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Abstract 

This paper argues that the dual-process position can be a useful first approximation 

when studying human mental life, but it cannot be the whole truth. Instead, we argue 

that cognition is built on association, in that associative processes provide the 

fundamental building blocks that enable propositional thought. One consequence of 

this position is to suggest that humans are able to learn associatively in a similar 

fashion to a rat or a pigeon, but another is that we must typically suppress the 

expression of basic associative learning in favour of rule-based computation. This 

stance conceptualizes us as capable of symbolic computation, but acknowledges that, 

given certain circumstances, we will learn associatively and, more importantly, be 

seen to do so. We present three types of evidence that support this position: The first 

is data on human Pavlovian conditioning that directly supports this view. The second 

is data taken from task switching experiments that provides convergent evidence for 

at least two modes of processing, one of which is automatic and carried out “in the 

background”. And the last suggests that when the output of propositional processes is 

uncertain, then the influence of associative processes on behaviour can manifest.  
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Preface 

This paper is based on the inaugural Mackintosh Lecture given at the XXth 

Associative Learning Symposium held at Gregrynog, Easter 2016. It stems from 

discussions that Nick Mackintosh and I had during a visit he paid to Exeter a few 

years before during which we agreed to update the McLaren, Green and Mackintosh 

(1994) position on implicit and explicit learning, which was eventually published as 

McLaren, Forrest, McLaren, Jones, Aitken, and Mackintosh (2014). At that time, it 

became clear that we had more to say than could be contained in that update, and that 

in making the case for the multiple (as opposed to single) process view of learning we 

had, in large part, neglected to say exactly what our take on it was. This is an attempt 

to redress that omission by making clearer the nature of the "dual" or multiple process 

theory of learning that Nick and I subscribed to, as well as offering some evidence for 

it. As such, it's sadly missing one author, but I would like to acknowledge the role that 

Nick played in developing these ideas over the course of many years. 

       Ian McLaren 

 

  



 

The debate as to whether human learning, memory and cognition (but 

particularly human learning, which is our focus here) is best considered to be due to a 

single set of propositional processes or rather a combination of these with other, 

associative processes is ongoing (see for example De Houwer, 2009; Mitchell, De 

Houwer and Lovibond, 2009). This paper is an attempt to chart a course through this 

debate, and provide a dual process account that avoids many of the well-founded 

criticisms often leveled at this class of theory by advocates of the single process 

position. At the same time, it does not shy away from placing associative processes at 

the very centre of our dual process account, and postulates that propositional 

processing is built upon associative foundations (for an earlier, and very brief 

statement of this position see the last few pages of McLaren, Forrest, McLaren, Jones, 

Aitken and Mackintosh, 2014). The basic computational process is taken to be 

association, but by implementing this in a complex, controlled, recurrent architecture; 

propositional, or what we shall term cognitive processing, emerges. The argument is 

that we are capable of propositional thought because the more basic, associative 

elements that make up our mind combine in such a fashion as to allow symbolic 

computation. This is the key idea that underpins what follows, and has been at the 

core of the first author’s work over the last thirty years.  

It has always been apparent that the modal dual process account (see for 

example McLaren, Green and Mackintosh, 1994), which implied (even if it did not 

explicitly state) that associative and cognitive processes ran in parallel and 

independently of one another, was only a useful approximation to the true state of 

affairs. Why would two completely independent systems for learning evolve in the 

first place? Surely one would exploit the potential of the other – the view taken here – 



with rule-based processing being constructed from associative computational 

elements. But if this is the case, then it raises a number of questions that need to be 

answered. Why has the assumption of independent processes operating in parallel 

proven so useful? Can we find evidence that challenges this view whilst still 

supporting a dual process account? The rest of this paper will try and answer these 

questions by expanding on the novel interpretation of the dual process position 

offered here. 

We will also try and answer some other questions that have proved 

problematic for this debate over many years. Why is evidence of implicit learning so 

hard to come by (cf. Shanks and St. John, 1994)? Why are “associative” effects often 

shown, on careful analysis, to be rather small, or, in some cases, non-existent? And 

more specifically, why is human Pavlovian conditioning, in a number of experiments, 

demonstrably driven by conscious, cognitive expectancy rather than being a simple 

function of the reinforcement schedule as in the case of the rat (see Lovibond and 

Shanks, 2002 for all of these issues). Surely associative processes should apply 

equally in both cases (rat and human), and inevitably lead to the same outcome? The 

answer to all these questions emerges naturally from our position: That we are 

propositional entities constructed from an associative substrate. If this is the case, and 

our ability for propositional thought is to be of any effective use, then it must be given 

primacy in controlling behavior as a default. This will require either active 

suppression of any associative outputs, or the facilitation of cognitive processing so 

that it largely excludes the possibility of associative processes influencing behavior to 

any marked extent. The net result will be to make it hard to detect evidence for 

associative processes under normal circumstances, and, even when such effects are 

found, they will tend to be small. Furthermore, if propositional processing is the basis 



for control of much of behavior, then conscious expectancy will correlate well with 

that behavior, even when it contradicts what might be expected by an appeal to 

associative learning based on the contingency between stimulus and outcome.  

Before embarking on a more detailed exposition of these points, and 

considering some evidence we have available that bears on them, a few other 

considerations are worth airing. One is why there is such widespread belief that 

associative processes are part of our psychological makeup. The answer to this 

question is apparently very simple; everyone has day-to-day access to evidence that it 

is the case. Or rather, they think they have. We can all call to mind times when we 

have done something without consciously thinking of doing it. From this observation, 

we deduce that conscious, propositional processing is not necessary for control of 

behavior, and so the case for associative processes is made. There are at least two 

things wrong with this logic. One is that this point is about memory, and not 

necessarily about learning. There are many propositional theorists happy to allow that 

retrieval of previously learned episodes or instances can drive behavior without any 

necessity for further propositional analysis at the time of retrieval (e.g. Mitchell, De 

Houwer and Lovibond, 2009). The associative theorist at this point might be tempted 

to say that these instances are associatively retrieved, and so were associatively 

learned, arguing that it makes little sense to postulate associative memory without 

associative learning. This is an internally consistent account of the phenomenon, and 

may even be true, but it does not have to be the case. It is quite possible that learning 

requires conscious awareness and propositional analysis at the time of learning, but 

that the products of that learning do not tap into awareness in the same way, and that 

retrieval is not associative in the sense that it required earlier associative learning. A 



memory that is content addressable as a result of earlier propositional processing is 

entirely viable and would produce a similar result.  

We must also beware of immediately identifying the process of automatization 

with associative processing. This would be one explanation for how things become 

automatized, and there is a great deal of evidence that supports a distinction between 

the controlled and the automatic. Associative processes may themselves be automatic, 

yes, but the transition from the controlled to the automatic does not have to be a 

transition from the propositional to the associative. In fact, taking the view expressed 

here makes it quite unlikely that this would straightforwardly be the case. An 

interpretation of automatization as associative learning "taking over" from 

propositional processing implies two relatively separate and independent systems, 

which is exactly the view that we are arguing against. It would make more sense for 

automatization to be viewed as some more complex combination of the propositional 

and the associative from this standpoint. This is an issue that we will defer until a later 

paper. 

It is clear, then, that there is work to be done to convince the wider 

psychological community of the correctness of the position articulated in this paper. It 

is not as obvious as might be thought that a dual process account of human learning is 

correct, and it is fair to say that the role of associative processes in human mental life 

could be construed as somewhat uncertain at present. How, then, are we to proceed? 

The answer adopted here is to use the theoretical framework given earlier to specify 

circumstances where associative processes might reveal themselves.  We can expect 

to find this evidence when people are in some sense uncertain, and so cannot apply 

the usual level of cognitive control to their responses. Other circumstances where 

cognitive control of responding might be weak are; after a lot of practice leading to 



automatization of the response (but here the interpretation of the effect is an issue), 

where learning is incidental (so that people are not consciously using the relevant 

information to control responding – note that this can be different to being unaware of 

that information), or where the instructions given favour associative processing ( a 

form of mental judo where we pit propositional processes against themselves in order 

to reveal associative influences). In what follows we offer examples of some of these 

(automatization being the exception). The first experiment focuses on human 

Pavlovian conditioning using a bi-conditional discrimination (AX+, AY-, BX-, BY+) 

employing electrodermal conditioning and expectancy and skin conductance response 

(SCR) as dependent measures. This provides evidence that conditioning can be under 

the control of conscious cognitive expectancy in some circumstances, but not in 

others, even in the same participants in the same experiment. The second experiment 

looks at another bi-conditional discrimination, but this time in the context of a task-

switching experiment employing reaction time (RT) and errors as our measures of 

performance. The focus in these experiments is both on learning the stimulus-

>response mappings in the experiment and on how the current trial is affected by the 

preceding trial. Here, we are able to offer evidence for an important feature of this 

account, the notion that whilst associative processes might not be in control of 

behavior at some point, they are automatic in their operation and so associative 

learning continues “in the background” at the same time. Our last experiment 

concerns the Perruchet effect, which many consider to provide some of the best 

evidence for a dual process account of learning. In this experiment the focus is 

entirely on the influence of earlier trials on later ones, and the basic effect is that this 

influence dissociates for measures of expectancy and measures of performance (RTs 

and motor evoked potentials, MEPs).  In our treatment we attempt to carefully 



dissociate components of this effect, and conclude that we can only make sense of our 

data if we are able to appeal to both propositional and associative processes.  

