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Abstract: The optimal temporal resolution for rainfall applications in urban hydrological models
depends on different factors. Accumulations are often used to reduce uncertainty, while a sufficiently
fine resolution is needed to capture the variability of the urban hydrological processes. Merging radar
and rain gauge rainfall is recognized to improve the estimation accuracy. This work explores the
possibility to merge radar and rain gauge rainfall at coarser temporal resolutions to reduce uncertainty,
and to downscale the results. A case study in the UK is used to cross-validate the methodology.
Rainfall estimates merged and downscaled at different resolutions are compared. As expected, coarser
resolutions tend to reduce uncertainty in terms of rainfall estimation. Additionally, an example of
urban application in Twenterand, the Netherlands, is presented. The rainfall data from four rain
gauge networks are merged with radar composites and used in an InfoWorks model reproducing
the urban drainage system of Vroomshoop, a village in Twenterand. Fourteen combinations of
accumulation and downscaling resolutions are tested in the InfoWorks model and the optimal is
selected comparing the results to water level observations. The uncertainty is propagated in the
InfoWorks model with ensembles. The results show that the uncertainty estimated by the ensemble
spread is proportional to the rainfall intensity and dependent on the relative position between rainfall
cells and measurement points.

Keywords: Kriging with External Drift; radar-rain gauge merging; rain gauge random error model;
rainfall temporal downscaling; uncertainty propagation; rainfall ensembles

1. Introduction

The problem of the optimal spatial and temporal resolution for rainfall estimates in urban
hydrology applications has been widely debated. On the one hand, many studies analyse the ideal
resolution for model application. The optimal temporal and spatial resolutions for urban hydrology
is studied by Schilling [1] as a function of hydrologic parameters of the catchment. In the work of
Berne et al. [2], equations are derived to calculate the optimal spatial and temporal resolutions, given
the area of a catchment, and they recommend 5 min–3 km for catchments of 1000 ha and 3 min–2 km
for catchments of 100 ha. Gabellani et al. [3] suggest that a temporal resolution equal to 0.2 the
characteristic catchment time and a spatial resolution of 0.2 the characteristic catchment dimension
are the minimum requirements to avoid major errors in runoff estimation. Nevertheless, models have
drastically evolved in the last 20 years and the concept of optimal resolution with them. Thanks to the
increased computation capabilities, models are more complex and can represent finer scale phenomena,
especially in the urban environment. There is a trend of moving towards integrated models, able to
predict both the water quality and quantity, representing urban drainage networks, surface runoff
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processes, river hydraulics, chemical dynamics, wastewater treatment plants, and so on [4]. At the
same time, rainfall measurements have improved with the use of weather radars, which are able to
achieve a finer spatial resolution and improved the accuracy thanks to technological advancements
such as the use of dual polarization and Doppler capabilities [5,6]. Today, weather radars can
provide rainfall estimates at 5-min/1 km resolutions, although they still present a lower accuracy
compared to point measurements, due to the indirect nature of the radar rainfall estimation [7,8].
Radar data at fine temporal resolution can present temporal sampling errors, which can be reduced
with accumulation or with advanced storm advection techniques [9–11]. Merging radar and rain gauge
rainfall information is recognized to improve the radar rainfall estimation accuracy, maintaining the
radar spatial resolution characteristics [12–16] and the accuracy of the point rain gauge measurements.
Among the most popular techniques, Kriging with External Drift (KED) and Conditional Merging (CM)
proved to achieve a good performance [12,14,17,18]. Although KED has the advantage of providing
a strong platform for uncertainty estimation, thanks to the easily derivable kriging variance, it may
not perform comparably well at short temporal resolutions, which are often necessary for urban
hydrological applications [19]. In particular, KED is very sensitive to low quality data at fine temporal
resolutions [19]. A possible approach is to improve robustness of KED using a co-kriging with external
drift approach, or an extensive data pre-processing to achieve a sufficient data quality [20,21].

This work aims at exploring the possibility of using KED at a coarser temporal resolution, in order
to improve the result stability and reduce the impact of random errors, and subsequently downscale the
results. By downscaling both the KED estimation and the associated variance, the rainfall uncertainty
can be studied and propagated in urban hydrological models. Most of the downscaling techniques
discussed in the literature are stochastic [22–25], usually used to explore climatic variability. Instead, in
this work, we use a data-driven approach, based on the radar data available at 5-min resolution to
downscale the KED estimates and variance. The aim of this approach is to study the uncertainty
associated with the rainfall data, rather than the process variability.

A case study with about 200 rain gauges and radar composites from 3 C-band radars, in
an area of about 200 by 200 km2 in England is used to perform cross-validation and verify the
methodology. Twelve combinations of different accumulation and downscaling resolutions are tested.
Additionally, an example of application to urban modelling is presented. The optimal accumulation
and downscaling resolutions for a specific model are identified by comparing different products
with 14 combinations of accumulation resolutions and downscaling resolutions in a case study in
the Netherlands. The generated rainfall products are tested, using an InfoWorks urban hydrological
model. The case study is based on a high-intensity convective rainfall event that occurred in the
Municipality of Twenterand, in the east of the Netherlands, causing severe flooding in the village
of Vroomshoop. The InfoWorks model of the Vroomshoop area and water level measurements are
used to identify the optimal combination of accumulation and downscaling resolutions for the specific
model, by comparing the deterministic KED predictions. For the selected product, the uncertainty
propagation is studied, producing an ensemble from the probabilistic KED result and using it in the
InfoWorks model.

In Section 2, the case studies are described, presenting the datasets and the model. In Section 3, the
methods used to compare the accumulation and downscaling times, to merge radar and rain gauge data,
to downscale the merged products, and to produce the ensemble are presented. Sections 4 and 5 present
and discuss the results respectively. Section 6 summarizes the conclusions and recommendations.

2. Dataset and Model

2.1. Case Study 1: United Kingdom

The objective of the proposed methodology is to optimize rainfall for an urban model application.
The case study in Twenterand, Overijssel, The Netherlands, is used for this purpose, thanks to
the available InfoWorks model. However, a validation of the used techniques, in terms of rainfall



Water 2017, 9, 762 3 of 25

reproduction capabilities, needs to be performed. The case study in the Netherlands cannot be used
for this purpose, because the number of available rain gauges that could be used as a reference is
limited, and their accuracy and temporal resolution are highly variable. For this reason, we use a
different dataset to evaluate how the proposed approach performs in terms of rainfall prediction. A
case study in the northern part of England is considered. The same methodology applied to the Dutch
case study is applied to the UK case study, but instead of using the products in a model, the rainfall
products are validated through cross-validation. For the test, we consider six months of data, between
1 January 2016 at 00:00 UTC and 30 June 2016 23:59 UTC, considering only the hourly time steps in
which at least a rain gauge records an intensity above 2 mm/h.

