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Abstract  

Dystroglycan (DG) is a cell adhesion complex composed by two subunits, the highly 

glycosylated -DG and the transmembrane β-DG. In skeletal muscle, DG is involved in 

dystroglycanopathies, a group of heterogeneous muscular dystrophies characterized by a 

reduced glycosylation of -DG. The genes mutated in secondary dystroglycanopathies are 

involved in the synthesis of O-mannosyl glycans and in the O-mannosylation pathway of 

-DG. Mutations in the DG gene (DAG1), causing primary dystroglycanopathies, 

destabilize the -DG core protein influencing its binding to modifying enzymes. 
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Recently, a homozygous mutation (p.Cys699Phe) hitting the -DG ectodomain has been 

identified in a patient affected by Muscle-Eye-Brain disease with multicystic 

leucodystrophy, suggesting that other mechanisms than hypoglycosylation of -DG could 

be implicated in dystroglycanopathies. Herein, we have characterized the DG murine 

mutant counterpart by transfection in cellular systems and high-resolution microscopy. 

We observed that the mutation alters the DG processing leading to retention of its 

uncleaved precursor in the endoplasmic reticulum. Accordingly, small-angle X-ray 

scattering (SAXS) data, corroborated by biochemical and biophysical experiments, 

revealed that the mutation provokes an alteration in the -DG ectodomain overall folding, 

resulting in disulfide-associated oligomerization. Our data provide the first evidence of a 

novel intracellular mechanism, featuring an anomalous endoplasmic reticulum-retention, 

underlying dystroglycanopathy. 

 

Keywords: dystroglycan, dystroglycanopathy, multicystic leukodystrophy, site-directed 

mutagenesis, confocal microscopy, super resolution microscopy, endoplasmic-reticulum 

retention, SAXS.  
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Introduction 

Dystroglycan (DG) is an adhesion complex expressed in skeletal and cardiac muscle as 

well as in epithelial tissue and in central and peripheral nervous systems (Bozzi et al., 

2009). DG is composed by two subunits, - and -DG, that interact non-covalently to 

form a bridge between the extracellular matrix and the actin cytoskeleton. In fact, the -

subunit is a highly glycosylated extracellular protein that binds laminin-globular (LG) 

domain-containing extracellular matrix proteins such as laminins, perlecan, agrin, and 

neurexins, while -DG is a transmembrane protein that interacts with the actin 

cytoskeleton (Moore and Winder, 2012). - and -DG arise from a post-translational 

cleavage of a single precursor encoded by the DAG1 gene (MIM# 128239) (Ibraghimov-

Beskrovnaya et al., 1992). -DG is formed by two globular domains, the N-terminal and 

the C-terminal, separated by a mucin-like region rich in O-linked glycans (Brancaccio et 

al., 1997). The extensive O-linked glycosylated moieties belonging to the central domain 

of -DG mediate the interaction between the -DG and the LG domains of laminins and 

other ligands. In particular, a specific phospho-glycan has been recently identified and 

characterized as the functional glycan unit of -DG (Willer et al., 2014; Yoshida-

Moriguchi and Campbell, 2015; Kanagawa et al., 2016). This repeated disaccharide unit 

have been shown to bind an epitope on the LG4 domain of laminin-2 and form a 

coordination with a calcium atom (Briggs et al., 2016). The N-terminal domain of -DG 

is shed immediately after the interaction with LARGE, the enzyme which is crucially 

involved in the synthesis of the aforementioned repeated units, (Kanagawa et al., 2004) 

whilst its C-terminus interacts with the extracellular domain of -DG (Sciandra et al., 
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2001). The N-terminal ectodomain of -DG is a natively unfolded protein characterized 

by a high conformational plasticity that enables -DG to transduce extracellular signals 

inside the cells (Bozzi et al., 2003). Indeed, the -DG cytoplasmatic domain binds to 

several signalling and adaptor proteins and it is able to modulate the actin-cytoskeleton 

architecture in response to external stimuli (Colognato et al., 1999; Russo et al., 2000; 

Spence et al., 2004; Bozzi et al., 2009). Recently, it was shown that the binding between 

agrin and -DG promotes the disassembly of the -DG scaffold which inhibits the Hippo 

pathway in the adult heart thus stimulating the cardiomyocytes proliferation (Bassat et al., 

2017; Morikawa et al., 2017).     

In skeletal muscle, DG is the central component of the dystrophin-glycoprotein complex 

(DGC), a group of peripheral and integral membrane proteins that ensures muscle stability 

during multiple contraction and relaxation cycles (Bozzi et al., 2009). Mutations in any 

one of the DGC members compromise the stability of the entire complex, leading to the 

development of different forms of muscular dystrophies. Duchenne and Becker muscular 

dystrophies (DMD MIM# 310200 and BMD MIM# 300376) are caused by different 

mutations in the dystrophin gene. Mutations of sarcoglycans are associated with 

autosomal recessive limb-girdle muscular dystrophies (LGMD), while mutations in the 

laminin-2 chain gene (LAMA2, MIM# 156225) are linked to merosin-deficient 

congenital muscular dystrophy (MCMD1, MIM# 607855). In addition, a number of 

genetically heterogeneous neuromuscular disorders, collectively known as secondary 

dystroglycanopathies, are caused by mutations in several genes that are involved in the 

intricate O-mannosyl glycosylation of -DG (Yoshida-Monriguchi et al., 2015). Possibly, 

one common feature of secondary dystroglycanopathies is the expression of a 

hypoglycosylated form of -DG, whose ability to bind laminin and the extracellular 
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matrix is markedly reduced (Michele et al., 2002). These disorders include various forms 

of LGMDs and of severe congenital muscular dystrophies (CMDs), with or without 

additional ocular and brain abnormalities. The CMDs include Fukuyama CMD 

(MDDGA4, MIM# 253800 and MDDGB4 MIM# 613152), muscle-eye-brain disease 

(MDDAGA3, MIM# 253280 and MDDGB3 MIM# 613151) and Walker-Warburg 

syndrome (MDDGA1, MIM# 236670, MDDGA2, MIM# 613150, MDDGB1, MIM# 

613155 and MDDGB2, MIM # 613156).  

