displays relationships to

7As shown above, “Threads” consist of several “Fibres”, which can contain individual managed
entities or aggregations of managed entities.

11

Figure 4: Application users can “weave” their own “Tapestries” by placing the “Threads” of inter-
est on the screen and observing relations between “Fibres”

any “Fibre” of interest by clicking on that “Fibre” and showing related “Fibres”
as highlighted in a different colour. The example in Figure 4 shows how when
a user clicks on a “Fibre” containing OpenStack VMs in the same region, some
networks highlight as well. This indicates that some of the VMs in that “Fibre”
are attached to those networks.

On the backend. A “Tapestry” is merely a collection of collections of managed
entities of different types. Loom backend takes care of navigating the extended
graph and reporting whether or not any two “Fibres” on the screen are connected.

Loom takes all “Fibres” in the “Tapestry” and computes whether a path exists
connecting any two nodes. The extended graph is navigated from each “Fibre” on
the screen reaching the managed entities in that “Fibre” (‘descending’ the dashed
red lines and finding entity to entity connections which are created by the “hacker”
user, see below). This is represented as a thick dashed blue line in Figure 5.

Loom then tests whether a path has already been identified (cache path lookup)
and if not, Loom tests if the entities are connected to any common “hub”8. If they
do not share a path to a common hub, 1-hop neighbours are tested to see if their
neighbours are connected to a common hub. If no path is found using hubs, a fully-
blown path finding algorithm is used and the path cache is updated if one happens
to exist. This accelerates the computation of relationships between aggregations
on the screen.

Unless other relatedness functions are indicated as a configuration parameter
to Loom by the “hacker” user, Loom assumes that two “Fibres” are connected if
any of the managed entities they contain are themselves connected.

As shown above, “Fibres” are created by a single sequence of operations ap-

8Highly connected managed entities are identified when they are loaded into the system. See
subsection on Relationship Handling below

12

Figure 5: Calculation of Relationships of Managed Entities/Aggregations on Screen

plied to managed entities or aggregations of managed entities in a previously cre-
ated “Fibre”. This sequence of operations, its inputs, and its parameters are hashed
to create a unique name. This name is used as key for a key-valued cache which
contains the results of the query. The UI uses this unique name to get up-to-date
results.

As mentioned above, the different types of entities in the Loom graph are
kept in separate indexed collections. This can be seen as a multi-partite graph
separating managed entities by their type. However, connections to entities of the
same time are not prohibited, they are simply discouraged for they imply more
object-level checks are needed at query time to prevent loops and filter possible
relationships.

2.1.4. Details
Once an IT operator has explored the status of the IT infrastructure, she is

directed to a small set of managed entities of interest to solve the issue at hand.
For instance, alerts point to a single hard drive as the root cause of an unexpected
performance degradation in mobile apps. Loom is tuned to deliver details on
entities of interest without losing the overview of all other managed entities.

13

On the UI side. Application users select a “Fibre” of interest in a “parent Thread”
and get details for it contents.

Say the application user is using a small factor device that supports a maxi-
mum of 5 touchable “Fibres”. If the user grouped OpenStack VMs by region and
the result returned more than 5 regions, the “NoOP” operation in Loom would
create additional aggregations.

In the case of Figure 6 (top “Thread”), there are 5 “Fibres” in the VMs Thread
each resulting from applying the “NoOP” to the results of the “groupBy” opera-
tion.

Figure 6: Obtaining Details from a “Fibre” containing aggregated data

When the user requests more details about the first arbitrary “Fibre” (e.g. one
in the “Thread” of VMs), the UI sends the name of that “Fibre” to Loom backend
and the response contains the names of two “Fibres” (the ones representing the
aggregations of all VMs in the US and EMEA). This is represented as a “child
Thread” in the UI. It is a “Thread” of the same type of entities, but containing just
a subset of all the entities.

If for whatever reason the user is interested in finding out more about the VMs
in the US, she can then request details about them. The UI sends the name of
the US “Fibre” to Loom backend in order to get the contents of that “Fibre”. In
this case, the result is just 5 OpenStack VMs and all the details about them (see
bottom “Child Thread” in Figure 6).

14

On the backend. The name of the “Fibre” is used as “entry point” in the graph.
When the user gets details, the UI sends a request of details to Loom backend.
It simply follows graph extensions until the entities of interest are found in the
indexed collections described above.

2.1.5. Manageability Specifics
The exploratory nature of the work an IT operator goes through when trying to

solve an issue on the IT infrastructure is similar to other information visualisation-
inspired domains [11]. The importance of dealing with relationships and showing
them interactively is a differentiating aspect.

Also, manageability data is different from any other type of data in that alerts
are one main driving force for operators and they deserve a special treatment. The
same goes for Actions, since the IT operator will eventually tweak some levers to
solve the issue he or she is dealing with.

On the UI side. Loom displays alerts coming from different systems as a tiny
differently coloured square on the corner of the “Fibres” in a “Thread”. Since
some “Fibres” are aggregations of managed entities, alerts are aggregated too.

Actions are represented as a button a user needs to click on in order to change
the state of one or more ITIMs (see Figure 7).

Figure 7: Overlaying buttons for Actions (checked board dodecagon) and Alerts (red horizontal
line stars)

15

Alert/Action aggregation is possible since “Fibres” in a “Thread” contain man-
aged entities of the same type (e.g. an alert on a VM failing unexpectedly in a
public and a private OpenStack instance). Loom infers alerts and additional ac-
tions by inspecting the Java annotations from the entity adapters. Alerts will be
displayed for any element contained in the “Fiber”. Aggregate views present the
actions available for every individual instance belonging to the “Fiber”.

On the backend. The “hacker” user can define custom aggregation mechanisms.
Loom provides a default aggregation for alerts: the maximum alert priority is
shown for the whole aggregation (the alerts of all the managed entities in a “Fibre”
are inspected simply by following containment relationships, e.g. dashed red lines
in Figure 5). This prevents “median filter” effects that would obscure high priority
alerts when aggregated with many low priority ones.

Action aggregation implies very little work on the backend: Actions available
to a managed entity are made available to aggregations of that type of entity. More
coordination is required when the user executes an Action on the UI. When a user
executes an Action on a “Fibre” containing an aggregation of managed entities
(e.g. power off whole OpenStack region containing thousands of VMs), the UI
sends the name of the “Fibre”, an Action id, and any possible parameters for
the Action (as populated by the user on the UI). Loom backend then finds all the
managed entities in that “Fibre” and issues an individual call to execute the Action
on the ITIM.

2.2. The “Hacker” User
While application users can benefit from all the advantages of Large-Scale

IVET, there is some preparation work that needs to be done for them to be able to
extract inisght from and operate complex large scale installations.

Modeling ITIM Data. “Hackers” are required to model the entities in the ITIM
in a format Loom can digest (schema reconciliation). This is done by building an
Adapter to construct a graph model each of the ITIMs.

In order to create an Adapter containing a graph model of the data of the ITIM
of interest, a “hacker” user goes through three well-defined steps:

• Data collector: each Adapter taps into an ITIMs in their preferred way
(Loom does not prescribe anything about the communication with the back-
end system).

• Managed entity: data structure representing each instance of a real world
managed entity.

16

• Managed entity type: schema definition used by Loom to describe attributes
and management Actions.

Loom provides an Adapter Manager that orchestrates several Adapters by in-
voking a “collect” method in each of the Adapters to trigger a collection of data
from the original ITIMs. The collector will then pull data and map them to spe-
cific managed entity types. Managed entities types are Java classes containing
attributes (string, numbers, enums, dates and arrays are supported data types) and
relationships and Actions that can be executed on managed entities of that type.

Loom allows “hackers” to specify managed entities directly as Java classes
where annotations are used to easily specify managed entity relationships or Ac-
tions9. For example, the following snippet shows how a managed entity (an Open-
Stack network) from an OpenStack Adapter is “Connected to” other types of man-
aged entities (namely OpenStack Projects, Instances and Regions). At query time,
Loom uses these annotations to filter possible connections at the class (entity type)
level during a graph traversal. This is faster than inspecting individual entity at-
tributes only to find a connection type is not allowed, which is why connections
to managed entities of the same type are supported, but discouraged.

