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Abstract— It is well known that the impedance of a passive
circuit is necessarily positive-real [1]. The Bott-Duffin procedure
shows that any positive-real function has an RLC realisation,
possibly with the number of reactive elements (inductors and
capacitors) greatly exceeding the McMillan degree. In [2] it
was shown, for series-parallel circuits, that the Bott-Duffin
procedure is minimal in the number of reactive elements (six)
for the biquadratic minimum function. For general circuits,
the best available result is the Reza-Pantell-Fialkow-Gerst
simplification, published simultaneously in the 1954 papers [3–
5], which reduces the number of reactive elements to five for
the general biquadratic minimum function. In this extended
abstract, we present an additional class of equivalent circuits
which have not appeared previously in the literature. In the
accompanying talk, we will show the remarkable result that
the Reza-Pantell-Fialkow-Gerst simplification produces circuits
which contain the least possible number of reactive elements
for the realisation of certain biquadratic minimum functions.
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I. INTRODUCTION

This extended abstract describes results obtained in [6]
relating to the realisation of positive-real functions with the
least number of reactive elements (inductors and capacitors).
Given the analogy between electrical circuits and mechanical
networks, which was established by the recent invention of
the inerter, this question is of immediate relevance to the
effective design of passive mechanical controllers for a broad
range of applications [7].

As is well known, the impedance (and the admittance)
of a circuit which contains only resistors, inductors, and
capacitors (an RLC circuit) is necessarily PR. In [8], Bott
and Duffin provided the first explicit construction for the
realisation of a given PR function. As will be shown in
this extended abstract, the application of various circuit
transformations leads to several equivalent circuits to those
of Bott and Duffin. These include the Reza-Pantell-Fialkow-
Gerst simplification, which, to the present day, provides the
simplest circuit realisation available for a given PR function
among all general RLC circuit synthesis procedures. Here,
we present additional equivalent circuits which contain the
same number of reactive elements (and the same number
of resistors) as those obtained by the Reza-Pantell-Fialkow-
Gerst procedure. This disproves the claim made in [9] that

This work was supported by the Engineering and Physical Sciences
Research Council under Grant EP/G066477/1.

1Timothy H. Hughes and Malcolm C. Smith are with the Department
of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.
thh22@cam.ac.uk, mcs@eng.cam.ac.uk

the circuits obtained by the Reza-Pantell-Fialkow-Gerst sim-
plification are “the only general seven-element realisations
of the biquadratic minimum function”.

In a forthcoming paper [2], it is shown that the proce-
dure of Bott and Duffin produces circuits which contain
the least possible number of reactive elements among all
series-parallel circuits which realise a biquadratic minimum
function. In [6], it is shown that the circuits produced
by the Reza-Pantell-Fialkow-Gerst simplification, and the
alternatives presented here, contain the least possible number
of reactive elements among all RLC circuits which realise
a biquadratic minimum function, with the exception of
some special cases which are described explicitly. This is
surprising since the number of reactive elements used by
these procedures for the realisation of a biquadratic minimum
function (five) considerably exceeds the McMillan degree
of a biquadratic minimum function (two). In contrast, it is
known that there is a large class of impedance functions
of McMillan degree two which can be realised by circuits
containing two reactive elements [10], [11]. Indeed, the
McMillan degree of a general PR function is the only known
lower bound on the number of reactive elements required to
realise that function.

The Bott-Duffin procedure, and the Reza-Pantell-Fialkow-
Gerst simplification, are inductive procedures, in which the
McMillan degree of the function to be realised is reduced at
each stage. The procedure relies on a preliminary procedure
at each stage, called the Foster preamble. In Section II, we
provide a brief description of the Foster preamble. In Section
III, we describe the Bott-Duffin procedure itself, then in
Section IV we introduce the aforementioned simplifications
to this procedure. Finally, in Section V, we discuss the
minimality of these identified simplifications to Bott-Duffin
for the realisation of certain biquadratic minimum functions.

II. THE FOSTER PREAMBLE

The Foster preamble is a circuit synthesis procedure which
either provides an RLC circuit realisation for a given PR
function, or provides a partial realisation and reduces the
given PR function to a minimum function. A PR function,
and a minimum function, are defined as follows:

Definition 1 (PR): F (s) is PR if it is real-rational, ana-
lytic in the open right half plane, and satisfies <(F (s0)) ≥ 0
for all s0 with <(s0) > 0.