Only four cases of primary dystroglycanopathy, directly affecting DAG1 gene, have been 

reported so far. A homozygous frameshift mutation in the DAG1 (NM_001165928.3, 

c.743delC, p.Ala248Glufs), which results in a premature stop codon and in a complete 

absence of both - and -DG, was found in five patients from a consanguineous family 

who were affected by severe CMD with brain and eye anomalies and died after birth 

(Riemersma et al., 2015). A second case is a patient affected by mild LGMD 

accompanied by cognitive impairment (MDDGC9, MIM# 613818) (Hara et al., 2011). A 

homozygous missense mutation (c.575C>T) causes a threonine-to-methionine substitution 

at the amino acid residue 192 (p.Thr192Met) within the N-terminal domain of -DG. The 

mutation affects the overall flexibility of the N-terminal domain of -DG and inhibits the 

interaction between LARGE and -DG preventing the functional modification of the 

mucin-like domain DG (Hara et al., 2011; Bozzi et al., 2015; Covaceuszach et al., 2017a). 

In addition, hypoglycosylated -DG influences the -DG functional properties reducing 

its ability to form actin clusters (Palmieri et al., 2017). In the third case of a primary 

dystroglycanopathy, compound heterozygous mutations in DAG1 (c.220G>A and 

c.331G>A) lead to valine-to-isoleucine (p.Val74Ile) and to aspartic-to-asparagine 

(p.Asp111Asn) substitutions, respectively (Dong et al., 2015)). The two missense 
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mutations are located within the N-terminal region of -DG affecting both the flexibility 

in solution and the glycosylation of the -subunit and its laminin binding (Covaceuszach 

et al., 2017b). The patients had asymptomatic hyperCKemia and developed a mild 

muscular dystrophy with no central nervous system involvement.  

The fourth case of primary dystroglycanopathy was found in two siblings affected by 

severe CMD with central nervous system anomalies (MIM# 616538) and multicystic 

leukodystrophy (Geis et al., 2013). A homozygous missense mutation (c.2006G>T) 

results in a cysteine-to-phenylalanine substitution at residue 669 (p.Cys669Phe) in the 

extracellular domain of β-DG and it was predicted to disrupt the intramolecular disulfide 

bridge with Cys713 thus altering the tertiary structure of the β-DG ectodomain (Deyst et 

al., 1995; Watanabe et al., 2007; Sciandra et al., 2012). Moreover, based on a partial 

immunohistochemical analysis of muscle biopsies it seemed that -DG was 

hypoglycosylated, whilst laminin was still deposited around the skeletal muscle fibers 

(Geis et al., 2013). However, no extensive biochemical characterization of the mutant DG 

has been reported yet. Currently, it is still not clear how the p.Cys669Phe mutation affects 

the DG expression and maturation. In particular, it is not known whether the mutation 

affects the -DG post-translational modifications or it perturbs the association of -DG 

with the other components of the DGC. 

In this work, we expressed the murine counterpart (p.Cys667Phe) of the p.Cys669Phe DG 

in a heterologous cell expression system and we showed that the processing of the 

mutated DG is inhibited and that the mutant protein is mostly engulfed in the endoplasmic 

reticulum. Moreover, by biochemical, biophysical and structural characterization we 

showed that the mutant ectodomain of -DG displays an altered folding and leads to the 
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formation of high molecular weights disulfide-associated homo-oligomers, suggesting a 

novel intracellular mechanism for dystroglycanopathies.  

 

Methods  

Dna manipulation 

The single point mutation p.Cys667Phe was introduced into the murine DG 

(BC007150.1) construct containing a myc-tag inserted within the C-terminus of -DG 

and cloned in pEGFP vector (Morlacchi et al., 2012) using the Quick Change site-directed 

mutagenesis kit (Stratagene, USA) and the following primers: 

Forward 5’-CCCTTGGAGCCCTTCCCCAAGGAGCAG-3’ 

Reverse 5’-CTGCTCCTTGGGGAAGGGCTCCAAGGG-3’ 

An expression bacterial vector containing the -DG ectodomanin (spanning the amino 

acids 654-750) in frame with an N-terminal 6xHis tag, the thioredoxin protein, and a 

thrombin cleavage site (Sciandra et al., 2001), was used as template to introduce 

p.Cys667Phe mutation using the Quick Change site-directed mutagenesis kit (Stratagene) 

and the primers described above. 

The constructs were verified by automated sequencing. 

Cell culture, transfection and Western blot 

Ebna-293 cells were grown in DMEM supplemented with 10% fetal calf serum and 

antibiotics. The cells at 80% of confluence were transiently transfected with 20µg of wild-

type or p.Cys667Phe constructs using the calcium phosphate method as described 
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elsewhere (Morlacchi et al., 2012). 48 h after transfection, cells were harvested and 

lysated with lysis buffer (PBS containing 1% TritonX-100 and proteinase inhibitors) for 

1h. After centrifugation at 10.000 rpm, the cleared protein extracts were quantified and 10 

or 20 g of total protein extracts were resolved on a 4-15 % SDS-PAGE (Bio-Rad 

Laboratories, USA). Protein were then transferred to nitrocellulose and probed with 

different primary antibodies: anti-myc HRP (1:5000) (Miltenyi, Germany) and a 

monoclonal anti- 43-DAG (1:50) (Novacastra, UK). The reactive products were revealed 

using the luminol-based ECL system (Pierce, USA). To analyze the effect of proteasome 

inhibition, 36h after the transfection Ebna-293 cells were incubated with 20 M of 

lactacystin (Sigma-Aldrich, USA) dilute in water. After 16h the cells were harvested and 

analysed by Western-blot. Quantification of DGWT and DGC667F precursor, normalized to 

tubulin, was performed using ImageJ software (National Institutes of Health; Bethesda, 

MD). Two-tailed Student’s t-tests was used for the statistical analysis of protein levels. 

sWGL-enrichment assay 

20 g of total protein extracts of cells expressing DGWT and DGC667F
 were incubated with 

succinylated Wheat Germ Lectin (sWGL) Sepharose 6MB (Amersham, USA) and 

equilibrated in lysis buffer overnight at 4°C. After extensive washing with washing buffer 

(WB) (PBS containing 1% Triton X-100), bound glycoproteins were eluted in WB 

containing 300 mM N-acetylglucosamine and analysed by Western blot. 