@ConnectedTo(toClass = OsProject.class)

@ConnectedTo(toClass = OsInstance.class)

@ConnectedTo(toClass = OsRegion.class)

Listing 1: Tagging an Entity Type to Define Connections Between Entities

Connecting Multiple Sources. In most IT infrastructures, the information avail-
able for a real-world managed entity is obtained from a variety of ITIMs that do
not directly communicate with each other. Different assumptions (e.g. naming
schemas) in each system may cause the same real world managed entity to be rep-
resented differently (name and attributes) in each of those systems. This makes
finding relations between individual managed entities in different systems hard.
Administrators have to switch from the UI or console of an ITIM screen to the
next and miss the big picture in the very many hops they are forced to follow.
Loom enables those “equivalent” managed entities to be “stitched” together by
identifying potentially equivalent managed entities across data sources (graphs)
and building links across them.

9These could also be given in a JSON format indicating entity properties that can be converted
to a Java Bean object

17

This way, two or more otherwise disconnected ITIMs (and their respective
multi-partite graphs each modelled by a different Adapter) are joined together
forming a multiplex graph. As a result, relationships can be found and queries can
be made across graphs (ITIMs) in a seamless manner.

When several Adapters have been pre-loaded into the system, the person de-
veloping a new Adapter (“hacker”) has the possibility of defining “stitching” func-
tions that define equivalence relationships between managed entities across differ-
ent Adapters (different ITIMs). This is shown in Figure 8.

Figure 8 shows the graphs corresponding to two different Adapters one pulling
data from an ITIM dealing with HR information and other one from a second ITIM
handling IT resources. Both ITIMs contain details about people. Loom enables
connections across Adapters, forming a multiplex graph. A stitching rule takes
the form of a matching function where a left-hand side is matched against a right-
hand side of the rule (see left hand side of Figure 8). The matching function (“Ite
Equivalence Rules in Figure 8) is really an array of user-provided lambdas that can
be combined resulting in a number n ∈ [0,1] indicating the probability that two
managed entities are equivalent or not). “Hackers” wanting to create a homoge-
neous view on the myriad of systems they have to cope with (also called “hackers”
in this document) can specify their own stitching rules when the Adapter is loaded
and the Graph Manager re-evaluates them as needed on entity updates. More
complicated functions like data mining techniques can be used.

Modeling Actions. The Actions that can be exerted on managed entities of that
type are also indicated in the managed entity class. The following code snippet
shows how to specify an Action on an ITIM like HPE’s Insight CMU10 node
managed entity types.

An @ActionDefinition annotation describes a set of name, id and a set of
parameters that the UI needs to capture from the user input in order to be able to
execute the Action. In this case, the UI needs to show all possible values (“on”,
“os off”, “boot”, etc.) for a “power” operation. This enables the application user
to click on the right option (@ActionRange) so that Loom knows what power
operation to execute on CMU nodes. This description offers some information that
can be useful for a UI (like an icon for visualisation in a UI or a human readable
description), but it does not mandate how the information should be displayed (e.g
a combo box, a list or any other UI elements could be used for the application user
to select what power operation to perform). The most important parts are the type

10https://h20392.www2.hpe.com/portal/swdepot/displayProductInfo.do?productNumber=INSIGHTCMUSW

18

Figure 8: Breaking Silos with the Creation of Multiplex Graphs. Stitching

(if it applies to individual managed entities or aggregations of managed entities of
the same type) and the parameters.

@ActionDefinition(

id = "powerNodes",

name = "powerNodes",

type = Fibre.Type.Aggregation,

description = "Power manage multiple Nodes",

parameters = {

@ActionParameter(

type = ENUMERATED,

id = "powerOptions",

ranges = {

@ActionRange(id = "OFF", name = "Off"),

@ActionRange(id = "OS_OFF", name = "OS off"),

@ActionRange(id = "BOOT", name = "Boot"),

@ActionRange(id = "STATUS", name = "Status"),

@ActionRange(id = "PRESS", name = "Press"),

@ActionRange(id = "UID_OFF", name = "UID off"),

@ActionRange(id = "UID_ON", name = "UID on")

}

)

}

)

Listing 2: Annotating an Entity Type to Specify a Power Operation with Several Possible Parameters (for power on, off,

boot, etc.) or parameters that tell Loom whether or not the Action needs to be applied to “Fibres” (type)

19

Custom Data Operations. “Hackers” can also extend Loom’s default operation
set (see above) with custom operations that suit their specific entities. The Adapter
Manager will invoke a method in the Adapter interface that imports all Adapter-
specific operations. When a “hacker” writes these operations, they need to comply
with a well-defined interface:

@FunctionalInterface

interface QuadFunction<Input1, Input2, Input3, Input4, Output>

Listing 3: Interface to Define New Operations.

where Input 1 is the dataset(s) that we want to perform an operation on, In-
put 2 the arguments of the operation, Input 3 a data structure to report execution
errors, Input4 is the operation context (e.g. Adapter that is executing it, security
credentials, etc.) and Output is the result of the execution.

This simple interface enables “hacker users” to easily register operations on
their own data. “Hacker” users can add new operations that are taken by Loom
when the Adapter is first loaded by complying to the interface in Listing 3 above.
An example text representation of a UI query on a “Thread” of VMs may look as
follows:

VMs.filterBy

(uptime > 10 days &&

OS == Ubuntu14.04 &&

lastUpdatedFirmware > 1 month)

.clusterBySupportRegions

In the example above a “hacker user” would have pre-registered the ”clus-
terBySupportRegions” operation before an “application user” could put together
such a query. This operation is totally dependent on the different regions offer-
ing IT support at a global level for a specific company (Loom does not have that
knowledge).

Changes in ITIM Managed Entities. Loom is also in charge of automatically de-
tecting changes between poll cycles to the original data sources. Loom keeps a
buffer with the last update on data retrieved from the data source. This last up-
date is compared with the current update. Basic hashing functions are used to
spot changes, but Loom also lets “hackers” indicate whether an entity attribute is
a constant or a rapidly varying attribute (e.g. CPU usage would change every ms
and trigger lots of unnecessary updates in the Loom graph, see below). Changes
in hashes are inspected further (ignoring constant and fast changing attributes).

If any of the entities in a “Fibre” is changed, Loom flags it as “dirty”. This
dirty bit is propagated to all graph extensions that may result from previous queries

20

on the graph. Dirtied “Fibres” are lazily pre-computed upon user request. Loom
offers eventual consistency guarantees for concurrent updates. The “hacker” does
not need to deal with any of this.

On every update, Loom is also in charge of checking the existence of equiva-
lent managed entities across Adapters (across different ITIMs) and, if one exists,
creating the right edges across graphs (“stitches”), which effectively create a mul-
tiplex graph across all Adapters.

Relationship Handling. To speed relationships search, Loom enables Reporter
objects that define custom strategies to navigate the graph. A Reporter is simply
a lambda function injected into a generic graph navigation process that defines
which “Fibres” on-screen should be reported back to the UI. The default Reporter
prevents loops from happening (e.g. visiting managed entities of the same type
twice) and handles the handover in stitched graphs (a query spanning two or more
graphs joined in a single multiplex).

Other Reporters can also be developed by a “hacker” user for specific cus-
tomer needs (e.g. ignore some entities or enable/disable certain connections to be
reported and visualised). The Reporter interface is customisable in that a Reporter
object (a lambda function that filters graph nodes based on pre-defined predicates)
is passed as an argument. The Reporter contains navigation rules that indicate
Loom what edges it should follow and when to stop navigating.
Relationships calculateRelationships(Fibre src,Reporter reporter);

While expansions of the graph will change rapidly based on the ability of
the user to ask queries to the graph of managed entities, the graph of managed
entities will only change when data in the back-end ITIMs change as well. Thus,
computations of path existence between managed entities can be pre-computed
when the Adapter loads the data from the ITIMs into Loom. Computing all paths
between entities in a dense graph is expensive. Highly connected managed entities
are identified when they are loaded into the system (we call these “hubs”). For
each hub, we precompute 2 hop paths from the hub and populate a path existence
cache.

When using the default Reporter, the “hacker” does not need to deal with graph
navigation and loop prevention.

3. Loom Architecture

In this section we show how all the functions outlined in the previous sections
work together.

21

Figure 9: Overview of the Design of the System. The application user interfaces with the system
via a UI or a REST API, while the “hacker” user deals with writing Adapters, interfacing mainly
with the Adapter Manager.

When an application user defines a query (an operation pipeline) to be ex-
ecuted on an input “Thread”, this is sent by the UI to Loom via a Query API
supporting a single method (query) which receives the uuid of the input dataset
and the operation pipeline. Loom uses a JSON version of a dataflow language on
the wire to allow communication between the UI and the Loom backend.