2.1.1. Rain Gauges

The area covers 200 by 200 km2, and 226 rain gauges managed by the Environment Agency
(EA) are available upon request [26]. The dataset has been quality checked manually and consists
of a uniform set of tipping bucket rain gauges with a bucket resolution of 0.2 mm and the time
series are provided at a temporal resolution of 15 min. For this work, the request at the EA National
Request Service [26] was for all the 15-minute data for all England, from January to September 2016;
subsequently, only the rain gauges in the study area have been selected. The dataset is indicated as EA
in this work and the position of the rain gauges is shown in Figure 1.
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Figure 1. The UK study area is presented, including the Environment Agency (EA) rain gauges and
the three radars available in the area.

2.1.2. Radars

On the same area, radar composites produced by the UK Met Office are available through the
BADC (British Atmospheric Data Centre) portal [27]. The composites, available at 1-km and 5-min
resolutions, are already corrected for beam blockage, clutter, anomalous propagation, attenuation,
variations in the vertical reflectivity profile, bright band and orographic enhancement, and are mean
field bias corrected with an independent set of rain gauges on hourly basis [28,29]. The radar rainfall
data are already transformed in rainfall intensity in (mm/h). The composites in the study area are
derived by three C-band radars. The considered area is shown in Figure 1, together with the position
of the three radars.
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2.2. Case Study 2: The Netherlands

The case study in the east of the Netherlands is used as an example of urban hydrological
modelling application. The rainfall dataset is made of measurements from different rain gauge
networks and a weather radar system. The study area is a square 64 km by 64 km wide. The analysed
interval is five days long, from 13 June 2016 at 00:00 to 17 June 2016 at 23:59 (Central European
Summer Time). The selected event has already been studied by Witteveen+Bos, an engineering and
consultancy company based in Deventer, Overijssel, the Netherlands [30], because it resulted in the
flooding of the village of Vroomshoop, inside the municipality of Twenterand. The highly convective
rainfall event on 15 June 2016 reached an intensity of 31 mm/h on Vroomshoop according to the rain
gauge measurements from the Municipality of Twenterand, with a return period of about five years,
and the sewer system recorded a rise in the water level of around 3 m according to the water level
measurements provided by the Municipality of Twenterand.

2.2.1. Rain Gauges

The available rain gauges are from four different networks with different characteristics.
The Municipality of Twenterand (TWE) owns four tipping bucket rain gauges providing accumulations
every 3 min. The Het Weer Actueel (HWA) is a nation-wide network of amateur tipping bucket rain
gauges that provides accumulations at variable intervals. The Royal Meteorological Institute of the
Netherlands (KNMI) manages two different networks, a set of accurate automatic rain gauges that use
a floating device mechanism, and a network of manual water level rain gauges [31]. The automatic set
is more accurate and provides hourly validated measurements, but it is sparse. The manual network
is denser, but provides measurements only daily. The available rain gauges from the four different
networks are reported in Figure 2.
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Figure 2. The Dutch study area is presented, including all the available rain gauge datasets. In the
bottom-right panel, the three available water measurement points are shown.
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A quality check is performed on all of the networks; one rain gauge from the Municipality of
Twenterand (TWE 129) and one from the HWA network (HWA 60) in the area of interest are removed
because of suspicious behaviour. The TWE 129 shows signs of partial blockage, while the HWA
60 presents a stepping behaviour, with long dry spells followed by high isolated values. Table 1 shows
the number of rain gauges available for each network, after quality check.

Table 1. Available rain gauges in the study area and their characteristics.

Network Number Accumulation Type

Twenterand (TWE) 3 * 3 min Tipping bucket
HWA amateur (HWA) 14 * 5 min to 5 h Variable tipping bucket

knmi hourly (KNMI-H) 2 60 min Floating device
knmi daily (KNMI-D) 20 24 h Water level reading

Note: * Number of rain gauges available after quality check.

2.2.2. Radars

The KNMI provides radar measurements from two C-band radars, namely Den Helder and
De Bilt, represented in Figure 2. The two radars complete four 360◦ scans at four different elevations
(0.3◦, 1.1◦, 2.0◦, and 3.0◦) every five min. For areas farther than 80 km from the radars, such as the
study area, the lowest elevation angle is used in composites, unless data is missing [32]. The KNMI
provides both measurements of reflectivity and rainfall estimates. The reflectivity dataset is provided
every 5 min on a 1 km by 1 km grid in stereographic projection; it is not cut on the Dutch border,
and it is not corrected with rain gauges. The KNMI also provides rainfall estimates derived from the
reflectivity measurements corrected hourly for mean-field bias, and daily for spatial adjustments, but
the composites are cut on the Dutch border. Since the study area contains a portion of German territory,
the KNMI rainfall dataset cannot be used; therefore, in this work, the rainfall estimate is calculated
from the KNMI reflectivity measurements.

2.2.3. Vroomshoop InfoWorks Model and Water Level Data

The municipality of Twenterand carries on water quantity measurements in the village of
Vroomshoop, to check the sewage system functioning. For operational and decisional purposes,
the Municipality of Twenterand has commissioned to Witteveen+Bos the setup of a sewer system
model of the area of Vroomshoop. Witteveen+Bos has built an InfoWorks model that describes the area
of Vroomshoop, about 12 km2, composed of 1227 nodes, 1282 links, 12 pumps, 17 weirs and 65 storm
overflows. The model has been calibrated according to the C2100 guideline [33]. The InfoWorks model
is a 1-D full hydrodynamic urban sewer flow model. It solves the 1-D Saint-Venant equations (shallow
water equations) in a conduit system. Rainfall flows into the system through catchment areas that
are connected to the manholes (nodes). Any area drains to the closest manhole. The catchment areas
are divided into different types of surfaces: closed (asphalt) or open (bricks) pavement and flat or
sloped roofs. Unpaved areas are assumed not to drain to the sewer system. The catchment areas
were surveyed during the setup of the model, in 2012. The rainfall runoff model consists of several
components with different parameters for the four surface types: depression storage, evaporation
(open pavement only), infiltration (Horton) and routing delays (linear reservoir). The tuning of the
rainfall runoff parameters is part of the calibration procedure of the model. The results of the model
are compared to the water level measurements from the three sensors available for this work, provided
by the Municipality of Twenterand. The position of the sensors is reported in Figure 2, in the low-right
corner as stars, and in Figure 3, as red squares. Figure 3 is a simplified representation of the model,
reporting the main components.
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3. Methods

This work studies the possibility to find an optimal temporal aggregation T1 to merge radar and
rain gauge rainfall data using kriging with external drift and an optimal temporal downscaling T2

to disaggregate the merged product and use it in an urban hydrologic model. It must be considered
that this work aims at illustrating the methodology to follow, and the identified optimal resolutions
for the case study in the Netherlands are specific for the presented case study and sewer model.
The combinations in Table 2 are used for validation in the UK case study, while the combinations in
Tables 3–5 are tested for the Dutch case study.
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Table 2. Products tested in the UK case study.