Definition 2 (minimum function): F (s) is a minimum
function if it is PR, not identically zero, has no poles or zeros
on the extended imaginary axis, and satisfies <(F (jω0)) = 0
for at least one strictly positive value of ω0 (this implies
=(F (jω0)) 6= 0).
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The Foster preamble depends on the properties of PR
functions stated in the following two theorems:

Theorem 3 ([1], Theorem III, Coroll. 1): If F (s) is PR
and R1 is less than or equal to the minimum value of
<(F (s)) on the extended imaginary axis, then Fr(s) =
F (s)−R1 is PR.

Theorem 4 ([1], Theorem IV): If F (s) is PR and has
poles at s = jωr for ωr > 0 with residue kr/2 (r =
1, 2, . . . , n), in addition to a pole at s = 0 with residue k0,
and a pole at s =∞ with residue k∞, then

F (s) =
k0
s

+ k∞s+

n∑
r=1

krs

s2 + ω2
r

+ Fr(s), (1)

where each term is PR.
In Theorem 3, F (s) is the impedance of a circuit with

impedance Fr(s) in series with a resistor with resistance
R1. Moreover, each term in the sum in (1) is the impedance
of a parallel connection of an inductor and a capacitor, and
the first two terms on the right hand side of equation (1) are
the impedance of a capacitor and an inductor respectively.
Hence, in Theorem 4, F (s) is the impedance of a circuit with
impedance Fr(s) in series with a circuit comprising reactive
elements. Similar partial circuit realisations can be obtained
for which F (s) is equal to the admittance of the circuit.
Evidently, the inductive application of these two procedures
will result in a function Fr(s) which is either identically zero
or is a minimum function. Moreover, the McMillan degree
of Fr(s) cannot exceed that of F (s).

III. THE BOTT-DUFFIN PROCEDURE

The paper by Bott and Duffin [8] provides a circuit reali-
sation for a given minimum function F (s) which comprises
reactive elements and two circuits whose impedances have
McMillan degree at least two fewer than F (s). When used
inductively together with the Foster preamble, this procedure
provides an RLC circuit for the realisation of any given
PR function. The procedure relies on a generalisation of
Richard’s transformation:

R(s) :=
µF (s)− sF (µ)
µF (µ)− sF (s)

,

which, for µ > 0, transforms a PR function F (s) into a PR
function R(s) whose McMillan degree does not exceed that
of F (s). For a minimum function F (s) with <(F (jω0)) = 0
and =(F (jω0)) > 0, Bott and Duffin demonstrate the
existence of a particular value of µ > 0 which satisfies
µF (jω0) − jω0F (µ) = 0. Moreover, for this choice of µ,
1/R(s) has poles at s = ±jω0. Then, let

1

Fr(s)
:=

1

R(s)
− 2αs

s2 + ω2
0

,

where α is the residue of the pole of 1/R(s) at s = jω0,
and it follows that

F (s) =

(
R(s)

F (µ)
+

µ

F (µ)s

)−1
+

(
1

F (µ)R(s)
+

s

F (µ)µ

)−1
= F (µ)

s3+Fr(s)(2α+ µ)s2+ω2
0s+Fr(s)µω

2
0

Fr(s)s3+µs2+Fr(s)(2αµ+ ω2
0)s+µω

2
0

, (2)

which is the impedance of the circuit on the top left of Fig.
1.1. Moreover, the function Fr(s) is PR, and its McMillan
degree is at least two fewer than that of F (s).

For the case when =(F (jω0)) < 0, a dual argument to
the above demonstrates the existence of ν, β > 0, and a PR
function F̃r(s) with McMillan degree at least two fewer than
F (s), such that

F (s) = F (ν)
F̃r(s)s

3+νs2+F̃r(s)(ω
2
0+2βν)s+νω2

0

s3+F̃r(s)(2β+ν)s2+ω2
0s+F̃r(s)νω2

0

. (3)

In this case, F (s) is the impedance of the circuit on the top
right of Fig. 1.1.

By applying the Foster preamble and the Bott-Duffin
procedure to the remainder function Fr(s), or F̃r(s), and
proceeding inductively, an RLC circuit can be obtained
to realise any given PR function. The number of reactive
elements in any circuit thus obtained is significantly greater
than the McMillan degree of the function being realised.