The operation pipeline is deserialised by the API and converted to an ordered
set of “Operation” objects that comply with the interface defined in Listing 3
above.

The Query Manager (see Figure 9) is in charge of receiving the Operation set
and executing operations in the right order by keeping intermediate results and
memoises these “Fibres” in the “Graph Manager”. There is an optional query
optimisation phase that detects if any two consecutive operations can be executed
in parallel11. The Query Manager also caches results and checks dirty bits before
computing results.

The Query Manager relies on the Graph Manager to perform graph extensions

11There is no translation of an operation pipeline into a query execution plan beyond this

22

and summarisations as explained above. The Query Manager also uses a Rela-
tionship Calculator’ to indicate which “Fibres” on the screen are related. This
calculator is in charge of controlling Reporter execution.

The Adapter Manager is the layer in charge of controlling Adapter behaviour
and validates that the schema reconciliation performed by the “hacker” user is a
correct one. It is also responsible for detecting changes in managed entities so
that the Graph Manager can flag some “Fibres” as dirty for the Query Manager to
trigger re-calculation of previous queries.

4. A Couple of IT Management Use Cases

4.1. Hybrid Cloud Management
Loom can bring together two graphs (Adapters) where the type of the man-

aged entities is identical, as in the case if a hybrid cloud deployed on the same
cloud management software (e.g. a public and a private OpenStack-based cloud
installation).

Loom automatically detects that the two Adapters (for private and public cloud)
refer to the same type of managed entities (e.g. OpenStack instances) and creates
a unified collection that looks like using a single system in terms of user experi-
ence. “Fibres” in the UI are mapped to collections. In the case of dealing with two
systems, Loom simply appends the entities of a cloud to the collection containing
the entities of the other cloud.

Dynamic attributes (those that change rapidly, like IT infrastructure metrics)
can optionally be added, contributing to the progressive disclosure of information
predicated by Shneiderman [11]. See demo12.

4.2. Software and Hardware Management: Stitching Separate Domains
Figure 10 shows data from two Adapters: a hardware control and configuration

tool, Hewlett Packard Enterprise Insight CMU deployed on a set of Moonshot13

chassis, and a homebrew software configuration tool (known internally as Slim,
Service Lifecycle Manager).

Since there are not common entity types, two separate graphs are created to
represent the information brought into Loom by each Adapter. These two ITIMs
are disconnected unless Loom’s stitching feature is enabled. A user may want to

12https://www.youtube.com/watch?v=epl78PBe Ig
13https://www.hpe.com/us/en/servers/moonshot.html

23

know which Moonshot nodes are actually running the services he has deployed,
but that is hard to know since nodes and hosts have not been stitched yet.

Stitching effectively binds the two graphs together based on a matching func-
tion provided by the user. In this case Slim’s Adapter writer knows about the
existence of CMU entities. A quick scan through the names suggests that CMU
Node managed entity types can be equivalent to Slim Host managed entity types.
A more detailed look at their schemas (managed entity type) shows that both have
an attribute that could reveal they indeed correspond to the same real world entity
(host and node: machines). The “Hacker” then creates a stitching function check-
ing whether there is an exact match between the host attribute of any CMU host
and the node attribute of any Slim node. Loom executes that function and creates
multiplex edges connecting the Nodes and Hosts where there has been a match.

As shown in Figure 10, Loom highlights “Equivalence” relationships and spots
equivalent managed entities. Also, the relationships calculator follows multiplex
(equivalence) relationships14 and as a result when a user clicks on a running ser-
vice deployed with Slim, it is very easy to spot the networks and logical volumes
associated to on Moonshot.

5. Evaluation

5.1. Quantitative Evaluation
In this section, we present some experiments that highlight Loom’s ability to

synthesise information and find data of interest in a rapid manner, preserving in-
teractive response times. These are more difficult to achieve in connected datasets
where relationship reporting is important.

All these experiments were performed on a HP DL 980 with 4TB RAM and 80
cores running Ubuntu14.04 and Java 8. None of the results obtained in this section
make use of Loom’s caching system. Unless otherwise indicated, the results come
from running N = 15 experiments and we report 90th percentiles.

For the experiment we used a synthetic dataset that models frequent large-
scale OpenStack deployments: large number of hosts, high consolidation of VMs
in each host, and long-tail distribution of OpenStack projects are some of the gen-
erational characteristics of the dataset. This allowed us to scale up the number
of OpenStack entities and how they are connected, while preserving realistic con-
straints that can reflect actual customer workloads. The only difference between

14Other relation types are possible

24

Figure 10: Managing software and hardware from 2 separate ITIMs handling tens of thousands of
managed entities on a single pane of glass. This figure represents information about 235 Moonshot
chassis (containing 45 nodes each) or a total of 11250 hosts. 6409 hosts are actually populated by a
running service (Hadoop, HPE Autonomy’s IDOL or HPE Vertica). This Figure needs COLOUR
for proper visualisation.

synthetic and real data (from Loom’s point of view) is the latency in fetching the
data from the backend management systems. For instance, it can take minutes to
tens of minutes to fetch VM monitoring data from some cloud management sys-
tems. Once the data has been loaded in Loom, there is no difference in terms of
processing, memory consumption or scalability between synthetic and real data.
Unless otherwise indicated, the default query for these experiments included a fil-
tering operation, followed by a couple of grouping operations and a final “NoOP”
(reducing number of “Fibres” to the display size).

Query Time vs # of Managed Entities. Most academic works focus on the number
of managed entities in the graph in order to give an idea on how the graph analyt-

25

ics/systems scale. The queries we performed for these experiments are similar to
the examples given above and consist of a fixed number (3) of aggregation opera-
tions (e.g. group by and cluster per geographical information) followed by a filter
operation (e.g. OpenStack VMs whose operating system is Centos 7), and a final
grouping (“NoOP”) operation to accommodate the result to small factor (e.g. 10
inches touch-enabled displays).

Figure 11: A. Response time vs number of entities. 90th percentiles are given. B. Response time
vs # of operations in the query pipeline in a graph with 10M entities. 90th percentiles are given. In
our set of use cases, the average density of graph modelling IT infrastructure was 3-5.

Figure 11A shows the modelling of an OpenStack deployment containing
OpenStack VMs, volumes and networks. Each of these is modelled as a Loom
”thread”. 90% of the nodes in this graph have ' 5 edges.

These times are 2 orders of magnitude faster than operating Loom without any
pre-computation of paths between hubs or caching. The precomputations of the
existence of paths between highly connected (“hub”) managed entities results in
faster results when the full graph (including query-derived expansions) needs to
be queried and works for large systems, without massive subsecond churn levels.

Query Time vs Pipeline Length. More complex queries would result in longer
response times. In order to determine if Loom’s graph extension is effectively
useful for speeding up the retrieval of details on demand, Figure 11B shows a
set of experiments in which we added groupBy operations on random attributes
of the entities (e.g. for VMs. groupBy(region). groupBy(IP). groupBy(OS).
groupBy(kernelVersion)...). We fixed the length of the query pipeline and added as

26

many groupBy operations as needed. If the result of a groupBy operation results
in one or no groups, a new attribute is picked until the desired length is reached.

In this experiment, the results show how the response time scales sublinearly
with the number of operations in the pipeline.

Query Time vs Connectedness. The number of nodes in the graph does not reflect
the complexity that arises in traversal-heavy workloads (like the ones that are
needed in order to spot how things in our IT infrastructure relate to each other).
Edge density, defined as the average ratio of edges per node, is a better metric for
how complex relationships in the graph can become. In our set of use cases, the
average density of graph modelling IT infrastructure was 3-5.

Figure 12: Response time vs. number of entities for different edge densities (1, 5 and 10 as
indicated in the legend). 90th percentiles are given.

Figure 12 highlights how edge density is an important factor: as edge density
increases, the number of potential paths to follow from every node increases. As
most graph queries consist of traversals (e.g. finding paths), the complexity be-
comes exponential with the number of hops in the traversal. In our experiments,
response times are kept < 30s for small graphs (in the order of millions of nodes),
increasing the number of connections between nodes results in huge increases in
response times.

Figure 13 represents the time spent in calculating relationships vs the number
of entities in the synthetic graph we used in these experiments. It shows how as

27

edge density increases (1, 10, and 100), more time is spent on navigation (find-
ing relations between aggregations becomes harder). This situation is worsened
as the size of the graph increases. Some deep query pipelines can become non-
interactive with 100 million entities with an edge density of 5, but lack of in-
teractivity is more common with 1 billion nodes (for that same edge density) or
increasing edge densities (100 million nodes and an edge density of 10 takes a 1-3
minutes to complete).