ID Networks N. Gauges Accumulation T1 Downscaling T2

1 EA 226 1 h 15 min
2 EA 226 1 h 30 min
3 EA 226 1 h 1 h
4 EA 226 3 h 15 min
5 EA 226 3 h 30 min
6 EA 226 3 h 1 h
7 EA 226 12 h 15 min
8 EA 226 12 h 30 min
9 EA 226 12 h 1 h
10 EA 226 24 h 15 min
11 EA 226 24 h 30 min
12 EA 226 24 h 1 h

Table 3. Different sub-daily accumulations and downscaling intervals are tested with the available rain
gauges at sub-daily resolution in the Dutch case study.

ID Networks N. Gauges Accumulation T1 Downscaling T2

13 HWA, TWE, KNMI-H 19 1 h 5 min
14 HWA, TWE, KNMI-H 19 1 h 15 min
15 HWA, TWE, KNMI-H 19 1 h 30 min
16 HWA, TWE, KNMI-H 19 3 h 5 min
17 HWA, TWE, KNMI-H 19 3 h 15 min
18 HWA, TWE, KNMI-H 19 3 h 30 min
19 HWA, TWE, KNMI-H 19 12 h 5 min
20 HWA, TWE, KNMI-H 19 12 h 15 min
21 HWA, TWE, KNMI-H 19 12 h 30 min

Table 4. Daily accumulations are calculated with all the available rain gauges, including the daily ones
in the Dutch case study.

ID Networks N. Gauges Accumulation T1 Downscaling T2

22 HWA, TWE, KNMI-H, KNMI-D 39 1 day 5 min
23 HWA, TWE, KNMI-H, KNMI-D 39 1 day 15 min
24 HWA, TWE, KNMI-H, KNMI-D 39 1 day 30 min

Table 5. Non-corrected radar products are compared as well, at two different resolutions in the Dutch
case study.

ID Networks N. Gauges Accumulation T1 Downscaling T2

25 - - 5 min -
26 - - 15 min -

An accumulation to a 15-min scale was also tested, but resulted in major instabilities. In particular,
the KED algorithm aims at finding the optimal linear relationship between the studied process (rainfall as
measured by the rain gauges) and the drift (radar estimates). At fine temporal resolution radar and rain
gauges can disagree due to the uncertainty in the rain gauge data timing and the uncertainty in the radar
rainfall intensity and spatial position. Such a situation can result in an optimal linear relationship with
negative coefficients, which is unrealistic. The problem is much rarer at coarser resolutions. As concerns
the UK case study, being the rain gauge data at 15-min resolution, finer downscaling resolutions could
not be validated, therefore downscaling resolutions of 15, 30 and 60 min are used.

The methodology followed in this work is illustrated in Figure 4 and the passages are explained
in the following sections.
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Figure 4. The methodology followed in this work is reported in the figure. In particular, the six
numbered passages are discussed in the Methods Sections.

3.1. Data Pre-Processing and Accumulation

3.1.1. Radar

As concerns the radar pre-processing, for each accumulation interval, all of the 5-min radar
measurements available are used. The UK Met Office radar data are already corrected for errors, are
available as rainfall intensity in (mm/h), and only require accumulation to T1.

The KNMI data are already corrected for ground clutter and anomalous propagation as well [32],
but the data are provided in (dBZ) and a conversion to (mm6/m3) is necessary. Then, the rainfall rate
is calculated using the Z-R relationship [32]:

Z = 200 R1.6 (1)

As suggested by Overeem et al. [32], the values below 7 dBZ are not converted to avoid an excessive
impact of noise, and are directly set to 0 mm/h. Once all the 5-min acquisitions are correctly converted
from (dBZ) to rainfall rates in (mm/h), they are accumulated on the desired accumulation T1.

3.1.2. Rain Gauges

The first step for rain gauge data preparation is a quality check. Rain gauge records are checked
for typical malfunctioning behaviours and are compared with neighbouring rain gauges and with the
radar data. In the case a rain gauge presents an anomalous behaviour (e.g., absence of records, signs of
blockage, absence of zeros, etc.) for the full examined period, the rain gauge time series is removed
from the dataset (as happened for the Twenterand rain gauge TWA 129 and the amateur rain gauge
HWA 60); if the anomalous behaviour happens for a limited time, the affected records are substituted
with “NA” (Not Available). After quality check, “NA” values affect the 3.7% of the dataset.

The EA rain gauges are already in a uniform and evenly distributed 15-min resolution, therefore
accumulations can be performed directly. The rain gauges for the Dutch case study have variable
accumulation times, from 3 min to one day. To correctly distribute the measured precipitation, the
dataset is divided into 1 min intervals and the recorded precipitation is evenly distributed on the
accumulation minutes. For example, if 10 mm are recorded over a 10 min interval, the previous
10 min will be assigned 1 mm each. Subsequently, the rain gauge records are accumulated to the
desired accumulation T1. This passage helps to correctly distribute measurements recorded over two
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or more accumulation intervals. For large accumulation times, it results in a simplification, but it is still
preferred to the option of considering all the rainfall accumulation at the end of the recorded period.
For example, if a daily record measures 24 mm at 08:00 (CEST). over a 24-h period, we prefer to assign
16 mm to the day before, and 8 mm to the day of the record, rather than 24 mm on the day of the
record. However, it must be considered that daily records are used only for daily accumulations.

After the accumulation, a check on the convective conditions is done. When precipitation has
strong convective characteristics, the reliability of the rain gauges declines, because they cannot be
considered representative of the 1 km cell they belong to [8,34,35]. This effect is stronger for shorter
accumulation times and can have very negative impact in the merging phase [36]. To prevent this, a
convective control routine is applied, similar to the one presented by Sideris et al. [36]. For each rain
gauge and for each time step, the coefficient of variation and the standard deviation of the 5 pixels
by 5 pixels square around the rain gauge are calculated. The rain gauge is marked as unreliable if
the coefficient of variation or the standard deviation passes an empirical threshold, dependent on the
accumulation rate and on their temporal resolution. In such cases, the rain gauge is eliminated from
the merging dataset for the specific time step.

3.2. Variogram Calculation

The variogram calculation presents two problems to be addressed:

• For the Dutch case study, the number of rain gauges is limited, and their resolution highly variable,
therefore a reliable time-variant variogram calculation based on ground measurements is difficult
to calculate.

• The variogram for KED needs to be calculated on rainfall residuals, rather than on the rainfall
field itself [37].

For this reason, the following approach in four passages, based on a Fast Fourier Transform (FFT),
is used for each time step:

1. The variogram of the rainfall field is calculated with the FFT approach by Marcotte [38], based on
the radar data [39].

