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On the optimal control of passive or non-expansive
systems

Timothy H. Hughes

Abstract—The positive-real and bounded-real lemmas solve
two important linear-quadratic optimal control problems f or
passive and non-expansive systems, respectively. The lemmas
assume controllability, yet a passive or non-expansive system can
be uncontrollable. In this paper, we solve these optimal control
problems without making any assumptions. In particular, we
show how to extract the greatest possible amount of energy from
a passive but not necessarily controllable system (e.g., a passive
electric circuit) using state feedback. A complete characterisation
of the set of solutions to the linear matrix inequalities in
the positive-real and bounded-real lemmas is also obtained.
In addition, we obtain necessary and sufficient conditions for
a system to be non-expansive that augment the bounded-real
condition with new conditions relevant to uncontrollable systems.

Index Terms—Passive, non-expansive, optimal control, positive-
real, bounded-real, controllability, observability.

I. I NTRODUCTION

The positive-real and bounded-real lemmas are recognised
as two of the most fundamental results in systems and control.
They relate to two important optimal control problems, for
passive and non-expansive systems, respectively [1]–[4].In
the positive-real lemma, the solution to the optimal control
problem gives the least upper bound on the energy that
can be extracted from a passive system. The lemmas also
provide results on the solutions of important classes of Linear
Matrix Inequalities (LMIs) and Algebraic Riccati Equations
(AREs), the theory of spectral factorization, and the concepts
of positive-real and bounded-real functions. But the classical
versions of these lemmas consider only controllable systems.

In [5], it was emphasised that a passive system (e.g., a
passive electric circuit) can be uncontrollable, and a theory
of passive linear systems was developed that does not assume
controllability. In contrast to other papers on this subject (see
[6, Section 3.3] and the discussion following Theorem 13
in the present paper), [5] did not introduce any alternative
assumptions. But it did not consider the related optimal control
problem, nor did it consider non-expansive systems. It is the
purpose of this paper to solve the optimal control problems
considered in the positive-real and bounded-real lemmas in
the absence of any assumptions. In so doing, we characterise
the set of solutions to the LMIs in these two lemmas, and we
show how to use state feedback to extract the greatest amount
of energy from a passive (not necessarily controllable) linear
system. Also, in contrast with the case of controllable systems,
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we show that for there to exist a solution to the LMI in the
bounded-real lemma, and for a system to be non-expansive, it
is necessarybut not sufficientfor theH∞ norm of the system’s
transfer function to be bounded above by one. We also provide
a necessary and sufficient condition, by introducing two new
conditions relevant to uncontrollable systems.

The paper is structured as follows. Section II introduces
the notation, and contains preliminary system theoretic results
that are formalised using the behavioral approach [7]. In
Section III, we review the classical positive-real lemma and
the associated optimal control problem. We then state the main
results concerning this optimal control problem in Theorems
10, 12 and 13, which are proved in Sections IV and V. The
theorems explicitly characterise the solution to the optimal
control problem in terms of an ARE (relevant when the transfer
function H satisfieslimξ→∞(H(ξ) + H(−ξ)T ) > 0), and
a spectral factorization ofH(ξ) + H(−ξ)T (relevant in the
general case). Section VI contains analogous results relevant
to non-expansive systems (Theorems 20, 22 and 23, which are
proved in Sections VII and VIII). In particular, we define the
new concept of abounded-real pairof polynomial matrices,
which appears in our new necessary and sufficient condition
for a system to be non-expansive. Finally, some intermediate
results are provided in Appendices A–D.

II. N OTATION AND PRELIMINARIES

The notation in the paper is as follows.R (C) denotes the
real (complex) numbers;C+ (C+) denotes the open (closed)
right-half plane;C− (C−) denotes the open (closed) left-half
plane. Ifλ ∈ C, thenℜ(λ) (ℑ(λ)) denotes its real (imaginary)
part, andλ̄ its complex conjugate.R[ξ] (R(ξ)) denotes the
polynomials (rational functions) in the indeterminateξ with
real coefficients.Rm×n (resp.,Cm×n, Rm×n[ξ], Rm×n(ξ))
denotes them × n matrices with entries fromR (resp.,C,
R[ξ], R(ξ)). If H ∈ R

m×n, Cm×n, Rm×n[ξ], or Rm×n(ξ),
then HT denotes its transpose, and ifH is nonsingular
(i.e., det(H) 6= 0) then H−1 denotes its inverse.Rn×n

s

denotes the realn×n symmetric matrices. The block column
(block diagonal) matrix with entriesH1, . . . , Hn is denoted
col(H1 · · · Hn) (diag(H1 · · · Hn)). We will use horizontal
and vertical lines to indicate the partition in block matrix
equations (e.g., see (43)). IfM ∈ Cm×m, then M > 0
(M ≥ 0) indicates thatM is Hermitian positive (non-negative)
definite, and spec(M) := {λ ∈ C | det(λI−M) = 0}.

A V ∈ Rn×n[ξ] is called unimodular if its determinant
is a non-zero constant (equivalently,V −1 ∈ Rn×n[ξ]). The
matricesP ∈ Rm×n[ξ] andQ ∈ Rm×q[ξ] are calledleft co-
prime if rank(

[

P −Q
]

(λ)) is the same for allλ ∈ C.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/146502949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

If H ∈ Rm×n(ξ), then (i) H⋆(ξ) := H(−ξ)T ; (ii)
normalrank(H) := maxλ∈C(rank(H(λ))); and (iii) H is
called proper if limξ→∞(H(ξ)) exists, andstrictly proper if
limξ→∞(H(ξ)) = 0. If Z ∈ Rr×n(ξ) andH := Z⋆Z, thenZ
is called aspectral factorof H if (i) Z is analytic inC+; and
(ii) Z(λ) has full row rank for allλ ∈ C+. If H ∈ Rm×n(ξ),
then‖H‖∞ denotes itsH∞ norm, and it is called bounded-
real if ‖H‖∞ ≤ 1 (i.e., H satisfiesI −H(λ̄)TH(λ) ≥ 0 for
all λ ∈ C+). If m = n, thenH is called positive-real if (i)H
is analytic inC+; and (ii)H(λ̄)T +H(λ) ≥ 0 for all λ ∈ C+.

We let Lloc
2

(

R,Rk
)

denote the (k-vector-valued) locally
square integrable functions, and ifw ∈ Lloc

2

(

R,Rk
)

thenwT

denotes the function satisfyingwT (t) = w(t)T for all t ∈ R.
We will consider state-space systems of the form

Bs = {(u,y,x) ∈ Lloc
2 (R,Rn)×Lloc

2 (R,Rm)×Lloc
2

(

R,Rd
)

such thatdx
dt

= Ax+Bu andy = Cx +Du},
with A ∈ R

d×d, B ∈ R
d×n, C ∈ R

m×d andD ∈ R
m×n, (1)

and we interpret differentiation in a weak sense (see [7, Section
2.3.2]). In particular, for any givenu ∈ Lloc

2 (R,Rn) andx0 ∈
Rd, there exists(u,y,x) ∈ Bs such that

x(t) = eA(t−t0)x0 +
∫ t

t0
eA(t−τ)Bu(τ)dτ, and (2)

y(t) = CeA(t−t0)x0 +Du(t) +
∫ t

t0
CeA(t−τ)Bu(τ)dτ, (3)

for all t ≥ t0. Moreover, if (u,y,x) ∈ Bs, then there exists
x0 ∈ Rd such thatx satisfies (2) for (almost) allt ≥ t0, so
x(t) is determined by (2) in this interval (andx(t0) = x0).

The external behavior of (1) is denoted by

B(u,y)
s := {(u,y) | ∃x such that(u,y,x) ∈ Bs}, (4)

and has the properties outlined in the following two lemmas,
which are easily shown from results in [8].

Lemma 1:Let Bs be as in (1) andA(ξ):=ξI−A. There
exist polynomial matricesP,Q,M,N,U, V,E, F,G such that

1.

[

M N
U V

] [

−D I −C
−B 0 A

]

=

[

−P Q 0
−E −F G

]

;

2.

[

M N
U V

]

is unimodular; and

3. G is nonsingular.
Furthermore, whenever conditions 1–3 are satisfied, then the

external behaviorB(u,y)
s in (4) satisfiesB(u,y)

s = B, where

B={(u,y)∈Lloc
2 (R,Rn)×Lloc

2 (R,Rm) | P ( d
dt
)u=Q( d

dt
)y} (5)

and we call(A,B,C,D) a realizationof (P,Q).
Lemma 2:Let B be as in (5) withP ∈ Rm×n[ξ] and

Q ∈ Rm×m[ξ] whereQ is nonsingular andQ−1P is proper.
Then there existsBs as in (1) such thatB = B(u,y)

s . Fur-
thermore, wheneverBs in (1) satisfiesB = B(u,y)

s , then there
exist polynomial matricesM,N,U, V,E, F andG satisfying
conditions 1–3 of Lemma 1.

Remark 3:If Bs in (1) andB in (5) satisfyB(u,y)
s = B, then

H(ξ) := D+C(ξI −A)−1B satisfiesQ−1P = H . However,
the conditionQ−1P = H only guarantees thatB(u,y)

s takes
the form of (5) ifP andQ are left coprime. △

A systemB is calledcontrollableif, for any two trajectories
w1,w2 ∈ B andt0 ∈ R, there existsw ∈ B andt1 ≥ t0 such

that w(t) = w1(t) for all t ≤ t0 and w(t) = w2(t) for
all t ≥ t1 [7, Definition 5.2.2]; andstabilizable if for any
w1 ∈ B there existsw ∈ B such thatw(t) = w1(t) for
all t ≤ t0 and limt→∞ w(t) = 0 [7, Definition 5.2.29]. The
behaviorB in (5) is controllable (resp., stabilizable) if and
only if P andQ are left coprime (resp., rank(

[

P −Q
]

(λ))
is the same for allλ ∈ C+) [7, Theorems 5.2.10 and 5.2.30].
We call the pair(A,B) controllable (resp., stabilizable) ifBs

is controllable (resp., stabilizable), which holds if and only if
rank(

[

λI −A B
]

) = d for all λ ∈ C (resp.,λ ∈ C+).
Finally, if Bs takes the form of (1), then we call the pair

(C,A) observableif (u,y,x) ∈ Bs and(u,y, x̂) ∈ Bs imply
x = x̂ [7, Definition 5.3.2]. If, in addition,B(u,y)

s takes
the form of (5), then we call(A,B,C,D) an observable
realization for (P,Q). With the notation

Vo := col
(

C CA · · · CAd−1
)

, (6)

then (C,A) is observable if and only if rank(Vo) = d [7,
Theorem 5.3.9].

Remark 4:It is easily shown that ifBs is controllable (resp.,
stabilizable) then so too isB(u,y)

s . Furthermore, if(C,A) is
observable andB(u,y)

s is controllable (resp., stabilizable), then
Bs is controllable (resp., stabilizable). △

III. PASSIVE SYSTEMS

The positive-real lemma considers the optimal control prob-
lem concerning theavailable energyfor a passivesystem:

Definition 5 (Available energy, Passive system):Let Bs be
as in (1) withm = n. For any givenx0 ∈ Rd, let

Eσp

+ (x0) = {
∫ t1

t0
−(uTy)(t)dt | t1 ≥ t0, (u,y,x) ∈ Bs,

andx(t0) = x0}.

Then the available energySσp
a satisfies (i) Sσp

a (x0) =
sup(Eσp

+ (x0)) if Eσp

+ (x0) is bounded above; and (ii)
S
σp
a (x0) = ∞ otherwise. IfSσp

a (x0) < ∞ for all x0 ∈ Rd,
thenB(u,y)

s is calledpassive.
In words, the available energy is the least upper bound on

the energy that can be extracted fromt0 onwards.
The positive-real lemma provides the solution (if it exists)

to the optimal control problem in Definition 5, and several
necessary and sufficient conditions for passivity. These relate:
(a) the existence of real matricesX ≥ 0 such that

Ω(X) :=

[

−ATX −XA CT −XB
C −BTX D +DT

]

(7)

satisfiesΩ(X) ≥ 0; (b) whether the transfer function

H(ξ) := D + C(ξI −A)−1B (8)

is positive-real; and (c) a second optimal control problem
concerning therequired energy, defined as follows

Definition 6 (Required energy):Let Bs be as in (1) with
m = n. For any givenx0 ∈ Rd, let

Eσp

− (x0) = {
∫ t0

t1
(uTy)(t)dt | t1 ≤ t0, (u,y,x) ∈ Bs,

x(t1) = 0 andx(t0) = x0}.
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Then the required energySσp
r satisfies (i) Sσp

r (x0) =
sup(Eσp

− (x0)) if Eσp

− (x0) is bounded above; and (ii)
S
σp
r (x0) = ∞ otherwise.
Also, if D +DT > 0, then, with the notation

Γ(X) := −ATX −XA

−(CT −XB)(D +DT )−1(C −BTX), (9)

andAΓ(X) := A−B(D +DT )−1(C −BTX), (10)

the conditions (a)–(c) also relate to the spectral properties of
AΓ(X) for solutionsX to the AREΓ(X) = 0. Critically to
this paper, it is typically assumed that(A,B) is controllable
and (C,A) is observable.

Lemma 7 (Positive-real lemma):Let Bs be as in (1) with
m = n, (A,B) controllable and(C,A) observable; letSσp

a

andSσp
r be as in Definitions 5 and 6, and letΩ andH be as

in (7)–(8). The following are equivalent:

1. Sσp
a (x0) < ∞ for all x0 ∈ Rd (i.e., B(u,y)

s is passive).
2. Sσp

r (x0) < ∞ for all x0 ∈ Rd.
3. H is positive-real.
4. There existsX ∈ Rd×d

s such thatX ≥ 0 andΩ(X) ≥ 0.
5. Sσp

a (x0) =
1
2x

T
0 X−x0 andSσp

r (x0) =
1
2x

T
0 X+x0, where

X−, X+ ∈ Rd×d
s satisfy (i)Ω(X−) ≥ 0 andΩ(X+) ≥ 0;

and (ii) if X ∈ Rd×d
s satisfiesΩ(X) ≥ 0, then0 < X− ≤

X ≤ X+.

If, in addition,D+DT>0 andΓ(X), AΓ(X) are as in (9)–
(10), then 1–5 are equivalent to each of the following:

6. There exists a uniqueX− ∈ R
d×d
s satisfying (i)X− ≥ 0;

(ii) Γ(X−) = 0; and (iii) spec(AΓ(X−)) ∈ C−.
7. There exists a uniqueX+ ∈ Rd×d

s satisfying (i)X+ ≥ 0;
(ii) Γ(X+) = 0; and (iii) spec(AΓ(X+)) ∈ C+.