Cell surface protein isolation kit 

Membrane proteins were isolated using the Cell Surface Protein Isolation kit 

(ThermoFisher, USA), following the manufacturer instructions. Briefly, transiently 

transfected Ebna-293 cells were labelled with Sulfo-NHS-SS-Biotin solution, for 30 

minutes at 4°C. After adding quenching solution and washing with TBS, cells were 
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harvested and lysed with lysis buffer. Equal amounts of cell lysates were used to isolate 

labelled membrane proteins with NeutrAvidin Agarose beads. Biotinylated proteins were 

then eluted with 50 l of sample buffer containing DTT. Samples were analysed by 

Western blot. Quantification of DG wild-type and p.Cys667Phe precursor, normalized to 

endogenous DG, was performed using ImageJ software (National Institutes of Health; 

Bethesda, MD). Two-tailed Student’s t-tests was used for the statistical analysis of protein 

levels. 

Immunofluorescence and microscope analysis  

Ebna-293 transiently transfected cells were fixed with 4% paraformaldehyde for 20 

minutes at room temperature. Non-specific sites were blocked with 1% BSA in PBS or in 

PBS containing 0.2% TritonX-100 that is able to permeabilize the cells.  Cells were 

incubated with the anti-myc antibody polyclonal (1:100, ThermoFisher, USA) and/or anti 

Erp-57 monoclonal antibody (1:100, AbCam, UK) for 1h. Cells were washed with PBS 

and then incubated with an anti-rabbit or anti-mouse secondary antibody conjugated with 

rhodamine (1:100, ThermoFisher, USA) and imaged with a confocal laser scanning 

system (A1+, Nikon, Japan). Laser excitation at 488 nm was followed by an excitation at 

583 nm to collect emission signals from GFP and rhodamine, respectively. Super-

resolution 3D Structured Illumination Microscopy (3D-SIM) was performed as previously 

described on an OMX v4 (GE Healthcare, UK) (Bozzi et al., 2015). U2OS cells were 

transiently transfected with the appropriate plasmids and observed at 24°C live in order to 

preserve the ER structure. 

Expression and purification of the wild-type and C667F -DG recombinant 

ectodomain 
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The wild-type and p.Cys667Phe -DG ectodomains were expressed in the E. coli BL21 

codon plus strain and purified using nickel nitrilotriacetate (Ni-NTA) affinity 

chromatography (Novagen, Germany). The eluted thioredoxin fusion proteins, previously 

dialyzed in a buffer containing 20 mM Tris-HCl, 0.15 M NaCl, 2.5 mM CaCl2, pH 8.4, 

were incubated with thrombin from human plasma (Sigma-Aldrich, USA) for 4 h at room 

temperature. The thioredoxin fusion partner was then removed with a second Ni-NTA 

affinity chromatography step. The purity of the isolated -DG ectodomains were checked 

by 12% SDS PAGE, stained with Coomassie Brilliant Blue R-250 dye. 

Analytical gel filtration 

Analytical gel filtration was performed on a Superdex 75 10/300 column (GE Healthcare, 

UK), pre-equilibrated and eluted with 20 mM Tris, 150 mM NaCl pH 7.5: the 

concentration of both injected sample was 0.25 mg/ml in 20 mM Tris-HCl pH 7.5. 

Fraction corresponding to the main peaks have been checked by 15% SDS PAGE and 

Coomassie staining. The column was previously calibrated with Apoprotin (6.5 kDa), 

ribonuclease A (13.7 kDa), ovalbumin (43 kDa) and bovine serum albumin (66 kDa) in 

20 mM Tris, 150 mM NaCl pH 7.5 and the apparent Molecular Weights  (MMs) of the 

samples were estimated using the column calibration against these standard protein.  

Differential Scanning Fluorimetry (DSF) 

DSF measurements were carried out using a CFX96 Touch Biorad Real-Time PCR 

system (Bio-Rad Laboratories, USA) with λex = 470-505nm, λem = 540-700 nm. The 

protein stocks contained 20 mM Tris pH 7.5 and were mixed at final concentration of 1 

mg/ mL with 90× SYPRO Orange (Sigma-Aldrich, USA). Temperature increments of 0.2 
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°C/min and a temperature range of 20-90°C were used. Experiments were performed in 

triplicate.  

Limited proteolysis 

β-DG wild-type and p.Cys667Phe mutant recombinant proteins were subjected to limited 

proteolysis at 37°C at a final concentration of 30 M in 20 mM Tris pH 7.5 buffer. A 

panel of five proteases from Proti-Ace kits (Hampton Research, USA), i.e. actinase, 

elastase, subtilysin, thermolysin and trypsin were tested at a final concentration of 2 

g/ml. The reactions were stopped after 1, 5, 10, 20, 40 and 60 min by adding SDS 

sample buffer to aliquots of the reaction mixtures. The samples were analyzed by 

performing 15% SDS-PAGE and Coomassie staining. 

Small-angle X-ray scattering measures and data processing 

SAXS data for β-DG wild-type and p.Cys667Phe mutant proteins were collected on the 

P12 beamline EMBL SAXS-WAXS at PETRAIII/DESY (Blanchet et al., 2015) 

(Hamburg, Germany) as 20x 0.05 s exposure times using a Pilatus 2M (Dectris, 

Switzerland) pixel array X-ray detector, sample-detector distance 3.00 m, wavelength 

1.24 Å. Measurements were carried out at 5 different concentrations (the ranges are 

reported in Table S1) in 20 mM Tris pH 7.5, in presence and in absence of 10 mM DTT. 

No radiation damage was detected comparing scattering profiles for the collected frames. 

Processing steps were performed with PRIMUS (Konarev et al., 2003) from the ATSAS 

2.6.0 program package (Petoukhov et al., 2012). After normalization to the intensity of 

the transmitted beam and averaging of the frames for each sample, the buffer’s 

contribution was subtracted to the scattering. As some inter-particle attractive interactions 

were observed at high protein concentration in all the samples, the low s-data of diluted 
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samples (0.9 and 1.4 mg/ml for wild-type and p.Cys667Phe respectively), where inter-

particle interactions are negligible, were merged with the high s-data of the concentrated 

samples (3.9 and 5.3 mg/ml respectively). 