 

Human Pavlovian Conditioning: The Biconditional Discrimination 

Our departure point for this experiment was the work of Peter Lovibond (see 

e.g., Lovibond, 1992; Lovibond and Shanks, 2002; Lovibond, 2004). One of his key 

findings is that Pavlovian conditioning with humans, typically using an electrodermal 

paradigm, produces a CR (conditioned response, typically a change in skin 

conductance) in those who become aware of the contingencies between CS 

(conditioned stimulus, typically a visual stimulus) and US (unconditioned stimulus, in 

this case the shock), but no CR in those who do not possess this knowledge 

(following earlier work by Dawson and Biferno, 1973). This knowledge can be 

assessed by post-experiment interview/questionnaire or by online measurement of 

expectancy of shock on a trial by trial basis – the result is the same. Only those 

participants aware of the contingencies show conditioning, and so he concludes that 

conditioning is mediated by conscious expectancy and is propositionally driven by an 

analysis of the form: “The CS has occurred, it will be followed by a shock, and that’s 

going to be unpleasant”. 

We have observed a similar correspondence between online expectancy and 

CR in this paradigm, in that those participants that showed a CR also expected a 

shock. Our problem has been that we have had very few participants (approximately 

2%, the percentage is a good deal higher in Lovibond’s studies) who were unaware of 

the contingencies, which meant we were unable to meaningfully test whether they 

produced a CR or not. There are a number of possible reasons for this difference 

between our studies and Lovibond’s, but as will become clear, we have no reason to 



doubt Lovibond’s empirical claim. Our first experiment tries to replicate his effect by 

resorting to a somewhat more complex design, a bi-conditional discrimination, which 

others have already shown is difficult for animals (including humans) to learn (Harris, 

Livesey, Gharaei and Westbrook, 2008; Harris and Livesey, 2008). The motivation 

for using this design was that this complexity/difficulty would result in fewer 

participants becoming explicitly aware of the contingencies, and so allow us to test 

whether conscious cognitive expectancy really does predict whether a CR will occur 

or not.  We added an additional refinement to this study. We continued after training 

with a test phase in extinction that involved the introduction of novel stimuli. This 

was done to create uncertainty in the minds of our participants once they realised that 

the experimental conditions had changed. We give only a brief account of the 

experimental procedures here that nevertheless should be sufficient to give a clear 

idea of how our results were obtained. 

Experiment 1 

The experiment had a 2 (CS1/ CS2) x 2 (yellow/ blue background) mixed 

measures design. Each of 72 participants were pseudo-randomly assigned to one of 

the counterbalanced sets of the two conditions and received £5 in exchange for taking 

part. The two CSs used were a grey cylinder and a grey square embedded on either a 

yellow or blue background, both colours chosen to ensure the best possible perceptual 

discrimination. The red background colour presented during test was selected to 

minimise generalisation from these colours (see Figure 1).  

The method and procedure followed that used by McAndrew, Jones, McLaren 

and McLaren (2012). During the experiment, two dependent variables were obtained: 

skin conductance response, measuring participants’ autonomic response, and 

conscious expectancy ratings (on a scale from 1 to 5). Skin conductance was 



measured on one hand using finger electrodes on the third and fourth finger, and 

shocks between 1-20 milliamps lasting 500ms were delivered to the index finger of 

that hand through stainless steel electrodes. Conscious expectancy was measured 

using the other hand with five buttons labelled: 1 “There will definitely not be a 

shock”, 2 “There might not be a shock”, 3 “Not sure either way”, 4 “There may be a 

shock” and 5 “There will definitely be a shock”.  

The training phase was identical (except for counterbalancing) for all 

participants. There were two blocks of trials that contained 3 presentations of each 

compound, making 12 trials per block. On each trial a shape appeared for 5 seconds, 

on a coloured background (yellow/ blue). During stimulus presentation, participants 

rated their expectancy of shock. On CS+ trials, the shock occurred during the last 500 

milliseconds of the compound presentation. The background colour of the next trial 

was on screen during the intertrial interval. In order for skin conductance to return to 

baseline, and to prevent people from predicting the beginning of the next trial, the 

intertrial interval varied randomly between 30, 35 and 40 seconds. To avoid 

habituation to the shocks, participants were recalibrated between the two blocks. The 

test phase comprised a single presentation of each compound and one presentation of 

each shape on the new red background, making six trials in all, with the order 

counterbalanced across participants (see Figure 1). At the end of the experiment, a 

structured interview assessed the participants’ awareness of the experimental 

contingencies, dividing them into “aware” and “unaware” groups. 

Figure 1 about here please. 

Results  

The post-experimental interview found 45 participants who were aware of the 

contingencies and 27 who were not. This classification was arrived at by simply 



asking participants to describe the contingencies between the two stimuli, background 

colour, and shock. If they could describe at least one component of the contingencies 

(e.g., pink square on yellow background leads to shock, brown cylinder does not) they 

were classified as "aware".  Analysis is based on these two groups of participants 

(Aware and Unaware) using awareness as a factor in the analysis1. 

Training: Expectancy Data. Figure 2 gives the mean expectancy	ratings for 

aware and unaware participants averaged over training. These ratings were analysed 

using a 2 (CS1 vs. CS2) x 2 (Yellow vs. Blue background) x 2 (Aware vs. Unaware) 

repeated-measures ANOVA, in which CS1 was the CS+ on the Blue background and 

CS2 the CS+ on the Yellow background. If the bi-conditional discrimination has been 

learned successfully, the CS x Background interaction should be significant, as 

expectancy of a shock to the CS should be dependent on the background it was 

presented in. No main effects were significant, but the three-way interaction between 

CS, Background and Awareness was significant, F (1,68) =83.15, p < .001, η2= .55, 

showing that expectancy ratings depended on the combination of these three factors. 

We investigated this three-way interaction by running a 2 (CS1/CS2) x 2 

(yellow/blue) repeated-measures ANOVA separately for Aware and Unaware groups. 

 

Figure 2 about here please. 

A significant CS x Background interaction was observed in Aware 

participants, F (1,44) =250.67, p < .001, η2= .85, who rated CS1 (the CS+ for the 

Yellow background) as being more predictive of a shock on the yellow background, 

whereas on the blue background, CS2 (now the CS+) was the one rated as more 

predictive of a shock, confirming that aware participants had successfully solved the 

																																																								
1	We	have	also	used	the	expectancy	ratings	during	training	to	make	this	classification	(our	thanks	
to	David	Shanks	for	this	suggestion).	It	does	not	materially	change	the	results	of	this	analysis.	



biconditional during training. The average of these two effects can be seen in Figure 2 

for the Aware participants (left side), and its reliability corresponds to that of the 

interaction already reported. The Unaware participants, however, showed little 

evidence of an interaction, F(1,26) =1.94, p = n.s. with their expectancies hovering 

around 3 (not sure), reflecting their inability to report the experimental contingencies 

(see Figure 2, right side). 

Training: Skin Conductance Data. During training, the raw skin 

conductance measure was obtained by subtracting the average SCR during the 

5000ms before the onset of the CS (“pre CS”) from the average SCR during the first 

4500ms of the CS presentation. To control for individual variability in the baseline 

response, all SCR data was scaled logarithmically (see McAndrew at al., 2012 for 

details). The log transformed data was analysed using a repeated-measures ANOVA 

with the same factors as the expectancy analysis.  

Figure 3 about here please. 

 The three-way interaction between CS, Background and Awareness was once 

again significant, F (1,68) =11.27, p=.0013, η2= 0.14, so a separate, repeated-

measures ANOVA with Background and CS as factors was run for both Aware and 

Unaware participants. The significant CS x Background interaction in Aware 

participants, F (1,44) =18.84, p<.001, η2= 0.30, indicates that participants had 

conditioned well and solved the bi-conditional (see left side of Figure 3). Skin 

conductance changes were greater for CS1 than CS2 on the yellow background, and 

responses to CS2 were stronger than to CS1 on the blue background. The 

nonsignificant CS x Background interaction in unaware participants, (F<1) provides 

no evidence for conditioning in this subset of participants (see right-hand side of 



Figure 3). Clearly these data parallel the expectancy data, and strongly suggest that 

only those aware of the contingencies showed significant differential conditioning. 

 Test: Expectancy Data. Expectancy ratings (see Figure 4, top panel) taken 

during the test phase were analysed using a 2(CS1/CS2) x 2(yellow/blue) x 

2(aware/unaware) repeated-measures ANOVA. The data obtained for the CSs 

presented on the red background was omitted from analyses as it did not generate any 

differential effects on either measure, and this enabled us to use the same approach 

taken in analyzing the training data. As expected, the three-way interaction between 

CS, Background and Awareness was significant, F (1,68) = 16.28, p < .001, η2= 0.19. 

Separate 2(CS1/CS2) x 2(yellow/blue) repeated-measure ANOVA analyses for 

Aware and Unaware participants revealed a significant CS x Background interaction 

in aware participants, F (1,44) = 54.26, p < .001, η2= 0.56, indicating knowledge of 

the bi-conditional. The same analysis for unaware participants was non-significant 

confirming that they still did not know the experimental contingencies. 