Moreover, if conditions 6 and 7 hold, thenSσp
a (x0) =

1
2x

T
0 X−x0 andSσp

r (x0) =
1
2x

T
0 X+x0.

Proof: See [2, Sections 3–5].
It was shown in [5] that, if controllability and observability

are not assumed, then the positive-real condition is necessary
but not sufficientfor there to exist a solution to the LMI in the
positive-real lemma (condition 4 in Lemma 7). A new condi-
tion was provided in terms of the polynomial matricesP,Q
describing the external behavior (see Lemma 1). Specifically,
it was shown that there exists a solution to the LMI if and
only if (P,Q) are a positive-real pair, defined as follows.

Definition 8 (Positive-real pair):Let P,Q ∈ Rn×n[ξ]. We
call (P,Q) a positive-real pairif the following hold:

(a) P (λ)Q(λ̄)T +Q(λ)P (λ̄)T ≥ 0 for all λ ∈ C+.
(b) rank(

[

P −Q
]

(λ)) = n for all λ ∈ C+.
(c) If p ∈ Rn[ξ] andλ ∈ C satisfypT (PQ⋆ + QP ⋆) = 0

andp(λ)T
[

P −Q
]

(λ) = 0, thenp(λ) = 0.

Remark 9:If Bs is as in (1), thenB(u,y)
s takes the form

indicated in Lemma 1. WithP,Q as defined in Lemma 1,Q
is nonsingular, andH := Q−1P satisfies (8). Then, condition
(a) of Definition 8 is equivalent toH being positive-real
[5, Sections 4–5]. Also, condition (b) is equivalent to the
stabilizability of B(u,y)

s . Finally, a physical interpretation of
condition (c) is given in [5, Sections 4–5]. This condition
relates to the fact that, if (i)(u,y,x) ∈ Bs and t1 > t0
satisfy x(t0) = x(t1) = 0 and

∫ t1

t0
(uTy)(t)dt = 0; (ii)

(0, ŷ, x̂) ∈ Bs; and (iii) α ∈ R, then (αu, αy+ŷ, αx+x̂) ∈
Bs. It can then be shown that, ifB(u,y)

s is passive, then
∫ t1

t0
(uT ŷ)(t)dt = 0. △

In this paper, we develop the results in [5] to solve the
optimal control problem of extracting the greatest possible
amount of energy from a passive system, and to characterise
the set of solutions to the LMI considered in the positive-real
lemma, in the absence of any controllability or observability
assumptions. The main results in this section are in the next
three theorems, which will be proved in Sections IV and V.

Theorem 10:Let Bs andB(u,y)
s be as in (1) and (4) with

m = n; let Sσp
a be as in Definition 5; and letVo andΩ be as

in (6) and (7). The following are equivalent:

1. Sσp
a (x0) < ∞ for all x0 ∈ Rd (i.e., B(u,y)

s is passive).
2. The external behaviorB(u,y)

s takes the form of (5), where
(P,Q) is a positive-real pair.

3. There existsX ∈ R
d×d
s such thatX ≥ 0 andΩ(X) ≥ 0.

4. Sσp
a (x0) = 1

2x
T
0 X−x0, whereX− ∈ Rd×d

s satisfies (i)
X− ≥ 0; (ii) Ω(X−) ≥ 0; (iii) if z ∈ Rd, then Voz =
0 ⇐⇒ X−z = 0; and (iv) if X ∈ Rd×d

s satisfiesX ≥ 0
andΩ(X) ≥ 0, thenX− ≤ X .

Moreover, if (C,A) is observable and the above conditions
hold, then (i) spec(A) ∈ C−; and (ii) if X ∈ Rd×d

s satisfies
Ω(X) ≥ 0, thenX− ≤ X .

Remark 11:We note from Theorem 10 that, for a passive
system,z ∈ Rd satisfiesVoz = 0 if and only if Sσp

a (z) = 0.
In words, the available energy of the statez is zero if and
only if z is an unobservable mode (we callz an unobservable
mode if (0, 0,x) ∈ Bs wherex(t) = eAtz for all t ∈ R). △

The next theorem provides an explicit expression for the
available energy for the case withD +DT > 0.

Theorem 12:Let Bs be as in (1) withm = n; let Sσp
a be

as in Definition 5; letVo,Γ andAΓ be as in (6), (9) and (10),
respectively; and letD+DT>0. The following are equivalent:

1. Sσp
a (x0) < ∞ for all x0 ∈ Rd (i.e., B(u,y)

s is passive).
2. There existsX− ∈ Rd×d

s satisfying (i) X− ≥ 0; (ii)
Γ(X−) = 0; (iii) if z ∈ Rd satisfiesVoz = 0, then
X−z = 0; and (iv) if λ ∈ C+ and z ∈ Cd satisfy
AΓ(X−)z = λz, thenVoz = 0.

Moreover, if these conditions hold, thenSσp
a (x0)=

1
2x

T
0 X−x0.

The final theorem provides an explicit expression for the
available energy in the general case.

Theorem 13:Let Bs be as in (1) withm = n; let Sσp
a be

as in Definition 5; and letVo andH be as in (6) and (8). The
following are equivalent:

1. Sσp
a (x0) < ∞ for all x0 ∈ Rd (i.e., B(u,y)

s is passive).
2. There existsX− ∈ Rd×d

s satisfying (i) X− ≥ 0; (ii) if
z ∈ Rd satisfiesVoz = 0, thenX−z = 0; and (iii) there
exist real matricesL andW such that

(iiia) −ATX− −X−A = LTL, C −BTX− = WTL, and
D +DT = WTW ; and

(iiib) Z(ξ):=W+L(ξI−A)−1B is a spectral factor of
H+H⋆.

Moreover, if these conditions hold, thenSσp
a (x0)=

1
2x

T
0 X−x0.

In proving Theorems 10, 12 and 13, we show how to com-
pute the available energySσp

a and obtain a linear state feed-
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back law such that, withx0 := x(t0), then
∫∞
t0

−(uTy)(t)dt

is arbitrarily close toSσp
a (x0) (see Remark 16).

We next present an example to illustrate the distinction
between the results in this section and other papers in the
literature that deal with similar objectives.

It has long been recognised that the controllability and ob-
servability assumptions in the positive-real lemma are unduly
restrictive, and there have been many notable attempts to relax
these assumptions. A comprehensive summary is provided in
[6, Section 3.3] (see also [9] for additional properties of the
LMI Ω(X) ≥ 0). These results focus on the equivalence
of the positive-real condition with the existence of solutions
X ∈ Rd×d

s to an LMI (similar to condition 3 of Theorem
10) or an ARE (similar to condition 2 of Theorem 12) [10]–
[13]. None of these papers explicitly consider the optimal
control problem in Definition 5. Also, each of these papers
introduce alternative assumptions that are not necessary for
guaranteeing a solution to the optimal control problem. These
assumptions include: (i) spec(A) ∈ C− [12], [13]; (ii) (A,B)
is stabilizable [10], [11]; (iii)H+H⋆ is nonsingular [11]; (iv)
H(jω)+H(−jω)T > 0 for all ω ∈ R [10], [13] (note that this
implies (iii)); and (v) (C,A) is observable [10], [11]. A key
objective of this paper is to avoid such assumptions entirely.

We also note that several papers have sought to demonstrate
the equivalence of the conditions (a)H(jω)+H(−jω)T ≥ 0
for all ω ∈ R; and (b) there existsX ∈ Rd×d

s (not necessarily
non-negative definite) such thatΩ(X) ≥ 0 [14], [15]. The
papers [16], [17] consider a similar problem using the formal-
ism of the behavioral approach. These papers again introduce
additional assumptions. Specifically, [14] assumes thatA is
unmixed; and [15] assumessign controllability. Both of these
conditions imply the assumption (vi)

[

jωI −A B
]

has full
row rank for allω ∈ R. Also, [17] assumes conditions (iii),
(v) and (vi); and [16] considers only single-input single-output
systems that satisfy conditions (v) and (vi).

However, there are physical systems that do not satisfy any
of the assumptions in these papers. For example, consider the
two electric circuits in Fig. 1. Note that, for each of these cir-
cuits, the pair(A,B) is not stabilizable. This implies that there
is no state feedback law that transfers the internal currents and
voltages to zero (however, there is a state feedback law that
transfers the external currents and voltages to zero, and so
the external behaviorB(i,v)

s is stabilizable). Also, both circuits
violate assumptions (i), (ii) and (vi) in the previous discussion,
and the circuit on the right hasH +H⋆ = 0 (and so violates
assumptions (iii) and (iv)). Now, consider the circuit on the
left. Following note A.1, we let

T :=









1 1 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1









, so T−1 =









1 −1 1 1
0 1 0 0
0 0 1 0
0 0 0 1









,

which transform the system into observer staircase form:

Â := TAT−1 =









−1 0 0 0
−1 0 −1 0
−1 1 −1 −1
0 −1 0 0









, B̂ := TB =









0
1
1
1









,

and Ĉ := CT−1 =
[

−1 0 0 0
]

.

We note that the final three columns ofVoT
−1 are zero (so

this circuit also violates assumption (v)), and it follows from
Theorem 10 thatX− = T T X̂−T whereX̂− = diag

(

λ 0
)

andλ is the least real positive number satisfying

[

−ÂT X̂− − X̂−Â ĈT − X̂−B̂

Ĉ − B̂T X̂− D +DT

]

=





2λ 0 −1
0 03×3 0
−1 0 2



 ≥ 0.

Thus,λ = 1
4 , and from Theorem 10 we conclude that, with

x0 = x(0), thenSσp
a (x0) =

1
8 ((i1 + i2 − v3 − v4)(0))

2. Note
that more energy can be extracted from this system than can
be extracted from the systemB = {(u, y) ∈ Lloc

2 (R,R) ×
Lloc
2 (R,R) | y = u} (for which

∫ t1
t0

−u(t)y(t)dt ≤ 0), despite
the fact that both systems have the same transfer function.

In Remark 16, we will show how to extract the greatest
possible amount of energy from this circuit. Following that
remark, we leti = −(D +DT )−1(C − BTX−)x = 1

2 (i1 +
i2− v3− v4). From the variation of the constants formula (2),

[

i1
i2
v3
v4

]

(t) = 1
2





(cos(t)+e−t)(i1−i2)(0)+ sin(t)(v3−v4)(0)

(− cos(t)+e−t)(i1−i2)(0)− sin(t)(v3−v4)(0)

− sin(t)(i1−i2)(0)+(cos(t)+e−t)(v3−v4)(0)

sin(t)(i1−i2)(0)+(− cos(t)+e−t)(v3−v4)(0)



 ,

whereuponv(t) = − 1
2e

−t((i1 + i2 − v3 − v4)(0)) = −i(t). It
can then be verified that

∫∞
0

−i(t)v(t)dt = 1
8 ((i1 + i2 − v3 −

v4)(0))
2 = S

σp
a (x0).

Now, consider the circuit on the right of Fig. 1. We let

A =

[

0 1
−1 0

]

, B =

[

0
2

]

, C =
[

0 1
]

, andD = 0.

From Theorem 10, we find thatSσp
a (x(0)) = 1

4 ((i1+i2)(0)
2+

(v3+v4)(0)
2). Again, Remark 16 explains how to extract the

greatest amount of energy from this circuit. In that remark,

Aǫ=

[

0 1
−1 −2ǫ

]

, Bǫ=

[

0

2
√
1 + ǫ2

]

, Cǫ=
[

0 1−ǫ2√
1+ǫ2

]

, Dǫ=ǫ,

Xǫ
−=

(1−ǫ)2

2(1+ǫ2)I, uǫ=− 1−ǫ√
1+ǫ2

(v3+v4), andu=−(v3+v4)=−y.

We then let i = u and v = y. In this case,i and v
are independent ofǫ, and it can be verified thati(t) =
te−t(i1+i2)(0) + (te−t − e−t)(v3 + v4)(0) = −v(t) and
∫∞
0

−i(t)v(t)dt = 1
4 ((i1+i2)(0)

2+(v3+v4)(0)
2) = S

σp
a (x0).

We end this section with a remark about the optimal control
problem in Definition 6 concerning the required energy.

Remark 14:The required energySσp
r (x0) is not considered

in Theorems 10, 12 and 13. IfBs is as in (1) and(A,B) is
controllable, thenSσp

r (x0) corresponds to the energy required
to transfer the state tox0 from the origin. However, ifBs is
not controllable, then there existx0 ∈ Rd which cannot be
reached from the origin, so the required energy for such states
is undefined. Indeed, the controllability of(A,B) is related
to the existence of an upper bound to the set ofX ∈ Rd×d

s

which satisfy condition 3 of Theorem 10. Specifically, if there
exist z ∈ Cd and λ ∈ C such thatzT

[

λI−A B
]

= 0,
then zT dx

dt
= λzTx, and sozTx(t) = eλ(t−t0)zTx(t0) for

all t ∈ R, whencezTx(t0) 6= 0 implies that x(t) 6= 0
for all t ∈ R. If, in addition, λ ∈ C−, then there are no
trajectories satisfyingzTx(t0) 6= 0 and limt→−∞(x(t)) = 0.
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dx
dt

= Ax + Bi, v = Cx + Di,

x=col
(

i1 i2 v3 v4
)

A=







−1 −1 1 0
−1 −1 0 1
−1 0 0 0
0 −1 0 0






, B=







1
1
1
1







C=
[

−1 −1 1 1
]

, D=1
[

j −j 1 −1
][

jI−A B
]

=0

H(ξ):=D + C(ξI − A)−1B=1.

dx
dt

= Âx + B̂i, v = Ĉx + D̂i,

x = col
(

i1+i2 v3+v4 i2 v4
)

Â=







0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0






, B̂=







0
2
0
1







Ĉ=
[

0 1 0 0
]

, D̂=0
[

−1 j 2 −2j
][

jI−Â B̂
]

=0

H(ξ):=D̂ + Ĉ(ξI − Â)−1B̂= 2ξ

ξ2+1
.

v5=i5

v2=
di2

dt
v2=

di2

dt

v1=
di1

dt
v1=

di1

dt

dv3

dt
=i3

dv3

dt
=i3

dv4

dt
=i4

dv4

dt
=i4

dv5

dt
=i5

Fig. 1. Two electric circuits with uncontrollable and unobservable state-space
representations.

