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On the optimal control of passive or non-expansive
systems

Timothy H. Hughes

Abstract—The positive-real and bounded-real lemmas solve we show that for there to exist a solution to the LMI in the
two important linear-quadratic optimal control problems for pounded-real lemma, and for a system to be non-expansive, it
passive and non-expansive systems, respectively. The leasn s nacessarput not sufficientor the .., norm of the system’s
assume controllability, yet a passive or non-expansive sggn can . o .
be uncontrollable. In this paper, we solve these optimal cdrol transfer function to be_ bounded ?POVG by one. We_ also provide
problems without making any assumptions. In particular, we & hecessary and sufficient condition, by introducing two new
show how to extract the greatest possible amount of energydm  conditions relevant to uncontrollable systems.

a passive but not necessarily controllable system (e.g., @gsive  The paper is structured as follows. Sectlgh Il introduces
electric circuit) using state feedback. A complete charaefisation  the notation, and contains preliminary system theoretialts
of the set of solutions to the linear matrix |nequaI|t|es. in that f lised . the behavioral =ch 71, |
the positive-real and bounded-real lemmas is also obtained at aré formalised using theé behavioral approac [7]. In
In addition, we obtain necessary and sufficient conditonsdr  Section[Ill, we review the classical positive-real lemmai an
a system to be non-expansive that augment the bounded-realthe associated optimal control problem. We then state thie ma
condition with new conditions relevant to uncontrollable gstems.  results concerning this optimal control problem in Theasem
[10,[12 and 113, which are proved in Sectign$ IV add V. The

Index Terms—Passive, non-expansive, optimal control, positive- theorems explicitly characterise the solution to the optim
real, bounded-real, controllability, observability. control problem in terms of an ARE (relevant when the transfe
function H satisfieslim¢_, (H(£) + H(=¢)T) > 0), and
a spectral factorization off (¢) + H(—¢)” (relevant in the
general case). Sectidn]VI contains analogous resultsaneiev

The positive-real and bounded-real lemmas are reCOg”iStSqwon-expansive systems (Theordms20, 22[and 23, which are
as two of the most fundamental results in systems and contr@loved in Sections VIl anE VIll). In particular, we define the
They relate to two important optimal control problems, foRew concept of @ounded-real pairof polynomial matrices,
passive and non-expansive systems, respectively [1]H¢]. which appears in our new necessary and sufficient condition
the positive-real lemma, the solution to the optimal cantrgor 5 system to be non-expansive. Finally, some intermediat

problem gives the least upper bound on the energy thakyits are provided in AppendidesA-D.
can be extracted from a passive system. The lemmas also

provide results on the solutions of important classes oéain [I. NOTATION AND PRELIMINARIES

Matrix Inequalities (LMIs) and Algebraic Riccati Equat®n  Tnhe notation in the paper is as followR. (C) denotes the

(AREs), the theory of spectral factorization, and the cptEe rea| (complex) number<., (C.) denotes the open (closed)

of p(_)S|t|ve-reaI and bounded-re_al functions. But the atads right-half plane;C_ (C_) denotes the open (closed) left-half

versions of these lemmas consider only controllable SySteMyane. IfA € C, thenR(\) (I())) denotes its real (imaginary)
In [5], it was emphasised that a passive system (e.9.pért, and) its complex conjugateR[¢] (R(¢)) denotes the

passive electric circuit) can be uncontrollable, and a Mheoyolynomials (rational functions) in the indeterminatewith

of passive linear systems was developed that does not assygg coefficients R X" (resp.,Cxn, RMX[¢], R™X7(g))

controllability. In contrast to other papers on this subf@ee denotes then x n matrices with entries fronR (resp.,C,
[6, Section 3.3] and the discussion following Theoreni 1@{5], R()). If H € Rmxn, Cmxn Rmxnig], or R™X7(¢),