 Test: Skin Conductance Data. The log transformed skin conductance 

changes (see Figure 4, bottom panel) used for the analysis of test trials were the 

difference between the “post US” and the “pre CS” period. The post US period was 

defined as the 5 seconds after CS termination (i.e. just after the shock would have 

been delivered in training). This was not used during training because any SCR due to 

CS presentation would have been confounded with the direct effects of shock, but we 

have previously found this measure to be more sensitive when testing in extinction.  

 A repeated-measures ANOVA was run with CS, Background and Awareness 

as factors. This time there was a significant CS x background interaction, F (1,68) = 

4.69, p = .034, η2= 0.06, which accurately reflected the bi-conditional training during 

test, but the interaction including awareness did not approach significance. We can 



perform a Bayesian analysis of this null effect by using the effect in the Aware group 

as the prior for the expected interaction.  The logic of using the effect in the Aware 

group as the prior is that, in training, the difference in effect between the two groups 

(the basis of the interaction) could be attributed to the effect in this group, as there 

was none in the unaware group. This Bayesian analysis (see Dienes, 2011) gave a 

Bayes factor of 0.27, less than 0.3, and so provides us with good evidence for the null, 

suggesting that the absence of an interaction here is real. We then analysed the two 

groups separately to assess the strength of the evidence that either or both showed 

evidence of having been trained on the bi-conditional. Both produced marginally 

significant results two-tailed: For the Aware participants, F (1,44) = 4.06, p = .054, 

and for the Unaware participants, F (1,26) = 3.62, p = .068. Given that a one-tailed 

test would be justified in these circumstances by the significant overall interaction, 

and that both analyses would be significant by this criterion, this is reasonable 

evidence that both groups had translated the bi-conditional training into test 

performance. It's worth noting that, if anything, the numerically larger effect is that of 

the Unaware group, for whom 18 out of the 27 participants had a stronger response to 

the CS+ than the CS- averaged across backgrounds.  

Figure 4 about here please. 

Discussion 

 An interesting picture emerges from our analysis of this experiment. During 

training, awareness of the contingencies governs whether participants show 

differential expectancies or skin conductance changes indicating that they have solved 

the bi-conditional discrimination. If they are aware of the contingencies, then they 

show an effect, if they are unaware of them, they do not. This is what we would 

expect if cognitive expectancy was driving the SCR measure. An explanation of these 



data that simply pointed to expectancy of shock as causing the autonomic response 

accompanying that combination of stimulus and background covers the facts. In fact, 

it covers the facts rather better than simply explaining the pattern of responding in the 

Aware participants, it can also provide an explanation of the data provided by the 

Unaware participants. If we look at their expectancy ratings, we see that they give a 

middling score around 3, which is distinctly higher than that to CS- in the Aware 

group (but lower than that group's rating for CS+). If we take that as indicating that 

they expect to get shocked about half the time (which was the case) but do not know 

when the shock will occur (i.e. they believe that it is stochastic), then we can explain 

this rating by appealing to this belief, and also explain their results on the skin 

conductance measure (see Figure 3). This last is also distinctly higher than that to CS- 

in the Aware group, which suggests that they have learned to expect shocks to some 

extent, but are simply unable to predict when they will occur. In short, we can argue 

that one group (Aware) know when shocks will be delivered, and another group 

(Unaware) know that shocks will be delivered, but not when. Both are equally 

frightened of the shocks, and so the Unaware group simply give the same reaction to 

CS+ and CS-, a reaction similar to that to CS+ for the Aware group. The picture here, 

then, is one of control of autonomic responding by conscious cognitive expectancy in 

both groups, an account entirely congruent with a single, propositional system 

governing learning and performance. 

 A different picture emerges on test, and it is here that the single process, 

propositional account of learning encounters difficulty.  If we agree that expectancy 

was driving skin conductance changes in training, then what should we expect on 

test? Given the expectancy ratings taken at test (which are very similar to those 

obtained during training), the answer must be that we would expect very similar 



results to those observed in training, but actually the pattern is quite different. Instead 

of the significant difference in differential expectancy being accompanied by a similar 

pattern in the autonomic measure, we now have a decoupling of these two measures, 

with skin conductance changes in both groups being broadly similar irrespective of 

the strong differences in expectancy.  

 This is quite an intractable result for a single process, propositional account to 

accommodate. We have already noted that, on this account, given the difference in 

differential expectancy between Aware and Unaware groups, we would expect this to 

show up in SCR. The crucial result here is not so much that there is evidence of 

conditioning in the Unaware participants, as this could be explained by appealing to 

learning late on during training that only shows up on test. But on a single process 

account this would imply that expectancy, taken during test, should also show 

differential effects in this group (and typically larger ones than for this autonomic 

measure).  It’s the decoupling of the two measures at test when they clearly were 

correlated during training that is problematic, and would not obviously be predicted 

by a propositional account. 

 A dual process account of the type envisioned here, however, has no difficulty 

with these results. It is happy to concede that performance during training was under 

the control of cognitive expectancy, but acknowledges that the uncertainty induced by 

the introduction of a novel background and the altered contingencies at test changes 

this. Instead of propositional processes dominating performance, the uncertainty 

means that they relinquish control, and, as there is not enough time during test for a 

new set of propositions to be generated to control behavior, the associative learning 

that has taken place “in the background” during training can now manifest. As the 

contingencies were the same for Aware and Unaware participants, the extent of the 



associative learning is the same for both groups, and so the effects on skin 

conductance are the same. Cognitive expectancy, however, is not driven by 

associative learning but by beliefs, and so defaults to roughly the values arrived at 

during training (again because there is not sufficient time for them to alter in response 

to changing circumstances). 

 For this account to be viable at least two things require further examination. 

One is the role of uncertainty in allowing the expression of associative learning in 

controlling behavior, and we will return to this point when considering our last 

experiment. The other is the notion of “learning in the background” as applied to 

associative processes, which simply instantiates the idea that such learning is 

automatic and will occur as a result of exposure to the relevant contingencies. On our 

account, it is the expression of this learning that is by no means guaranteed, and is in 

fact unlikely if propositional processing is in control of behavior (see, e.g. Jones and 

McLaren, 2009 for a similar argument). Our case would be considerably strengthened 

if we could demonstrate that associative learning does occur “in the background”, and 

this is the issue we examine next. 

 

Task Switching: The Bi-conditional Revisited 

To tackle this issue, we now consider a quite different paradigm to 

electrodermal conditioning that nevertheless uses the same bi-conditional design. This 

is cued task switching, in which a cue is given which signals the type of decision to be 

made to a subsequent stimulus. A typical procedure for this task involves telling the 

participant the rules for the task and what cues will be available to signal which set of 

rules apply. The participant is then asked to respond as rapidly and as accurately as 

possible once the stimulus appears, making this a standard reaction time task of the 



type often used by experimental psychologists. In the paradigm we will consider, two 

types of decision have to be made to the stimuli, which are one of the four digits, 1, 2, 

7 or 8. The first task, cued by either a blue or green circle, is to decide whether the 

stimulus (the digit) is odd or even. The second task, cued by either a yellow or red 

circle, is to decide if the stimulus is higher or lower than five. These decisions 

demand binary responses, which involve pressing either a left (for “odd” and “lower”) 

or right (for “even” or “higher”) key. The experiment proceeds by presenting cues, 

then stimuli requiring a response, then giving feedback for that response before 

moving on to the next trial. The decision rule cued sometimes changes from one trial 

to the next, a “switch”, or stays the same, which is designated a “repeat” trial. 

Typically, in these experiments, performance is better on repeat rather than switch 

trials; something taken to indicate the need to reconfigure task set when switching 

from one decision rule to the other. This difference is known as the "switch cost", and 

is one of the key measures of performance in this type of experiment. 

The effect cueing has on the response required depends on the stimulus 

presented on that trial. If the stimulus in our example is either 1 or 8 (known as 

“congruent” stimuli) then the cue is, in effect, irrelevant because a "1" is both odd and 

lower than 5 requiring a left response for either task; and 8 is both even and higher 

than 5 requiring a right response in all cases. But if the stimulus is either 4 or 7 

(“incongruent” stimuli, see Figure 5) then the cue does determine the response to be 

made on that trial to that stimulus, and the response (right or left) will differ according 

to the task cued. The difference in performance to the congruent and incongruent 

stimuli is known as the "congruency effect" and is defined as mean RT or errors for 

the incongruent stimuli minus the same for the congruent stimuli. It's typically 

positive, indicating that performance to the incongruent stimuli is somewhat poorer 



than to the congruent stimuli, a result that is often also taken to indicate persistence of 

task set from one trial to another. This will not affect performance to congruent 

stimuli (because the response required is not affected by task) but will cause 

interference on some occasions for the incongruent stimuli (when the response 

required to the current stimulus by the task in play on the previous trial is different to 

that required by the currently cued task). 

Figure 5 about here please. 