In fact, for a passive system, the following two conditions
are equivalent: (i) the LMI in condition 4 of Lemma 7 has
no upper bound; and (ii) there exists0 6= z ∈ Cd and
λ ∈ C− such thatzT

[

λI−A B
]

= 0. To see that (ii)⇒
(i), let X ∈ R

d×d
s satisfyΩ(X) ≥ 0 and X̂ := zz̄T + z̄zT .

Then, for any givenα > 0, 0 ≤ X + αX̂ ∈ Rd×d
s satisfies

Ω(X+αX̂) = Ω(X)−α(λ+λ̄)diag
(

X̂ 0
)

≥ 0. Conversely,
if (ii) does not hold, then there existsK ∈ Rd×n such
that spec(A + BK) ∈ C+. Then, for any givenx0 ∈ Rd,
there exists a trajectory(u,y,x) ∈ Bs with u = Kx,
x(t0) = x0 and limt→−∞(x(t)) = 0. Finally, for this
trajectory, it can be shown that (a) there existsX̂ ∈ Rd×d

s

such that
∫ t0
−∞(uTy)(t)dt ≤ 1

2x
T
0 X̂x0; and (b) ifX satisfies

condition 4 of Lemma 7, then12x
T
0 Xx0 ≤

∫ t0

−∞(uTy)(t)dt.
It follows that (i) does not hold. △

The following two sections provide the proofs of Theorems
10, 12 and 13. Then, in Sections VI–VIII, we state and prove
three analogous theorems relevant tonon-expansive systems.

IV. PASSIVE SYSTEMS AND THE AVAILABLE ENERGY

In this section, we prove Theorem 10. The proof uses the
concept ofstorage functionsand the results in Appendix B.

Proof of Theorem 10:That 2 ⇐⇒ 3 is shown in [5].
Here, we prove 1⇒ 4 ⇒ 3 ⇒ 1.

1 ⇒ 4. First, consider ak > 0 such thatI + kD is
nonsingular, and letz ∈ Rd be fixed but arbitrary. Then, let

C̃ := (I + kD)−1C and Ã := A− kB(I + kD)−1C; (11)

let x̃(t) = eÃ(t−t0)z for all t ∈ R; and let ũ = −kC̃x̃ and
ỹ = C̃x̃. It can be verified that(ũ, ỹ, x̃) ∈ Bs, x̃(t0) = z, and
∫ t1

t0
−(ũT ỹ)(t)dt = k

∫ t1

t0
(ỹT ỹ)(t)dt ≥ 0. Thus,Sσp

a (x0) =
1
2x

T
0 X−x0 for someX− ∈ R

d×d
s with X− ≥ 0 by Lemma

B.4 (it is conventional to include the12 ). It remains to show
thatX− satisfies conditions 4(ii)–(iv).

The proof of 4(iii) is inspired by [2, Proof of Lemma 1].
Note initially that, sinceX− ≥ 0, then any givenz ∈ Rd

satisfiesX−z = 0 ⇐⇒ zTX−z = 0 ⇐⇒ S
σp
a (z) = 0,

whenceVoz = 0 ⇒ X−z = 0 by Lemma B.5. Now, let̃u, ỹ,

andx̃ be as in the previous paragraph, so
∫ t1

t0
−(ũT ỹ)(t)dt =

k
∫ t1
t0

(ỹT ỹ)(t)dt ≤ S
σp
a (z). If X−z = 0, then0 = S

σp
a (z) ≥

k
∫ t1

t0
(ỹT ỹ)(t)dt, so ỹ(t) = C̃eÃ(t−t0)z = 0 for all t ≥ t0.

This implies C̃Ãkz = 0 (k = 0, 1, 2, . . .), which implies
CAkz = 0 (k = 0, 1, 2, . . .), henceVoz = 0.

To prove 4(ii), note from Lemma B.3 thatSσp
a is a stor-

age function (with respect touTy). Thus, Sσp
a (x(t1)) ≤

∫ t1

t0
(uTy)(t)dt + S

σp
a (x(t0)) for all (u,y,x) ∈ Bs and

t1 ≥ t0. From the variation of the constants formula (2)–
(3), for any given x0 ∈ Rd and u0 ∈ Rn, there ex-
ists a (u,y,x) ∈ Bs with x differentiable,x(t0) = x0,
and u(t0) = u0. Thus, (uTy)(t0) − d

dt
(S

σp
a (x))(t0) =

1
2

[

xT
0 uT

0

]

Ω(X−)col
(

x0 u0

)

≥ 0, and soΩ(X−) ≥ 0.
To prove 4(iv), note that ifX ≥ 0 andΩ(X) ≥ 0, then

2
∫ t1

t0
(uTy)(t)dt −

[

(xTXx)(t)
]t1

t0

=
∫ t1

t0
(
[

xT uT
]

Ω(X)col
(

x u
)

)(t)dt, (12)

so 1
2x(t1)

TXx(t1) ≤
∫ t1
t0

(uTy)(t)dt+ 1
2x(t0)

TXx(t0). With
S(x0) := 1

2x
T
0 Xx0 for all x0 ∈ Rd, it follows that S is a

storage function. Thus,xT
0 Xx0 ≥ xT

0 X−x0 for all x0 ∈ Rd

by Lemma B.3, which impliesX ≥ X−.
4 ⇒ 3. Immediate.
3 ⇒ 1. Recall from the proof of 1⇒ 4(iv) that

S(x0) =
1
2x

T
0 Xx0 is a storage function (with respect touTy).

Condition 1 then follows from Lemma B.3.
It remains to show that, if(C,A) is observable and condi-

tions 1–4 hold, then (i) spec(A) ∈ C−; and (ii) if X ∈ Rd×d
s

satisfiesΩ(X) ≥ 0, thenX− ≤ X .
Condition (i) follows from [3, Theorem 3.7.5], as condition

4 implies thatX− > 0 and−ATX− −X−A ≥ 0.
To see (ii), letX ∈ Rd×d

s satisfyΩ(X) ≥ 0, and note that
(12) holds. Then, for any givenx0 ∈ Rd and ǫ > 0, there
exists(u,y,x) ∈ Bs with x(t0) = x0 and t1 ≥ t0 such that
∫ t1

t0
−(uTy)(t)dt=S

σp
a (x0)−ǫ≤1

2 (x
T
0 Xx0−x(t1)

TXx(t1)).

We will show that there existsM ∈ R (independent ofǫ)
such thatx(t1)TXx(t1) ≥ Mǫ. This implies thatxT

0 X−x0 ≤
xT
0 Xx0 + ǫ(1 −M). Sinceǫ can be chosen to be arbitrarily

small, we conclude thatX− ≤ X .
To obtain the boundM , let k > 0 be such thatI + kD is

nonsingular; letC̃ and Ã be as in (11); letx(t1) = x1; and
let (ũ(t), ỹ(t), x̃(t)) = (u(t),y(t),x(t)) for all t0 ≤ t < t1,
and x̃(t) = eÃ(t−t1)x1, ũ(t) = −kC̃x(t), and ỹ(t) = C̃x(t)
for all t ≥ t1. Then (ũ, ỹ, x̃) ∈ Bs with x̃(t0) = x0. Next,
consider a fixedT > 0, and let Õ :=

∫ T

0 eÃ
T τ C̃T C̃eÃτdτ .

From earlier in the proof,(C̃, Ã) is observable since(C,A)
is, and soÕ > 0. Moreover,
∫ t1+T

t0
−(ũT ỹ)(t)dt = S

σp
a (x0)− ǫ+ kxT

1 Õx1 ≤ S
σp
a (x0),

soxT
1 Õx1 ≤ ǫ/k. Now, letλ > 0 denote the least eigenvalue

of Õ. Also, if X ≥ 0 we let µ := 0, and otherwise we let
µ < 0 be the most negative eigenvalue ofX . By Rayleigh’s
quotient,xT

1 Xx1 ≥ µxT
1 x1 ≥ µ

λ
xT
1 Õx1 ≥ µǫ

kλ
, which gives

the boundM := µ/(kλ).



6

V. EXPLICIT CHARACTERISATION OF THE AVAILABLE

ENERGY

In this section, we prove Theorems 12 and 13. We also show
how to compute the available energy of a passive system.

Proof of Theorem 12:With the notation

S(X) :=

[

I 0
(D +DT )−1(BTX − C) I

]

, (13)

thenS(X) is nonsingular and

S(X)TΩ(X)S(X) =

[

Γ(X) 0
0 D +DT

]

. (14)

Thus,Ω(X) ≥ 0 ⇐⇒ Γ(X) ≥ 0.
2 ⇒ 1. From (14), X− ≥ 0 and Ω(X−) ≥ 0, so

S
σp
a (x0) < ∞ for all x0 ∈ Rd by Theorem 10.
1 ⇒ 2. Since S

σp
a (x0) < ∞ for all x0 ∈ Rd, then

S
σp
a (x0) = 1

2x
T
0 X−x0 for someX− ∈ Rd×d

s satisfying (i)
X− ≥ 0, (ii) Ω(X−) ≥ 0, and (iii) if z ∈ R

d, thenX−z =
0 ⇐⇒ Voz = 0, by Theorem 10. It remains to show that
conditions 2(ii) and 2(iv) are also satisfied.

To show condition 2(ii), we letσ(u,y) = uTy. From the
proof of Theorem 10,σ satisfies the conditions of Lemma
B.4, so (35) holds from the proof of that lemma. Also, for
any givent2 ≥ t1 ≥ t0 and (u,y,x) ∈ Bs with x(t0) = x0,
∫ t2

t0
−σ(u,y)(t)dt ≤

∫ t1

t0
−σ(u,y)(t)dt + S

σp
a (x(t1))

= Sσp
a (x0)− 1

2

∫ t1

t0
(
[

xT uT
]

Ω(X−)col
(

x u
)

)(t)dt.

By taking the supremum over allt2 ≥ t1 andu ∈ Lloc
2 (R,Rn),

and using (35) from the proof of Lemma B.4, we find that

0 ≤ sup
u∈Lloc

2
(R,Rn)

∫ t1

t0
−(

[

xT uT
]

Ω(X−)col
(

x u
)

)(t)dt

such that(u,y,x) ∈ Bs,x(t0) = x0, (15)

for any givenx0 ∈ Rd and t1 ≥ t0 ∈ R. SinceΩ(X−) ≥ 0,
then the above inequality must be satisfied with equality. We
let v := u+ (D+DT )−1(C −BTX−)x, so (13)–(15) imply

0 = inf
v∈Lloc

2
(R,Rn)

∫ t1

t0
(xTΓ(X−)x+ vT (D+DT )v)(t)dt

such thatx ∈ Lloc
2 (R,Rd), dx

dt
=AΓ(X−)x+Bv,x(t0)=x0.

From [18, Section 2.3], for any givent1 ≥ t0, the above
infimum is equal toxT

0 P (t0−t1)x, whereP is an absolutely
continuous matrix function that satisfiesP (0) = 0 and

− dP
dt

= PAΓ(X−) +AΓ(X−)
TP

− PB(D +DT )−1BTP + Γ(X−). (16)

Sincex0 ∈ R
d can be chosen arbitrarily, thenP (t) = dP

dt
(t) =

0 for all t < 0, and soΓ(X−) = 0 by (16).
To show condition 2(iv), we consider the cases: (i)(C,A)

observable; and (ii)(C,A) not observable.
Case (i):(C,A) observable. We note that

[

λI −A B
]

has full row rank for allλ ∈ C+ (see Remarks 4 and 9).
This implies that

[

λI −AΓ(X−) B
]

has full row rank for
all λ ∈ C+, so (AΓ(X−), B) is stabilizable. The proof of this
condition is then identical to [4, Lemma 7].

Case (ii): (C,A) not observable. Consider the observer
staircase form (see note A.1), and letBs and Ŝσ

a be as in
Lemma B.5 (withσ(u,y) = uTy). It follows from Lemma
B.5 thatX− = T Tdiag

(

X̂− 0
)

T whereX̂− ∈ Rd̂×d̂
s with

1
2 x̂

T
0 X̂−x̂0 = Ŝ

σp
a (x̂0) for all x̂0 ∈ Rd̂. With

Γ̂(X̂):=−AT
11X̂−X̂A11−(CT

1 −X̂B1)(D+DT )−1(C1−BT
1 X̂),

andAΓ̂(X̂):=A11−B1(D+DT )−1(C1−BT
1 X̂), (17)

it follows from case (i) thatX̂− ≥ 0, Γ̂(X̂−) = 0, and
spec(AΓ̂(X̂−)) ∈ C−. Also, it can be verified thatΓ(X−) =
T Tdiag

(

Γ̂(X̂−) 0
)

T ; and

TAΓ(X−)T
−1 =

[

AΓ̂(X̂−) 0

Â21 A22

]

, (18)

whereÂ21 := A21−B2(D+DT )−1(CT
1 −BT

1 X̂−). Now, sup-
poseλ ∈ C+ andz ∈ Cd satisfyAΓ(X−)z = λz, and letT1

be as in note A.1. SinceλI −AΓ̂(X̂−) is nonsingular for all
λ ∈ C+, then (18) implies thatT1z = 0, and it is then easily
shown thatVoz = 0.

It remains to show that ifX− satisfies condition 2, then
S
σp
a (x0) =

1
2x

T
0 X−x0. To prove this, we assume that(C,A)

is observable, and we show that ifX ∈ Rd×d
s satisfiesX ≥ 0,

X 6= X−, andΓ(X) = 0, then spec(AΓ(X)) 6∈ C−. The case
with (C,A) not observable can then be shown by considering
the observer staircase form as in the proof of case (ii) above.

If Γ(X) = 0, then Ω(X) ≥ 0, so Y := X −
X− ≥ 0 by Theorem 10. Also, by direct calculation,
AΓ(X−)

TY+Y AΓ(X−)+Y B(D+DT )−1BTY = 0. From
before, (AΓ(X−), B) is stabilizable, so from [4, Proof of
Lemma A.1] we find thatAΓ(X−) + B(D+DT )−1BTY =
AΓ(X) satisfies spec(AΓ(X)) 6∈ C−.