in the present paper),|[5] did not introduce any alternatiygen 77 denotes its transpose, and H is nonsingular
assumptions. But it did not consider the related optimatrobn (i.e., det(H) # 0) then H—! denotes its inverseR™*"
problem, nor did it consider non-expansive systems. It & tdenotes the real x n symmetric matrices. The block column
purpose of this paper to solve the optimal control problerr@gk,ck diagonal) matrix with entriegf:, ..., H, is denoted
considered in the positive-real and bounded-real Iemmasd'@(H1 .-+ H,) (diag H, --- H,)). We will use horizontal

the absence of any assumptions. In so doing, we characteggf vertical lines to indicate the partition in block matrix
the set of solutions to the LMIs in these two lemmas, and Wuations (e.qg., seé (43)). B/ € C™*™, then M > 0
show how to use state feedback to extract the greatest amquipt> ) indicates thaf/ is Hermitian positive (non-negative)
of energy from a passive (not necessarily controllablegdin gefinite, and sped/) := {\ € C | de{ \[—M) = 0}.

system. Also, in contrast with the case of controllableayst, A v ¢ Rvx"[¢] is called unimodularif its determinant

, - o _ is a non-zero constant (equivalently,”! € R"*"[¢]). The
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If B e R™7(), then () H*(&) = H(-&T; (i)
normalrankH) = maxycc(rankH(N))); and (i) H is
called proper if lim¢_,..(H(§)) exists, andstrictly proper if
lime oo (H(E)) =0.If Z e R™"™(¢) andH == Z*Z, thenZ
is called aspectral factorof H if (i) Z is analytic inC; and

(i) Z(X) has full row rank for allx € C. If H € R™*"(¢),

then ||H ||, denotes its#%, norm, and it is called bounded-

real if | H|« < 1 (i.e., H satisfies] — H(\)TH()\) > 0 for

all A € C,). If m =n, thenH is called positive-real if (i)if

is analytic inC; and (i) H(\)T +H(\) > 0forall A € C.
We let £°(R,R*) denote the K-vector-valued) locally

square integrable functions, andwif € £ (R, R¥) thenw?’

denotes the function satisfying” (t) = w(t)” for all ¢ € R.
We will consider state-space systems of the form

By = {(u,y,x) € £5° (R,R") xL5° (R,R™) xL5° (R, R?)
such that* = Ax + Bu andy = Cx + Du},
with 4 € R™¥¢ B e R¥>*" ¢ e R™*¢ and D € R™*", (1)
and we interpret differentiation in a weak sense (see [Ri&ec
2.3.2]). In particular, for any given € £ (R, R™) andx, €
R, there exist§u,y, x) € B, such that
x(t) = e*")xq + [} eA=7) Bu(r)dr, and @)
y(t) = Ce=")xy + Du(t) + [, CeAt=" Bu(r)dr, (3)
for all ¢ > ty,. Moreover, if (u,y,x) € B, then there exists
xo € R? such thatx satisfies[{R) for (almost) al > t,, so

x(t) is determined by[{2) in this interval (andty) = xo).
The external behavior of]1) is denoted by

B = {(u,y) | 3x such that(u,y, x) € B,}, (4)

that w(t) = wy(¢) for all t < tg and w(t) = wa(t) for
all t > t; [/, Definition 5.2.2]; andstabilizableif for any
wy € B there existsw € B such thatw(t) = wy(t) for
all ¢t < tp andlim;,, w(t) = 0 [[7, Definition 5.2.29]. The
behaviorB in (B) is controllable (resp., stabilizable) if and
only if P and@Q are left coprime (resp., rakP? —Q] (\))
is the same for al\ € C) [7, Theorems 5.2.10 and 5.2.30].
We call the pair(A, B) controllable (resp., stabilizable) B,
is controllable (resp., stabilizable), which holds if anayoif
rank [\ — A B])=d for all A € C (resp.,.A € C}).