2. The rain gauges are interpolated applying ordinary kriging with the calculated variogram.
3. The residuals are calculated subtracting the radar field from the interpolated rain gauge field.
4. The variogram of the residuals is calculated with the FFT approach.

Once the empirical 2D variogram is calculated, it is fitted every 10◦ between 0◦ and 180◦ in
azimuth (the variogram is symmetric about the 0–180◦ direction) with a Gaussian function:

γ(d) =

{
0 for d = 0

c0 + c
(

1− exp
(
− 3d2

a2

))
for d > 0

(2)

where d is the distance, c0 is the nugget, c is the sill, and a is the range. The average nugget, average
sill, and average range over the tested directions are used for the merging.

3.3. Merging Using Kriging with External Drift

Universal kriging, as opposed to ordinary kriging, considers the mean of the studied field R(x)
non-stationary in space:

R(x) = m(x) + δ(x) (3)

where m(x) is the mean and δ(x) is a zero-mean stationary random process [37]. Kriging with External
Drift is a special case of universal kriging, in which the mean is considered a linear function of external
factors. In the presented case, the mean of the rain gauge interpolation is considered a linear function
of the radar rainfall estimate:

m(x) = β1·r(x) + β2 (4)
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where r(x) is the radar rainfall estimate in x, and β1 is a linear coefficient, and β2 is the intercept, to
be determined.

The prediction in each point is derived from the observations with a weighted average:

R̂(x0) =
n

∑
α=1

wα·R(xα) (5)

where R̂(x0) is the estimated rainfall in a generic point x0, R(xα) are the measured values in the rain
gauge locations xα, n is the number of observations, and wα are the kriging weights, estimated solving
the kriging system:

n
∑

α=1
wα(x0) = 1

n
∑

α=1
wα(x0)·C

(
xβ − xα

)
+ µ1 + µ2·r

(
xβ

)
= C

(
xβ − x0

)
β = 1, . . . , n

n
∑

α=1
wα(x0)·r(xα) = r(x0)

(6)

where C(d) is a covariance function, xα and xβ are generic rain gauge locations, r(x) is the radar rainfall
estimate in the position x, and µ1 and µ2 are Lagrange parameters [37]. The covariance function C(d)
is directly related to the variogram function γ(d) fitted with a Gaussian model as follow:

C(d) = c + c0 − γ(d) =

{
c + c0 for d = 0

c
(

exp
(
− 3d2

a2

))
for d > 0

(7)

The solution of such a system can be expressed in matrix form:

W = C−1·D =



w1

w2
...

wn

µ1

µ2


=



C11 C12 . . . C1n 1 r1

C21 C22 . . . C2n 1 r2
...

...
. . .

...
...

...
Cn1 Cn2 . . . Cnn 1 rn

1 1 . . . 1 0 0
r1 r2 . . . rn 0 0



−1

·



C10

C20
...

Cn0

1
r0


(8)

where ri are the radar measurement at rain gauge locations xi, while r0 is the radar measurement in
the prediction location x0. The matrix elements Cij represent the covariance function calculated on the
distance between xi and xj.

The kriging mean and variance for each point x0 are then calculated as:

R̂(x0) = WT ·R (9)

σ2(x0) = c −WT ·D (10)

where R is the vector of the measurements at rain gauge locations.

3.4. Rain Gauge Error Modelling

The rain gauge errors can be included in the merging process using a Kriging for Uncertain Data
(KUD) approach similar to the one by [40], assuming that the rain gauges are affected only by random
errors, and that biases are already removed with calibration.

The idea is that rain gauge random errors can be modelled as a nugget effect in the
variogram [37,41]. To model a different error for different rain gauges, the covariance matrix C
needs to be modified. The advantage of using a covariance function rather than a variogram function,
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as in most kriging formulations [37,40,42], is that the covariance function is affected by the nugget only
at distance d = 0, therefore the covariance matrix modification is simple:

C =



C11 + c01 C12 . . . C1n 1 r1

C21 C22 + c02 . . . C2n 1 r2
...

...
. . .

...
...

...
Cn1 Cn2 . . . Cnn + c0n 1 rn

1 1 . . . 1 0 0
r1 r2 . . . rn 0 0


(11)

where c0i is the nugget effect due to the uncertainty of the ith rain gauge. The nugget effect for each rain
gauge can be calculated separately using the rain gauge error models illustrated below, that calculate
the error as function of the rainfall rate R(t, xi), and of the accumulation T1.

3.4.1. Tipping Bucket Rain Gauge Error Model

The random errors for tipping bucket rain gauges are modelled according to the model by
Ciach [43]. This error model is applied to the rain gauges in the UK case study, to the ones from the
Municipality of Twenterand (TWE), and to the rain gauges from the Het Weer Actueel network (HWA).
The standard error is calculated as:

σerr(T1, RT) = e0(T1) +
R0(T1)

RT
(12)

where RT is the rainfall intensity at accumulation T = T1 minutes, while e0(T) and R0(T) are
coefficients dependant on the accumulation time. Figure 6 in Ciach’s work [43] shows the errors
of the rain gauge data. Using this figure, we derived an approximated analytical formulation where T1

is expressed in minutes:
log10(e0(T1)) = −0.5923· log10 T1 − 1.4163 (13)

log10(R0(T1)) = −0.8789· log10 T1 + 0.7363 (14)

For each tipping bucket rain gauge at each time step, for each accumulation T1, the nugget can be
calculated as:

c0i (t, T1) = σerr(T1, RT(t, xi))
2 =

(
e0(T1) +

R0(T1)

RT(t, xi)

)2
(15)

3.4.2. KNMI Automatic Rain Gauges

KNMI automatic rain gauges are not tipping bucket devices. They measure the water level using
the accurate measurement of a floating device position on the water surface. This type of rain gauges
is more precise than the tipping bucket type, especially at low rainfall intensity, it is subject to less
measuring errors, and it is calibrated by the KNMI [31,44].

A quantitative measurement of the KNMI automatic rain gauge accuracy can be derived from the
laboratory test results reported in the KNMI technical report TR-287 [44], studying and comparing
the accuracy of several rain gauges, in order to select devices able to meet the World Meteorological
Organisation standards.

In particular, the results reported in Section 3.2 and Figure 57 of the TR-287 report [44], show that
the KNMI automatic rain gauges, after calibration, have an error around 1% at 1-min averaging, for
intensities between 0 and 270 mm/h.
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Considering that, in this work, we use different accumulations, the errors can be calculated
considering the variance sum property:

Var

(
n

∑
i=1

Xi

)
=

n

∑
i,j=1

Cov
(
Xi, Xj

)
(16)

where X is a general variable, i and j are generic indices.
In the case of rainfall accumulation, the variable to be summed are rainfall intensities at

1-min resolution, recorded at different time steps. The covariance between two generic 1-min
rainfall intensities is not known. We propose to estimate an approximation of it using the rainfall
auto-correlation function. The rain gauge data from all the networks for the studied event are used to
calculate the rainfall auto-correlation:

ÂC(τ) =
E{(Rt − µ)(Rt+τ − µ)}

σ2 (17)

where, ÂC(τ) is the auto-correlation, τ is a generic time interval, Rt is the rainfall intensity at time t,
whereas µ and σ2 are, respectively, the mean and the variance of the rainfall over the time series; the
process is considered stationary for simplicity.