Remark 15:From the proof of Theorems 10 and 12, in order
to find the matrixX− in those theorems, it suffices to find an
X− ∈ R

d×d
s satisfyingΓ(X−) = 0 and spec(AΓ(X−)) ∈ C−

for the case with(C,A) observable. This can be obtained from
the controller staircase form [3, Theorem 3.3.4]:

TAT−1=

[

A11 A12

0 A22

]

, TB=

[

B1

0

]

, CT−1=
[

C1 C2

]

, (19)

with (A11, B1) controllable. Since(C,A) is observable, then
so too is(C1, A11). Furthermore,D + C1(ξI−A11)

−1B1 =
D + C(ξI−A)−1B, which is positive-real (see Remark 9).
Thus, withΓ̂ andAΓ̂ as in (17), there exists a uniqueX11 > 0

satisfyingΓ̂(X11) = 0 and spec(AΓ̂(X11)) ∈ C− [2, Lemma
2]. This can be efficiently computed using the methods in [3,
Chapter 6]. Next, note that(A,B) is stabilizable since(C,A)
is observable (see Remarks 4 and 9), so spec(A22) ∈ C− [7,
Corollary 5.2.31]. Thus, from [3, Theorem 3.7.4], there exists
a unique realXT

12 satisfying the Sylvester equation:

AT
22X

T
12+XT

12AΓ̂(X11)

= −AT
12X11 − CT

2 (D+DT )−1(C1−BT
1 X11),

and a unique realZ ≥ 0 satisfying the Lyapunov equation:

−(AT
22Z+ZA22)

= (CT
2 −XT

12X
−1
11 CT

1 )(D+DT )−1(C2−C1X
−1
11 X12).
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Then, with the notation

Â12 := A12−B1(D+DT )−1(C2−BT
1 X12),

andX− = T T

[

X11 X12

XT
12 Z +XT

12X
−1
11 X12

]

T,

it can be verified thatX− ≥ 0, Γ(X−) = 0, and

TAΓ(X−)T
−1 =

[

AΓ̂(X11) Â12

0 A22

]

.

This implies that spec(AΓ(X−)) = spec(AΓ̂(X11)) ∪
spec(A22) ∈ C−, soX− is the matrix in Theorem 12. △

To finish this section we prove Theorem 13.
Proof of Theorem 13: That 2⇒ 1 is immediate from

Theorem 10, sinceX− ≥ 0 satisfiesΩ(X−) ≥ 0. It remains
to show that 1⇒ 2, and ifX− has the properties indicated in
condition 2 thenSσp

a (x0) =
1
2x

T
0 X−x0. We will prove this for

the cases: (i)(C,A) observable andD+DT > 0; (ii) (C,A)
observable; and finally (iii)(C,A) not observable.

Case (i) (C,A) observable and D+DT > 0. It
suffices to show thatX− satisfies condition 2 in Theorem 12
if and only if X− satisfies condition 2 in the present theorem.

First, let X− satisfy condition 2 in Theorem 12. Since
D + DT > 0, then there exists a nonsingularW satisfying
WTW = D +DT . We letL := (WT )−1(C − BTX−), and
we obtain−ATX− −XT

−A− LTL = Γ(X−) = 0.
Now, letZ(ξ):=W+L(ξI−A)−1B. From Theorems 10 and

12, spec(A)∈C− and spec(AΓ(X−))∈C−. Also,
[

λI−A −B
L W

]

=

[

λI−AΓ(X−) −B
0 W

] [

I 0
W−1L I

]

. (20)

The matrices in (20) have full row rank for allλ ∈ C+, soZ
is a spectral factor forH +H⋆ by Lemma D.1.

Next, let X− satisfy condition 2 in the present theorem.
SinceW + L(ξI − A)−1B is a spectral factor ofH + H⋆,
thenW is nonsingular. Thus,L = (WT )−1(C−BTX−), and
Γ(X−) = −ATX−−X−A−LTL = 0. As before, spec(A) ∈
C−, so the matrices in (20) have full row rank for allλ ∈ C+

by Lemma D.1, and so spec(AΓ(X−)) ∈ C−.
Case (ii) (C,A) observable. Let P and Q be as in

Theorem 10, and letP1 := P andQ1 := Q. If P1 andQ1 do
not satisfy the conditions of case (i), then we will construct
Pm, Qm ∈ Rnm×nm [ξ] that do. Specifically, we consider the
following four statements:

(R1) Pi, Qi ∈ Rni×ni [ξ] where(Pi, Qi) is a positive-real
pair andQ−1

i Pi is proper.
(R2) Di := limξ→∞(Q−1

i Pi(ξ)) is symmetric.
(R3) Pi is nonsingular andDi = diag

(

Iri 0
)

.
(R4) Di = I or ni = 0.

By Theorem 10, P1 and Q1 satisfy condition (R1).
Then, using Lemmas D.2–D.4, we constructP2, . . . , Pm,
Q2, . . . , Qm such that condition (R1) is satisfied,ni≤ni−1,
anddeg (det (Qi))≤deg (det (Qi−1)), for i = 2, . . . ,m; and

1) If, for i = k−1, (R2) is not satisfied, then (R2) is satisfied
for i = k (Lemma D.2).

2) If, for i = k−1, (R2) is satisfied but (R3) is not, then (R2)
and (R3) are satisfied fori = k; and if Pk−1 is singular
thennk < nk−1 (Lemma D.3).

3) If, for i = k−1, (R2) and (R3) are satisfied but (R4) is not,
thendeg (det (Qk)) < deg (det (Qk−1)) (Lemma D.4).

This inductive procedure terminates in a finite number of steps
with matricesPm andQm that satisfy conditions (R1)–(R4).
The procedure is inspired by the sequence of transformations
outlined in [3, Section 8.4]. In contrast to [3], we also consider
the case of uncontrollable systems.

Next, we consider the following four statements:
(S1) There exist polynomial matricesMi, Ni, Ui, Vi, Ei, Fi

such that

[

Mi Ni

Ui Vi

] [

−Di I −Ci

−Bi 0 Ai

]

=

[

−Pi Qi 0
−Ei −Fi I

]

,

whereAi(ξ) := ξI−Ai, and the leftmost matrix is unimodular.

(S2) WithΩi(X) :=

[

−AT
i X−XAi CT

i −XBi

Ci−BT
i X Di+DT

i

]

, thenXi

is a real matrix that satisfies (i)Xi ≥ 0; (ii) Ωi(Xi) ≥ 0; and
(iii) if X is a real matrix that satisfiesX ≥ 0 andΩi(X) ≥ 0,
thenXi ≤ X .

(S3) Xi, Li andWi are real matrices such thatXi ≥ 0 and

Ωi(Xi)=

[

−AT
i Xi−XiAi CT

i −XiBi

Ci−BT
i Xi Di+DT

i

]

=

[

LT
i

WT
i

]

[

Li Wi

]

.

(S4)

[

λI −Ai −Bi

Li Wi

]

has full row rank for allλ ∈ C+.

From notes A.1–A.2, there exist real matrices
Am, Bm, Cm, Dm such that condition (S1) holds. Then,
from case (i), there is a uniqueXm for which there existLm

andWm that satisfy conditions (S3) and (S4). Furthermore,
by Theorem 10, thisXm also satisfies condition (S2). Then,
using Lemmas D.2–D.4, we find that there are uniqueXi

for which there existLi and Wi that satisfy conditions
(S3) and (S4), and theseXi also satisfy condition (S2)
(i = m− 1, . . . , 1). Now, let

B̂s:={(u,y,x1)∈Lloc
2 (R,Rn)×Lloc

2 (R,Rn)×Lloc
2

(

R,Rd1
)

|
dx1

dt
= A1x1 +B1u andy = C1x1 +D1u}.

SinceP = P1 andQ = Q1, then from note A.2 we conclude
that (C1, A1) is observable and̂B(u,y)

s = B(u,y)
s . Thus, from

note A.3, there exists a nonsingularT ∈ Rd×d such that
(34) holds. It can then be verified thatX− := T TX1T ,
L := L1T , andW := W1 satisfy condition 2 in the present
theorem statement; andX− satisfies (a)Ω(X−) ≥ 0; and (b)
if X ∈ Rd×d

s satisfiesX ≥ 0 andΩ(X) ≥ 0, thenX− ≤ X .
SinceX− is uniquely determined by conditions (a)–(b), then
S
σp
a (x0) =

1
2x

T
0 X−x0 by Theorem 10.

Case (iii) (C,A) not observable. Consider the observer
staircase form (see note A.1), soD + C1(ξI−A11)

−1B1 =
D+C(ξI−A)−1B, and letT be as in note A.1 and̂Bs andŜσ

a

be as in Lemma B.5 (for the caseσ(u,y) = uTy). It follows
from Lemma B.5 thatX− = T Tdiag

(

X̂− 0
)

T whereX̂− ∈
Rd̂×d̂

s with 1
2 x̂

T
0 X̂−x̂0 = Ŝ

σp
a (x̂0) for all x̂0 ∈ Rd̂. From case

(ii), X̂− is the unique real matrix satisfying (a)̂X− ≥ 0; and
(b) there exist real matriceŝL, Ŵ such that
(b1) −AT

11X̂−−X̂−A11=L̂T L̂, C1−BT
1 X̂−=ŴT L̂, and

D +DT = ŴT Ŵ ; and
(b2) Ŵ+L̂(ξI−A11)

−1B1 is a spectral factor ofH+H⋆.
Then, withL := [L̂ 0]T , andW := Ŵ , it can be verified that
condition 2 of the present theorem statement holds. Also, if
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X−, L andW are real matrices satisfying condition 2, then
X− = T Tdiag

(

X̂− 0
)

T for some0 ≤ X̂− ∈ Rd̂×d̂
s with

[

(T−1)T 0
0 I

] [

−ATX−−X−A CT−X−B
C−BTX− D+DT

] [

(T−1) 0
0 I

]

=







−AT
11X̂−−X̂−A11 0 CT

1 −X̂−B1

0 0 0

C1−BT
1 X̂− 0 D+DT






.

This implies thatL = [L̂ 0]T , andW = Ŵ where L̂ and
Ŵ satisfy the aforementioned conditions (b1) and (b2). Then,
from case (ii) and Lemma B.5,Sσp

a (x0) = Ŝ
σp
a (T1x0) =

1
2x

T
0 T

T
1 X̂−T1x0 = 1

2x
T
0 X−x0 for all x0 ∈ Rd.

We conclude this section with a remark about computing
the optimal control.

Remark 16:If Bs in (1) satisfiesm = n andD+DT > 0,
andAΓ(X−) in Theorem 12 satisfies spec(AΓ(X−)) ∈ C−,
then u := −(D+DT )−1(C−BTX−)x and (u,y,x) ∈
Bs imply

∫ t1

t0
−(uTy)(t)dt = − 1

2

[

(xTX−x)(t)
]t1

t0
and

dx
dt
=AΓ(X−)x. Thus, ifx(t0) = x0, then

∫∞
t0

−(uTy)(t)dt =

S
σp
a (x0).
If, on the other hand, D+DT is singular or

spec(AΓ(X−)) 6∈ C−, then there still exists a linear
state feedback law such that, withx0 := x(t0), then
∫∞
t0

−(uTy)(t)dt comes arbitrarily close to the supremum
S
σp
a (x0). This can be constructed as follows. First, it follows

from note A.1 and Lemma B.5 that no generality is lost in
assuming(C,A) is observable. We then letǫ > 0, and we
note that(I + ǫD) is necessarily nonsingular. We define

Aǫ:=A−B(I + ǫD)−1ǫC, Bǫ:=B(I + ǫD)−1
√

1 + ǫ2,

Cǫ:=
(1−ǫ2)√
1+ǫ2

(I + ǫD)−1C, Dǫ:=(D + ǫI)(I + ǫD)−1, and

Bǫ
s:={(uǫ,yǫ,x)∈Lloc

2 (R,Rn)×Lloc
2 (R,Rn)×Lloc

2

(

R,Rd
)

|
dx
dt

= Aǫx+Bǫuǫ andyǫ = Cǫx+Dǫuǫ},

souǫ = (u+ǫy)/
√
1 + ǫ2 andyǫ = (y+ǫu)/

√
1 + ǫ2 satisfy

∫ t1

t0
(uT

ǫ yǫ)(t)dt =
∫ t1

t0
(uTy)(t)dt

+ ǫ√
1−ǫ2

∫ t1

t0
(uT

ǫ uǫ + yT
ǫ yǫ)(t)dt, (21)

and (u,y,x) ∈ Bs if and only if (uǫ,yǫ,x) ∈ Bǫ
s.

Also, with H(ξ) := D+C(ξI−A)−1B and Hǫ(ξ) :=
Dǫ+Cǫ(ξI−Aǫ)

−1Bǫ, thenHǫ = (H+ǫI)(I+ǫH)−1. It can
then be verified thatHǫ(jω) +Hǫ(−jω)T > 0 for all ω ∈ R,
Dǫ+DT

ǫ > 0, andHǫ has no poles inC+. Since, in addition,
(C,A) is observable and(A,B) is stabilizable, then it can
be shown that spec(Aǫ) ∈ C−. It then follows from [11] that
there existsXǫ

− ∈ Rd×d
s such that

−AT
ǫ X

ǫ
−−Xǫ

−Aǫ−(CT
ǫ −Xǫ

−Bǫ)(Dǫ+DT
ǫ )

−1(Cǫ−BT
ǫ X

ǫ
−)=0,

and spec(Aǫ −Bǫ(Dǫ +DT
ǫ )

−1(Cǫ −BT
ǫ X

ǫ
−)) ∈ C−,

and it follows that if uǫ := −(Dǫ+DT
ǫ )

−1(Cǫ−BT
ǫ X

ǫ
−)x

and (uǫ,yǫ,x) ∈ Bǫ
s, then x(t) → 0 as t → ∞, and

∫∞
t0

−(uT
ǫ yǫ)(t)dt = 1

2x(t0)
TXǫ

−x(t0). Thus, if u = (I +

ǫD)−1(
√
1 + ǫ2uǫ − ǫCx) and (u,y,x) ∈ Bs, then uǫ =

(u+ ǫy)/
√
1 + ǫ2 andyǫ = (y + ǫu)/

√
1 + ǫ2, sox(t) → 0

as t → ∞ and
∫∞
t0

−(uTy)(t)dt ≥ 1
2x(t0)

TXǫ
−x(t0) by

(21). Finally, it can be verified thatXǫ
− → X− as ǫ → 0,

so
∫∞
t0

−(uTy)(t)dt can be made arbitrarily close to the
supremumSσp

a (x0) by takingǫ sufficiently small.
A similar argument holds for non-expansive behaviors

(considered in the next three sections). In this case, we let
Aǫ:=A,Bǫ:=B,Cǫ:=(1−ǫ)C,Dǫ:=(1−ǫ)D. △

VI. N ON-EXPANSIVE SYSTEMS

In addition to the results on passive systems, we also extend
the famous bounded-real lemma to systems that are neither
observable nor controllable. This lemma is concerned with
non-expansivesystems, defined as follows.