Figure 13: Time to calculate relationships (navigate the graph) (90th percentiles) vs. number of
entities depending on edge density (E/V ratios of 1, 10 and 100 as indicated in the legend).

Stitching. We tested Loom’s ability to find equivalent managed entities in the IT
systems of a large public cloud. Depending on the backend system the data about
these entities were coming from (monitoring, cloud management, etc.) physical
nodes in the system we referred to by IP, hostname, hostname and region, fully
qualified domain name, etc.). This created several aliases for the same real world
entities in different systems. Loom was used to unveil the existence of such aliased
entities and enable navigation across systems, following graph connections.

In general, our incremental stitching implementation is able to cope with changes
in 10% of a 1 million managed entities graph in 100 ms. Related techniques
around data deduplication in a single relational database management system take
at least 150 ms for a few thousand managed entities [12]).

28

Obtaining Details. Finding information about an entity of interest is really quick
in all the sizes of graph we tested (tens of milliseconds mainly due to network
latency) since every UI “Fibre” (element on-screen) is mapped to a node in the
expanded graph. This aggregation node in the expanded graph keeps a reference
to the entities it contains, which makes obtaining entities of interest almost imme-
diate.

Comparison to Other Systems. Since finding relationships calculation becomes a
dominant problem as graph density increases, we performed a comparison with
other systems that could perform the same type of queries. In particular, we per-
formed a shortest path query in an extended graph.

In the relational database world, finding how any two managed entities in a
multi-partite graph are related boils down to nesting several joins across the ta-
bles containing every entity type (e.g. a table for VMs, another for volumes, an-
other for networks, etc.). We used VoltDB as an example of in-memory relational
database.

We also loaded the data into Neo4J15 (modelled as a property graph where
each node had an attribute reflecting the type of managed entity).

Figure 14 shows how Loom performs faster than graph databases and in mem-
ory relational databases, especially for larger graph sizes. Loom takes < 30s (90th

percentile) for all of these queries, while the other alternatives soon become non-
interactive (5 and 25 times slower for larger graph sizes).

Memory Consumption. As described above, Loom keeps entities as objects with
references to one another. The more attributes an entity contains, the higher the
memory consumption (Figure 15). Using a scenario with 100 attributes per node
and 5 edges we get an average memory consumption of < 2KB per node.

Figure 16 represents memory consumption as the graph density increases.

5.2. Qualitative Evaluation
Interactive response times at scale on complex related data is not sufficient if

the display receiving the results cannot accommodate them in a way that makes
sense for the user. In this subsection, we present a lightweight analysis on the
usability aspects around the Thread Visualisation Model.

15neo4j.com v2.3

29

Figure 14: Comparison of performance between Neo4j, VoltDB and Loom when trying to spot
relationships between N on-screen elements (N is usually ≤ 1000 since data need to be aggre-
gated to fit conventional displays). Response times are normalised to the fastest system. Results
represent 90th percentiles

.

5.2.1. Methodology
We conducted semi-structured interviews with a dozen enterprise analysts to

better understand their process and needs. We use the term “analyst” to refer to
anyone whose primary job function includes working with data to answer ques-
tions that inform operational or business decisions. Our interviewees held a num-
ber of job titles, including “data analyst”, “data scientist”, “software engineer”
and “consultant”.

The organisations they work for are mainly from the IT industry, with a large
proportion of large corporations. The analysts ranged from Ph.D. graduates in
their first year of work to consultants with 10-20 years of experience.

We recruited interviewees by emailing contacts at organisations within our
personal and professional networks. In some cases, we emailed analysts directly.
In others, we emailed individuals who forwarded us to analysts within their or-
ganisation. This recruitment strategy introduces potential bias in our results. For
example, the majority of our interviewees were based in the U.S. and U.K. Our
goal here was to get a primer on the reaction of enterprise users to the Loom
Thread Model, not to quantify a broad population rating. Other methods and con-

30

Figure 15: Memory consumption (GB) (90th percentiles) vs. number of entities in the graph for a
density of 5.

tinuing studies with an increased number and variety or organisations would be
better suited for quantifying our findings.

We began each interview with a quick introduction describing the purpose of
the interview and a 5 min demo on what Loom does from the UI perspective. After
that we also asked them more practical questions that explore their understanding
of relation highlighting: “how is VM 1 related to host #342 in the OpenStack
cloud and how many projects are using that project?”. A second subset of ques-
tions was directed at testing their understanding of the operation pipelines, for
instance: “how would you find which VMs run Ubuntu14.04 and visualise their
CPU utilisation per geographical zone”?

Each interview lasted around 25 minutes. Whenever possible, we interviewed
analysts on location at their job. For interviewees outside of the U.K. we con-
ducted interviews over the phone or via Skype. During the interviews we took
extensive notes.

As shown in Table 1, interviewees were asked to respond to a questionnaire
containing 8 different assertions covering different UX aspects of the system to-
wards the end of the interview. We posed these during interviews with several
customers and partners).

Loom’s ability to create aggregations and provide summaries and relationships
across them was well-received. The ability to get an overview of the IT infrastruc-
ture as a whole (“stitching” across ITIMs) was especially welcome by those with

31

Figure 16: Memory consumption (GB) (90th percentiles) vs. edge density for a 10M entity graph.

Question Rating
”Loom Thread model aggregates information in a useful and meaningful way” 4.1
”Highlighting relationships on aggregations help me identify dependencies in my system” 4.7
”The ability to bring data from different systems into a single screen facilitates my work ” 4.2
”Thread Bundles make it easy to track where an entity belongs in a group as I drill down” 3
”Propagation of alerts and actions to parent “Threads” helps my day to day tasks go faster” 3.6
”The Loom model makes it easy to build custom operations and pipelines” 4.2
”The Loom model eases creation of overviews and filters on the details I am interested in” 4.1
”The Loom thread model is intuitive and easy to use” 3

Table 1: Ratings for several UX features. Data represent median ratings. Ratings are: 1) Very
Poor/highly disagree, 2) Poor/disagree, 3) Mild/ not agree nor disagree, 4) Good/Agree, 5) Excel-
lent/Extremely agree.

larger/more complex IT infrastructures and even more so for some roles in net-
work and security operation centres.

Site reliability engineers liked the idea of having alerts and Actions aggre-
gated across ITIMs, as these tend to be their input/output points to solve problems
in their infrastructures. Being able to interactively modify a query pipeline (as
in Figure 2) so that changes could be applied to some of the entities in the in-
frastructure was deemed as extremely useful for things such as canary tests and
releases.

Administrators and practitioners dealing with smaller scale setups or newer
infrastructures found aggregations and relationships less useful and preferred to
work on home-brewed solutions (e.g custom shell scripts) as opposed to rely com-

32

mercial or mainstream open source tools.
Most partners liked the idea of a text-free UI that would let them keep every-

thing under control. Our current UI is different to what administrators are used to.
Thus, it comes with a learning curve that shows up in users taking a while to fig-
ure out by themselves that highlights were indicating relationships across “Fibres”
in our UI. This was especially true when there were children “Threads” derived
from a user request for more details on a specific “Fibre”. We also found that
the topology of the graph determines how intuitive the UI can be: graph topolo-
gies containing loops between entities of different types make relationships more
difficult to explore and understand (even when our UI includes a “explain rela-
tionship” function aimed at showing the path followed to determine if two fibres
on-screen are related or not.

However, as some industrial experts have claimed, in complex enterprise en-
vironments things can be made simpler, but not simple [13].

Historical queries are a common requirement for many of our partners. Com-
plexity increases even further when time-varying graphs and queries are consid-
ered. Also, although aggregated Actions were useful for most of our partners,
they mentioned the ability to operate semi-automated remediation Actions.

6. Related Work

6.1. Large-scale Analytics
Overview. SQL databases perform joins in a very efficient manner, but their effi-
ciency decreases when too many nested joins across most or all of the tables in the
database are required. Graph databases are designed to shine at this type of nested
relational queries that help spot relations, but they are not as good as relational
databases for roll-up operations. Loom’s in-memory graph model delivers the ad-
vantage of relational databases for rolling-up and the speed of graph databases to
explore relationships.

Several systems including Dremel [14], PowerDrill [15], Druid [16] or Scuba [17]
are oriented towards efficient execution of aggregated queries and visualisation of
large distributed databases.