The auto-correlation is then fitted using an auto-correlation function with an exponential form:

AC(τ) = exp(b·τ) (18)

The exponential fitting of the rainfall auto-correlation function is shown in Figure 5.
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Knowing the auto-correlation function, Equation (16) can be expanded:

Var(RT) =
T

∑
i=1

T

∑
j=1

COVi,j = Var(R1)·
T

∑
i=1

T

∑
j=1

ACi,j (19)

where RT is the rainfall intensity at accumulation T = T1 minutes, R1 is the rainfall intensity at
accumulation T = 1 min, COVi,j are the elements of the covariance matrix COV between all the 1-min
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measurements in a T1-minutes interval, and ACi,j are the elements of the auto-correlation matrix AC,
defined as follows:

AC =


AC(0) AC(1) AC(2) · · · AC(T1)

AC(1) AC(0) AC(1) · · · AC(T1 − 1)
AC(2) AC(1) AC(0) · · · AC(T1 − 2)

...
...

...
. . .

...
AC(T1) AC(T1 − 1) AC(T1 − 2) · · · AC(0)

 (20)

where AC(τ) is the function derived from Equation (18) with the interval in minutes.
As concerns the variance element Var(R1), it is defined following the KNMI report, as the

square of the 1% of the rainfall intensity at 1-min accumulation. Since the rainfall intensity at 1-min
accumulation is not known, because the KNMI data are available at hourly accumulation, it can be
approximated as function of the accumulation time T1:

Var(R1) = (1% R1)
2 =

(
1%

RT
T1

)2
(21)

Combining Equations (19)–(21), the relative error for each KNMI automatic rain gauge
measurement in position x, at time t, and accumulation T1 can be expressed as follows:

σerr(T1, RT(t, xi)) = a(T1)·RT(t, xi) (22)

where

a(T1) =

(
1%
T1

)√√√√ T

∑
i,j=1

ACi,j (23)

The corresponding nugget effect, for the application of Equation (11), is:

c0i (t, T1) = σerr(T1, RT(t, xi))
2 (24)

3.4.3. KNMI Manual Rain Gauges

The KNMI manual rain gauges are based on a water level system; each day volunteers
and amateurs read the water level at 08:00 (CEST) and communicate the reading to the KNMI.
The KNMI Technical Report TR-347 provides an estimate of the manual rain gauge uncertainty [31].
Differently from the previous error models that are considered bias-free, the report suggests that the
KNMI manual rain gauges are affected by bias and we derived a correction.

In particular, we combined the information from Figures 14 and 16 of the TR-347 report [31] to
derive the following bias correction and error estimate as function of the rainfall rate:

R∗(t, xi) = R(t, xi)·
(

1− 0.125·R(t, xi)
−0.372

)
(25)

σerr(R(t, xi)) = R(t, xi)·
(

0.0489·R(t, xi)
−0.447

)
(26)

where R∗(t, xi) is the bias corrected rainfall rate at time t and position xi, R(t, xi) is the original rainfall
rate before correction, and σerr(R(t, xi)) is the standard deviation. The corresponding nugget is derived
from Equation (24). The standard deviation calculation in Equation (26) is derived from the report and
is a function of the original rainfall rate, before bias correction.
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3.5. Downscaling

Once the KED produces a probabilistic estimation of the rainfall intensity at temporal
accumulation T1, we need to downscale it to the desired temporal resolution T2. The probabilistic
estimate is made of a prediction and a variance estimate, and both need to be downscaled.

3.5.1. Downscaling the KED Prediction

To downscale the prediction, the original radar acquisitions are used to determine how to
distribute the accumulated KED rainfall RKED.T1(t) among the time steps at resolution T2:

RKED.T2(x, t) = Rrad.T2(x, t)·
RKED.T1(x, t)
Rrad.T1(x, t)

(27)

where RKED.T1(x, t) is the KED prediction at accumulation T1, for position x and time step t; Rrad.T1(x, t)
is the accumulation at T1 of the uncorrected radar acquisitions; Rrad.T2(x, t) is calculated accumulating
the uncorrected radar at T2; and RKED.T2(x, t) is the downscaled KED estimation at T2. Since the radar
has a resolution of 5 min, the downscaling resolution T2 has to be a multiple of 5 min.

To avoid divisions by zero or near-zero values, 0.00001 mm are added to the uncorrected radar
estimates before accumulations, therefore both Rrad.T2(x, t) and Rrad.T1(x, t), derived as accumulations
of uncorrected radar estimates at T2 and T1 respectively, will be increased of 0.00001 mm for each
contained radar estimate.

3.5.2. Downscaling the KED Variance

As regards the variance, the downscaling is based on two principles:

1. The variance of a sum is the sum of the covariance between all summed elements (Equation (16)).
2. The standard deviation is proportional to the rainfall rate. This comes from the fact that both

radar and rain gauges are affected mainly by multiplicative errors [43,45–47].

From the first principle and Equation (16) we can derive:

Var
(

RKED.T1(x, t)
)
= Var

(
RKED.T2(x, t)

)
·

T1/T2

∑
i,j=1

AC2i,j (28)

where
(
Var

(
RKED.T2(x, t)

))
is the mean variance value for all the time steps at T2 resolution contained

in each time step at T1 accumulation; AC2i,j are the elements of an auto-correlation matrix similar to
the one defined in Equation (20), but defined at time steps equal to T2, that is:

AC2 =


AC(0) AC(T2) AC(2T2) · · · AC(T1)

AC(T2) AC(0) AC(T2) · · · AC(T1 − T2)

AC(2T2) AC(T2) AC(0) · · · AC(T1 − 2T2)
...

...
...

. . .
...

AC(T1) AC(T1 − T2) AC(T1 − 2T2) · · · AC(0)

 (29)

To comply with the second principle instead, the following equation is derived:

SD
(

RKED.T2(x, t)
)
=

Rrad.T2(x, t)
Rrad.T1(x, t)

·T1

T2
·SD

(
RKED.T2(x, t)

)
(30)

where SD
(

RKED.T2(x, t)
)

is the actual standard deviation at resolution T2 while
(
SD
(

RKED.T2(x, t)
))

is
the average standard deviation of all the prediction at resolution T2 contained in each time step



Water 2017, 9, 762 15 of 25

at resolution T1. Rrad.T2(x, t) and Rrad.T1(x, t) are, respectively, the uncorrected radar estimates
accumulated to T2 and T1.