IV. SIMPLIFICATIONS TO BOTT-DUFFIN

In Figs. 1.1 to 1.4, we present the circuits obtained by
the procedure of Bott and Duffin (Fig. 1.1), in addition to
several equivalent circuits (Figs. 1.2 to 1.4). These include
the circuits obtained by the Reza-Pantell-Fialkow-Gerst sim-
plification in Fig. 1.3. The circuits in Fig. 1.2 are introduced
for the first time in the forthcoming paper [2]. The circuits
in Fig. 1.4 appear for the first time in [6]. These circuits
contain the same number of reactive elements, and the same
number of resistors, as the circuits obtained from the Reza-
Pantell-Fialkow-Gerst simplification.

It may be verified by direct calculation that the impedances
of the circuits on the top left, and on the bottom right, of
Figs. 1.1 to 1.4 are each equal to F (s) in equation (2).
Moreover, the impedances of the circuits on the top right, and
on the bottom left, of these figures are each equal to F (s) in
equation (3). In the case of a biquadratic minimum function,
the impedances fFr(s), f/Fr(s), f̃ F̃r(s) and f̃/F̃r(s) may
each be realised by a resistor, and the circuits obtained in this
case contain exactly five reactive elements and two resistors.
It was these circuits which were initially identified in our
examination of those circuits which contain five or fewer
reactive elements and which realise a biquadratic minimum
function. It was subsequently recognised that these circuits
could be generalised to the circuits shown in Fig. 1.4, in order
to provide a realisation for any given minimum function.

The circuits in Fig. 1.4 may be obtained by the application
of circuit transformations to the Bott-Duffin circuits, as may
all the other circuits in Fig. 1. As an example of one of these
circuit transformations, in the circuit on the top left of Fig.
1.2, it may be verified that there can never be any current
through the vertical wire which is shared by the two parallel
connections of an inductor and a capacitor. Consequently,
the impedance of that circuit is unchanged by the removal
of this wire. This leaves two capacitors in series which may
be combined, thus obtaining the circuit on the top left of Fig.
1.4.
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Fig. 1. Here we show the circuits generated in a single inductive step in the realisation of a minimum function F (s). In this figure, f = F (µ),
χ = ω2

0 + 2αµ, γ = µ + 2α, φ = χ + µ2, f̃ = F (ν), η = ω2
0 + 2βν, ζ = ν + 2β, ψ = η + ν2, and Fr(s), µ, α, F̃r(s), ν, β are as described in

Section III. If =(F (jω0)) > 0 then F (s) is realised by the circuits on the top left and bottom right of Figs. 1.1 to 1.4. If =(F (jω0)) < 0, then F (s) is
realised by the circuits on the top right and bottom left of Figs. 1.1 to 1.4.

V. MINIMALITY OF THE SIMPLIFICATIONS TO
BOTT-DUFFIN

In the case of a biquadratic minimum function, the circuits
in Figs. 1.3 and 1.4 each contain five reactive elements. As
shown in [6], this is the least possible number of reactive
elements for the realisation of almost all biquadratic mini-
mum functions. In other words, there are certain biquadratic
minimum functions which cannot be realised by any circuit

which contains four or fewer reactive elements, irrespective
of the number of resistors possessed by that circuit. The
argument we will employ differs considerably from that in
[2], in which the minimality of the Bott-Duffin procedure
for series-parallel circuit realisations of biquadratic minimum
functions is considered, since the results in [2] rely on the
special form of the impedance function of a series-parallel
circuit. Instead, the argument focuses on the permissible
currents and voltages within those circuits which realise
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minimum functions. Using the well known result that the
instantaneous power supplied to a circuit must equal the
sum of the instantaneous powers dissipated in the resistors in
the circuit, it may be shown that if the driving-point current
through the circuit and the currents through the elements
within the circuit are all varying sinusoidally at the minimum
frequency then there can be no current through the resistors
in the circuit. Hence, there must be regions within the circuit
comprising elements with no current flow through them. By
describing the circuit as an interconnection of such regions
together with elements through which current does flow
(which are necessarily reactive), it is possible to identify
those biquadratic minimum functions which can be realised
by circuits containing fewer than five reactive elements. We
will describe these biquadratic minimum functions explicitly,
and thus demonstrate the minimality (in number of reactive
elements) of the circuits in Figs. 1.3 and 1.4 for the reali-
sation of almost all biquadratic minimum functions. Finally,
as shown in [6], these circuits also contain the minimum
total number of elements for the realisation of almost all
biquadratic minimum functions.
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