Definition 17 (Non-expansive system):Let Bs be as in (1).
For any givenx0 ∈ Rd, let

Eσg

+ (x0) = {
∫ t1

t0
(yTy − uTu)(t)dt | t1 ≥ t0, (u,y,x) ∈ Bs,

andx(t0) = x0}.
Then the available storageSσg

a satisfies (i) Sσg
a (x0) =

sup(Eσg

+ (x0)) if Eσg

+ (x0) is bounded above; and (ii)
S
σg
a (x0) = ∞ otherwise. IfSσg

a (x0) < ∞ for all x0 ∈ Rd,
thenBs is callednon-expansive.

In our results, the following new concept of abounded-real
pair plays a central role.

Definition 18 (Bounded-real pair):Let P ∈ Rm×n[ξ] and
Q ∈ R

m×m[ξ]. We call (P,Q) a bounded-real pairif the
following hold:
(a) Q(λ)Q(λ̄)T − P (λ)P (λ̄)T ≥ 0 for all λ ∈ C+.
(b) rank(

[

P −Q
]

(λ)) = m for all λ ∈ C+.
(c) If p ∈ Rm[ξ] andλ ∈ C satisfypT (QQ⋆ − PP ⋆) = 0

andp(λ)T
[

P −Q
]

(λ) = 0, thenp(λ) = 0.
Remark 19:It can be shown that, if(P,Q) is a bounded-

real pair, thenQ is nonsingular and‖Q−1P‖∞≤1. But the
converse is not true. For example, ifP (ξ) = Q(ξ) = ξ+1,
then‖Q−1P‖∞=1, and condition (b) in Definition 18 holds,
but not condition (c), so(P,Q) is not a bounded-real pair.△

In this section, we provide necessary and sufficient condi-
tions for a system to be non-expansive (in the absence of any
controllability and observability assumptions). These relate (a)
the existence of matricesX ∈ Rd×d

s such thatX ≥ 0 and

Λ(X) :=

[

−ATX −XA− CTC −CTD −XB
−DTC −BTX I −DTD

]

(22)

satisfiesΛ(X) ≥ 0; and (b) the bounded-real pair concept.
Also, if I −DTD > 0, then, with the notation

Π(X) := −ATX −XA− CTC

−(CTD +XB)(I −DTD)−1(DTC +BTX), (23)

andAΠ(X) := A+B(I −DTD)−1(DTC +BTX), (24)

conditions (a)–(b) also relate to the spectral properties of
AΠ(X) for solutionsX to the AREΠ(X) = 0. The results
in this section are presented in the next three theorems, which
we prove in Sections VII–VIII.

Theorem 20:Let Bs,B(u,y)
s , Vo andΛ be as in (1), (4), (6)

and (22), respectively; and letSσg
a be as in Definition 17. The

following are equivalent:



9

1. Sσg
a (x0) < ∞ for all x0 ∈ Rd (i.e.,Bs is non-expansive).

2. The external behaviorB(u,y)
s takes the form of (5), where

(P,Q) is a bounded-real pair.
3. There existsX ∈ Rd×d

s such thatX ≥ 0 andΛ(X) ≥ 0.
4. Sσg

a (x0) = xT
0 X−x0, where X− ∈ Rd×d

s satisfies (i)
X− ≥ 0; (ii) Λ(X−) ≥ 0; (iii) if z ∈ R

d, then
Voz = 0 ⇐⇒ X−z = 0; and (iv) if X ∈ Rd×d

s satisfies
X ≥ 0 andΛ(X) ≥ 0, thenX− ≤ X .

Moreover, if (C,A) is observable and the above conditions
hold, then (i) spec(A) ∈ C−; and (ii) if X ∈ Rd×d

s satisfies
Λ(X) ≥ 0, thenX− ≤ X .

Remark 21:From [4, Theorems 3–6], if(A,B) is con-
trollable, then (i) for a system to be non-expansive it is
necessary and sufficient for theH∞ norm of the system’s
transfer function to be bounded above by one; and (ii) the set
of solutions to the LMI in the bounded-real lemma (condition3
in Theorem 20) is bounded. However, both of these conditions
can fail to hold when(A,B) is not controllable. △

Theorem 22 provides an explicit solution to the optimal
control problem in Definition 17 in the caseI −DTD > 0.

Theorem 22:Let Bs, Vo, H,Π andAΠ be as in (1), (6), (8),
(23) and (24), respectively; letSσg

a be as in Definition 17; and
let I −DTD > 0. The following are equivalent
1. Sσg

a (x0) < ∞ for all x0 ∈ R
d (i.e.,Bs is non-expansive).

2. There existsX− ∈ Rd×d
s satisfying (i) X− ≥ 0; (ii)

Π(X−) = 0; (iii) if z ∈ Rd satisfiesVoz = 0, then
X−z = 0; and (iv) if λ ∈ C+ and z ∈ Cd satisfy
AΠ(X−)z = λz, thenVoz = 0.

Moreover, if these conditions hold, thenSσg
a (x0) = xT

0 X−x0.
Theorem 23 solves the optimal control problem in Defini-

tion 17 in the general case.
Theorem 23:Let Bs, Vo andH be as in (1), (6) and (8),

respectively; and letSσg
a be as in Definition 17. The following

are equivalent:
1. Sσg

a (x0) < ∞ for all x0 ∈ Rd (i.e.,Bs is non-expansive).
2. There existsX− ∈ Rd×d

s satisfying (i) X− ≥ 0; (ii) if
z ∈ Rd satisfiesVoz = 0, thenX−z = 0; and (iii) there
exist real matricesL andW such that
(iiia) −ATX−−X−A−CTC = LTL, −DTC−BTX− =

WTL, andI −DTD = WTW ; and
(iiib) Z(ξ) := W + L(ξI−A)−1B is a spectral factor of

I −H⋆H .
Moreover, if these conditions hold, thenSσg

a (x0) = xT
0 X−x0.

Remark 24:As is the case with the positive-real lemma,
there have been many notable attempts to relax the con-
trollability and observability assumptions in the bounded-real
lemma. A particularly well known result is the so-called
strictly bounded-real lemma [6, Lemma 5.6.5]. This lemma
proves that, ifBs is as in (1) and spec(A) ∈ C−, andH,Π
andAΠ are as in (8), (23) and (24) then‖H‖∞ < 1 if and only
if I −DTD > 0 and there existsX ≥ 0 such thatΠ(X) = 0
and spec(AΠ(X)) ∈ C−. △

VII. N ON-EXPANSIVE SYSTEMS AND THE AVAILABLE

STORAGE

To prove Theorem 20, we will employ transformations that
relate non-expansive and passive systems, and similar trans-
formations that relate positive-real and bounded-real pairs.

Proof of Theorem 20:We will first show the two chains
of implications 1⇒ 4 ⇒ 3 ⇒ 1, and 4⇒ 2 ⇒ 3.

1 ⇒ 4 ⇒ 3 ⇒ 1. First, let z ∈ Rd, and let
x̃(t) = eA(t−t0)z for all t ∈ R, ũ = 0, and ỹ = Cx̃. Then
(ũ, ỹ, x̃) ∈ Bs, x̃(t0) = z, and

∫ t1
t0

(ỹT ỹ − ũT ũ)(t)dt ≥ 0.

Second, note that
∫ t1

t0
(uTu− yTy)(t)dt −

[

xTXx
]t1

t0
=

∫ t1

t0
(
[

xT uT
]

Λ(X)col
(

x u
)

)(t)dt. With these two obser-
vations, the present implications can be shown in a similar
manner to the corresponding implications in Theorem 10.

2 ⇒ 3. Consider the observer staircase form (see note
A.1), and let

Λ̂(X̂) :=

[

−ÂT
11X̂−X̂Â11−ĈT

1 Ĉ1 −ĈT
1 D̂−X̂B̂1

−D̂T Ĉ1−B̂T
1 X̂ I−D̂T D̂

]

.

If there existsX̂ ∈ Rd̂×d̂
s satisfyingX̂ ≥ 0 and Λ̂(X̂) ≥ 0,

thenX := T Tdiag
(

X̂ 0
)

T satisfiesX ≥ 0 andΛ(X) ≥ 0.
Thus, it suffices to prove this implication for the case with
(C,A) observable. We will prove this for the cases: (i)m = n,
(ii) n < m, and (iii) m < n.

Case (i): m = n. Let A(ξ) := ξI − A, and let
M,N,U, V,E, F and G be polynomial matrices satisfying
conditions (a) and (b) in note A.2. From note C.4, there exists
a signature matrixΣ and matrices

Q̂ := 1
2 (Q− PΣ) and P̂ := 1

2 (PΣ +Q) (25)

such thatQ̂ is nonsingular and̂Q−1P̂ is proper. Now, letD :=
limξ→∞(Q−1P (ξ)) and D̂ := limξ→∞(Q̂−1P̂ (ξ)). Note that
(I −Q−1PΣ)Q̂−1P̂ = I +Q−1PΣ, so by taking the limit as
ξ → ∞ we obtain(I −DΣ)D̂ = I +DΣ. Thus, if z ∈ Rm

andzT (I−DΣ) = 0, thenzT (I+DΣ) = 0, soz = 0. Hence,
(I −DΣ) is nonsingular, and

D̂ = (I −DΣ)−1(I +DΣ) = 2(I −DΣ)−1 − I. (26)

Now, let
[

M̂ N̂

Û V̂

]

:=

[1
2I 0
0 1√

2
I

] [

M N
U V

] [

I−DΣ 0

−BΣ
√
2I

]

,

so all of the above matrices are unimodular. Then, with

Â := A+BΣ(I −DΣ)−1C, B̂ :=
√
2BΣ(I −DΣ)−1,

Ĉ :=
√
2(I −DΣ)−1C, Â(ξ) := ξI − Â,

Ê := 1√
2
(EΣ− F ), and F̂ := 1√

2
(EΣ + F ), (27)

it can be verified that(Ĉ, Â) is observable, and
[

M̂ N̂

Û V̂

] [

−D̂ I −Ĉ

−B̂ 0 Â

]

=

[

−P̂ Q̂ 0

−Ê −F̂ I

]

. (28)

Hence,(Â, B̂, Ĉ, D̂) is an observable realization for(P̂ , Q̂)
(see note A.2). SincêQ := 1

2 (Q−PΣ) andP̂ := 1
2 (PΣ+Q),

then it follows from notes C.2–C.4 that(P̂ , Q̂) is a positive-
real pair. Thus, from Lemma 1 and Theorem 10, there exists
X ∈ Rd×d

s such thatX > 0 and

Ω̂(X) :=

[

−ÂTX−XÂ ĈT−XB̂

Ĉ−B̂TX D̂+D̂T

]

(29)
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satisfiesΩ̂(X) ≥ 0. Furthermore, with

S =

[

I 0
− 1√

2
C 1√

2
(I −DΣ)Σ

]

, (30)

then it can be verified thatST Ω̂(X)S = Λ(X), which is non-
negative definite sincêΩ(X) is. This proves case (i).

Case (ii): m > n. Let P̂ :=
[

P 0m×(m−n)

]

andQ̂ := Q.
It is easily shown from note C.1 that(P̂ , Q̂) is a bounded-
real pair. Also, withÂ=A, B̂=

[

B 0d×(m−n)

]

, Ĉ=C, and
D̂=

[

D 0m×(m−n)

]

, it can be verified that(A,B,C,D) is
an observable realization for(P,Q) if and only if (Â, B̂, Ĉ, D̂)
is an observable realization for(P̂ , Q̂). With

Λ̂(X) :=

[

−ÂTX−XÂ−ĈT Ĉ −ĈT D̂−XB̂

−D̂T Ĉ−B̂TX I−D̂T D̂

]

, (31)

then Λ̂(X) = diag
(

Λ(X) I
)

. From case (i), there exists
X > 0 such thatΛ̂(X) ≥ 0. This X also satisfiesΛ(X) ≥ 0.

Case (iii): m < n. . In this case, let P̂ :=
col

(

P 0(n−m)×n

)

, Q̂ := diag
(

Q I(n−m)×(n−m)

)

, Â=A,
B̂=B, Ĉ=col

(

C 0(n−m)×d

)

, andD̂=col
(

D 0(n−m)×n

)

;
and letΛ(X) and Λ̂(X) be as in (22) and (31), respectively.
Then(P̂ , Q̂) is a bounded-real pair (this is easily shown from
note C.1),Λ(X) = Λ̂(X), and the proof is similar to case (ii).

4 ⇒ 2. We will prove this for the two cases (i)(C,A)
observable; and (ii)(C,A) not observable.

Case (i):(C,A) observable. We consider the casem =
n. The proofs for the casesm > n and m < n are then
similar to the corresponding cases in the proof of 2⇒ 3. Let
Σ, P̂ , Q̂, Â, B̂, Ĉ, D̂, andΩ̂(X) be as in case (i) of the proof of
2 ⇒ 3. Then, from that proof,(Â, B̂, Ĉ, D̂) is an observable
realization of (P̂ , Q̂), and Ω̂(X−) ≥ 0. Thus, (P̂ , Q̂) is a
positive-real pair by Theorem 10, so(P,Q) is a bounded-real
pair by notes C.2–C.4.

Case (ii): (C,A) not observable. Consider the observer
staircase form (see note A.1), and letΛ̂ be as in (31). Then
X− = T Tdiag

(

X̂− 0
)

T whereX̂− ∈ R
d̂×d̂
s , Λ̂(X̂−) ≥ 0

and X̂− ≥ 0. Also, with B̂s as in note A.1, thenB(u,y)
s =

B̂(u,y)
s as shown in that note. Condition 2 then follows from

case (i).
It remains to prove conditions (i)–(ii) in the final paragraph

of the present theorem statement. To see (i), letλ ∈ C+ and
z ∈ Cd satisfy (λI − A)z = 0, and note that̄zT (ATX +
XA)z = (λ+λ̄)z̄TXz. Since−ATX − XA − CTC ≥ 0,
then z̄TCTCz ≤ −2ℜ(λ)z̄TXz ≤ 0, so Cz = 0. If (C,A)
is observable, thenz = 0, so spec(A) ∈ C−. The proof
of condition (ii) is similar to the corresponding conditionin
Theorem 10, using the observations in the second paragraph
of this proof.

VIII. E XPLICIT CHARACTERISATION OF THE AVAILABLE

STORAGE FOR A NON-EXPANSIVE SYSTEM

This section contains the proofs of Theorems 22 and 23. The
proofs provide methods for calculating the available storage
for a non-expansive system by using the results in Section V.