Loom decouples the aggregation from the visualisation layer and enables ma-
nipulation of very rich datatypes and displays. Unlike Sketch [18], Loom does not
deal with plotting data in charts, but it provides a graph abstraction model where
relationships are first class citizens, which also limits potential rendering issues
(the abstraction is dynamically adjusted to the size of the display).

33

Similar to Sketch’s Partitioned Data Structures (and unlike Spark’s RDDs [19]),
the Loom graph is partially memoised [18]. Some other techniques try to accel-
erate MapReduce to make it work interactively for memory rendering intensive
workloads [20]. Loom is optimised for spotting relationships across aggregated
data sets keeping interactive response times in exploratory procedures.

There is a wealth of software devoted to gaining insight from IT infrastruc-
tures (e.g. HPE’s Operation Analytics [21] or Splunk [22]). In many cases they
rely on structured queries (often times based on a query language that is close to
plain natural English). These solutions typically focus on spotting trends and out-
liers (as “standing queries”) and heavy use of correlation to “explore” unknown
patterns. However, they do not offer a tight integration with visualisation capabil-
ities that could help create a customisable overview to reduce the cognitive burden
and guide human operators in visual exploration of their data sets. Analytic tools
sometimes offer the possibility of personalising a set of charts to create dashboards
or associating data sets to pre-defined visualisations (e.g. Splunk Pivot [23]). They
fall short at providing a true overview of the whole dataset and relationships at a
high level. Moreover, users cannot customise their overview to explore data or
arrange them in a more efficient way.

Loom makes heavy use of a variety of aggregations, but it also visualises in-
dividual entities and entity properties. This is unlike the idea of restricting visual-
isations to aggregates for large data that was proposed by imMens [24]; imMens
precomputes cubes for faster rendering which is expensive and does not work if
the pre-computed cubes are not what the user is asking for. VisReduce [25] also
enables computing user-defined aggregation functions, as well as incremental ren-
derings.

Unlike [26] and [27], Loom does not offer any support for incremental visu-
alisation (trading off precision in IT management may lead to powering off the
wrong machine or misconfiguring some software) or dynamic query re-writing
to reduce query resultset. Since relationship calculation between aggregated ele-
ments is a dominant factor in the response times of manageability queries, Loom
focuses on trying to resolve these faster (in time scales < 1 min). This is a unique
feature, essential for building usable overviews.

Multiple ITIMs. Record linkage, entity reconciliation and entity duplication re-
fer to the problem of identifying “equivalent”/duplicate entities in a dataset [12].
These can be seen as a special type of relationship where two managed entities
represent the same real world entity. While advanced machine learning techniques
(e.g. similarity or event correlation) are often used to identify duplicates, this is

34

often not necessary for management entities, where introspecting and compar-
ing a few fields may do for many scenarios. In addition, the stitching process
needs to be revisited in near time in order to provide accurate information to the
visualisation layer, which suggest to use simple “equivalence”-finding functions.
Some graph-based configuration ITIMs, like HPE’s UCMDB [28] detect dupli-
cated managed entities in their graph during data ingestion by executing similarity
functions similar to those used in record linkage systems. None of those systems
works across separate datasets with the goal of building a multiplex graph, which
is a necessary feature to work seamlessly with data from disparate ITIMs. Loom
does build a multiplex graph.

6.2. Parallel Computation and Visualisation
As in Sketch [18], Loom’s design decouples the parallel-execution framework

from the actual rendering. Unlike Sketch, though, Loom is not a “sort-middle”
rendering pipeline [29] since the Loom “Thread” model abstracts details away so
that users do not have to deal with conventional chart representations of their data
(like plots or barcharts), but it creates blobs that represent aggregations of data.
This simplifies rendering on the client side.

Loom also follows the idea of responsive design, by which content is adapted
to screen resolution (also followed by Zoomable User Interface works [30]).

Tableau is a commercial visualization platform for tabular data [31]. Sketch [18]
expands Tableau capabilities to scenarios where there are many more data points
than pixels on the screen, and data exceeds the resources available to a single ma-
chine. By providing visualisations on aggregated data, Loom expands the ability
of Tableau and Sketch.

6.3. Graph Visualisation
In that regard, most visualisation tools still use the “node-link” diagram model [32,

33, 34, 35, 36, 37, 38, 39, 40, 41]. “Node-link” diagram representation, while
most common, may not be the most user-friendly to the general public, nor is it
the most pixel-efficient.

There are a myriad of works dealing with graph layouts in 2-D and 3-D rep-
resentations. As the graph size increases, however, edge crossings increase and
node occlusion becomes significant, hiding potential patterns that can be in exis-
tence. Graph abstraction methods apply graph visualisation simplification algo-
rithms [42].

Graph visualisation simplifications tend to exploit the redundancy in graph
topology relying on elements keeping a structural equivalence [43, 44]. Graph

35

“compression” methods do not work well with small world graphs and this is
where graph clustering algorithms (hierarchical and spectral clustering are exam-
ples of this) are well-studied for abstract representation of graphs (see [42] for
review).

An alternative for graph visualization abstraction is semantic abstraction. It
mainly depends on node/edge attributes to create a super graph to explain or com-
plement the original large graph visualisation. For instance, PivotGraph enabled
aggregation operations by selecting a value the graph nodes with the same value
on one or two attributes into node aggregations [33]. Finally, some other ap-
proaches focus on edge/node filtering and bundling [42]. Like the work by van
den Elzen and van Wijk [45], Loom enables dynamic exploration and understand-
ing of multivariate networks based on node/edge attributes and network topology.
Loom also supports filtering operations that help reduce the amount of informa-
tion on the screen.

Loom builds on techniques for visual abstraction of large graphs. Like Onion-
Graph [46], Loom does not prescribe the abstraction techniques that can be ap-
plied (Loom supports redundancy, clustering or semantic abstraction on node or
edge attributes). Unlike any of the previous approaches, Loom does not apply
classic drawing algorithms but it presents a new visualisation paradigm for graph
abstraction: the Loom “Thread” model, which relieves the UI client from the need
of rendering complex edge layouts and reduces screen clutter by minimising text
and edge crossover (relationships shown as highlights).

As large graphs are often abstracted into hierarchical structures for visual-
isation, the most relevant interactions are on the manipulation of graph hierar-
chies [42]. Elmqvist and Fekete [47] classified the hierarchical abstraction based
visualisation into several types: above traversal, below traversal, level traversal,
range traversal and unbalanced traversal. Like ASK-View [48], Loom lets users
select an aggregation and expand with any traversal type, which is one of the
most flexible approaches to hierarchical interaction (see [49] for review). Like
Fisheye [32], Loom pre-computes the next level in the hierarchy (although the
pre-computation is on the abstract representation of data for Loom, unlike Fish-
eye, which focuses on rendering pre-computation). Like in the work by Van Ham
and Perer [32], Loom includes a method to start the graph analysis from free text
searches.

36

6.4. Contemporary Management User Interfaces
Contemporary management interfaces let users operate on their infrastruc-

ture by exposing familiar tables (see OpenStack’s16 Horizon [50] or Amazon’s
AWS [51] Dahsboards), trees or graphs (like Cisco’s UCS [52]) or cylinders of-
fering a 3d representation of the machines (like HPE’s Insight CMU [53]). Current
management interfaces do not scale well beyond a few tens of managed entities
and often do not deal with custom aggregation of information. Some systems (like
Netflix’s Atlas, InfluxDB or Vertica) excel when it comes to aggregating time se-
ries of numeric data.

Systems like Nutanix17 are praised for their high UX quality, but they focus
on predefined arrangements that do not encourage customisable overviews and
visualisations and there are concerns about their ability to scale to millions of
managed entities. Some visualisation systems, like Tableau18, query relational
databases, cubes, cloud databases, and spreadsheets and then generate a number
of graph types that can be combined into dashboards. They do not provide users
with embedded near-time analytics functions to reduce cognitive overload in their
visual exploration of the data and it is complicated for a user to compose their
own view of the world and spot relationships across managed entities in a holistic
manner. Generally, information dashboards do not provide the capability to effect
change on the underlying systems via the visualisations.

6.5. Schema Reconciliation
Industry leaders in retail or travel, like Amadeus [54], export a very well de-

fined schema that partners wanting to use their platforms need to comply with.
Loom uses a similar philosophy, but it relies on a very flexible graph-based schema
so that users only need to create entity-relationship models of their data to create
a multi-partite graph.