But, as can be seen from inspection of Figure 5 (left side), there is another way 

of construing this task that reveals it to be a combination of the bi-conditional 

discrimination already considered in our first experiment, plus a simple component 

discrimination, if we take the cue as playing the role of the context (i.e. background 

colour in our earlier Pavlovian conditioning experiment), and the stimulus (digit) as 

the CS. The congruent stimuli simply act as CSs paired with invariant responses, this 

is the simple discrimination. The incongruent stimuli, in combination with the cues, 

amount to a bi-conditional, because the response required to a stimulus varies 

according to the cue that it is paired with.  This realization led to the following idea, 

exploited in Forrest, Monsell and McLaren (2014). Giving our participants the rules 

(the Task condition) made the paradigm a conventional task switching experiment, 

but, if instead we simply gave them the mappings from cue + stimulus to response, or 

even required them to learn these mappings by trial and error (our cue + stimulus -> 

response or CSR condition), then this was now much more akin to an associative 

learning experiment. Forrest et al (2014) did exactly this, and found that the pattern of 

performance in the two conditions was quite different, with those in the CSR 

condition showing a significantly larger effect of stimulus congruence than those in 

the Task condition, i.e. performance to congruent stimuli (the simple discrimination) 



was much better than to incongruent stimuli (the bi-conditional), and this difference 

was significantly larger than that observed in the Task condition. There was the 

converse effect for switch cost (mean performance on switch trials - mean 

performance on repeat trials), however, with this measure being considerably (and 

significantly) higher in the Task condition than in the cue + stimulus -> response 

condition where the mappings had to be learned in the absence of any overarching 

rule. Forrest et al (2014) concluded that there was good evidence for two different 

modes of processing being used by participants when doing what was effectively the 

same task, with the performance of the group learning the individual mappings in line 

with that produced by associative models of learning. 

 

Experiment 2 

We used this paradigm to see if participants were able to change from one mode of 

processing to the other when instructed to do so (to anticipate - they were), and if 

while explicitly using one mode they were able to learn about the task in a similar 

fashion to participants explicitly engaging with the other mode. The design is shown 

in Table 1.  

Table 1 about here please. 

In essence, participants would start the experiment using either CSR or Task 

instructions, and then halfway through the experiment they would either be asked to 

change to the other set of instructions (half our participants) or to stick with their 

current instructions (the other half). We used the same procedures as in Forrest et al 

(2014), and the cues, stimuli and responses already discussed in our introduction to 

this experiment. On each trial, a cue colour (one of the two assigned for that task) 

would be presented either 100 or 1200 msec before the stimulus digit appeared. Once 



that had happened, participants would then have to respond using their left or right 

index finger to press a corresponding ("z" or "/") key. The response to stimulus 

interval was kept constant at 1700 msec by controlling the ITI appropriately.  There 

were 20 blocks of 49 trials each, in which the probability of a switch from one task to 

the other was one-third so that people did not tend to anticipate the switch. Each of 

the four groups had 16 participants in it (after exclusions for not following 

instructions, this was checked by means of a post-experiment structured interview). 

The results for the congruency measure are shown in Figure 6 as this is a measure that 

directly captures the difference between performance on the simple discrimination 

and the bi-conditional. 

Results and Discussion 

Figure 6 about here please. 

The two groups that did not experience a change in instructions over the 

course of the experiment showed different patterns of performance. Task-Task had 

the Task instructions throughout, and showed a relatively stable and small congruency 

effect as we would expect based on our previous studies (Forest et al, 2014). CSR-

CSR, however, produced a much larger congruency effect (again, as expected) and 

showed a marked decline from the first half of training to the second half. We can 

interpret this in terms of them more easily learning the simple discriminations 

involving the congruent stimuli (which would produce a large initial congruency 

effect as performance on the incongruent stimuli would be relatively poor at this 

stage) and then acquiring the bi-conditional discrimination involving the incongruent 

stimuli over the course of training, thus reducing the difference in performance 

between them and the congruent stimuli. Group CSR-Task show a change from a 

relatively large congruency effect under CSR instructions to a relatively small one 



under Task instructions as might be expected from the patterns of performance in our 

two "pure" groups, but the group of real interest here is Task-CSR. This group shifts 

from a low congruency effect under Task instructions to a higher one when learning 

the individual mappings; but the key issue is how high? Do they exhibit the kind of 

effect that might be expected if the mappings that now have to be learned are entirely 

novel to them, similar to that displayed by the CSR-CSR group in the first half of 

training, or do they produce the same magnitude of effect as the CSR-CSR group in 

the second half of training after they have made progress in learning the bi-

conditional? The answer is that they do the latter; their congruency effect in the 

second half of training is not significantly different from CSR-CSR in the second half 

of training, but is significantly different from the first half value for this group, F 

(1,30) =4.41, p<0.025, d=0.595. This implies that they are roughly as good at using 

this instruction set as participants that have practiced it for ten blocks. Can we say, 

then, that they have been able to learn the CSR mappings “in the background” while 

using the Task instructions? 

We think the answer to this question is yes, and that the strongest evidence for 

this position comes from a novel use of the state-trace methodology introduced by 

Bamber (1979) and further developed by ourselves (Yeates, Wills, Jones, and 

McLaren, 2015). Figure 7 plots the median RT performance (we get similar results for 

errors) on each block for the Incongruent stimuli that form the biconditional 

discrimination against the median performance for the same block on the Congruent 

stimuli that comprise the simple discrimination. We do this separately for each group, 

starting with the 2nd block (the 1st and 11th are discarded as practice blocks during 

which instructions are provided), and then we connect up the points for each group in 

block order using arrows to show the transition from one block to another. This gives 



us detailed information about performance on congruent and incongruent stimuli on a 

block by block basis for each group that is visualized as a graph in Figure 7. We call 

these state-trace trajectories, and they reveal some interesting characteristics of 

performance on this task under the two instructional sets. 

The first is that the two sets of instructions produce different functions that lie 

in different parts of the congruency space. Performance under Task instructions (open 

symbols) lies on one roughly linear function (the lower one on each graph), and that 

under CSR instructions (filled symbols) on another (the upper function on each 

graph). This supports the idea that our instructional manipulation leads to the use of 

different sets of processes to perform the task (cf. Forrest et al, 2014). It's not hard to 

see how this would come about. Taking the Task instructions case first, performance 

in these groups is generally better (they've been told the rules and so know how to do 

the task) which means RTs are generally lower. The CSR groups have to learn the 

mappings, and this takes time and leads to slower RTs (and more errors). As the 

experiment progresses all the groups benefit from practice reducing RTs on both sets 

of stimuli, but the CSR groups benefit more (they have more to learn) and so show 

generally steeper gradients. 

Figure 7 about here please. 

 The really striking thing about this plot, however, is how it captures the 

transition from Task to CSR, and from CSR to Task instructions. The former (left 

panel) progresses until roughly halfway along the Task function while Task 

instructions are in force, then cuts across to a similar point (i.e. halfway) on the CSR 

function when the instructions change to learning the individual mappings. The latter 

(right panel) progresses along the CSR function, but then quite clearly shifts to the 

start of the Task function at the beginning of the second half of the experiment when 



the instructions change. This graphically illustrates “learning in the background” for 

participants trained under Task conditions then switched to CSR instructions, and 

strongly implies that no equivalent occurs when trained under CSR conditions and 

then switched to Task instructions. It makes sense that performance using a rule in the 

CSR-Task group during the second half of the experiment would not benefit from 

practice under CSR instructions when they were not using that rule. This is all that is 

needed to explain why they go back to the "start" of the Task function on our plot 

when their instructions change from CSR to Task. But the only plausible way to 

explain why this does not happen for the Task-CSR group, and that instead they 

transition to the point on the CSR function that the CSR-CSR group have arrived at 

when beginning the second half of the experiment, is to argue that they must have 

benefitted from practice under Task conditions. That is, that this practice, while using 

rules to make decisions about responses, nevertheless led to some learning of the 

individual mappings required under CSR instructions. Our conclusion is that if we 

agree with Forrest et al (2014) that performance under CSR instructions is mediated 

by associative processes, then there is good evidence here for their automatic 

operation even while engaged in rule use, resulting in learning “in the background” 

that manifests when circumstances permit, but no evidence for rule learning whilst 

engaged in associative processing. Once instructional set permits, the latent learning 

of the individual mappings can manifest in the control of performance after a switch 

from Task to CSR conditions. 

 Which brings us to the final issue to be addressed in this paper - when do 

circumstances permit human behavior to be influenced by associative processing? We 

will focus on one of the answers that we have offered – that it is when the outcome 

predicted by propositional processing is in some sense uncertain that this is likely to 



happen. This is not the only set of circumstances that afford control of behavior by 

associative processes, but as we have already noted, it does seem to capture some 

aspects of the results in our first experiment. Our next experiment looks at this in the 

context of one of the key sources of evidence for associative processing in humans; 

the Perruchet effect. 

 

The Perruchet Effect: RT, MEPs and Expectancy 

 The Perruchet effect (Perruchet, 1985) is one of the most straightforward and 

robust pieces of evidence for a dual process view of learning in humans. A stimulus is 

followed by an unpredictable (50:50) occurrence of an outcome, and expectancy for 

that outcome and another response measure dependent on the outcome are measured 

online. The essence of the effect is that whilst expectancy of the outcome tends to 

decrease over a run of outcome occurrences (the so-called “gambler’s fallacy” result, 

Burns and Corpus, 2004), the other response is facilitated, making it unlikely that one 

is driving the other. In Perruchet’s original experiments the paradigm was eyeblink 

conditioning to a tone (the CS) that was followed by a puff of air (the US) 50% of the 

time. The other response (the CR) was blinking, and the expectancy measure a rating 

taken during the trial. He found that as expectancy of an airpuff decreased over runs 

of reinforced trials, the blink CR increased in both vigour and frequency in his 

participants. 