The forward scattering I(0) and the radius of gyration Rg were evaluated using the Guinier 

approximation (Guinier, 1939) assuming that at very small angles (s < 1.3/Rg) the 

intensity is represented as  

        (    )   .  
Pair distance distribution functions of the particles P(r) and the maximum sizes Dmax were 

computed using GNOM (Svergun, 1992). MMswere estimated by comparison of the 

calculated forward scattering I(0) of the samples with that of the standard solution of 

bovine serum albumin (MM 66kDa). The excluded volume of the hydrated protein 

molecule (Vp) was calculated using the Porod approximation (Porod, 1982):  

                  . 
Results 

p.Cys667Phe mutation inhibits processing and membrane targeting of dystroglycan 

To better understand the influence of the mutation p.Cys669Phe on the expression and 

maturation of DG, by site-directed mutagenesis we imported the murine counterpart 

mutation (p.Cys667Phe) into the sequence of DG cloned in a pEGFP vector that was 

subsequently used to transfect Ebna-293 cells. The same construct also contained a myc 

tag inserted within the C-terminal region of -DG (Morlacchi et al., 2012).  
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Western blot analysis of total protein extracts using a commercial anti--DG antibody 

showed that the mutation p.Cys667Phe inhibits post-translational cleavage of the DG 

precursor. In fact, p.Cys667Phe mutant migrated as a single 160 kDa band, similarly to 

the previously characterized DG mutant carrying the mutation p.Ser652Ala at the -DG 

cleavage site that was used as a control (Fig.1A) (Jayasinha et al., 2003; Esapa et al., 

2003; Akhavan et al., 2008). The same total protein extracts were incubated with agarose-

immobilized sWGL (succinylated Wheat Germ Lectin) that specifically binds N-

acetylglucosamine residues (Fig. 1B). The mutant DG precursor was pulled down by this 

procedure, as confirmed by Western blot, suggesting the presence of N-acetylglucosamine 

moieties within the uncleaved protein (Fig. 1B). However, the low affinity displayed by 

the IIH6 antibody for -DG expressed in Ebna-293 cells, prevented us to verify the 

presence within the p.Cys667Phe DG precursor of the glycan moiety responsible for -

DG binding to laminin which is specifically targeted by IIH6 (Palmieri et al., 2015). 

By immunofluorescence staining of non-permeabilized transfected cells, we showed that 

the wild-type DG was primarily localized at the plasma-membrane, either following the 

EGFP signal reporting -DG localization or the anti-myc reporting -DG localization 

(Fig. 2A). On the other hand, only a limited amount of the p.Cys667Phe mutant was 

detectable at the plasma membrane (Fig. 2A). However, immunofluorescence of 

detergent-permeabilized transfected cells showed that p.Cys667Phe mutant was mainly 

detected intracellularly and displaying a reticular pattern (Fig. 2A). DG carrying the 

mutation p.Cys667Phe largely co-localized with Erp57, an ER resident protein (Fig. 2B), 

suggesting that the mutant is retained in the ER. The same result was obtained with a 

different cell line, U2OS human bone osteosarcoma cell line, strongly pointing out that 
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the observed effect depends on the p.Cys667Phe mutation irrespective of the cellular type 

under analysis (Fig. 3, Supp. Fig. S1).  

To further verify that we indeed observed a strong intracellular retention of p.Cys667Phe 

mutant, as suggested by immunofluorescence, cell surface biotinylation was used to 

establish whether the mutant was trafficked to the plasma membrane of transfected Ebna-

293 cells. Indeed, we confirmed that whilst wild-type DG was recovered in the 

biotinylated fraction, only a minor fraction of p.Cys667Phe mutant was targeted to the 

plasma membrane (Fig. 4). 

p.Cys667Phe mutant is targeted by the ubiquitin-mediated degradation systems  

It was predicted that mutation of Cys667 would disrupt an intramolecular disulfide bond 

important for folding and correct processing of the precursor DG (Deyst et al., 1995; 

Watanabe et al., 2007; Sciandra et al., 2012). Typically, misfolded proteins undergo 

degradation via the ubiquitin-proteasome system (Cohen-Kaplan et al., 2016). To test 

whether p.Cys667Phe mutant is targeted to the proteasome, we treated transfected cells 

with the proteasome inhibitor lactacystin. Interestingly, whilst the incubation with 

lactacystin increased the level of wild-type DG, the level of p.Cys667Phe mutant was 

further reduced (Fig. 5A).  

In addition, total extracts of transfected cells treated with lactacystin were 

immunoprecipitated with anti-GFP conjugated agarose beads and the resulting fractions 

were analysed by Western blot using an anti-ubiquitin antibody. The proteasome 

inhibition of transfected cells allowed to observe the presence of bands corresponding to 

the mutant DG conjugated to poly-ubiquitin moieties, otherwise rapidly degraded (Fig. 

5B). The detection of poly-ubiquitinated wild-type -DG suggested that also a fraction of 
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the wild-type protein is targeted to be destroyed within the proteasome, probably due to 

the strong overexpression of the construct which is somehow overcrowding the ER and 

the cytosol (Fig. 5B).  

Overall, these data indicate that the mutant DG engulfed in the ER is intercepted by its 

resident quality-control system and accordingly is targeted to degradation through the 

ubiquitin-mediated degradation pathway. 

Pathological missense p.Cys667Phe mutation induces disulfide-associated β-DG 

oligomerization. 

Previously, we have expressed and characterized the recombinant ectodomain of -DG 

showing that it is a largely unstructured protein (Di Stasio et al., 1999; Boffi et al., 2001; 

Bozzi et al., 2003). Therefore, we investigated the potential effect of the p.Cys667Phe 

mutation on the overall folding of the recombinant extracellular domain of β-DG by a 

series of biochemical approaches (Fig. 6 and 7).  

Analysis of wild-type β-DG by SDS-PAGE (Fig. 6A) showed that boiling protein samples 

with SDS under non-reducing conditions resulted in a single band corresponding to 

monomers. On the contrary, the β-DG carrying the p.Cys667Phe mutation gave two major 

bands corresponding to a mixture of dimers and monomers. Boiling samples with DTT 

and SDS reduced all the two preparations to the molecular mass expected for monomeric 

β-DG suggesting that the mutant β-DG dimers observed under non-reducing conditions 

were covalently linked through an inter-molecular disulfide bond involving Cys711. This 

result was also confirmed by native gels under non-reducing and reducing conditions 

(data not shown). 
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A more complex scenario was revealed by analytical gel-filtration, Dynamic Light 

Scattering (DLS) and Small Angle X-Rays scattering (SAXS) experiments. 

The elution patterns obtained for wild-type and p.Cys667Phe β-DG (Fig. 6B) showed 

striking differences. In details wild-type β-DG resulted in a single main peak 

corresponding to an apparent molecular mass of a dimeric molecule. In contrast, the 

p.Cys667Phe mutation resulted in a complex elution profile, yielding a major fraction 

(50%) of higher oligomers (eluting in the void volume), two peaks corresponding to lower 

oligomers, i.e. tetramers (10%) and trimers (5%), and a final peak (35%) corresponding to 

a monomeric fraction. 