6.6. Graph Density
IT systems are not typically dense graphs since they tend to be part of a hi-

erarchy (e.g. datacentre network architectures, hardware allocation in enclosures,
racks, regions, data centres, etc.). In some cases there is not a single hierarchy,
but several of them. For instance, microservices architectures can be modelled as
a forest including several hierarchical trees.

16One of the most popular open source cloud management frameworks.
17http://www.nutanix.com/
18www.tableau.com

37

6.7. Usability
Kandel et al. [10] challenge most assumptions about current UI work. For

instance, regarding the need for interactive queries: “future work to examine how
low-latency query processing over data subsets of various resolutions impact both
the quantity and quality of analysis”. Loom helps bridge the gap between “hacker”
users and application users so that the latter can benefit from the tech knowledge
and deep coding skills of the former, which result in data curation. Our data
indicate that Loom’s enabled user experience improves the quantity of analysis
and users can do more with less.

None of the above systems consider applying interactive visual exploration
techniques to manageability data and they do not provide a comprehensive solu-
tion for critical elements for ITIMs, like Alerts and Actions.

7. Conclusions

To the best of our knowledge, Loom is the first example of a system that builds
on and expands interactive visual exploration techniques to tame complexity in
large IT infrastructures. Loom delivers in situ analysis capabilities on data from
different systems and brings user-driven data summarisation and reduction, thus
empowering users to find insights using interactive exploratory analyses, even on
small factor touch-enabled displays.

Loom’s graph is dynamically extended to include query results and graphs
from different ITIMs can be queried as if they were one, making it easy to spot
relationships between aggregations of managed entities. The “Thread” visuali-
sation model is capable of displaying overviews on complex IT infrastructures
and details on entities of interest at the same time for large installations. Actions
and Alerts are first-class citizens in Loom. Loom handles tens of millions of man-
aged entities from different systems in interactive response times in touch-enabled
screens.

Partners found the creation of custom multiplex overviews especially useful
in situations other solutions cannot cope with in an interactive manner. Loom has
proven its usefulness in large complex installations with many ITIMs.

We plan to expand Loom’s support for historical (time-based) queries and push
the UX limits to smaller form factor devices, relying on heavier automation of
some of the most common tasks administrators and site reliability engineers do.

38

8. Author Contribution

Authors were ordered alphabetically. Their specific contributions are: J.B.,
E.D., J.G., R.H, M.L, R.P., S.S.L., L.M.V., and L.W. contributed to the original
idea, software design and implementation. L.M.V. and F.C. wrote the paper, anal-
ysed state of the art and designed experiments for this paper. L.M.V. tuned Loom
and performed the experiments for this paper.

[1] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes,
Large-scale cluster management at Google with Borg, in: Proceedings of the
European Conference on Computer Systems (EuroSys), Bordeaux, France,
2015.

[2] J. Humble, D. Farley, Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation, 1st Edition, Addison-
Wesley Professional, 2010.

[3] N. Ayachitula, M. Buco, Y. Diao, S. Maheswaran, R. Pavuluri, L. Shwartz,
C. Ward, It service management automation - a hybrid methodology to in-
tegrate and orchestrate collaborative human centric and automation centric
workflows, in: Services Computing, 2007. SCC 2007. IEEE International
Conference on, 2007, pp. 574–581. doi:10.1109/SCC.2007.75.

[4] J. J. Thomas, K. A. Cook, Illuminating the Path: The Research and Devel-
opment Agenda for Visual Analytics, National Visualization and Analytics
Ctr, 2005.
URL http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/0769523234

[5] P. C. Wong, H.-W. Shen, C. R. Johnson, C. Chen, R. B. Ross, The top 10
challenges in extreme-scale visual analytics, IEEE computer graphics and
applications 32 (4) (2012) 63–67.

[6] P. C. Wong, H.-W. Shen, C. Chen, Top Ten Interaction Challenges in
Extreme-Scale Visual Analytics, Springer London, London, 2012, pp. 197–
207. doi:10.1007/978-1-4471-2804-5_12.
URL http://dx.doi.org/10.1007/978-1-4471-2804-5_12

[7] B. Craft, P. Cairns, Beyond guidelines: What can we learn from the vi-
sual information seeking mantra?, in: Proceedings of the Ninth International

39

http://dx.doi.org/10.1109/SCC.2007.75
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0769523234
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0769523234
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0769523234
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0769523234
http://dx.doi.org/10.1007/978-1-4471-2804-5_12
http://dx.doi.org/10.1007/978-1-4471-2804-5_12
http://dx.doi.org/10.1007/978-1-4471-2804-5_12
http://dx.doi.org/10.1007/978-1-4471-2804-5_12
http://dx.doi.org/10.1109/IV.2005.28
http://dx.doi.org/10.1109/IV.2005.28

Conference on Information Visualisation, IV ’05, IEEE Computer Society,
Washington, DC, USA, 2005, pp. 110–118. doi:10.1109/IV.2005.28.
URL http://dx.doi.org/10.1109/IV.2005.28

[8] E. Wu, L. Battle, S. R. Madden, The case for data visualization management
systems: Vision paper, Proc. VLDB Endow. 7 (10) (2014) 903–906. doi:

10.14778/2732951.2732964.
URL http://dx.doi.org/10.14778/2732951.2732964

[9] D. Fisher, Big data exploration requires collaboration between visualization
and data infrastructures, in: Proceedings of the Workshop on Human-In-the-
Loop Data Analytics, HILDA ’16, ACM, New York, NY, USA, 2016, pp.
16:1–16:5. doi:10.1145/2939502.2939518.
URL http://doi.acm.org/10.1145/2939502.2939518

[10] S. Kandel, A. Paepcke, J. M. Hellerstein, J. Heer, Enterprise data analy-
sis and visualization: An interview study, IEEE Transactions on Visual-
ization and Computer Graphics 18 (12) (2012) 2917–2926. doi:http:

//doi.ieeecomputersociety.org/10.1109/TVCG.2012.219.

[11] B. Shneiderman, The eyes have it: A task by data type taxonomy for in-
formation visualizations, in: Proceedings of the 1996 IEEE Symposium on
Visual Languages, VL ’96, IEEE Computer Society, Washington, DC, USA,
1996, pp. 336–.
URL http://dl.acm.org/citation.cfm?id=832277.834354

[12] A. Gruenheid, X. L. Dong, D. Srivastava, Incremental record linkage, Proc.
VLDB Endow. 7 (9) (2014) 697–708. doi:10.14778/2732939.2732943.
URL http://dx.doi.org/10.14778/2732939.2732943

[13] R. Hoekman Jr., Experience Required: how to become a UX leader regard-
less of your role, 1st Edition, New Riders, USA, 2016.

[14] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
T. Vassilakis, Dremel: Interactive analysis of web-scale datasets, Proc.
VLDB Endow. 3 (1-2) (2010) 330–339. doi:10.14778/1920841.

1920886.
URL http://dx.doi.org/10.14778/1920841.1920886

40

http://dx.doi.org/10.1109/IV.2005.28
http://dx.doi.org/10.1109/IV.2005.28
http://dx.doi.org/10.14778/2732951.2732964
http://dx.doi.org/10.14778/2732951.2732964
http://dx.doi.org/10.14778/2732951.2732964
http://dx.doi.org/10.14778/2732951.2732964
http://dx.doi.org/10.14778/2732951.2732964
http://doi.acm.org/10.1145/2939502.2939518
http://doi.acm.org/10.1145/2939502.2939518
http://dx.doi.org/10.1145/2939502.2939518
http://doi.acm.org/10.1145/2939502.2939518
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2012.219
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2012.219
http://dl.acm.org/citation.cfm?id=832277.834354
http://dl.acm.org/citation.cfm?id=832277.834354
http://dl.acm.org/citation.cfm?id=832277.834354
http://dx.doi.org/10.14778/2732939.2732943
http://dx.doi.org/10.14778/2732939.2732943
http://dx.doi.org/10.14778/2732939.2732943
http://dx.doi.org/10.14778/1920841.1920886
http://dx.doi.org/10.14778/1920841.1920886
http://dx.doi.org/10.14778/1920841.1920886
http://dx.doi.org/10.14778/1920841.1920886

[15] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu, M. Nunkesser, Processing
a trillion cells per mouse click, Proc. VLDB Endow. 5 (11) (2012) 1436–
1446. doi:10.14778/2350229.2350259.
URL http://dx.doi.org/10.14778/2350229.2350259

[16] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, D. Ganguli, Druid:
A real-time analytical data store, in: Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’14,
ACM, New York, NY, USA, 2014, pp. 157–168. doi:10.1145/2588555.