 This phenomenon can also be demonstrated using the electrodermal 

conditioning paradigm discussed earlier (see McAndrew et al, 2012). Here runs of 

trials where the CS (a coloured shape) is followed by the US (shock) lead to a 

decrease in the expectancy of shock but an increase in skin conductance response to 

the CS. Conversely, when runs of the CS followed by no US occur, expectancy of 



shock goes up but the CR diminishes.  McAndrew et al introduced a slightly different 

method of analysis for their data that considered the mean CR on negative runs (trials 

which had been immediately preceded by at least one extinction trial, i.e. -1, -2, -3) 

vs. that on positive runs (trials which had been immediately preceded by one or more 

reinforced trials, i.e. +1, +2, +3). They called this the Extinction / Excitation factor, 

and constructed a complementary factor of Level which averaged over this factor to 

measure the effect of run length within either positive or negative runs.  The effect of 

the Extinction / Excitation factor was non-significant in their study, but there was an 

increase in CR with Level (and a corresponding decrease in expectancy) where Level 

1 corresponded to the mean for runs of +1 and –3, Level 2 to that for +2 and –2, and 

Level 3 to that for +3 and -1. It was this within-run type of effect that was taken as 

evidence of the Perruchet effect, and Perruchet (2015) has also used this type of 

analysis in a recent review. We will use this effect over Level (with Level 1 

corresponding to the mean of performance to the +1 run length and the largest 

negative run length for which we have useable data, and maximum Level 

corresponding to the mean of the largest positive run length and the -1 run) as our 

index of what we will call the “true” Perruchet effect in what follows. 

There can be an effect of Extinction / Excitation (i.e. negative vs. positive 

runs), however, which is typically included in the standard run length analysis of the 

Perruchet effect. This would now seem to be a quite separate component of the 

overall effect from that attributable to Level. Weidemann McAndrew, Livesey and 

McLaren (2016) have offered an analysis of eyeblink conditioning in humans that 

makes just this point, showing that there is a strong effect of Extinction / Excitation 

that is relatively unaffected by variations in the stimulus used as the CS.  They used a 

procedure whereby one stimulus was used as CS+, and the other as CS- to produce 



the standard 50:50 reinforcement sequence across all trials used for the Perruchet 

effect. The similarity of CS+ to CS- did not greatly affect the Extinction / Excitation 

effect which was quite large in all their experiments, but an increase in CR with Level 

was only detectable if the CS+ and CS- were very similar to one another (i.e. they 

were effectively acting as one CS as in the conventional Perruchet effect), and not if 

they were quite dissimilar (thus promoting differential conditioning).  

Perhaps the best evidence for the Extinction / Excitation component of the 

Perruchet effect, however, comes from Verbruggen, McAndrew, Weidemann, Stevens 

and McLaren (2016). The procedure used was very similar to that shown in Figure 8. 

In this experiment the runs of reinforcement and non-reinforcement were completely 

predictable. For five trials a brown cylinder was followed by the requirement to press 

a response key (Go), and then five trials were given in which no response was needed. 

This cycle repeated throughout the experiment, and they measured reaction times, 

expectancy of having to press the key, and MEPs (Motor Evoked Potentials measured 

at the finger in response to sub-threshold stimulation of motor cortex) for the hand 

used to make the response. They found that participant’s expectancy of pressing the 

key (which was entirely veridical as the runs were completely predictable) rather 

surprisingly did not predict the MEPs on at least some of the trials. In particular, the 

first Go trial of a run (which corresponds to run length -5) had a much lower MEP 

than the other Go trials (which are run lengths +1, +2, +3 and +4) even though it's 

expectancy rating was similar to theirs. In fact, The MEP for the first Go trial was 

more akin to that for the NoGo trials corresponding to the other negative run lengths 

(-1, -2, -3 and -4) which had much lower expectancy ratings, whereas the first NoGo 

trial of a run (run length +5) had a much higher MEP than the other NoGo trials, and 

was instead more like that of the other Go trials (which corresponded to run lengths 



+1, +2, +3 and +4, see Figure 10, leftmost lower panel, for a summary of their results 

that facilitates comparison to those of the experiment reported later in this section). 

Another way of putting this is to say that the plot of MEP by run length quite 

naturally captured the form of the data, whilst the plot by sequence position (i.e. 1st, 

2nd, 3rd etc. Go trial or 1st, 2nd, 3rd etc. NoGo trial) did not do this for MEPs, but did 

quite naturally accommodate variations in expectancy. 

How are we to explain this? Obviously expectancy is not driving the MEPs in 

this experiment, even though conscious controlled processes are driving overt 

responding (this must be the case given that participants made very few mistakes). 

Our analysis is that the MEPs reflect processes other than those due to cognitive 

control, and instead index more automatic effects. Once we've taken this position, the 

most straightforward explanation for these results is simply that if a response has been 

given on one trial, then this automatically facilitates responding on the next trial. 

Thus, the MEP is boosted for positive runs, and this applies even to the first NoGo 

trial (which is preceded by a Go trial), but not to the first Go trial (which follows a 

NoGo trial). The interpretation that naturally follows from this analysis is that the 

Extinction / Excitation effect is actually a priming effect, whereby the CR (pressing a 

key in this case, blinking in the eyeblink paradigm) is facilitated by repetition. It is 

only in the case of electrodermal conditioning, where rapid habituation to the US 

occurs, and so there may be no discernible priming of the skin conductance response, 

that we have been unable to demonstrate this effect. 

Here, we report a Perruchet sequence reaction time experiment (Perruchet, 

Cleeremans and Destrebecqz, 2006; Destrebecqz, Perruchet, Cleeremans, Laureys, 

Maquet and Peigneux, 2010; McAndrew, Yeates, Verbruggen and McLaren, 2013) 

using the same procedure as in Verbruggen et al (2016). The idea was to see if the 



response priming that was found in that experiment also appeared under these 

conditions, and if there was a component of the usual run length effect corresponding 

to response priming, and another corresponding to the Level effect (i.e. the "true" 

Perruchet effect). It also gave us the opportunity to add MEPs to our usual dependent 

variables of RT and Expectancy. If MEPs more directly assay automatic (potentially 

associative) effects, this would help us interpret the results for the other response 

measures. 

Experiment 3 

Our experiment had 16 participants with a mean age of 20 years. We were 

confident (based on our previous work) that we could obtain a Perruchet effect on the 

RT and expectancy measures with this N using these procedures, but it remained to be 

seen if we would have sufficient power to get reliable MEP effects.  We in part 

addressed this issue by focusing on data for runs up to ±3, as this ensured more 

observations at each run length, improving the reliability of the MEP data. All 

participants were right handed, screened for any relevant health issues, and paid £15. 

The procedure used is shown in Figure 8. Participants were told that a brown cylinder 

would be presented as a warning cue, and then they had to make a response with their 

left hand if the outcome that followed was “peanut butter” but not if it was “brown 

sugar”. During the presentation of the brown cylinder (the CS) they were asked to rate 

their expectancy of the outcome being “brown sugar” from 1 (very low) to 9 (very 

high) using their right hand to press one of nine buttons.  

Figure 8 about here please 

MEPs for the left hand were recorded in response to a TMS pulse that was 

delivered on each trial either 2.5s into the ITI (Pulse 1), or immediately after an 

expectancy rating during CS presentation (Pulse 2), as in Verbruggen et al (2016). 



The first pulse is intended to capture the effects of responding (or not) on the previous 

trial during the ITI while the CS is not present. The second pulse can then be used to 

assay the impact of CS presentation on MEPs by comparison with the first pulse. The 

delivery of a pulse during the CS (Pulse 2) was contingent on the participant making a 

rating, which could be at any point during the five second CS period; on average this 

occurred at 1.28 seconds after CS onset. However, if a rating was not made (0.97% of 

trials) then a pulse was delivered as the CS terminated in order to ensure a pulse was 

delivered on each trial. Testing took place over 12 blocks with an average of 29 trials 

per block, with an enforced break between each block to allow for readjustment of the 

coil and for the participant to rest. There were four practice trials prior to the start of 

the experiment, 2 Go trials and 2 NoGo trials presented in a randomised order, no 

stimulation was given during these trials. 

Results and Discussion 

We recorded RTs, expectancy ratings for the outcome that did not require a response 

(1=lowest, 9=highest), and MEPs on each trial. We focused attention on the outcome 

not requiring a response because McAndrew et al (2012) had shown that this was an 

effective procedure for obtaining the RT version of the Perruchet effect. Raw 

expectancy ratings were transformed into 10 - rating (we have shown in previous 

experiments that this gives a measure of expectancy for the outcome that did require a 

response). Thus a score of 1 now indicates that participants definitely did not expect 

to make a response (i.e. a NoGo trial), and one of 9 that they definitely did expect to 

respond (i.e. a Go trial). Figure 9 shows the results for RT and expectancy on Go 

trials up to run lengths of ±4 (there are no +5 data for Go trials given the maximum 

run was 5 in a row). It also shows the effects across Level and Extinction / Excitation 



computed on the -3 to +3 runs. This was done because of the relatively few data 

points at the ±4 run lengths, especially when split by pulse for the MEP analysis.  