Proof of Theorem 22: 2 ⇒ 1. This follows from
Theorem 20, sinceX− ≥ 0 andΛ(X−) ≥ 0.

1 ⇒ 2. First, we note from Theorem 20 that(P,Q) is
a bounded-real pair sinceSσg

a (x0) < ∞. We will show that
this implies condition 2 for the cases: (i)(C,A) observable
andm = n; (ii) (C,A) observable andm > n; (iii) (C,A)
observable andm < n; then finally (iv)(C,A) not observable.

Case (i) (C,A) observable, m = n. Let
Σ, P̂ , Q̂, Â, B̂, Ĉ, and D̂ be as in case (i) in the proof
of 2 ⇒ 3 in Theorem 20. From that proof,(P̂ , Q̂) is
a positive-real pair, and(Â, B̂, Ĉ, D̂) is an observable
realization of(P̂ , Q̂). From Theorem 12, with the notation

Γ̂(X) := −ÂTX−XÂ−(ĈT−XB̂)(D̂+D̂T )−1(Ĉ−B̂TX),

andAΓ̂(X) := Â− B̂(D̂ + D̂T )−1(Ĉ − B̂TX),

there existsX ∈ Rd×d
s such thatX ≥ 0, Γ̂(X) = 0, and

spec(AΓ̂(X)) ∈ C−. It can then be verified thatΠ(X) =

Γ̂(X) andAΠ(X) = AΓ̂(X), so condition 2 holds.
Case (ii)(C,A) observable, m > n. Let P̂ , Q̂, Â, B̂, Ĉ,

and D̂ be as in case (ii) in the proof of 2⇒ 3 in Theorem
20; so(P̂ , Q̂) is a bounded-real pair, and(A,B,C,D) is an
observable realization for(P,Q) if and only if (Â, B̂, Ĉ, D̂)
is an observable realization for(P̂ , Q̂). Also, let

Π̂(X) := −ÂTX −XÂ− ĈT Ĉ

− (ĈT D̂ +XB̂)(I − D̂T D̂)−1(D̂T Ĉ + B̂TX), (32)

and ÂΠ̂(X) := Â+ B̂(I − D̂T D̂)−1(D̂T Ĉ + B̂TX). (33)

It can be verified that̂Π(X) = Π(X) andÂΠ̂(X) = AΠ(X),
so this case follows from case (i).

Case (iii) (C,A) observable, m < n. In this case, we
let P̂ , Q̂, Â, B̂, Ĉ, and D̂ be as in case (iii) in the proof of
2 ⇒ 3 in Theorem 20. Then, witĥΠ(X) and ÂΠ̂(X) as in
(32)–(33), we obtain̂Π(X) = Π(X) and ÂΠ̂(X) = AΠ(X).
The proof then follows the argument in case (ii).

Case (iv)(C,A) not observable. This can be proved in
the manner of case (ii) in the proof of 1⇒ 2 in Theorem 12.

Finally, with a similar proof to the corresponding implica-
tion in Theorem 12, we find that ifX− satisfies condition 2
of the present theorem, thenSσg

a (x0) = xT
0 X−x0.

Proof of Theorem 23: 2 ⇒ 1. This follows from
Theorem 20, sinceX− ≥ 0 andΛ(X−) ≥ 0.

For the remainder of the proof, we let(C,A) be observable
andm = n. The casesm > n andm < n can be shown by
augmenting to the casem = n as in the proof of Theorem 22.
The case(C,A) not observable can be shown with a similar
argument to the corresponding implication in Theorem 13.

1 ⇒ 2. Since S
σg
a (x0) < ∞ for all x0 ∈ Rd, then

(P,Q) is a bounded-real pair by Theorem 20. Next, let
Σ, P̂ , Q̂, Â, B̂, Ĉ, and D̂ be as in case (i) in the proof of 2
⇒ 3 in Theorem 20 (soI − DΣ is nonsingular and(Ĉ, Â)
is observable), and let̂H(ξ) := D̂ + Ĉ(ξI − Â)−1B̂. Then
(P̂ , Q̂) is a positive-real pair, so from Theorems 10, 13 there
exist real matricesX−, L̂, andŴ with X− ≥ 0 such that

(a) −ÂTX−−X−Â = L̂T L̂, Ĉ−B̂TX− = ŴT L̂, D̂+D̂T =
ŴT Ŵ ; and

(b) Ẑ(ξ):=Ŵ+L̂(ξI−Â)−1B̂ is a spectral factor of̂H+Ĥ⋆.
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Then, letL := L̂− 1√
2
ŴC andW := 1√

2
Ŵ (I−DΣ)Σ, and it

can be verified that condition (iiia) holds. Also,
[

λI−Â −B̂

L̂ Ŵ

][

I 0
− 1√

2
C 1√

2
(I−DΣ)Σ

]

=

[

λI−A −B
L W

]

.

From Theorem 10, spec(Â) ∈ C−. Also, from Theorem 20,
spec(A) ∈ C−. Since, in addition,(I−DΣ) is nonsingular,
then a similar argument to the proof of Lemma D.1 shows
thatZ is a spectral factor ofI −H⋆H .

Finally, we prove that ifX− satisfies condition 2, then
S
σg
a (x0) = xT

0 X−x0. It suffices to show thatX− is
uniquely determined by condition 2. To show this, we let
Σ, P̂ , Q̂, Â, B̂, Ĉ, D̂ and Ĥ be as in the previous paragraph.
Following that paragraph, ifX− satisfies condition 2, then
L̂ := L +WΣ(I −DΣ)−1C andŴ :=

√
2WΣ(I −DΣ)−1

satisfy the aforementioned conditions (a) and (b). From The-
orem 13, these conditions uniquely determineX−.
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APPENDIX A
OBSERVABLE REALIZATIONS OF BEHAVIORS

In this appendix, we present several results on observable
realizations which are used in the proofs of the main theorems.
These results build on Lemmas 1 and 2.

A.1 Let Bs andVo be as in (1) and (6); let the columns of
S2 ∈ Rd×(d−d̂) be a basis for the nullspace ofVo; let S =
[

S1 S2

]

be nonsingular; and letS−1 =: T = col
(

T1 T2

)

(partitioned compatibly withS). Then,

[

T1

T2

]

A
[

S1 S2

]

=

[

A11 0
A21 A22

]

, C
[

S1 S2

]

=
[

C1 0
]

,

and (C1, A11) is observable [7, Corollary 5.3.14]. Further-
more, with the notationB1 := T1B, B2 := T2B, and

B̂s={(u,y, x̂) ∈ Lloc
2 (R,Rn)×Lloc

2 (R,Rn)×Lloc
2 (R,Rd̂)

such thatdx̂
dt

= A11x̂+B1u andy = C1x̂+Du},

then it is easily shown from the variation of the constants
formula (2)–(3) thatB(u,y)

s = B̂(u,y)
s . Thus, if P andQ are

as in Lemma 2, then it follows from Lemmas 1–2 that there
exists an observable realization for(P,Q).

A.2 Let Bs be as in (1) andA(ξ) = ξI − A. Then
(A,B,C,D) is an observable realization for(P,Q) if and only
if P ∈ Rm×n[ξ], Q ∈ Rm×m[ξ], and there exist polynomial
matricesM,N,U, V,E, F and G such that (a) conditions 1
and 2 of Lemma 1 hold; and (b)G = Id. To see this,
note from the final block column in condition 1 of Lemma
1 that, for any givenλ ∈ C and z ∈ C

d, thenCz = 0 and
(λI−A)z = 0 if and only if G(λ)z = 0. It then follows from
[7, Theorem 5.3.7] thatG in Lemma 1 is unimodular if and
only if (C,A) is observable. Furthermore, ifG is unimodular,
then by pre-multiplying both sides in condition 1 of Lemma
1 by diag

(

I G−1
)

we obtain polynomial matrices satisfying
conditions (a) and (b).

A.3 Let P andQ be as in Lemma 2. If(A,B,C,D) and
(Â, B̂, Ĉ, D̂) are two observable realizations of(P,Q), then
there exists a nonsingularT∈Rd×d such that

Â = TAT−1, B̂ = TB, Ĉ = CT−1, andD̂ = D. (34)

To see this, letA ∈ Rd×d and Â ∈ Rd̂×d̂; let Vo be as in
(6); and let V̂o := col(Ĉ ĈÂ · · · ĈÂd̂−1). It follows from
the variation of the constants formula (2)–(3) that, for any
given z ∈ Rd, there existŝz ∈ Rd̂ such thatĈeÂtẑ = CeAtz
for all t ∈ R. Suppose initially thatd̂ ≤ d. Since z is
arbitrary, there must existT ∈ Rd̂×d such thatĈÂkT = CAk

(k = 0, 1, . . .). In particular,Vo = V̂oT . As (C,A) and(Ĉ, Â)
are observable, thenVo and V̂o have full column rank, so
d̂ = d andT = (V̂ T

o V̂o)
−1V̂ T

o Vo, which is nonsingular (with
T−1 = (V T

o Vo)
−1V T

o V̂o). In particular,Ĉ = CT−1. Also,
since VoA = V̂oÂT , then Â = (V̂ T

o V̂o)
−1V̂ T

o VoAT
−1 =

TAT−1. Finally, from the variation of the constants formula
(2)–(3), we requireVoB = V̂oB̂, so B̂ = TB. A similar
argument applies when̂d ≥ d, and completes the proof.
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APPENDIX B
STORAGE FUNCTIONS

The storage function concept features in many classical
proofs of the positive-real lemma, e.g., [1], [2]. Here, in
contrast to [1], [2], we present results on storage functions
without any controllability assumptions.

We consider the following optimal control problem.
Definition B.1:LetBs be as in (1); letσ(u,y) := uTΣ11u+

2uTΣ12y+yTΣ22y for someΣ11 ∈ Rn×n
s ,Σ12 ∈ Rn×m and

Σ22 ∈ Rm×m
s ; and, for any givenx0 ∈ Rd, let

Eσ
+(x0) = {

∫ t1

t0
−σ(u,y)(t)dt | t1 ≥ t0, (u,y,x) ∈ Bs,

andx(t0) = x0}.

Then theavailable storageSσ
a with respect to the supply rate

σ satisfies (i)Sσ
a (x0) = sup(Eσ

+(x0)) if Eσ
+(x0) is bounded

above; and (ii)Sσ
a (x0) = ∞ otherwise.

Note, withΣ11 = I, Σ12 = 0 andΣ22 = −I (resp.,Σ11 =
Σ22 = 0, Σ12 = 1

2I), thenSσ
a = S

σg
a (resp.,Sσ

a = S
σp
a ). As in

[1], we define a storage function with respect toσ as follows.
Definition B.2: Let Bs be as in (1), and letσ be as in

Definition B.1. We sayS is a storage functionwith respect
to the supply rateσ if (i) S(x0) ∈ R and S(x0) ≥ 0 for
all x0 ∈ Rd; (ii) S(0) = 0; and (iii) if (u,y,x) ∈ Bs and
t1 ≥ t0 ∈ R, thenS(x(t1)) ≤

∫ t1

t0
(σ(u,y))(t)dt + S(x(t0)).

The next lemma proves that the boundedness of the available
storage is equivalent to the existence of a storage function.

Lemma B.3:Let Bs be as in (1); and letσ andSσ
a be as in

Definition B.1. The following hold:

1. If Sσ
a (x0) < ∞ for all x0 ∈ R

d, then Sσ
a is a storage

function with respect toσ.
2. If there exists a storage function with respect toσ (denoted

S), thenSσ
a (x0) ≤ S(x0) < ∞ for all x0 ∈ Rd.

Proof: See [1, Theorem 1].
In the next lemma, we prove that the available storage

Sσ
a (x0) is a quadratic form inx0, under an assumption which

is satisfied by both passive and non-expansive systems.
Lemma B.4:Let Bs be as in (1); and letσ andSσ

a be as
in Definition B.1. Also, for any givenz ∈ R

d and t0 ∈ R,
let there existt1 ≥ t0, and (u,y,x) ∈ Bs with x(t0) = z,
such that−

∫ t1

t0
(σ(u,y))(t)dt ≥ 0. If Sσ

a (x0) < ∞ for all
x0 ∈ Rd, then there existsX ∈ Rd×d

s with X ≥ 0 such that
Sσ
a (x0) = xT

0 Xx0 for all x0 ∈ Rd.
Proof: For any givenx1,x2 ∈ Rd, we letW (x1,x2) :=

1
4 (S

σ
a (x1+x2)−Sσ

a (x1−x2)). We then letej denote thejth
column of the identity matrixId, we let theijth entry ofX
be defined asXij := W (ei, ej) (i, j = 1, . . . , d), and we will
show thatX is symmetric andSσ

a (z) = zTXz for all z ∈ R
d.

To prove this, we will show that, for any givenx1,x2 ∈ Rd

andλ ∈ R, then

(i) W (λx1,x2) = λW (x1,x2); and
(ii) Sσ

a (x1 + x2) + Sσ
a (x1 − x2) = 2(Sσ

a (x1) + Sσ
a (x2)).

From [19, Lemma 3], condition (ii) implies that, for any given
x1,x2, z ∈ Rd, then (iia) W (x1,x2) = W (x2,x1); (iib)
W (x1 + x2, z) = W (x1, z) + W (x2, z); and (iic) Sσ

a (z) =
W (z, z). Together with condition (i), we conclude thatW is
a symmetric bilinear form, andX is symmetric. We then let

z ∈ Rd and we denote theith entry ofz by zi, and it follows
thatSσ

a (z) = Sσ
a (
∑d

i=1 ziei) = W (
∑d

i=1 ziei,
∑d

j=1 zjej) =
∑d

i=1

∑d
j=1 ziW (ei, ej)zj =

∑d
i=1

∑d
j=1 ziXijzj = zTXz.

It remains to show conditions (i) and (ii). We first show
that, for any givent1 ≥ t0,

Sσ
a (x0)= sup

u∈Lloc
2
(R,Rn),t2≥t1

∫ t2

t0
−(σ(u,y))(t)dt,

such that(u,y,x) ∈ Bs,x(t0) = x0. (35)

To see this, lett1 ≥ t0 and(u,y,x) ∈ Bs with x(t0) = x0 sat-
isfy

∫ t1

t0
−(σ(u,y))(t)dt = Sσ

a (x0)− ǫ for someǫ > 0. Then,
from the conditions in the lemma statement, there existt2 ≥ t1
and (ũ, ỹ, x̃) ∈ Bs such thatũ(t) = u(t), ỹ(t) = y(t), and
x̃(t) = x(t) for all t0 ≤ t ≤ t1; and

∫ t2
t1

−(σ(ũ, ỹ))(t)dt ≥ 0.