Combining Equations (28) and (30):

Var
(

RKED.T2(x, t)
)
=

(
Rrad.T2(x, t)
Rrad.T1(x, t)

·T1

T2

)2

·
Var

(
RKED.T1(x, t)

)
∑T1/T2

i,j=1 AC2i,j
(31)

As in the prediction downscaling phase, to avoid divisions by zero or near-zero values, 0.00001 mm
are added to the uncorrected radar estimates before accumulation, therefore both Rrad.T2(x, t) and
Rrad.T1(x, t), derived as accumulations of uncorrected radar estimates at T2 and T1, respectively, will
be increased by 0.00001 mm for each contained radar estimate.

3.6. Ensemble Generation and Propagation

Once a probabilistic estimate is derived, the uncertainty can be propagated with an ensemble,
i.e., a collection of a large number of possible alternative realisations of rainfall time series.

Each ensemble member is modelled as:

Rensi (x, t) = RKED.T2(x, t) + SD
(

RKED.T2(x, t)
)
·εi(x, t) (32)

where Rensi (x, t) is the ith ensemble member; RKED.T2(x, t) and SD
(

RKED.T2(x, t)
)

are, respectively, the
downscaled KED mean and the downscaled KED standard deviation; and εi(x, t) is a standardized,
zero-mean, spatially auto-correlated residual field.

To generate εi(x, t), an unconditional simulation is used, with mean equal to zero, and standard
deviation equal to one, using the residuals’ variogram at the corresponding time step. Subsequently, in
order to reconstruct the auto-correlation of the residuals, a AR(2) model is used. The auto-correlation and
the parameters of the AR(2) model are derived from the residuals time series, calculated as in Section 3.2.

4. Results

4.1. Case Study 1: Evaluation of the Optimal Combination in Terms of Rainfall Product Quality

The case study based in the UK has been used to validate the methodologies in terms of ability to
reproduce the observed rainfall. This case study does not bring any information about the optimization
of the rainfall for urban modelling applications, but proves that the used techniques are able to
reproduce reasonable rainfall products. While the case study in the UK was suitable to validate the
methodology, thanks to the large number of rain gauges and the uniform data quality, an urban model
was not available; at the same time, the case study in the Netherlands was not suitable for validation,
due to the limited number of rain gauges and the variable data quality, but allowed an urban modelling
application. Therefore, two case studies are here presented. The same methodology used to generate
the rainfall products has been used; in the first case study, the results have been cross-validated, while,
in the second, they are applied to an urban drainage model and the uncertainty is estimated and
propagated. The cross-validation is evaluated with the same skill scores used for the Dutch case study,
although it must be kept in mind that the evaluated quantity is different (in the first case study it is
based on rainfall intensity, while, in the second case study, it is based on water levels). Three indicators
are calculated: Bias, Mean Root Transformed Error (MRTE), and Nash–Sutcliff Efficiency (NSE).

BIAS = abs

(
1

tsteps

tsteps

∑
j=1

RKED − Robs

)
(33)

MRTE =
1

tsteps

tsteps

∑
j=1

(√
RKED −

√
Robs

)2
(34)
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NSE = 1−
∑

tsteps
j=1 (Robs − RKED)

2

∑
tsteps
j=1

(
Robs − Robs

)2 (35)

where tsteps is the number of considered time steps in the event, RKED is the rainfall intensity estimated
with KED, Robs is the rainfall intensity observed by the validation rain gauges, and Robs is the average
observed rainfall intensity. The bias and the MRTE are optimal when they tend to 0, while the NSE
is optimal when it tends to 1. The three indicators are calculated for each of the 12 tested rainfall
products. The results of the cross-validation are reported in Table 6.

Table 6. The three indicators (bias, MRTE, and NSE) are reported for the 12 products of the UK
case study, indicated with accumulation resolution (A) and downscaling resolution (D) in minutes.
A conditional colour formatting is applied to easily compare the values, where green is a positive
performance, and red a negative one.

BIAS

A\D 15 30 60
60 0.065 0.069 0.078
180 0.054 0.056 0.064
720 0.048 0.045 0.051

1440 0.045 0.043 0.045

MRTE

A\D 15 30 60
60 0.193 0.166 0.147
180 0.187 0.161 0.142
720 0.165 0.139 0.123

1440 0.147 0.127 0.113

NSE

A\D 15 30 60
60 0.46 0.52 0.58
180 0.46 0.51 0.55
720 0.51 0.55 0.59

1440 0.52 0.56 0.59

Additionally, we want to investigate how well the uncertainty is estimated. To do so, we use rank
histograms with a variation. Rank histograms are a tool used to evaluate a probabilistic prediction
with a deterministic observation and are built looking in which prediction quantile the observation
falls, for each time step and each rain gauge. The rank histogram shows how often the observation
falls in each of the prediction quantiles. However, in this case, we want to consider the observation
uncertainty too, as modelled in Section 3.4.1. For this reason, we select the prediction quantile where
the product of the prediction probability and the observation probability is maximum.

The rank histograms for the tested combinations are reported in Figure 6.
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4.2. Case Study 2: Identification of the Optimal Accumulation and Downscaling Resolution

In the second case study in the Netherlands, the first passage is to identify which of the 14 tested
rainfall combinations is optimal in terms of reproducing the water level observations, when used as an
input in the presented InfoWorks model. The 14 different products are therefore directly used in the
InfoWorks model, and the results are compared to water level observations. Figure 7 shows how the
model outputs for the 14 tested products compare to the observations, for the three tested measuring
points of Figures 2 and 3.

To have a quantitative measurement of the products’ performance, three indicators are calculated:
Bias, Mean Root Transformed Error (MRTE), and Nash–Sutcliff Efficiency (NSE).

BIAS = abs

(
1

tsteps

tsteps

∑
j=1

hmod − hobs

)
(36)
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MRTE =
1

tsteps

tsteps

∑
j=1

(√
hmod −

√
hobs

)2
(37)

NSE = 1−
∑

tsteps
j=1 (hobs − hmod)

2

∑
tsteps
j=1

(
hobs − hobs

)2 (38)

where tsteps is the number of considered time steps in the event, hmod is the water level estimated by
the model, hobs is the observed water level, and hobs is the average observed water level. The three
indicators are calculated for each of the 14 tested rainfall products, and for each of the three
measurement locations. The results are reported in Table 7.
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Figure 7. The 14 rainfall products are used as an input for the InfoWorks model and the results are
compared to the water level observations in three distinct locations as reported in Figure 2. The names
of the products describe the accumulation resolution (A) and the downscaling resolution (D) in minutes.
Rad5 and Rad15 are the radar products at 5 and 15 min resolution, respectively, and Obs is the water
level observation.
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Table 7. The three indicators (bias, Mean Root Transformed Error—MRTE, and Nash-Sutcliffe
Efficiency—NSE) are reported for the 14 products indicated with accumulation resolution (A) and
downscaling resolution (D) in minutes, for the three measurement locations. Radar products are
indicated with RD. A conditional colour formatting is applied to easily compare the values, where
green is a positive performance, and red a negative one.