 RT and Expectancy Analysis. We can see the typical Perruchet effect in the 

run length plot shown in the left panels of the figure. As run length changes from -4 to 

+4, reaction time decreases (participants speed up) at the same time as expectancy of 

having to make a response declines. This general pattern of effect manifests in both 

Level (middle panels) and Extinction/Excitation (right panels). Analysed across runs 

of +3 to -3 (for consistency with other analyses), there was a significant decreasing 

linear trend across run type, F (1.15) = 14.81, MSE = 0.220, p=.002, η2
p = .497. There 

was also a decreasing linear trend across Level, F (1,15) = 12.01, MSE = 0.045, p = 

.003, η2
p = .445, and a significant effect of the Extinction / Excitation factor, as 

overall RTs (for Go trials) were faster after Go trials (630ms) than NoGo trials 

(679ms), F (1,15) = 12.95, MSE = 0.175, p = .003, η2
p = .463. The run length analysis 

for Expectancy was not significant (no doubt due to the increase from -1 to +1), but 

the analysis of the decreasing linear trend over Level was, F (1,15) = 15.62, MSE = 

26.215, p = .001, η2
p = .510. The effect of Extinction / Excitation on Expectancy did 

not approach significance (F<1). We included Pulse type as a factor in our analysis, 

and found that stimulation at the different time points in a trial did not affect RT or 

expectancy ratings. 

 MEP Analysis. Figure 10 (top panels) gives our MEP results analysed in the 

same way (i.e. by run length, Level and Extinction / Excitation) as the RT and 

expectancy data, and also includes the data from Verbruggen et al (2016) analysed in 

similar fashion for comparison (lower panels, though note that in this case Levels 1 to 

5 can be reported as each run length has the same amount of data contributing to it). 

The EMG (electromyographic) signal was recorded on each trial in the 10 – 90 ms 



interval after stimulation. The amplitude was defined as the difference between the 

maximum and minimum EMG signal in this 80ms interval. Trials on which the coil 

had drifted more than 7mm away from the target hotspot (6.75% of trials) were 

excluded from analysis to ensure that TMS stimulation remained focused in the motor 

hotspot. 

Following the approach taken by Verbruggen et al (2016), we analysed each 

pulse type separately. There was a significant increasing linear trend over run length 

for Pulse 1, F (1,15) = 7.23, MSE = 4536249, p = .017, η2
p = .325. No effect of Level 

was identified (F < 1) for the Pulse 1 data, but a main effect of Extinction / Excitation 

was present (see Negative vs. Positive Runs), F (1,15) = 8.66, MSE = 5756080, p = 

.010, η2
p = .366. The Pulse 2 data also showed a significant, increasing linear trend 

with run length, F (1,15) = 8.45, MSE = 2536951, p = .011, η2
p = .360, but this time a 

marginally significant increasing linear trend across Level was found, F (1,15) = 3.79, 

MSE = 486241, p = .071, η2
p = .202, and a significant effect of Extinction / Excitation 

was also present, F (1,15) = 8.96, MSE = 2056051, p = .009, η2
p = .374.  

 There can be little doubt that we have found some of the effects observed by 

Verbruggen et al (2016) in our data, both in our RT and our MEP results for both 

Pulse types, even though the function relating run length to expectancy is quite 

different. One commonality is that the MEPs for Pulse 2 are significantly lower than 

those to Pulse 1 in both experiments, and we follow Verbruggen et al (2016) in 

attributing this to the development of inhibition around the time of Pulse 2 to prevent 

premature responding (see also Duque and Ivry, 2009; Duque, Lew, Mazzocchio, 

Olivier and Ivry, 2010). Another commonality is that in both measures performance 

was facilitated (lower RT, higher MEP) on trials that followed Go trials relative to 

those after NoGo trials, i.e. for positive runs compared to negative runs. The lack of 



any effect on expectancy supports the claim that it is a form of response priming that 

is manifesting here, and that the facilitation is not the product of conscious 

preparation. The significant effect for the Pulse 1 data supports this claim, and cannot 

easily be explained by reference to CS-US associations either. Taken together with 

Verbruggen et al (2016) and Weidemann et al (2016) the evidence is now very strong 

for this component of the Perruchet effect.  

 But we may have more than this. When we look at the effects over Level, we 

find the "true" Perruchet pattern here for some (but not all) of our measures. RT 

significantly declines over Level and so does expectancy – so as people come to 

expect to not have to respond, responses actually speed up. And this RT and 

expectancy pattern is accompanied by an increase in MEP across Level for Pulse 2, 

but not for Pulse 1. Admittedly, we do not have a significant interaction in this 

experiment to support our claim that the effect for Pulse 2 is different to that for Pulse 

1 (F(1,15) = 2.08, p = ns), but, given that the result for Pulse 2 in Verbruggen et al 

(2016) is a numerical decline across Level, the marginally significant increasing 

linear trend in our data is perhaps more impressive than it might seem at first glance. 

There is evidence in this experiment (under conditions of uncertainty) for a different 

pattern for Pulse 2 when contrasted to that observed in Verbruggen et al (2016) under 

conditions of complete predictability, and the trends in these two experiments are 

significantly different if we allow ourselves to make this comparison, F(1,15) = 4.57, 

p = .04. It would seem that the rather strong response priming effect is able to 

manifest under both sets of conditions for Pulse 1, but that it is only when outcomes 

are uncertain that we see RT varying across level in the same fashion as MEP, and 

then only for Pulse 2 (and relatively weakly). Note that if MEP were to directly 

translate into RT then we would expect there to be an increase in RT across Level in 



Verbruggen et al (and apart from the first Go trial being slow, no effect on RT was 

observed). Thus, we do have some evidence consistent with the position that weak 

associative effects will be more easily detected under conditions of uncertainty – 

when propositional processing is not able to settle on a definite belief as to the 

expected outcome. 

 

General Discussion and Conclusion 

 At the beginning of this paper we asked a number of questions that have 

helped shape its content. Perhaps the primary question that acted as a precursor to all 

the others was why would two learning systems, one associative, one propositional, 

evolve in parallel? Our answer to this question is that they wouldn’t, and they didn’t. 

We are supporters of the dual process position, yes, but our interpretation of that 

position is that associative processes provide the fundamental computational 

substrate, and that propositional processes are built out of them by deploying these 

associative processes in complex architectures (see Verbruggen, McLaren and 

Chambers, 2014 and McLaren et al, 2014 for similar statements). Two sets of 

processes, but one system for learning. 

If this last point is not entirely clear, then consider the following. In our 

introduction we referred to what might be thought of as the "traditional" dual process 

account, in which associative learning and propositional learning co-existed side by 

side and operating independently of one another. Using our current terminology, this 

would amount to the "two processes, two systems" version of the dual process 

approach to human learning and performance. What we are suggesting instead is that 

this simple separation of processes into systems is not the case, and that what we have 

is one system that under some conditions (most of the time) will appear to consist of 



propositional processes, but under other circumstances can show characteristics of 

associative processing. And the way that we explain how this comes about is to 

construct the propositional from the associative. 

If this is so, then why has the parallel independent process assumption often 

either explicitly made or implicitly assumed by dual process theorists proven so 

useful? In essence, this is a question about the nature of the interaction between 

cognitive and associative processes, and we have been at pains to make a case for that 

interaction being asymmetric and powerful. We are convinced that cognitive 

processes can prevent the expression of any associative learning. They don’t have to, 

but they can do so; and this is the default. Otherwise we would be at the mercy of 

events and our environment. As an example of what might happen if this were not the 

case, if you saw a chair, you would inevitably sit in it because of the long-standing 

association between stimulus and response. If this is not to be the outcome, then the 

expression of associative learning has to be inhibited by cognitive control in most 

circumstances. On the other hand, associative processes do support learning in the 

background. This learning might not inevitably be expressed, but it does 

automatically take place. Given this asymmetry between learning and performance for 

our two sets of processes, it’s not hard to see how they might quite often mimic dual 

independent processes operating in parallel. In particular, "knocking out" cognitive 

processes in a variety of ways might well reveal a seemingly independent associative 

component to performance. 

Is there evidence that challenges the type of dual process account that 

postulates independent systems running in parallel? We believe we have provided 

some here. Our first experimental example showed that human behavior could be 

correlated with beliefs – and then later decoupled from them. To re-iterate and clarify 



our explanation of the data from Experiment 1, we see it as a demonstration of the 

transition from the Cognitive to the Associative. In the first phase of Experiment 1, 

during training, cognitive control of behavior is visible. Our participants arrive at one 

of two possible sets of beliefs based on their experience during training: Either they 

realise that one CS is paired with shock on one background colour, and vice-versa for 

the other, or they form the impression that shocks occur about 50% of the time but the 

CS does not predict the shock. Both sets of beliefs are correct and consistent with the 

programmed contingencies, but the former is obviously a more complete 

characterization of those contingencies than the latter. Nevertheless, their responding 

as assayed by expectancy ratings and SCR changes reflects these beliefs quite 

precisely. Our "Aware" group no what the contingencies are, rate the CS+ highly, the 

CS- significantly lower, and show a similar pattern in terms of SCR change. The 

"Unaware" group are actually aware of some aspects of the contingencies, but not 

others, and consequently  rate both CS+ and CS- fairly highly (as 50% partially 

reinforced stimuli) and also show no differential responding in terms of change in 

SCR, but quite large changes in SCR to each stimulus. We conclude that both groups 

are using expectancy of shock to drive their SCR responses to the stimuli at this point 

in the experiment. 