2595631.
URL http://doi.acm.org/10.1145/2588555.2595631

[17] L. Abraham, J. Allen, O. Barykin, V. Borkar, B. Chopra, C. Gerea, D. Merl,
J. Metzler, D. Reiss, S. Subramanian, J. L. Wiener, O. Zed, Scuba: Diving
into data at facebook, Proc. VLDB Endow. 6 (11) (2013) 1057–1067. doi:
10.14778/2536222.2536231.
URL http://dx.doi.org/10.14778/2536222.2536231

[18] M. Budiu, R. Isaacs, D. Murray, G. Plotkin, P. Barham, S. Al-Kiswany,
Y. Boshmaf, Q. Luo, A. Andoni, Interacting with large distributed datasets
using sketch, in: Proceedings of Eurographics Symposium on Parallel
Graphics and Visualization (EGPGV16), 2016.

[19] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark:
Cluster computing with working sets, in: Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, USENIX As-
sociation, Berkeley, CA, USA, 2010, pp. 10–10.
URL http://dl.acm.org/citation.cfm?id=1863103.1863113

[20] H. T. Vo, J. Bronson, B. Summa, J. L. Comba, J. Freire, B. Howe, V. Pas-
cucci, C. T. Silva, Parallel visualization on large clusters using mapreduce,
in: Large Data Analysis and Visualization (LDAV), 2011 IEEE Symposium
on, IEEE, 2011, pp. 81–88.

[21] Hp operations analytics: a new analytics platform to support the transfor-
mation of it (2013).
URL http://www.hp.com/hpinfo/newsroom/press_kits/2013/

HPDiscover2013/EMA_OpsAnalytics_Whitepaper_Final.PDF

[22] Splunk (2015).
URL http://www.splunk.com

41

http://dx.doi.org/10.14778/2350229.2350259
http://dx.doi.org/10.14778/2350229.2350259
http://dx.doi.org/10.14778/2350229.2350259
http://dx.doi.org/10.14778/2350229.2350259
http://doi.acm.org/10.1145/2588555.2595631
http://doi.acm.org/10.1145/2588555.2595631
http://dx.doi.org/10.1145/2588555.2595631
http://dx.doi.org/10.1145/2588555.2595631
http://doi.acm.org/10.1145/2588555.2595631
http://dx.doi.org/10.14778/2536222.2536231
http://dx.doi.org/10.14778/2536222.2536231
http://dx.doi.org/10.14778/2536222.2536231
http://dx.doi.org/10.14778/2536222.2536231
http://dx.doi.org/10.14778/2536222.2536231
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://www.hp.com/hpinfo/newsroom/press_kits/2013/HPDiscover2013/EMA_OpsAnalytics_Whitepaper_Final.PDF
http://www.hp.com/hpinfo/newsroom/press_kits/2013/HPDiscover2013/EMA_OpsAnalytics_Whitepaper_Final.PDF
http://www.hp.com/hpinfo/newsroom/press_kits/2013/HPDiscover2013/EMA_OpsAnalytics_Whitepaper_Final.PDF
http://www.hp.com/hpinfo/newsroom/press_kits/2013/HPDiscover2013/EMA_OpsAnalytics_Whitepaper_Final.PDF
http://www.splunk.com
http://www.splunk.com

[23] Pivot manual: Introduction to pivot (2015).
URL http://docs.splunk.com/Documentation/Splunk/6.2.3/

Pivot/IntroductiontoPivot

[24] Z. Liu, B. Jiang, J. Heer, immens: Real-time visual querying of big data,
in: Proceedings of the 15th Eurographics Conference on Visualization, Eu-
roVis ’13, The Eurographs Association & John Wiley & Sons, Ltd.,
Chichester, UK, 2013, pp. 421–430. doi:10.1111/cgf.12129.
URL http://dx.doi.org/10.1111/cgf.12129

[25] J. F. Im, F. G. Villegas, M. J. McGuffin, Visreduce: Fast and respon-
sive incremental information visualization of large datasets, in: Big Data,
2013 IEEE International Conference on, 2013, pp. 25–32. doi:10.1109/

BigData.2013.6691710.

[26] J.-D. Fekete, ProgressiVis: a Toolkit for Steerable Progressive Analytics and
Visualization, in: 1st Workshop on Data Systems for Interactive Analysis,
Chicago, United States, 2015, p. 5.
URL https://hal.inria.fr/hal-01202901

[27] L. Battle, M. Stonebraker, R. Chang, Dynamic reduction of query result sets
for interactive visualizaton, in: Big Data, 2013 IEEE International Confer-
ence on, 2013, pp. 1–8. doi:10.1109/BigData.2013.6691708.

[28] Data sheet: HP Universal CMDB and HP UCMDB Configuration Manager
(2015).
URL http://www8.hp.com/h20195/V2/GetPDF.aspx/4AA1-6156ENW.

pdf

[29] T. W. Crockett, An introduction to parallel rendering, Parallel Comput. 23 (7)
(1997) 819–843. doi:10.1016/S0167-8191(97)00028-8.
URL http://dx.doi.org/10.1016/S0167-8191(97)00028-8

[30] K. Perlin, D. Fox, Pad: An alternative approach to the computer interface,
in: Proceedings of the 20th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’93, ACM, New York, NY, USA, 1993,
pp. 57–64. doi:10.1145/166117.166125.
URL http://doi.acm.org/10.1145/166117.166125

[31] C. Stolte, P. Hanrahan, Polaris: A system for query, analysis and visualiza-
tion of multi-dimensional relational databases, in: Proceedings of the IEEE

42

http://docs.splunk.com/Documentation/Splunk/6.2.3/Pivot/IntroductiontoPivot
http://docs.splunk.com/Documentation/Splunk/6.2.3/Pivot/IntroductiontoPivot
http://docs.splunk.com/Documentation/Splunk/6.2.3/Pivot/IntroductiontoPivot
http://dx.doi.org/10.1111/cgf.12129
http://dx.doi.org/10.1111/cgf.12129
http://dx.doi.org/10.1111/cgf.12129
http://dx.doi.org/10.1109/BigData.2013.6691710
http://dx.doi.org/10.1109/BigData.2013.6691710
https://hal.inria.fr/hal-01202901
https://hal.inria.fr/hal-01202901
https://hal.inria.fr/hal-01202901
http://dx.doi.org/10.1109/BigData.2013.6691708
http://www8.hp.com/h20195/V2/GetPDF.aspx/4AA1-6156ENW.pdf
http://www8.hp.com/h20195/V2/GetPDF.aspx/4AA1-6156ENW.pdf
http://www8.hp.com/h20195/V2/GetPDF.aspx/4AA1-6156ENW.pdf
http://dx.doi.org/10.1016/S0167-8191(97)00028-8
http://dx.doi.org/10.1016/S0167-8191(97)00028-8
http://dx.doi.org/10.1016/S0167-8191(97)00028-8
http://doi.acm.org/10.1145/166117.166125
http://dx.doi.org/10.1145/166117.166125
http://doi.acm.org/10.1145/166117.166125
http://dl.acm.org/citation.cfm?id=857190.857686
http://dl.acm.org/citation.cfm?id=857190.857686

Symposium on Information Vizualization 2000, INFOVIS ’00, IEEE Com-
puter Society, Washington, DC, USA, 2000, pp. 5–.
URL http://dl.acm.org/citation.cfm?id=857190.857686

[32] E. R. Gansner, Y. Koren, S. C. North, Topological fisheye views for visualiz-
ing large graphs, IEEE Transactions on Visualization and Computer Graph-
ics 11 (4) (2005) 457–468. doi:10.1109/TVCG.2005.66.
URL http://dx.doi.org/10.1109/TVCG.2005.66

[33] M. Wattenberg, Visual exploration of multivariate graphs, in: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI ’06,
ACM, New York, NY, USA, 2006, pp. 811–819. doi:10.1145/1124772.

1124891.
URL http://doi.acm.org/10.1145/1124772.1124891

[34] A.-S. Dadzie, M. Rowe, Approaches to visualising linked data: A survey,
Semant. web 2 (2) (2011) 89–124. doi:10.3233/SW-2011-0037.
URL http://dx.doi.org/10.3233/SW-2011-0037

[35] V. Peysakhovich, C. Hurter, A. Telea, Attribute-driven edge bundling for
general graphs with applications in trail analysis, in: 2015 IEEE Pacific
Visualization Symposium (PacificVis), 2015, pp. 39–46. doi:10.1109/

PACIFICVIS.2015.7156354.