It follows that
∫ t

t0
−(σ(ũ, ỹ))(t)dt ≥ Sσ

a (x0)−ǫ for all t ≥ t1.

But Sσ
a (x0) ≥

∫ t

t0
−(σ(ũ, ỹ))(t)dt, and ǫ > 0 can be made

arbitrarily small by choosingt1 andu. This proves (35).
To prove (i), we letx1,x2 ∈ R

d andλ ∈ R be fixed but
arbitrary, and we show thatSσ

a (λx1 +x2)+λSσ
a (x1 −x2) ≤

Sσ
a (λx1 − x2) + λSσ

a (x1 + x2). To see this, suppose instead
that there existsǫ > 0 such that

Sσ
a (λx1+x2)+λSσ

a (x1−x2)

= Sσ
a (λx1−x2)+λSσ

a (x1+x2) + ǫ. (36)

There exist(ua,ya,xa) ∈ Bs with xa(t0) = λx1 + x2,
(ub,yb,xb) ∈ Bs with xb(t0) = x1 − x2, andt1 ≥ t0, with

Sσ
a (λx1 + x2) + λSσ

a (x1 − x2)

≤
∫ t1

t0
(−σ(ua,ya)− λ(σ(ub,yb)))(t) + ǫ/2. (37)

Now, let (uc,yc,xc) := (λ−1)/(1+λ)(ua,ya,xa)+2λ/(1+
λ)(ub,yb,xb) and (ud,yd,xd) := 2/(1 + λ)(ua,ya,xa) +
(1−λ)/(1+λ)(ub,yb,xb). It can be verified thatσ(ua,ya)+
λσ(ub,yb) = σ(uc,yc)+λσ(ud,yd), xc(t0) = λx1−x2 and
xd(t0) = x1 + x2. It follows from (36)–(37) that

Sσ
a (λx1 + x2) + λSσ

a (x1 − x2)

≤
∫ t1

t0
(−σ(uc,yc)− λ(σ(ud,yd)))(t) + ǫ/2

≤ Sσ
a (λx1−x2)+λSσ

a (x1+x2) + ǫ/2

= Sσ
a (λx1 + x2) + λSσ

a (x1 − x2)− ǫ/2,

a contradiction. Substituting −x2 for x2 in the
above argument givesSσ

a (λx1−x2)+λSσ
a (x1+x2) ≤

Sσ
a (λx1+x2)+λSσ

a (x1−x2), and completes the proof of (i).
To see (ii), suppose instead that there existsǫ > 0 such that

Sσ
a (x1+x2)+Sσ

a (x1−x2)+ǫ = 2(Sσ
a (x1)+Sσ

a (x2)).

Let t1 ≥ t0 and (ua,ya,xa), (ub,yb,xb) ∈ Bs with
xa(t0)=x1 andxb(t0)=x2 be such that

∫ t1

t0
−(σ(ua,ya))(t)dt +

ǫ
8 > Sσ

a (x1), and
∫ t1

t0
−(σ(ub,yb))(t)dt+

ǫ
8 > Sσ

a (x2).

Similar to [19, p. 796], we let(ũa, ỹa, x̃a) = (ua,ya,xa) +
(ub,yb,xb) and (ũb, ỹb, x̃b) = (ua,ya,xa) − (ub,yb,xb).
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Then (ũa, ỹa, x̃a), (ũb, ỹb, x̃b) ∈ Bs, x̃a(t0)=x1+x2, and
x̃b(t0)=x1−x2, whence

Sσ
a (x1+x2)+Sσ

a (x1−x2)

≥
∫ t1

t0
−(σ(ũa, ỹa))(t)dt +

∫ t1

t0
−(σ(ũb, ỹb))(t)dt

= 2(
∫ t1

t0
−(σ(ua,ya))(t)dt +

∫ t1

t0
−(σ(ub,yb))(t)dt)

> 2(Sσ
a (x1)+Sσ

a (x2)− ǫ
4 ) = Sσ

a (x1+x2)+Sσ
a (x1−x2)+

ǫ
2 ,

a contradiction. Thus, Sσ
a (x1+x2)+Sσ

a (x1−x2) ≤
2(Sσ

a (x1)+Sσ
a (x2)). A similar argument shows that

Sσ
a (x1+x2)+Sσ

a (x1−x2) ≥ 2(Sσ
a (x1)+Sσ

a (x2)), and
completes the proof of (ii).

We next consider a related optimal control problem con-
cerning theobserver staircase formin note A.1:

Lemma B.5:Let Bs be as in (1); letσ and Sσ
a be as in

Definition B.1; letSσ
a (x0) < ∞ for all x0 ∈ Rd; let T1 and

B̂s be as in note A.1; and let

Ŝσ
a (x̂0) := sup

t1≥t0,u∈Lloc
2
(R,Rn)

∫ t1

t0
−(σ(u,y))(t)dt,

such that(u,y, x̂) ∈ B̂s, x̂(t0) = x̂0. (38)

ThenSσ
a (x0) = Ŝσ

a (T1x0) for all x0 ∈ Rd. In particular, with
Vo as in (6), thenz ∈ R

d andVoz = 0 imply Sσ
a (z) = 0.

Proof: Let T = col
(

T1 T2

)

be as in note A.1. It can
be shown from the variation of the constants formula (2)–(3)
that (i) if (u,y,x) ∈ Bs satisfiesx(t0) = x0, then there exists
(u,y, x̂) ∈ B̂s with x̂(t0) = T1x0; and (ii) if (u,y, x̂) ∈
B̂s satisfiesx̂(t0) = x̂0, and x̂1 ∈ Rd−d̂, then there exists
(u,y,x) ∈ Bs with x(t0) = T−1col

(

x̂0 x̂1

)

. Now, consider
a fixed but arbitraryx0 ∈ Rd. It follows from (i) that

Sσ
a (x0) ≤ sup

t1≥t0,u∈Lloc
2
(R,Rn)

∫ t1

t0
−(σ(u,y))(t)dt,

such that(u,y, x̂) ∈ B̂s, x̂(t0) = T1x0,

i.e.,Sσ
a (x0) ≤ Ŝσ

a (T1x0). Similarly, from (ii), it can be shown
thatSσ

a (x0) ≥ Ŝσ
a (T1x0), soSσ

a (x0) = Ŝσ
a (T1x0). Finally, if

Voz = 0, then it can be shown thatT1z = 0. As Ŝσ
a is a

storage function by Lemma B.3, thenSσ
a (z) = Ŝσ

a (0) = 0.

APPENDIX C
POSITIVE-REAL AND BOUNDED-REAL PAIRS

Here, we provide several results relating to the new concepts
of positive-real and bounded-real pairs.

C.1 LetP ∈ Rm×n[ξ] andQ ∈ Rm×m[ξ]; and let

Jn :=
1

2

[

0 In
In 0

]

, Σm,n :=

[

In 0
0 −Im

]

, (39)

Ψ(η, ξ) :=
[

P −Q
]

(η)Σm,n

[

P −Q
]

(ξ)T , and (40)

Φ(η, ξ) :=
[

P −Q
]

(η)Jn
[

P −Q
]

(ξ)T if m = n. (41)

Then (P,Q) is a positive-real pair (resp., bounded-real pair)
if and only if (i) Φ(λ, λ̄) ≤ 0 (resp.,Ψ(λ, λ̄) ≤ 0) for all
λ ∈ C+; (ii) rank(

[

P −Q
]

(λ)) = n for all λ ∈ C+; and
(iii) if p ∈ Rn[ξ] and λ ∈ C satisfy p(ξ)TΦ(ξ,−ξ) = 0
(resp.,p(ξ)TΨ(ξ,−ξ) = 0) and p(λ)T

[

P −Q
]

(λ) = 0,
thenp(λ) = 0.

C.2 Let P,Q ∈ Rn×n[ξ]; let Jn be as in (39); letY ∈
R

n×n[ξ] andS ∈ R
2n×2n be nonsingular withSJnST = Jn;

and letP̂ , Q̂ ∈ Rn×n[ξ] satisfy
[

P̂ −Q̂
]

:= Y
[

P −Q
]

S.
Then (P,Q) is a positive-real pair if and only if(P̂ , Q̂) is a
positive-real pair (this follows from note C.1).

C.3 Let P,Q ∈ Rn×n[ξ]; let Jn andΣn,n be as in (39);
let Y ∈ Rn×n[ξ] and S ∈ R2n×2n be nonsingular with
SJnS

T = Σn,n; and letP̂ , Q̂ ∈ Rn×n[ξ] satisfy
[

P̂ −Q̂
]

:=

Y
[

P −Q
]

S. Then(P,Q) is a bounded-real pair if and only
if (P̂ , Q̂) is a positive-real pair (this follows from note C.1).

C.4 Let Σ ∈ Rn×n be a signature matrix (i.e.,Σ is
diagonal with diagonal entries±1), let P,Q ∈ Rn×n[ξ], and
let Q̂ := 1

2 (Q − PΣ) and P̂ := 1
2 (PΣ + Q). Then (P,Q)

is a bounded-real pair if and only if(P̂ , Q̂) is a positive-real
pair (this follows from note C.3). Also, ifP,Q ∈ Rn×n[ξ]
andQ−1P is proper, then there necessarily exists a signature
matrix Σ and matriceŝQ := 1

2 (Q−PΣ) andP̂ := 1
2 (PΣ+Q)

such thatQ̂ is nonsingular andQ̂−1P̂ is proper. To obtain
such matricesΣ, P̂ and Q̂, we let P̃ := 1

2 (P + Q) and
Q̃ := 1

2 (Q − P ), so P = P̃ − Q̃ and Q = P̃ + Q̃. We
then letS1 andS2 ∈ Rn×n be matrices that select columns
from P̃ and Q̃ to achieve the maximal determinantal degree.
I.e., (i) S1 andS2 are diagonal matrices with all entries either
0 or 1; (ii) S1+S2 = I; and (iii) deg(det (P̃ S1 + Q̃S2)) takes
its maximum value among all matricesS1 andS2 that satisfy
(i) and (ii). We then letP̂ := P̃S2 + Q̃S1, Q̂ := P̃ S1 + Q̃S2,
andΣ := S2 − S1, soΣ is a signature matrix. The method in
[5, Proof of Theorem 9] then proves thatQ̂−1P̂ is proper.

APPENDIX D
EXPLICIT CHARACTERISATION OF THE AVAILABLE

ENERGY: SUPPLEMENTARY LEMMAS

In this final appendix, we present four supplementary lem-
mas used in the proof of Theorem 13.

Lemma D.1:Let Bs andH be as in (1) and (8) withm = n;
let spec(A) ∈ C−; let X−, L and W be real matrices that
satisfy condition 2(iiia) of Theorem 13; and let

Z(ξ) := W + L(ξI −A)−1B andY (ξ) :=

[

ξI −A −B
L W

]

.

ThenZ⋆Z=H+H⋆, andZ is a spectral factor forH +H⋆ if
and only if Y (λ) has full row rank for allλ ∈ C+.

Proof: ThatZ⋆Z = H +H⋆ follows by pre-multiplying
Ω(X) in (7) by

[

BT (−ξI −AT )−1 I
]

and post-multiplying
by col

(

(ξI −A)−1B I
)

. Since spec(A) ∈ C−, thenZ is
analytic inC+. Finally, consider a fixed but arbitraryλ ∈ C+,
so λI − A is nonsingular. It remains to show thatZ(λ) has
full row rank if and only if Y (λ) does. This follows from
[

0 λI −A
Z(λ) L

]

=

[

λI −A −B
L W

] [

(λI −A)−1B I
I 0

]

,

since the rightmost matrix in this equation is nonsingular.
The final three lemmas relate to the decomposition in case

(ii) in the proof of Theorem 13. We refer back to that proof
for definitions of conditions (R1)–(R4) and (S1)–(S4).

Lemma D.2:Let Pk−1, Qk−1 satisfy (R1) fori = k−1, and
let Dk−1 := limξ→∞(Q−1

k−1Pk−1(ξ)). The following hold.
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1. LetPk := Pk−1− 1
2Qk−1(Dk−1−DT

k−1) andQk := Qk−1.
Then (R1) and (R2) hold fori = k.

2. Let Ak, Bk, Ck, Dk satisfy (S1) for i=k; and let
Ak−1:=Ak, Bk−1:=Bk, andCk−1:=Ck. Then:
a) (S1) holds fori=k−1.
b) Let Xk−1, Lk−1,Wk−1, Xk, Lk, and Wk be real ma-

trices with Xk = Xk−1 ≥ 0, Lk = Lk−1, and
Wk = Wk−1. Then (i) (S3) holds fori = k−1 if and
only if (S3) holds for i = k; and (ii) (S4) holds for
i = k−1 if and only if (S4) holds fori = k.

Proof: Condition 1. Clearly, Q−1
k Pk =

Q−1
k−1Pk−1 − 1

2 (Dk−1−DT
k−1), so Q−1

k Pk is proper
and limξ→∞(Q−1

k Pk(ξ)) = limξ→∞(Q−1
k−1Pk−1(ξ)) −

1
2 (Dk−1−DT

k−1) =
1
2 (Dk−1+DT

k−1). Next, let

S =

[

I 0
1
2 (Dk−1−DT

k−1) I

]

.

Then
[

Pk −Qk

]

=
[

Pk−1 −Qk−1

]

S, and it follows from
note C.2 that(Pk, Qk) is a positive-real pair.