These differences in the oligomerization states between the wild-type and the mutant β-

DG were further corroborated by DLS (see Supplemental Information) and by SAXS 

measurements of the two protein samples (see Supp. Table S1). The scattered intensity is 

sensitive to the size and shape of the protein in solution; therefore, from the analysis of 

such plots hypothesis on the conformation of the molecule can be made (Receveur-

Brechot et al., 2006). The derived experimental scattering patterns displayed no 

systematic changes with the solute concentration, demonstrating no change in association 

state of wild-type and mutant β-DG with concentration, in accordance with DSL 

measurements. Even if both samples showed a small level of aggregation, the linearity of 

Guinier plots at very small angles (s < 1.3/Rg) (Fig. 2S) suggests that the samples are 

monodisperse. The overall parameters from the SAXS data are summarized in Supp. 

Table S1, the experimental scattering data and the computed distance distribution 

functions of the wild-type and mutant β-DG are compared in Fig. 6C and 6D, 

respectively.  
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The excluded volume Vp and MM values for the β-DGWT protein (respectively 41400 Å3 

and 24 kDa) were consistent with the values expected for dimeric species, considering 

that the theoretical MM of the monomer is 10.6 kDa and that the hydrated volume in Å3 

should be about twice of the MM in Da according to an empirical finding for globular 

proteins. Instead the p.Cys667Phe β-DG exhibited increased Rg (78.7 Å compared to 40.6 

Å of the wild-type protein) and MM of ~160 kDa as determined by Guinier 

approximation, which is in agreement with the Vp of the particle (320000 Å3). 

Accordingly, the corresponding distance distribution functions, p(r), were markedly 

different. Even if both wild-type and p.Cys667Phe β-DG exhibited positively skewed 

profiles with tails at large distances characteristic of elongated particles, the comparison 

of p(r) functions (Fig. 6D) showed that the mutation of this residue led to a significant 

increase in the maximum dimension of the protein (i.e. Dmax increased from 135±6 Å of 

the wild-type β-DG to 280±15 Å of p.Cys667Phe β-DG). This significant change in the 

maximum dimension of the protein, combined with a considerable increase in the 

corresponding Rg, confirms that this pathological missense mutation induces a change in 

the oligomerization state of β-DG.  

It is interesting to note that the same set of measurements were performed in presence of 

an excess of reducing agent (10 mM DTT) without any significant change in the resulting 

scattering curves (data not shown). Therefore, the disulfide bonds reduction does not 

reverse the observed oligomerization process. 



 
 

 
This article is protected by copyright. All rights reserved. 

18 

 

Oligomerization characteristics of p.Cys667Phe β-DG are likely to be associated to 

some level of tertiary structural organization  

Beside the information on the association state and overall size parameters of biological 

macromolecules, SAXS experiments can also provide insights into their tertiary structure 

and enable to distinguish between ordered and disordered proteins (Receveur-Bréchot et 

al., 2006). In particular the Kratky plot is an extremely useful representation of the 

scattering intensity to quickly assess the globular nature of a polypeptide chain without 

any modeling. Moreover, the normalization performed to obtain dimensionless Kratky 

plots (Durand et al., 2010) allows to compare globular and extended proteins irrespective 

of their size, and thereby to infer the maximum amount of information from this 

representation. As expected from previous characterization of wild-type β-DG that 

resulted to be a natively unfolded protein (Bozzi et al., 2003), the corresponding curve (in 

blue in Fig. 5A) does not have a clear maximum and displays an initial monotonic 

increase in the lower s-region followed by a plateau, all the hallmarks of a fully 

disordered protein with very short elements of secondary structure (Receveur-Bréchot et 

al., 2006). Conversely dimensionless Kratky plot obtained for the mutant β-DG (in red in 

Fig. 7A) exhibits the bell-shape suggesting the presence of some residual structure 

(Receveur-Bréchot et al., 2006). Anyway the fact that this curve displays a maximum 

slightly shifted to an s*Rg value larger than 1.75 (characteristic of folded compact 

globular proteins) point to some degree of residual flexibility (Durand et al., 2010). 

In order to confirm that the observed differences in oligomerization behavior are 

associated to differences in oligomer folding as suggested by SAXS analysis, we 

performed DSF and limited proteolysis experiments.  
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In DSF spectroscopy, a hydrophobic probe (e.g., Sypro Orange) is added to the sample 

and the solution is then heated: the increasing hydrophobic environment enhances the 

quantum yield of the chromophore resulting in a dramatic increase of the fluorescent 

signal. The melting profile of wild-type β-DG, shown in Fig. 6B, indicates that the 

fluorescence signal was high even at the initial temperature, and failed to yield an 

observable unfolding transition as the temperature is raised. Assuming that wild-type β-

DG is a natively unfolded protein, this high initial fluorescence is expected because non-

globular folded proteins are characterized by extended open structures that expose 

hydrophobic residues (Phillips and de la Pena, 2011). The curve is typical of a protein that 

is poorly ordered and lacks a stable tertiary fold. The fluorophore readily binds the 

natively unfolded protein even at a low temperature and, as the temperature increases, is 

progressively quenched as the protein aggregates when is completely unfolded, masking 

the hydrophobic regions and excluding the dye. A significant change in profile was 

observed for pathological p.Cys667Phe β-DG. Although the initial fluorescence is still 

very high, the spectrum indicates a more complex transition model. Indeed fluorescence 

signal is still high at the initial temperature due to the presence of several exposed 

hydrophobic residues and starts lowering as the temperature increases, but a sigmoidal 

transition can be seen at higher temperatures, suggesting that p.Cys667Phe mutation may 

stabilize a more rigid fold, possibly introducing some degree of tertiary structures.  

In line with these results, proteolysis experiments led to the fast and complete degradation 

of wild-type β-DG, implying that this protein is highly flexible and easily accessible for 

thermolysin (Fig. 6C) and for the additional five proteases that have been tested (Supp. 

Fig. S3). On the contrary, the single missense mutation p.Cys667Phe almost abolished 
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degradation by all the employed proteases (Fig. 6C and Supp. Fig. S3), likely inducing a 

more tightly packed conformation and thereby masking most of the cleavage sites.  