But at test, the situation changes. Participants are given new information that 

challenges their beliefs and, in time, would cause them to change them. A new 

background colour appears, and no further shocks occur. What are they to make of 

this? Our argument is that they continue to give expectancy ratings in line with their 

earlier beliefs because they have not had time to adjust them, at this point they simply 

do not know what to believe, only that things have changed. But this triggers a 

relaxation of control, and expectancy now becomes decoupled from changes in SCR, 



which instead can now reveal the influences of the associative processes which were 

active and supporting learning during training, but whose expression was masked by 

the cognitive control exerted at that point in time. The net result is that (weak) 

conditioning is revealed at the same level in both groups of participants as they had 

been exposed to the same contingencies for the same length of time. 

This pattern of results is hard to explain on a dual process account where both 

sets of processes operate independently and in parallel. If the autonomic behavioural 

response (SCR) were to be taken to be due to the combination of independent 

associative and propositional mechanisms, with the latter only effective in the case of 

the Aware participants, then admittedly we could make some progress in explaining 

our data. If the associative contribution was small, then this could explain why 

differential conditioning was so much stronger in the Aware group and correlated 

with expectancy. But expectancy was still high for this group at test, so this difference 

between the two groups should have persisted during test and did not. This points to a 

lack of independence between the two hypothetical systems, with, in this case, the 

Cognitive giving way to the Associative. Our argument is that this lack of 

independence is more plausibly and elegantly explained by associative and cognitive 

processes being bound up within the same computational system, rather than 

postulating separate systems and then constructing some post-hoc method of 

interaction between them. 

Our second experimental example provided evidence for associative learning 

"in the background", something we needed to postulate in our explanation of the 

results of Experiment 1. In this experiment we were able to show that people could 

either learn which task rule governed the contingencies between stimulus and 

response based on a cue that signaled which task was in play (the Task condition), or 



they could more laboriously learn a set of cue + stimulus -> response mappings (the 

CSR condition). These two, rather different sets of instructions, led to different 

performance profiles on the same set of contingencies. This, in itself, is an interesting 

result, and can be used to argue for different sets of processes governing human 

learning and performance, but what makes it quite compelling evidence for two 

different modes of processing in humans is the fact that changing from one set of 

instructions to the other had asymmetric effects on performance. If a participants 

changed from Task to CSR instructions, then essentially they picked up on the CSR 

version of the experiment as though they had previously been trained on it instead of 

on the Task version. But, if they were changed from CSR to Task, this was not the 

case. In these circumstances, they had to learn the Task version "from scratch". Our 

analyses, both in terms of conventional statistical tests on RTs and accuracy, and the 

more recently developed technique of using state-trace plots, support this contention. 

It is this asymmetry which argues against a standard dual-process account. 

At first sight, one might think that the results of Experiment 2 are largely 

explicable by an appeal to associative and cognitive processes running independently 

and in parallel. On this account, each of our different conditions would have some 

mixture of cognitive and associative processes contributing to learning and 

performance, with a greater contribution from associative processes under CSR 

instructions. We agree that the ideas of independence and automaticity underpin the 

claim that associative learning can happen "in the background". But if this is the case, 

then, on the standard dual process account, we should see evidence of their effect 

even when rule-based instructions are in play in the Task condition; which makes it 

very strange that when switching from CSR to Task instructions our participants 

apparently return to a near naïve level of performance. Where is the expected 



associative contribution to performance? We would argue that the most plausible 

explanation is that once propositional processing is engaged (as exemplified by rule 

use) associative contributions to performance are suppressed. Why should this be so? 

As we have already argued, the most obvious answer to this is that if propositional 

thought is made possible by controlled associative processing, then it is not surprising 

that when this control is engaged the expression of associative learning per se is 

inhibited by that same control. To a first approximation, we are arguing for two 

modes of operation here, one propositional, one associative, with the former 

suppressing the latter. But this suppression is not some artificial add-on that 

instantiates competition between two different systems. It is, instead, a consequence 

of one set of processes (associative) acting as the substrate for the other 

(propositional). It is this arrangement that leads to the asymmetry in our data, as the 

more Cognitive mode of operation allows for learning on an associative basis, but the 

Associative mode does not, by definition, engage any propositional processes.  

Our final experimental example considered the Perruchet effect, which, 

defined as the effect over Level, is already known to pose real problems for a single 

process account; and we contrasted this with a predictable version of our design that 

produced strong evidence for response priming. Ironically, the challenge that this 

dataset poses for the dual process account is that the response priming effect is clearly 

a large part of the Perruchet effect defined over run length, and there is the possibility 

that this effect may not be associative in nature. We cannot rule this possibility out, 

but note that there is an explanation in terms of associative learning for the response 

priming observed in the two conditions. In fact, there are two types of explanation for 

the response priming effect most clearly seen in the Predictable condition that we can 

think of. One is to simply attribute it to residual activation of units that support the 



response – a non-associative and non-propositional account. These units are activated 

when a response is made, that activation persists for some time, and when the 

response next has to be made the units’ activation starts from a higher baseline than if 

the response had not occurred on the previous trial. Hence priming. This explanation 

fits the facts, and is particularly suited to explaining the strong response priming 

found at Pulse 1 in the ITI, but some questions remain about its ability to cover all of 

our data. Firstly, can enough activation persist to produce the strong priming effect 

also seen much later in the trial at Pulse 2? And secondly, how does this account 

explain the decline in MEP across Level? Of course, some post-hoc explanation of 

this pattern in our data is possible. We can imagine that the units in question become 

progressively fatigued due to chronic activation, and this leads to less and less 

priming over the run (though this would not explain the effect for negative runs).  

All this notwithstanding, there is another explanation for response priming in 

terms of associative processes that quite naturally explains the trend across Level, can 

deal with delay, and applies a similar analysis to that used for the Perruchet condition 

(a build up of associative strength over runs) to the Predictable condition. The only 

caveats here are that, following McAndrew et al (2013), we need to postulate an 

internal representation that is available to associate to outcomes when they occur, and 

that includes some representation of what occurred on the previous trial. This internal 

representation can be modulated by external stimuli (the context, the CS), but exists 

(i.e. is active) in some form at all times. The component due to the previous trial is 

perhaps best modelled using recursion as in the SRN (Elman, 1990), though simple 

associative chaining will suffice in this instance. In simulations that we have run of 

this account using a feedforward backpropagation network (Rumelhart, Hinton and 

Williams, 1986), the role of the internal representation is taken by the hidden units en 



masse, as they have a resting (zero input) activation of 0.5, and in addition we have 

units representing the outcome of the preceding trial as input for the current trial. The 

idea is simple: When a response is required or elicited, the internal representation and 

the units representing the previous trial associate to some representation of either that 

response or to the outcome that provokes the response. As a consequence, over time, 

the component of the internal state representing the previous trial will pick up 

considerable associative strength, as the outcome on the previous trial predicts the 

outcome on the current trial 80% of the time. It is this component that gives the basic 

(and large) response priming component in the Predictable condition. When we probe 

with Pulse 1 in the ITI, we see response priming dependent on internal state activation 

at that time, and this will give a large MEP on those trials preceded by a response due 

to that component of the input activation being present. Pulse 2 results are not a 

problem for this account as associations persist over time, though the effect might be 

expected to be weaker as more time will have passed allowing some extinction to 

occur. The real benefit that this explanation of response priming offers, however, lies 

in in its explanation of the trend over Level, and we turn to this next. 

When the CS occurs, the representation of the CS also associates with the 

outcome that follows it. But in doing so it competes with the other representations 

(which are typically more salient) for associations with the outcome or response 

representation. Initially, it will tend to be overshadowed as a consequence, but will 

gradually build up an association over a run of positive trials. Because the CS 

representation is not active during the ITI, it will not contribute to Pulse 1 effects; 

these will be driven entirely by the internal state including previous outcome 

representations. The result of the competition between CS and the other input 

representations, however, is that the latter will gradually lose strength over a run of 



positive trials exactly because the CS representation acquires greater associative 

strength over that run, and the combination of CS and other input representations are 

being trained to the same fixed asymptote. Hence, we are able to explain the decline 

in Pulse 1 MEPs for positive runs in Fig. 10.  There should be relatively little effect 

over negative runs for this pulse, as the strong association that will have formed 

between units representing a response on the previous trial and the outcome will not 

be activated. Instead, any component due to the previous trial will now be predicting 

no outcome. The pattern for Pulse 2 can be expected to be different to that for Pulse 1 

because in this case the CS representation is added to the other representations and the 

net effect should be relatively stable. Hence there should not be a marked decline for 

positive or negative runs. This last claim may seem to run counter to the data for 

Pulse 2, but note that actually there is no overall downward trend in the Pulse 2 data 

for negative runs because of the higher MEP to -1 trials.  

Hence, the large response priming effect can be attributed to the build-up of 

strong associations between representations of the previous outcome and the outcome 

on the current trial, driven by the fact that if the previous trial required a response then 

the next trial is very likely to and vice-versa; and the trend over Level can be 

attributed to cue competition between the CS and these other input representations. 