Condition 2. Let Ak,Mk, Nk, Uk, Vk, Ek, Fk be as in
(S1) for the casei = k; and letEk−1 := Ek − 1

2Fk(Dk−1 −
DT

k−1), Fk−1 := Fk, Mk−1 := Mk, Nk−1 := Nk, Uk−1 :=
Uk, andVk−1 := Vk. By post-multiplying both sides of the
relationship in (S1) for the casei=k by diag

(

S−1 I
)

, we
find that (S1) holds fori=k−1. Finally, condition 2b follows
sinceDk + DT

k = Dk−1 + DT
k−1. Thus, withΩi(Xi) as in

(S3), thenΩk(Xk) = Ωk−1(Xk−1).
Lemma D.3:Let Pk−1, Qk−1 satisfy (R1)–(R2) fori=k−1,

and let nk := normalrank(Pk−1), mk := nk−1 − nk, and
rk:=rank(Dk−1). The following hold.
1. There exists a nonsingularT ∈ Rnk−1×nk−1 ; unimodular

Y ∈ Rnk−1×nk−1 [ξ] and Q̃22 ∈ Rmk×mk [ξ]; Q̃12 ∈
Rnk×mk [ξ]; andPk, Qk satisfying (R1)–(R3) fori=k, with

Y Pk−1T=

[

Pk 0
0 0

]

, Y Qk−1(T
−1)T=

[

Qk Q̃12

0 Q̃22

]

. (42)

2. Let Ak, Bk, Ck, Dk satisfy (S1) fori=k; andAk−1:=Ak,
Bk−1:=

[

Bk 0
]

T−1, Ck−1:=(T−1)T col
(

Ck 0
)

, and
Dk−1:=(T−1)T diag

(

Dk 0
)

T−1. Then:
a) (S1) holds fori = k−1.
b) Let Xk−1, Lk−1 andWk−1 satisfy (S3) fori = k−1;

partitionT asT =:
[

T1 T2

]

with T1 ∈ Rnk−1×nk and
T2 ∈ Rnk−1×mk ; and letXk := Xk−1, Lk := Lk−1, and
Wk := Wk−1T1. Then (i)Wk−1T2 = 0; (ii) (S3) holds
for i = k; and (iii) if (S4) holds fori = k−1, then (S4)
holds for i = k.

c) Let Xk, Lk and Wk satisfy (S3) for i = k; and let
Xk−1 := Xk, Lk−1 := Lk, andWk−1 :=

[

Wk 0
]

T−1.
Then (i) (S3) holds fori = k−1; and (ii) if (S4) holds
for i = k, then (S4) holds fori = k−1.

Proof: Condition 1. Since(Pk−1, Qk−1) is a positive-
real pair andQk−1 is nonsingular, thenH := Q−1

k−1Pk−1

is positive-real (see Remark 9). Since, in addition,Dk−1

is symmetric, thenDk−1 ≥ 0 by Theorem 10, so there
exists T1a ∈ Rnk−1×rk such thatT T

1aDk−1T1a = Irk by
Sylvester’s law of inertia (as rank(Dk−1) = rk). Now, let the
columns ofT2 ∈ Rnk−1×mk be a basis for the nullspace of

H (i.e., T2 has full column rank andHT2 = 0). Then, since
the nullspace ofH is contained in the nullspace ofDk−1,
there existsT1b ∈ Rnk−1×(nk−rk) such that the columns
of

[

T1b T2

]

are a basis for the nullspace ofDk−1. With
T1 =

[

T1a T1b

]

, then T =
[

T1 T2

]

is nonsingular and
T TDk−1T = diag

(

Irk 0
)

. Also, from [3, Theorem 8.4.1],
T THT = diag

(

Ĥ 0
)

, whereĤ ∈ Rnk×nk(ξ) is positive-
real and nonsingular.

From [7, Theorem B.1.1], there exists a unimodularY ∈
Rnk−1×nk−1 [ξ] such thatQ̃ := Y Qk−1(T

−1)T is upper trian-
gular. LetP̃ := Y Pk−1T , and note that̃Q is nonsingular with
Q̃−1P̃ = T THT = diag

(

Ĥ 0
)

. SinceP̃ = Q̃diag
(

Ĥ 0
)

,
thenP̃ andQ̃ (partitioned compatibly with diag

(

Ĥ 0
)

) take
the form indicated in (42). To show that̃Q22 in (42) is unimod-
ular, we letλ ∈ C andp̂ ∈ Rmk [ξ] satisfy p̂(λ)T Q̃22(λ) = 0,
andpT :=

[

0 p̂T
]

Y . It can be verified thatpT (Pk−1Q
⋆
k−1+

Qk−1P
⋆
k−1) = 0 andp(λ)T

[

Pk−1 −Qk−1

]

(λ) = 0. Since
(Pk−1, Qk−1) is a positive-real pair, this impliesp(λ) = 0.
Since, in addition,Y is unimodular, thenp̂(λ) = 0, and
it follows that Q̃22 is unimodular. It is then easily shown
from notes C.1 and C.2 that(Pk, Qk) is a positive-real pair.
Moreover,T THT = T TQ−1

k−1Pk−1T = diag
(

Q−1
k Pk 0

)

=

diag
(

Ĥ 0
)

whereĤ is nonsingular andlimξ→∞(Ĥ(ξ)) =

T TDk−1T = diag
(

Irk 0
)

. Thus,Pk, Qk satisfy (R1)–(R3)
for i = k.

Condition 2. Let Ak,Mk, Nk, Uk, Vk, Ek, Fk be as in
(S1) for the casei = k; and let

[

Mk−1 Nk−1

Uk−1 Vk−1

]

:=
[

Y −1 0
0 I

]

[

Mk Q̃12 Nk

0 Q̃22 0

Uk 0 Vk

]

[

TT 0
0 I

]

.

It can be verified that each of these four matrices is unimod-
ular. Also, withAi as in (S1) fori = k − 1 and i = k, then

[

TT 0
0 I

]

[

−Dk−1 I −Ck−1

−Bk−1 0 Ak−1

]

=

[−Dk
0

0
0 I

−Ck
0

− Bk 0 0 Ak

][

T−1 0 0
0 TT 0
0 0 I

]

.

Thus, withEk−1 :=
[

Ek 0
]

T−1 andFk−1 :=
[

Fk 0
]

T T ,
it can be verified that (S1) holds fori=k−1. To see 2b, note
initially that T T

2 WT
k−1Wk−1T2 = T T

2 (Dk−1 +DT
k−1)T2 = 0,

soWk−1T2 = 0. Next, note that
[

ξI−Ak −Bk 0
Lk Wk 0

]

=
[

ξI−Ak−1 −Bk−1

Lk−1 Wk−1

]

[I 0
0 T ]. (43)

We denote the rightmost matrix in (43) byS; we let
Ωk−1(Xk−1) and Ωk(Xk) be as in (S3), and we note that
STΩk−1(Xk−1)S = diag

(

Ωk(Xk) 0
)

. This shows 2b(ii).
Also, sinceS is nonsingular, then 2b(iii) holds. The proof of
2c is similar, noting that (43) also holds in this case.

Lemma D.4:Let Pk−1, Qk−1 satisfy (R1)–(R3) fori=k−1,
with mk := nk−1 − rk−1 > 0. The following hold.

1. There exists 0 < K ∈ Rmk×mk such that
limξ→∞(1

ξ
P−1
k−1Qk−1(ξ)) = diag

(

0 K
)

.
2. Let Pk(ξ) := Qk−1(ξ) − Pk−1(ξ)diag

(

0 Kξ
)

, and
Qk := Pk−1. Then (R1) holds for i = k;
deg (det (Qk)) < deg (det (Qk−1)); and there exist̂D12 ∈
Rrk−1×mk , D̂21 ∈ Rmk×rk−1 , D̂22 ∈ Rmk×mk such that

lim
ξ→∞

(Q−1
k Pk(ξ)) =: Dk =

[

Irk−1
D̂12

D̂21 D̂22

]

. (44)
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3. Let Ak, Bk, Ck, Dk satisfy (S1) for i = k; partition
Bk, Ck compatibly withDk as Bk =

[

B̂1 B̂2

]

, Ck =

col
(

Ĉ1 Ĉ2

)

; and let

Ak−1 :=

[

Ak − B̂1Ĉ1 B̂2K
−1 − B̂1D̂12K

−1

D̂21Ĉ1 − Ĉ2 D̂21D̂12K
−1 − D̂22K

−1

]

,

Bk−1 :=

[

B̂1 0

−D̂21 I

]

, andCk−1 :=

[

−Ĉ1 −D̂12K
−1

0 K−1

]

.

Then:

a) (S1) holds fori = k−1.
b) Let Xk−1, Lk−1 and Wk−1 satisfy (S3) for i =

k−1; partition Lk−1 and Wk−1 compatibly with
Ak−1, Bk−1, Ck−1 andDk−1 asLk−1 :=

[

L̃1 L̃2

]

and
Wk−1 :=

[

W̃1 W̃2

]

; and letLk := L̃1 + W̃1Ĉ1, and
Wk :=

[

W̃1 L̃2K + W̃1D̂12

]

. Then (i) W̃2 = 0; (ii)
Xk−1 has the formXk−1 = diag

(

Xk K−1
)

; (iii) with
Xk as in condition (ii), then (S3) holds fori = k; and
(iv) if (S4) holds fori = k−1, then (S4) holds fori = k.

c) Let Xk, Lk and Wk satisfy (S3) for i = k; parti-
tion Wk compatibly with Dk as Wk =

[

Ŵ1 Ŵ2

]

;
and letLk−1 :=

[

Lk − Ŵ1Ĉ1 (Ŵ2 − Ŵ1D̂12)K
−1

]

,
Wk−1 :=

[

Ŵ1 0
]

and Xk−1 := diag
(

Xk K−1
)

.
Then (i) (S3) holds fori = k−1; and (ii) if (S4) holds
for i = k, then (S4) holds fori = k−1.

Proof: Condition 1. Since(Pk−1, Qk−1) is a positive-
real pair andPk−1 is nonsingular, thenP−1

k−1Qk−1 is positive-
real. Hence, ifP−1

k−1Qk−1 has a pole at infinity, then it is sim-
ple and the residue matrixJ := limξ→∞(1

ξ
(P−1

k−1Qk−1)(ξ))
is real and non-negative definite [3, Theorem 2.7.2]. Thus,
there exist real matricesJ, D̂ and strictly proper real-rational
matricesG,H (partitioned compatibly withDk−1) such that

P−1
k−1Qk−1(ξ) =

[

J11 J12

JT
12 J22

]

ξ +
[

D̂11 D̂12

D̂21 D̂22

]

+
[

G11 G12

G21 G22

]

(ξ)

Q−1
k−1Pk−1(ξ) =

[

Irk−1 0

0 0

]

+
[

H11 H12

H21 H22

]

(ξ). (45)

By considering the first block row in the equation0 =
limξ→∞(1

ξ
(Q−1

k−1Pk−1P
−1
k−1Qk−1)(ξ)), we obtainJ11 = 0

and J12 = 0. Then, by considering the bottom right block
in the equationlimξ→∞((P−1

k−1Qk−1Q
−1
k−1Pk−1)(ξ)) = I, we

find that J22 limξ→∞(ξH22(ξ)) = I, which implies thatJ22
is nonsingular. By lettingK := J22, we obtain condition 1.

Condition 2. Since Q−1
k Pk(ξ) = P−1

k−1Qk−1(ξ) −
diag

(

0 Kξ
)

, thenQ−1
k Pk is proper and positive-real by [3,

Theorem 8.4.3], andlimξ→∞((Q−1
k Pk)(ξ)) is equal to the

matrix D̂ in (45). Then, the top left block in the equation
I = limξ→∞((P−1

k−1Qk−1Q
−1
k−1Pk−1)(ξ)) givesD̂11 = Irk−1

.
Next, note that

[

Pk −Qk

]

=
[

Pk−1 −Qk−1

]

S where

S =

[

S11 −I
−I 0

]

, with S11(ξ) =

[

0 0
0 −Kξ

]

.

With Jn as defined in Appendix C, it can be verified thatS
is unimodular andSJnS⋆ = Jn, and it is then easily shown
that (Pk, Qk) satisfy conditions (b) and (c) in Definition 8.
Since, in addition,Q−1

k Pk is positive-real, then(Pk, Qk) also
satisfies condition (a) in Definition 8, so(Pk, Qk) is a positive-
real pair.

Finally, thatdeg (det (Qk)) < deg (det (Qk−1)) will follow
from condition 3a, noting from the final two block columns
in (S1) thatdeg (det (Qi)) = deg (det (Ai)).

Condition 3. Let Ak,Mk, Nk, Uk, Vk, Ek, Fk be as in
(S1) for the casei = k, partition these matrices compatibly as

[

M̂11 M̂12 N̂1

M̂21 M̂22 N̂2

Û1 Û2 V̂

]

, and

[

−I

−D̂21

−D̂12

−D̂22

I
−Ĉ1

−Ĉ2

− B̂1 −B̂2 0 Ak

]

,

and let

[

Mk−1 Nk−1

Uk−1 Vk−1

]

=





M̂11 M̂12 N̂1 0
M̂21 M̂22 N̂2 0

− Û1 −Û2 −V̂ 0
0 I 0 −I









I D̂12 0 0
D̂21 D̂22 + Kξ 0 I

B̂1 B̂2 −I 0
D̂21 D̂22 + K(1 + ξ) 0 I



.

It can be verified that each of the above matrices is unimodular
(the modulus of the determinant of the rightmost matrix is
equal to det (K)). Also, with Ek−1 := col

(

Fk 0
)

and
Fk−1(ξ) := col

(

Ek(ξ) 0
)

+col
(

ξÛ2(ξ) I
) [

0 K
]

, it can
be verified that (S1) holds fori = k−1. Now, letLk−1,Wk−1

be as in condition 3b. SinceWT
k−1Wk−1 = D + DT =

diag
(

2Irk−1
0
)

, then W̃T
2 W̃2 = 0, which proves 3b(i). To

show 3b(ii), we partitionXk−1 compatibly withAk−1 as

Xk−1 =

[

X11 X12

XT
12 X22

]

.

SinceCT
k−1 − Xk−1Bk−1 = LT

k−1Wk−1 =
[

LT
k−1W̃1 0

]

,
thenX12 = 0 andX22 = K−1. Now, note that
[

ξI−Ak −B̂1 −B̂2 0
0 0 0 −I

Lk Ŵ1 Ŵ2 0

]

=
[

ξI−Ak−1 −Bk−1

Lk−1 Wk−1

]

[

I 0 0 0
0 0 K 0

Ĉ1 I D̂12 0
Ĉ2 D̂21 ξK+D̂22 I

]

.

We denote the rightmost matrix in this equation byS, we let
Ωk−1(Xk−1) andΩk(Xk) be as in (S3), and by direct calcula-
tion we obtainSTΩk−1(Xk−1)S = diag

(

Ωk(Xk) 0
)

. This
proves 3b(iii). Condition 3b(iv) then follows since the right-
most matrix in the above displayed equation is nonsingular.

Next, let Xk, Lk,Wk, Xk−1, Lk−1 and Wk−1 be as in
condition 3c. We recall that the rightmost matrix in the above
displayed equation (denotedS) is nonsingular. We then find
that Ωk−1(Xk−1)=(S−1)T diag

(

Ωk(Xk) 0
)

S−1, so 3c(i)
holds, and 3c(ii) follows sinceS−1 is nonsingular.
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