A D
VW162 VW984C1 VW263

BIAS MRTE NSE BIAS MRTE NSE BIAS MRTE NSE
1440 5 0.146 0.0092 0.58 0.052 0.0059 0.57 0.396 0.0177 0.02
1440 15 0.147 0.0093 0.58 0.052 0.0060 0.57 0.400 0.0182 -0.01
1440 30 0.146 0.0093 0.58 0.051 0.0060 0.57 0.399 0.0180 0.01
720 5 0.159 0.0092 0.58 0.053 0.0059 0.57 0.310 0.0103 0.44
720 15 0.159 0.0092 0.58 0.053 0.0059 0.57 0.313 0.0104 0.44
720 30 0.158 0.0092 0.58 0.052 0.0060 0.57 0.313 0.0103 0.44
180 5 0.178 0.0061 0.73 0.070 0.0033 0.77 0.303 0.0088 0.53
180 15 0.178 0.0061 0.73 0.070 0.0033 0.77 0.304 0.0088 0.53
180 30 0.178 0.0059 0.74 0.071 0.0031 0.78 0.305 0.0089 0.53
60 5 0.183 0.0061 0.73 0.072 0.0033 0.77 0.272 0.0066 0.65
60 15 0.183 0.0061 0.73 0.071 0.0033 0.77 0.271 0.0066 0.65
60 30 0.182 0.0059 0.74 0.071 0.0031 0.79 0.274 0.0066 0.65
RD 15 0.184 0.0093 0.58 0.074 0.0058 0.59 0.298 0.0101 0.46
RD 5 0.184 0.0094 0.58 0.075 0.0058 0.59 0.297 0.0102 0.46

4.3. Case Study 2: Ensemble Generation and Propagation

Once the optimal accumulation and downscaling resolution are selected, the corresponding
downscaled KED product is considered in its probabilistic form, in order to study the uncertainty in
the rainfall estimation and its propagation in the sewer model.

An ensemble of 100 rainfall estimates is generated using the methodology illustrated in Section 3.6
and each member is used as an input for the InfoWorks model, obtaining an ensemble of 100 water
level estimates. The results are represented in Figure 8.
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Figure 8. Using the rainfall ensemble as an input for the InfoWorks model, an ensemble of water level
estimations is obtained. The ensemble is compared with the observations at three different locations.
The ensemble is represented with the deterministic prediction (kriging mean), with the 5–95% quantile
band, and the minimum–maximum band.
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5. Discussion

As regards the results of the methodology validation for the UK case study, as reported in
Section 4.1 and Table 6, it is no surprise that larger accumulations tend to perform better. As expected,
the uncertainty on the rainfall products is reduced by accumulation. Larger accumulation resolutions,
associated with larger downscaling resolutions perform best for all the tested skill scores. It must be
noted that the cross-validation is done between Kriging products and rain gauges; therefore, an error is
always present, even for the case at 60 min accumulation and no (60 min) downscaling. The uncertainty
estimation, as illustrated by the rank histograms in Figure 6, performs better at larger accumulations
as well. In facts, if a perfect stochastic model were used, modelling a perfectly Gaussian process, and
infinite observation points were available, rank histograms would be perfectly flat. This is not the
case for any of the model histograms. Indeed, kriging produces a Gaussian probabilistic estimation,
although rainfall errors are not Gaussian. Rainfall error probability distribution has a higher kurtosis,
which results in a higher density of observations in the central and the extreme quantiles. While this is
clearly visible for the coarser accumulations, the histograms relative to the finer accumulation scales
show only a central higher peak. This usually corresponds to an overestimation of the uncertainty.

As concerns the example application in Twenterand, the first observable result from Section 4.2,
Figure 7 is that the model is not appropriately calibrated for the studied event. The model is
calibrated following the C2100 guideline [33], which is the standard nation-wide calibration procedure.
Although the calibration aims at obtaining a set of parameters that performs well in a number of design
storms with different return periods, it cannot perform at the highest standard in all the situations,
since some parameters are actually not stationary. Additionally, the model is designed to properly
model the flow in pressurized conducts, but does not properly represent surface water storage that
can happen during a flood. This generates a mismatch between the model results and the observations
that might not be due to the rainfall uncertainty, and is similar for all the tested rainfall products.
For example, at location VW263 there is an evident bias, while in locations VW162 and VW984C1
the peak water level decreases too fast, compared to the observations. Additionally, some other
sources of uncertainty can contribute to the mismatch, for example the inflow due to the urban sewage
component, the uncertainty on the water level observations, or the model structure. In location VW263,
the peak shows a different pattern compared to the observation. This effect might be linked to the
presence of a pump close by, which may be modelled in an over-simplified way.

The evident mismatch between the model and the observations does not prevent the methodology
presented in this work to be effective, and presents a real case scenario: as mentioned before,
operational models are often calibrated against a number of design rainfall events, but cannot be
optimal in all the cases. We want to propose a methodology that is effective regardless of the other
additional sources of uncertainty that may affect the model. However, it could be argued that the
results are affected by the non-optimal working conditions of the model. This is indeed true, and it
must be kept in mind that the optimization in such conditions is specific for the given model, in the
given conditions and cannot be generalized. The presented case study should be considered only as
an application example of the proposed methodology and no generalization on the obtained results
should be drawn.

Although the differences between the rainfall products are small compared to the mismatch
between the model outputs and the water level observations, there are some noticeable differences,
especially for minor peaks, that can still help us in selecting the best rainfall input. The first and the
last minor peaks generated by the model for the VW263 measurement point are too high for daily
accumulations (1440 min), but reasonably low for accumulations between 60 min and 12 h (720 min).
The same effect can be observed for the small peaks following the major ones for locations VW162
and VW984C1.

The results in Table 7 show that different products perform differently for the three measurement
points. Nevertheless, it is possible to evaluate which ones perform sufficiently well in all the cases.
In terms of accumulation interval, the best results are obtained for an accumulation of three hours
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(180 min). Sixty-minute products perform well too, but have a more variable behaviour in the different
analysed cases. In terms of downscaling time, the differences are smaller, but the products downscaled
at 30 min tend to perform slightly better, especially for the accumulations at 3 h. This is probably
due to the reduction in rainfall errors thanks to a coarser accumulation, rather than an advantage at
model level. Although, in this application, we select the product downscaled at 30 min, the other
downscaling resolutions would work similarly well. Indeed, urban drainage models often work
better at finer resolutions [2,48,49]. However, both the rain gauges and the radar used are subject to
non-negligible errors and the reduction of uncertainty due to accumulation seems dominant in respect
to the reduction of uncertainty due to the model capacity to represent finer temporal scales.