Discussion  

Hypoglycosylation of -DG and the consequently weakening of the interactions between 

-DG and its extracellular matrix binding partners, in particular laminins, are considered 

to be the hallmarks of several forms of primary and secondary dystroglycanopathies 

(Yoshida-Moriguchi and Campbell, 2015). 

Our study provides the first molecular insight into a novel mechanism by which a 

missense mutation within the DG induces an altered folding and a pathological disulfide-

associated oligomerization of the DG precursor, leading to its ER-retention and 

generating a severe skeletal muscle and central nervous system disorder. In fact, the 

homozygous mutation p.Cys667Phe was found in two siblings affected by a severe CMD 

and multicystic leukodystrophy (Geis et al., 2013). Immuno-histochemical staining of 

muscle biopsies showed the absence of glycosylated -DG, although laminin-2 was still 

localized at the sarcolemma. Currently, it is not clear yet if the primary DG defect caused 

by this mutation is a deficiency in -DG trafficking and targeting to the plasma 

membrane or in its post-translational modification pathway, leading to hypoglycosylation 

and/or instability of the core protein. 

The mutant DG precursor is entrapped in the ER and is targeted for degradation   

Using transiently transfected Ebna-293 cells as heterologous cell expression system, we 

demonstrated that the p.Cys667Phe mutation, the murine counterpart of the human 

mutation, influences the correct processing of the DG precursor, inhibiting its post-

translational cleavage into - and -DG (Fig. 1A). The mutated precursor is also likely to 
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have an altered glycosylation pattern, although still harbouring some N-acetyl-

glucosamine residues, which allowed its successful sWGL pull-down (Fig. 1B). 

Interestingly, the p.Cys667Phe mutation might interfere with the action of 

oligosaccharyltransferase subunits that form mixed disulfide bonds with cysteines in 

substrate proteins to enhance N-glycosylation of nearby asparagine residues (Schultz et 

al., 2009; Mohd Yusuf et al., 2013). Several studies have shown that incomplete 

glycosylation may perturb the proper protein folding leading to ER stress and activation 

of the unfolded protein response (UPR) (Jayaprakash and Surolia 2017). Notably, 

p.Cys667Phe DG is mostly stuck in the ER and only traces of the precursor are able to 

reach the plasma membrane, as demonstrated by immunofluorescence staining and 

membrane-proteins enrichment (Figs. 2-4).  

The p.Cys667Phe mutation hits the extracellular region of -DG and it is predicted to 

disrupt a disulfide bond formed with the cysteine residue in position 711 in murine DG 

(Deyst et al., 1995; Watanabe et al., 2007; Sciandra et al., 2012). When Cys667 was 

mutated to alanine, the tertiary structure of DG precursor was altered and its post-

translational cleavage was inhibited leading to the engulfment of the mutant in the ER 

(Watanabe et al., 2007; Sciandra et al., 2012). A similar behaviour was observed when the 

reciprocal Cys711 was mutated to alanine (Sciandra et al., 2012).  

Misfolded proteins confined in the ER are targeted and translocated into the cytoplasm, 

where they undergo ubiquitin-dependent degradation via the proteasome, or 

autophagy/lysosomal degradation pathways (Cohen-Kaplan et al., 2016). Indeed, severe 

diseases might arise from mutations of proteins with an altered ER retention pattern due 

to their inability to undergo ER-associated degradation (ERAD) (Guerriero & Brodsky, 

2012).  
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We show that the treatment of transfected cells with lactacystin, a potent proteasome 

inhibitor, increases the levels of different poly-ubiquitinated forms of the p.Cys667Phe 

DG mutant indicating that the mutant is indeed targeted for degradation (Fig. 5B). 

However, we have observed a paradoxical effect with lactacystin and p.Cys667Phe DG. 

Although lactacystin increases the level of DGWT, preventing its degradation, significantly 

reduces the level of mutated DG (Fig. 5A). It was shown that lactacystin is a potent 

inducer of oxidative stress in the cells and triggers the formation of protein aggregates 

predominantly by intermolecular disulfide bridges (Demasi and Davies, 2003). From this 

result, we can speculate that lactacystin induces the formation of larger p.Cys667Phe DG 

oligomers that are not dispersed even by chemical reduction with -mercaptoetanol and 

did not enter polyacrylamide gel (Fig. 5). Therefore, we can assume that the mutant DG is 

expressed as an uncleaved misfolded precursor that is prone to form oligomers that 

remain entrapped in the ER, where eventually would be degraded by ERAD. The 

autoproteolytic processing of the mutant DG precursor, that would liberate the two DG 

subunits (Esapa et al., 2003; Akhavan et al., 2008), might be impaired in this case by the 

instability of the mutant precursor and/or by the presence of such oligomers. 

The p.Cys667Phe mutation induces the formation of DG homo-oligomers  

To investigate the overall propensity of the mutant DG to form high molecular mass 

oligomers, we have expressed and purified the -DG ectodomain carrying the 

p.Cys667Phe mutation as a recombinant protein for biochemical and biophysical studies 

in vitro (Di Stasio et al., 1999). It should be noted that this recombinant protein represents 

only the isolated ectodomain of -DG, therefore lacking the C-terminal region of -DG 

that would be still present in the unprocessed precursor within cells, and apparently in its 

wild-type form do not form an intra-molecular disulfide bridge between positions 667 and 
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711, displaying a largely unstructured fold (defined as natively unfolded) (Boffi et al., 

2001; Bozzi et al., 2003). All considered, the recombinant ectodomain of -DG represents 

the best available model to run biochemical experiments. Indeed, by a series a 

complementary techniques (SDS-PAGE under non-reducing conditions, native PAGE, gel 

filtration, DLS and SAXS measurements) it was demonstrated that the pathological 

p.Cys667Phe mutation promoted a disulfide-associated oligomerization process within the 

recombinant ectodomain of -DG (Fig. 6). Considering that disulfide bonds reduction 

does not reverse p.Cys667Phe β-DG oligomerization, the inter-molecular disulfide bonds 

in the mutant β-DG are not crucial for the overall stabilization of the oligomeric assembly 

but are likely to be instead necessary for the initial oligomer formation. It is tempting to 

speculate that this inter-molecular covalent bond might provide a compact seed mediating 

the nucleation and further development of the oligomeric assembly. Indeed, several 

approaches (limited proteolysis together with DSF and SAXS analysis by Kratky plot) 

confirmed that p.Cys667Phe mutation alters β-DG overall conformation in vitro. These 

results suggest that the p.Cys667Phe mutation might enhance the stability of a sort of 

initial dimeric folding nucleus based on an intermolecular disulfide bond between 

Cys711. Hence, the p.Cys667Phe substitution may be regarded as a key residue to trigger 

intermolecular interactions leading to a higher-order assembly of the otherwise natively-

unfolded wild-type -DG protein with severe pathological consequences. 