This simple account using well-established principles of associative learning can, to a 

first approximation, explain the Predictable condition results, and also generates the 

Perruchet effect seen when there is no reliable relationship between one trial and 

another (it is basically the standard associative explanation of this phenomenon). In 

the case of the Perruchet design, it is worth noting that both CS and state 

representations will work together to produce the increasing linear trend seen over run 

length and Level – which can explain why it is still possible to get a Perruchet effect 



in this type of RT paradigm without using a CS (see Mitchell et al, 2010; and 

McAndrew et al’s, 2013 analysis of this). Of course, we will still expect to see 

response priming in the ITI due to the association that will form from state to 

outcome, but there will not be any reliable prediction based on the outcome of the 

previous trial to drive this effect this time, and so response priming will be 

considerably weaker, and any cue competition effects will be weaker as well.  

This concludes our analysis of the data we have presented in this paper, but we 

have a few final thoughts for researchers working in this field. The first is for readers 

that find our arguments for this version (or indeed any version) of a dual process 

account unconvincing. We urge you to reconsider, to the extent that you explicitly 

take into account the possibility that both sets of processes may contribute to 

behaviour when designing your experiments. Of course, one can simply assume that 

all learning is propositional in nature, and be confident that the data obtained from 

any experiment will be susceptible to some post-hoc cognitive interpretation. 

Anything can be explained with propositions after the fact (and anything can be 

explained with associations as well - both types of system are complete 

computationally, cf. McCulloch and Pitts, 1943), but this does not offer much by way 

of predicting behaviour, and does not explain why the types of effect considered in 

this paper should exist.  It did not have to be the case that human learning and 

behaviour turned out this way, no propositional account demanded that it be so. So 

simply asserting (correctly) that there are propositional explanations available for 

these data does not really move us forward. 

Another version of this argument is to take the view that propositions are, in 

some sense, the computational primitives for human learning, and that associations 

are constructed out of them. It could be argued that this is also a dual process view, 



but one that is complementary to that espoused here that has associations as the 

computational substrate for propositions. Both accounts are dual process, both can 

explain these and other results, so do we really care which is correct? Does it matter? 

The answer given here is yes, it does, because while both sets of processes are in play 

in both accounts, only one of them (to our mind) can successfully explain why, when 

circumstances are such as to undermine the usual levels of learning and performance 

achievable by humans, that what emerges seems best explained in terms of 

associations rather than propositions. As cognition is pared back, what emerges is 

associative processing in its raw form. Surely this would not be expected on the basis 

of an account that had propositions as its computational primitives? In essence, the 

thesis offered here is that implicit in the connectionism and reinforcement learning 

traditions (e.g. McClelland and Rumelhart, 1985; Sutton and Barto, 1981; 1989; 

O'Reilly and Frank, 2006; Botvinick, Niv,  and Barto, 2009), and as such it is worth 

pointing out that it differs importantly from the more traditional AI perspective that is 

fundamentally propositional in nature.   

Given this, setting out to investigate associative processes in humans without 

bearing this dual process analysis in mind can result in falling into the trap of 

designing experiments that "should" tap into associative processing (according to 

associative theory) but then apparently do not. Design is, on its own, not enough in 

these circumstances. Procedure is everything here. It is not enough, for example, to 

run a blocking design with humans, get blocking, and then claim that this due to error 

correcting associative learning. It may be, but unless you have taken the necessary 

precautions, it may also be (and probably is) due to propositionally-based inference 

(see Le Pelley, Oakeshott and McLaren, 2005 and McLaren, Forrest and McLaren, 

2012 for examples of how to dissociate blocking due to associative processes from 



that due to cognitive inference). We hope that we have made a convincing case that 

special efforts have to be made to separate the cognitive and the associative if we start 

from a position where both might be in play. To some extent, the reason why the very 

notion of associative processing in humans is under challenge is because researchers 

have claimed this type of processing for circumstances where it does not have to be 

the case that it is controlling behavior at all (and later on is shown not to be). Here we 

have attempted to give some useful guidance on how to disentangle the cognitive and 

the associative, but, in the long run, we would argue that this should not be the 

ultimate goal of our investigations. The real challenge is to better understand how 

cognitive and associative processes work together to produce the full range of human 

learning and behaviour.   
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Table 1. The design of the task switching experiment. Task indicates that participants 

were asked to use the rules shown in Figure 5. CSR indicates that they had to learn 

the cue + stimulus -> response mappings by trial and error. 

Group 1st 10 Blocks 2nd 10 Blocks 

Task-Task Task Task 

Task-CSR Task CSR 

CSR-CSR CSR CSR 

CSR-Task CSR Task 

 

 

  



 
 

Figure 1. Schematic showing counterbalanced stimulus and background combinations 

for training (each participant received either 1.1 or 1.2; six trials of each CS with that 

background colour and outcome contingency) and test (one of 2.1 to 2.6; one trial 

with each CS on a given background in the order shown). Additionally, order of CS 

presentation was counterbalanced at test. 
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Figure 2. The graph shows mean expectancy ratings (y-axis, scale of 1 (do not expect 

shock) to 5 (expect shock)) for the CS+ and CS- (averaged over background colour) 

in the Aware and Unaware groups during training (as defined by the post-experiment 

interview). 
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Figure 3. Mean log transformed SCR (y-axis: Log(∆SCR) in µS) for CS+ and CS- 

averaged over both backgrounds in Aware and Unaware participants during training. 

Aware participants conditioned successfully, indicated by higher SCR to CS+ than 

CS-. Unaware participants showed no differential conditioning. 
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Figure 4. Top panel: Mean expectancy rating (y-axis, scale of 1 (do not expect shock) 

to 5 (expect shock)) for the CS+ and CS- in the Aware and Unaware groups during 

test. Bottom panel: Mean log transformed SCR (y-axis, log(∆SCR) in µS) for CS+ 

and CS- in Aware and Unaware participants during the test phase. In both cases the 

values for the CS+ and CS- are averaged across both backgrounds. 
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Figure 5. The basic cued task switching paradigm used in this paper (shown right) and 

an alternative perspective on it afforded by associative learning (shown left). 
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•  CS1	in	Context	A	->	Le<	

•  CS1	in	Context	B	->	Right	
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And	a	simple	discrimina0on	
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•  CS4	in	either	context	->	Right	

The	problem	in	

	terms	of	rules	

In	Context	A	use	the	odd/even	decision	

	

•  If	s0mulus	is	Odd=Le<	or	Even=Right.		

	

But	if	in	Context	B	then	use	the	higher/

lower	than	5	rule	

	

•  	If	s0mulus	is	Lower	than	5=Le<	or	

Higher	than	5=Right.	

CS3	is	“1”	and	CS4	is	“8”.	These	are	the	simple	discrimina0ons,	“1”	is	always	le<,	“8”	is	

always	right.	Known	as	congruent	s0muli.	

	

CS1	is	“4”	and	CS2	is	“7”.	The	response	to	these	s0muli	is	condi0onal	on	the	context	

cued.	These	are	the	incongruent	s0muli	



 

 

 

Figure 6. Results for the congruency effect (i.e. median performance on Incongruent 

stimuli minus that on Congruent stimuli) over the two halves of our experiment 

broken down by group. The oval draws attention to the two points for Task-CSR and 

CSR-CSR that do not differ significantly, even though the former has only received 

half the training under CSR instructions of the latter. The implication is that the Task-

CSR group have learned the associations between Cue + Stimulus to Response "in the 

background" whilst operating under Task instructions. 
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Figure 7. This shows the state-trace trajectories for the four groups in this experiment. 

The left panel shows how the trajectory for Task-CSR compares to Task-Task and 

CSR-CSR, the right panel serves a similar function for CSR-Task.  Filled symbols 

denote CSR instructions, open symbols Task instructions. Solid lines denote no 

change in instruction, broken lines indicate a change in instruction halfway through 

the experiment. The arrows track the progression from early to late blocks. 
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Figure 8. Go and no-go trials were presented in quasi-random order to give runs of 

trials of a given type following a binomial distribution with a maximum length of 

5.  The diagram gives an example of the trial sequence changing from NoGo to Go. 

Each trial started with the presentation of a blank screen. After a variable time 

interval, a brown cylinder appeared, and participants rated the extent to which they 

thought the No-Go stimulus would appear. After 5 seconds, the Go stimulus ‘peanut 

butter’ or No-Go stimulus ‘brown sugar’ appeared. The Go stimulus remained on 

screen until a response was made, whereas the No-Go stimulus disappeared after 2 

seconds. A TMS pulse was delivered at one of two different time points in a trial, 

either 2.5 seconds into the blank interval (Pulse1) or immediately after the participant 

had indicated their expectancy rating (Pulse 2). 
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Figure 9. Top panels show RT and lower panels show expectancy. The leftmost 

panels give the means by run length where, for example, -4 denotes trials preceded by 

4 NoGo trials and +1 denotes trials preceded by 1 Go trial. The middle panels give the 

results by Level, where those for Level 1 correspond to the average of -3 and +1 run 

lengths, for Level 2 to -2 and +2 run lengths etc. The rightmost panels show the 

overall means over positive and negative runs. Error bars give SE for the mean. 
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Figure 10. Top panels show MEP data for the current experiment and lower panels 

show MEP data from Verbruggen et al (2016) cast into the same form. The leftmost 

panels give the MEPs by run length, where -4 denoted the MEP on a trial preceded by 

4 NoGo trials and +1 the MEP for a trial preceded by 1 Go trial. The middle panels 

give the results by Level where those for Level 1 correspond to the average of -3 and 

+1 run lengths, for Level 2 to -2 and +2 run lengths etc. The rightmost panels show 

the overall means over positive and negative runs. 
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