The validation results are not in contrast with the results of the Dutch case study, used to
optimise the resolution for modelling application. Indeed, the downscaling brings an advantage
in the model application, where finer scale phenomena need to be represented correctly. The fact
that the optimal downscaling resolution has been found at 30 min is due to the balance between the
rainfall uncertainty reduction at larger downscaling resolutions, and the model uncertainty reduction
at smaller downscaling resolutions. In fact, it can be observed that the differences between the results
at different downscaling resolutions at model level in the second case study are much smaller than
the differences at rainfall level in the first case study, where larger downscaling resolutions clearly
produce better results.

The results of the uncertainty propagation, as reported in Section 4.3, Figure 8, show that
the rainfall uncertainty is not sufficient to explain the mismatch with the observations: as already
mentioned in the previous section, the mismatch can be due to the model calibration, to other inputs’
uncertainty, to the water level observation uncertainty, and to the model simplification.

The fact that the uncertainty bands correspond to the variability of the 14 products observed in
Figure 7 confirms that the uncertainty model is robust. In fact, the uncertainty model is independent
on the other 13 products tested in the previous phase, but it is still able to capture the uncertainty due,
in this case, to the temporal resolution uncertainty. Additionally, it covers also other sources of rainfall
uncertainty, such as rain gauge errors or interpolation approximations. The fact that the uncertainty
band does not always cover the water level observations, confirms that the InfoWorks model is affected
by other sources of uncertainty such as calibration, model structure, or other data errors.

Additionally, the ensemble shows that the uncertainty tends to be larger in correspondence of
peaks, but for some peaks the uncertainty band is much larger than for others. This is because kriging
variance is proportional to the rainfall intensity and to the distance between the measurement points
and the prediction points: two rainfall peaks with the same intensity can have a different associated
uncertainty if they are closer or farther away from the rain gauge locations. The effect is even stronger
if some measurements are missing, or removed because of convective conditions. Both the effects are
realistic: rainfall uncertainty is known to be proportional to the rainfall intensity and is reasonable that
the fewer measurements are available, the less certain the rainfall estimation is.

It must be noted that the InfoWorks model of Vroomshoop covers an area smaller than the one
studied for the rainfall products, using therefore only a portion of the KED products. The use of a
larger area for the rainfall estimation assures that the rainfall estimation is robust, while the sensitivity
of the uncertainty model to the rain gauge quality assures that the uncertainty is correctly dependant
on the quality of the rain gauges closer to the Vroomshoop area.

The proposed methodology is successful in improving the KED merging results for urban
application, considering the associated uncertainty and its propagation to model outputs.
However, some improvements could still be introduced. The tested accumulation and downscaling
resolutions are just a limited number, used as an example to illustrate the methodology, rather than to
actually identify the optimal resolutions with high accuracy; using a larger number of combinations
could help identify the optimal resolutions more accurately. Furthermore, an existing operational
model calibrated according to national guidelines was used, with some associated calibration
uncertainty. The case study is informative in terms of robustness of the proposed method and
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in terms of evaluating the relative importance of the rainfall uncertainty in respect to the overall model
uncertainty, but more precise results could have been obtained with a model calibrated specifically for
the actual study event.

It must be considered that this work aims at illustrating an effective methodology for producing
rainfall products optimized for a specific model, and the quantitative results are specific for the dataset
and the model used. Additionally, it must be noted that this work does not aim at proposing a different
merging technique; it aims at dealing with temporal scales with an existing merging technique, in
this case KED. It could potentially be applied to other merging techniques, where sensitivity to
rainfall data quality is noticed, and an accumulation of the rainfall data would be advisable, but, for
model applications, a sufficiently fine resolution is required. It is therefore subject to the benefits and
limitations of the used merging techniques.

Additionally, the ensemble generation is accomplished using an AR(2) model for the residuals
auto-correlation; the AR(2) generates auto-correlated residuals, but cannot achieve the level of
auto-correlation observed in the time series. A different approach could be adopted to improve
the ensembles in this direction. Finally, the use of a 2D variogram approach has the potential to use an
anisotropic and directional variogram for the KED merging, which was not investigated in this work.

6. Conclusions

Rainfall is a phenomenon highly variable in space and time. For this reason, a lot of effort is often
put in the identification of the optimal spatio-temporal resolution for its representation, especially
when it is used as input in small-scale urban models [1,2,49,50]. Although a fine resolution allows
representing small-scale phenomena and provides more details, available data fix a lower limit to
the achievable resolution, and accumulation is recommended to reduce the impact of random errors.
Merging radar and rain gauge rainfall information is recognised to improve the rainfall estimates and
Kriging with External Drift is one of the most used merging methods thanks to its good performance
and efficiency [12,14,17,18]. Nevertheless, KED is sensitive to low quality data using a fine temporal
scale, and accumulation is recommended [19].

This paper proposes an approach for using rainfall data accumulated to a coarser temporal
resolution for KED merging, and then downscaling the results to a finer temporal scale, so it can be
used in an urban hydrological model. The methodology allows to consider the uncertainty associated
to the estimates as well and to propagate it in the studied model.

A first case study, based on six months of data in the north of England, is used to validate
the methodology. Twelve KED products obtained using different accumulation and downscaling
resolutions are cross-validated against rain gauges. The results confirm that, in terms of rainfall
product quality, larger accumulations reduce the uncertainty.

Another case study in the municipality of Twenterand, in the Netherlands, is presented as an
urban application example. In a first phase, 14 different rainfall products are tested, using different
accumulation resolutions to perform the KED merging and different downscaling resolutions, in
order to identify the optimal temporal accumulation and downscaling resolutions for the case study.
Water level observations are compared to the InfoWorks results using the 14 different rainfall products
as input, and the product accumulated at 3-h resolution for the KED application and then downscaled
at 30-min resolution is identified as optimal in the specific application example.

For this product, the uncertainty is then considered in a second evaluation stage, and propagated
in the InfoWorks model. The kriging prediction (mean) and the kriging variance are used to produce a
rainfall ensemble composed of 100 alternative rainfall time series. Each ensemble member is used in
the model, obtaining an ensemble of 100 alternative water level estimates.

The used InfoWorks model presents some additional sources of uncertainty, due mainly to
the impossibility to model surface storage, calibration, other inputs uncertainty, model structure,
or observation errors. The proposed methodology correctly estimates the uncertainty in the water
level due to the rainfall uncertainty, and does not cover the whole observable mismatch between the
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model output and the observations. This also allows evaluating the relative importance of the rainfall
uncertainty in the overall model output uncertainty.

Although some details can still be improved, the illustrated methodology is successful in
generating robust and accurate rainfall estimates and associated uncertainty. The methodology can be
applied to different case studies and different models and a more accurate identification of the optimal
resolutions for accumulation and for downscaling is easily achievable.
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