Implications for dystroglycanopathies  

The results presented here suggest that the molecular basis of the disease induced by the 

p.Cys667Phe mutation would be a strong reduction of the amount of functional DG 

detected at the sarcolemma. Indeed, the mutant DG precursor is unable to mature in fully 

glycosylated - and -subunits, to correctly fold and to move on through its normal 
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pathway of intracellular trafficking. This would reflect in a significant reduction of 

properly glycosylated -DG at the sarcolemma and would be in line with a range of 

muscular dystrophy phenotypes observed in other dystroglycanopathies (Michele et al., 

2002). On the other hand, another striking pathological effect might originate 

intracellularly and might represent instead the first biochemical clue behind the complex 

observed pathology, which involves the central nervous system as well (Geis et al., 2013). 

In fact, the mutant DG precursor is retained in the ER where seems to be prone to undergo 

oligomerization process and where it could be eventually targeted for ubiquitin-mediated 

degradation. Interestingly, in a study based on the characterization of novel zebrafish 

mutants, it was already hypothesized that dystroglycanopathies may also arise from the 

impairment of DG secretion resulting in an acute ER stress (Lin et al., 2011).     

The primary dystroglycanopathies so far identified are thought to be caused by mutations 

that influence the interaction between -DG and LARGE (Hara et al., 2011; Dong et al., 

2015). In particular, the p.Thr192Met mutation, identified in a LGMD patient, and 

p.Val74Ile and p.Asp111Asn mutations identified in a mild form of muscular dystrophy, 

are located within the N-terminal domain of -DG that was proposed to be important for 

the interaction between LARGE and -DG (Kanagawa et al., 2004). Therefore, 

p.Cys667Phe/ p.Cys669Phe is the first pathological mutation found within the -DG 

subunit that strongly alters the post-translational processing of the DG thus inducing 

oligomerization and ER-retention of the mutant DG precursor.  

Different genetic diseases, including muscular dystrophies, are characterized by ER-

retention of misfolded mutant proteins that are recognized by the ER quality control 

machinery and degraded by the ubiquitin-proteasome system. In particular, different 

LGMDs, caused by mutations in sarcoglycans as well as CMDs, caused by mutations in 
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the fukutin-related-protein (FKRP, MIM# 606596) (Esapa et al., 2005; Bartoli et al., 

2008; Soheli et al., 2012; Bianchini et al., 2014). In addition, Duchenne muscular 

dystrophy, which is most typically caused by mutations that lead to loss of dystrophin 

expression, is also associated to missense mutations within the actin-binding domain of 

dystrophin that lead to protein instability and aggregation (Singh et al., 2010; Henderson 

et al., 2010).  

The p.Cys669Phe patient is affected by CMD characterized by severe central nervous 

system defects associated with extended bilateral multicystic white matter disease (Geis et 

al., 2013). The clinical phenotype induced by p.Cys667Phe/ p.Cys669Phe seem to overlap 

with the brain clinical features observed in patients affected by megalencephalic 

leukoencephalopathy with subcortical cysts (MLC1, MIM# 604004) (Van der Knaap et 

al., 1995). MLC1 is due to mutations in MLC1 gene (MIM# 605908), which encodes for 

an oligomeric membrane protein highly expressed in astrocytes, where it is thought to 

regulate ions and water homeostasis (Brignone et al., 2015). In addition, MLC1 has been 

shown to interact with the DGC (Boor et al., 2007; Ambrosini et al., 2008). Interestingly, 

the molecular bases of MCL1 might be similar to those we propose for p.Cys667Phe 

dystroglycanopathy. Indeed, mutations in MLC1 induce protein misfolding, reduced 

plasma membrane targeting/expression and ER retention of the mutant MLC1 (Xie et al., 

2012). Moreover, agrin and -DG show an altered distribution in the brain of patients 

affected by MLC (Boor et al., 2007). A feature of the DGC is that mutations affecting one 

of its components often lead to destabilization of the entire complex with reduced or 

altered expression of other members of the complex. It will be interesting to unravel 

whether the leukodystrophy phenotype observed in the p.Cys669Phe patients is primarily 
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due to the altered expression of mutant DG or to an overall disassembling of the 

DGC/MLC1 molecular scaffold.  

Is the increased accumulation of misfolded/aggregated protein in the ER in itself 

contributing to the observed phenotype? At present, this is not known but it may be 

interesting to consider that an enhanced protein targeting and degradation is currently 

considered as a promising therapeutic tool (Collins et al., 2017). On the other hand, 

although with controversial outcomes especially in oncotherapy (Manasanch and 

Orlowski, 2017), pharmacological inhibition of proteasome had been proposed as a 

possible strategy for rescuing membrane localization of mutated and partly unstable 

proteins. The general idea behind such therapeutic strategies is that some of the misfolded 

proteins, if able to escape the cell’s quality-control system, might still be functional if 

targeted to the correct cellular location. This trend was demonstrated for sarcoglycans 

(Gastaldello et al., 2008), for laminin-2 (Carmignac et al., 2011) as well as for the most 

common mutant of the cystic fibrosis transmembrane conductance regulator gene (CFTR, 

MIM# 602421), Phe508DEL, among others (Cheng et al., 1990). However, our data 

might suggest that inhibition of proteasome-mediated degradation of p.Cys667Phe DG is 

not likely to be an effective therapy for treating the symptoms of the associated 

dystroglycanopathy. In fact, lactacystin induces the formation of higher molecular mass 

protein oligomers that end up stuck in ER where they would be likely submitted to 

extensive degradation processes. Additional studies will be required to elucidate which 

molecular pathways are exactly activated in order to degrade this mutated DG and 

possibly to identify novel targets for therapy. 
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Figure legends  

Fig. 1. A) p.Cys667Phe mutation inhibits DG precursor cleavage: total protein 

extracts of Ebna-293 cells transfected with wild-type, p.Ser652Ala, and p.Cys667Phe 