[36] A. Graves, Techniques to reduce cluttering of rdf visualizations, Future
Gener. Comput. Syst. 53 (C) (2015) 152–156. doi:10.1016/j.future.

2014.11.005.
URL http://dx.doi.org/10.1016/j.future.2014.11.005

[37] W. Didimo, F. Giacchè, F. Montecchiani, Kojaph: Visual Definition and Ex-
ploration of Patterns in Graph Databases, Springer International Publishing,
Cham, 2015, pp. 272–278. doi:10.1007/978-3-319-27261-0_23.
URL http://dx.doi.org/10.1007/978-3-319-27261-0_23

[38] R. Pienta, J. Abello, M. Kahng, D. H. Chau, Scalable graph exploration
and visualization: Sensemaking challenges and opportunities, in: 2015
International Conference on Big Data and Smart Computing, BIGCOMP
2015, Jeju, South Korea, February 9-11, 2015, 2015, pp. 271–278. doi:

10.1109/35021BIGCOMP.2015.7072812.
URL http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072812

43

http://dl.acm.org/citation.cfm?id=857190.857686
http://dx.doi.org/10.1109/TVCG.2005.66
http://dx.doi.org/10.1109/TVCG.2005.66
http://dx.doi.org/10.1109/TVCG.2005.66
http://dx.doi.org/10.1109/TVCG.2005.66
http://doi.acm.org/10.1145/1124772.1124891
http://dx.doi.org/10.1145/1124772.1124891
http://dx.doi.org/10.1145/1124772.1124891
http://doi.acm.org/10.1145/1124772.1124891
http://dx.doi.org/10.3233/SW-2011-0037
http://dx.doi.org/10.3233/SW-2011-0037
http://dx.doi.org/10.3233/SW-2011-0037
http://dx.doi.org/10.1109/PACIFICVIS.2015.7156354
http://dx.doi.org/10.1109/PACIFICVIS.2015.7156354
http://dx.doi.org/10.1016/j.future.2014.11.005
http://dx.doi.org/10.1016/j.future.2014.11.005
http://dx.doi.org/10.1016/j.future.2014.11.005
http://dx.doi.org/10.1016/j.future.2014.11.005
http://dx.doi.org/10.1007/978-3-319-27261-0_23
http://dx.doi.org/10.1007/978-3-319-27261-0_23
http://dx.doi.org/10.1007/978-3-319-27261-0_23
http://dx.doi.org/10.1007/978-3-319-27261-0_23
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072812
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072812
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072812
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072812
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072812

[39] N. Bikakis, T. K. Sellis, Exploration and visualization in the web of big
linked data: A survey of the state of the art, CoRR abs/1601.08059.
URL http://arxiv.org/abs/1601.08059

[40] M. van der Zwan, V. Codreanu, A. Telea, Cubu: Universal real-time bundling
for large graphs., IEEE Transactions on Visualization and Computer Graph-
ics PP (99) (2016) 1–1. doi:10.1109/TVCG.2016.2515611.

[41] W. Q. Wang, Z. Cai, K. Zhang, Visualizing big graphs with labels through
edge bundling, in: 2016 IEEE International Conference on Big Data Analy-
sis (ICBDA), 2016, pp. 1–5. doi:10.1109/ICBDA.2016.7509837.

[42] Y. Hu, L. Shi, Visualizing large graphs, Wiley Interdisciplinary Reviews:
Computational Statistics 7 (2) (2015) 115–136. doi:10.1002/wics.1343.
URL http://dx.doi.org/10.1002/wics.1343

[43] L. Shi, Q. Liac, X. Sun, Y. Chen, C. Lin, Scalable network traffic visualiza-
tion using compressed graphs, in: Big Data, 2013 IEEE International Con-
ference on, 2013, pp. 606–612. doi:10.1109/BigData.2013.6691629.

[44] C. Dunne, B. Shneiderman, Motif simplification: improving network visual-
ization readability with fan, connector, and clique glyphs, in: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ACM,
2013, pp. 3247–3256.

[45] S. van den Elzen, J. J. van Wijk, Multivariate network exploration and pre-
sentation: From detail to overview via selections and aggregations, IEEE
Transactions on Visualization and Computer Graphics 20 (12) (2014) 2310–
2319. doi:10.1109/TVCG.2014.2346441.

[46] L. Shi, Q. Liao, H. Tong, Y. Hu, Y. Zhao, C. Lin, Hierarchical focus+context
heterogeneous network visualization, in: 2014 IEEE Pacific Visualization
Symposium, 2014, pp. 89–96. doi:10.1109/PacificVis.2014.44.

[47] N. Elmqvist, J.-D. Fekete, Hierarchical aggregation for information visual-
ization: Overview, techniques, and design guidelines, IEEE Transactions
on Visualization and Computer Graphics 16 (3) (2010) 439–454. doi:

10.1109/TVCG.2009.84.
URL http://dx.doi.org/10.1109/TVCG.2009.84

44

http://arxiv.org/abs/1601.08059
http://arxiv.org/abs/1601.08059
http://arxiv.org/abs/1601.08059
http://dx.doi.org/10.1109/TVCG.2016.2515611
http://dx.doi.org/10.1109/ICBDA.2016.7509837
http://dx.doi.org/10.1002/wics.1343
http://dx.doi.org/10.1002/wics.1343
http://dx.doi.org/10.1002/wics.1343
http://dx.doi.org/10.1109/BigData.2013.6691629
http://dx.doi.org/10.1109/TVCG.2014.2346441
http://dx.doi.org/10.1109/PacificVis.2014.44
http://dx.doi.org/10.1109/TVCG.2009.84
http://dx.doi.org/10.1109/TVCG.2009.84
http://dx.doi.org/10.1109/TVCG.2009.84
http://dx.doi.org/10.1109/TVCG.2009.84
http://dx.doi.org/10.1109/TVCG.2009.84

[48] J. Abello, F. V. Ham, N. Krishnan, Ask-graphview: A large scale graph visu-
alization system, IEEE Transactions on Visualization and Computer Graph-
ics (2006) 2006.

[49] Visual Analysis of Large Graphs.
URL http://visualanalytics.de/sites/default/files/upload/

publications/egstar10.pdf

[50] Openstack dashboard (2015).
URL https://wiki.openstack.org/wiki/Horizon

[51] Amazon web services management console (2015).
URL http://aws.amazon.com/console/

[52] Cisco unified computing system (2015).
URL https://en.wikipedia.org/wiki/Cisco_Unified_Computing_

System

[53] White paper: HP Insight CMU (2015).
URL http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA2-5035ENW.

pdf

[54] Amadeus (2015).
URL http://www.amadeus.com

45

http://visualanalytics.de/sites/default/files/upload/publications/egstar10.pdf
http://visualanalytics.de/sites/default/files/upload/publications/egstar10.pdf
http://visualanalytics.de/sites/default/files/upload/publications/egstar10.pdf
https://wiki.openstack.org/wiki/Horizon
https://wiki.openstack.org/wiki/Horizon
http://aws.amazon.com/console/
http://aws.amazon.com/console/
https://en.wikipedia.org/wiki/Cisco_Unified_Computing_System
https://en.wikipedia.org/wiki/Cisco_Unified_Computing_System
https://en.wikipedia.org/wiki/Cisco_Unified_Computing_System
http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA2-5035ENW.pdf
http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA2-5035ENW.pdf
http://h20195.www2.hp.com/v2/GetPDF.aspx/4AA2-5035ENW.pdf
http://www.amadeus.com
http://www.amadeus.com

	Introduction
	The Loom Visual Insight Extraction Model for Large-scale IT Management
	The Application User: Visualising the IT Infrastructure
	Summarisation + Homogeneisation
	Exploration
	Overview
	Details
	Manageability Specifics

	The ``Hacker'' User

	Loom Architecture
	A Couple of IT Management Use Cases
	Hybrid Cloud Management
	Software and Hardware Management: Stitching Separate Domains

	Evaluation
	Quantitative Evaluation
	Qualitative Evaluation
	Methodology

	Related Work
	Large-scale Analytics
	Parallel Computation and Visualisation
	Graph Visualisation
	Contemporary Management User Interfaces
	Schema Reconciliation
	Graph Density
	Usability

	Conclusions
	Author Contribution