DG-GFP were analysed by Western blot. Nitrocellulose membranes were probed with 

anti -DG 43-DAG antibody and with anti-tubulin antibody used as loading control. For 

wild-type DG, the band at about 70 kDa (arrow) refers to -DG-GFP whilst for 

p.Cys667Phe DG, the / DG precursor is observed similarly to p.Ser652Ala DG used for 

control at about 135 kDa (asterisk). Lower bands are present in all the samples that are 

produced by a degradation taking place within the ectodomain of -DG (Bozzi et al., 

2009). B) p.Cys667Phe DG harbours N-acetylglucosamine residues: total protein 

extracts of Ebna-293 cells transfected with wild-type , p.Ser652Ala, and p.Cys667Phe 

DG-GFP were incubated with succynilated-Wheat Germ Lectin (sWGL) and bound 

proteins were eluted with N-acetylglucosamine for Western blot analysis. Nitrocellulose 

was probed with anti -DG 43-DAG antibody. * indicates the DG precursor. 
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Fig. 2. p.Cys667Phe is mostly retained in the ER: Ebna-293 cells transfected with wild-

type DG-GFP and p.Cys667Phe DG-GFP were fixed and used for surface or intracellular 

immunofluorescence analysis. In A) Anti-myc antibody was used to labell -DG whilst 

the intrinsic fluorescent signal of GFP reported -DG localization. Surface staining 

showed the membrane localization of - and -DG in cells expressing wild-type DG. In 

contrast, p.Cys667Phe DG fails to reach the cell surface as indicated by the spare anti-

myc antibody signals and by the reticular signals of GFP inside the cells. Intracellular 

staining, confirmed the membrane localization of wild-type DG and the intracellular 

retention of p.Cys667Phe DG whose reticular distribution was recognized also by the 

anti-myc antibody. Scale bar: 20m. B) Anti Erp57 antibody was used to labell ER in 

permeable transfected cells. While the wild-type DG is localized at the plasma membrane 

and in some large dots in the cytoplasm, the mutated DG is mainly entrapped in the ER. 

Nuclei were counterstained with DAPI. Scale bar: 20m.  
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Fig. 3. Super-resolution 3D Structured Illumination Microscopy images of wild-type 

DG
 

and p.Cys667Phe DG transiently expressed in U2OS cells. The mutant 

accumulates mostly in the ER and reaches rarely the plasma membrane. The top row 

shows a cell expressing wild-type DG-GFP, the bottom row the mutant p.Cys667Phe DG-

GFP. The individual images for DAPI staining of the nucleus, the DG GFP signal and the 

ER-Tracker Red ER and mitochondrial staining are shown as well as an overlay of these 

three channels (blue, green, red respectively). The images represent the maximum 

intensity projection of 4 z slices corresponding to 500nm thickness.  
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Fig. 4. p.Cys667Phe DG is poorly targeted to the plasma membrane. Ebna-293 cells 

were transfected with wild-type , p.Ser652Ala, and p.Cys667Phe DG-GFP and, following 

cell surface biotinylation, membrane proteins were precipitated with NeutrAvidin 

Agarose beads and analysed with Western blot. Nitrocellulose was probed with anti -DG 

43-DAG antibody and with anti-calnexin antibody as negative control. For wild-type DG, 

the band at about 70 kDa (arrow) refers to -DG-GFP that is enriched in the plasma 

membrane proteins fraction (Memb.) compared to the total (TOT). For p.Cys667Phe DG, 

the / DG precursor present in the total cell extracts (TOT) (asterisk) is diminished in 

the plasma membrane proteins fraction (Memb.). The 43kDa band corresponds to the 

endogenous -DG (e). The area of wild-type DG and p.Cys667Phe DG bands were 

measured with ImageJ software and were normalized to endogenous DG. The error bars 

show the Standard Error of Mean (SEM) from four independent experiments (* p<0,05).  
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Fig. 5. Proteasome inhibitor lactacystin increases the poly-ubiquitination of DG. A) 

Western blot analysis of total protein extracts (20g) from Ebna-293-cells transfected 

with wild-type DG-GFP and p.Cys667Phe DG-GFP and treated with (+) or without (-) the 

proteasome inhibitor lactacystin. Anti-43DAG was used to stain -DG and anti-tubulin as 

loading control. Treatment with lactacystin increased the level of wild-type DG as well as 

that of the endogenous DG (e) whilst decreased the level of p.Cys667Phe DG precursor 

(asterisk). The area of wild-type DG and p.Cys667Phe DG bands were measured with 

ImageJ software and were normalized to tubulin. The error bars show the SEM from four 

independent experiments (*p<0,05). B) Total protein extracts from Ebna-293 cells 

transfected with wild-type DG and p.Cys667Phe DG and treated with (+) or without (-) 

lactacystin, were immunoprecipitated with anti-GFP agarose beads and the eluted sample 

analysed by Western blot.  Nitrocellulose was incubated with anti-ubiquitin antibody. In 

lactacystin (+) treated cells an increase of the amount of polyubiquitinated wild-type DG 

and p.Cys667Phe DG was observed compared to absence of lactacystin (-).  
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Fig. 6. Oligomerization states of wild-type β-DG and p.cys667Phe β-DG. (A) 

Reducing and non-reducing SDS-PAGE % of wild-type β-DG and p.Cys667Phe β-DG. 

(B) Analytical gel filtration analysis of wild-type -DG and p.Cys667Phe β-DG, in 20 

mM Tris, 150 mM NaCl, at pH 7.5; fractions corresponding to the main peaks have been 

checked by 15% SDS PAGE (see the insert). (C) Experimental SAXS patterns (the plots 

display the logarithm of the scattering intensity as a function of momentum transfer s = 

[4πsin(θ/2)]/λ (Å-1), where θ is the scattering angle and λ is the X-ray wavelength) of 

wild-type β-DG and p.Cys667Phe β-DG and (D) derived distance distribution functions of 

wild-type β-DG and p.Cys667Phe β-DG. 
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Fig. 7. p.Cys667Phe mutation induces some degree of tertiary structures in β-DG. A) 

Dimensionless Kratky plots derived from SAXS measurements of wild-type β-DG and 

p.cys667Phe β-DG; B) Thermal denaturation assay using DSF of wild-type β-DG and 

p.cys667Phe β-DG with SYPRO© dye. Experiments were performed in triplicate. C) 

Protease digestion of wild-type β-DG and p.cys667Phe β-DG by thermolysin, for 1, 5, 10, 

20, 40 and 60 min. Undigested protein served as the zero time point (0). 

 