Finally, if B, takes the form of[{1), then we call the pair
(C, A) observablaf (u,y,x) € Bs; and (u,y, %) € B, imply
x = % [7, Definition 5.3.2]. If, in addition,B{™Y) takes
the form of [3), then we cal(A, B,C, D) an observable
realizationfor (P, Q). With the notation

V,:=col(C CA CAL1Y, (6)

then (C, A) is observable if and only if rarfk,) = d [7,
Theorem 5.3.9].

Remark 41t is easily shown that i3, is controllable (resp.,
stabilizable) then so too i8{"Y). Furthermore, if(C, A) is
observable andBé“’y) is controllable (resp., stabilizable), then
B, is controllable (resp., stabilizable). AN

The positive-real lemma considers the optimal control prob
lem concerning thavailable energyfor a passivesystem:
Definition 5 (Available energy, Passive systeimt B, be
as in [1) withm = n. For any givenx, € R?, let

PASSIVE SYSTEMS

and has the properties outlined in the following two lemmas, £7” (x0) = {[." —(uly)(t)dt | t1 > to, (u,y,x) € By,

which are easily shown from results inl [8].
Lemma 1:Let B, be as in[(l) andA(¢):=¢I—A. There
exist polynomial matrice$, Q, M, N,U,V, E, F, G such that

1 M N||-D I -C| _ |-P Q 0.

"\U V|(|-B 0 A| |-E —-F G|’
M N|. . _

2. [U V] is unimodular; and

3. G is nonsingular.

Furthermore, whenever conditidng 1-3 are satisfied, theen
external behavioB{™Y in @) satisfiesB{"™Y) = B, where

B={(u,y)eLS(R,R")x LY (R,R™) | P(£)u=Q(<L)y} (5)

and we call(A, B, C, D) arealizationof (P, Q).

Lemma 2:Let B be as in [(b) withP € R™*"[¢] and
Q € R™*™[¢] where( is nonsingular and)~! P is proper.
Then there existd3, as in [1) such thaBB = BM™Y). Fur-
thermore, wheneveS, in (1) satisfies3 = Bgu’”, then there
exist polynomial matriced/, N,U,V, E, F' and G satisfying
conditiond"1EB of LemmAl 1.

Remark 3i1f B; in (@) andB in (B) satisfyBgu’Y) = B, then
H(¢) =D+ C(&I — A)~ !B satisfiesQ ' P = H. However,
the conditionQ—'P = H only guarantees tha8") takes
the form of [®) if P andQ are left coprime. A

A systemB is calledcontrollableif, for any two trajectories
w1, Wy € B andty € R, there existsw € B and¢; > tg such

and X(to) = Xo}.

Then the available energyS.” satisfies (i) Sa”(xo)
sup(E77(x0)) if E"(xo) is bounded above; and (ii)
Sa?(x¢) = oo otherwise. IfS;7 (xo) < oo for all xy € RY,
then B{™Y) is calledpassive

In words, the available energy is the least upper bound on
the energy that can be extracted fregnonwards.

The positive-real lemma provides the solution (if it exXists

EB the optimal control problem in Definitio] 5, and several

necessary and sufficient conditions for passivity. Thekae
(a) the existence of real matricés > 0 such that

~ATX - XA CT-XB

U= ¢ prx Dp4+DT 0
satisfiesQ2(X) > 0; (b) whether the transfer function
H(§)=D+CEl-A)"'B (8)

is positive-real; and (c) a second optimal control problem
concerning theequired energydefined as follows

Definition 6 (Required energy)l.et B, be as in[{ll) with
m = n. For any givenx, € R?, let

E7 (x0) = { [ (Ty)()dt | t1 < to, (u,y,x) € By,
X(tl) =0 andx(to) = XQ}.



Then the required energy S;” satisfies (i) S;%(xo) = (0,¥,%) € B,; and (i) a € R, then (au, ay+y, ax+x) €
sup(E7"(xp)) if E7"(xp) is bounded above; and (i) B,. It can then be shown that, iB{*Y) is passive, then
S7?(x9) = oo otherwise. " (uTy)(t)dt = 0. A
Also, if D+ DT > 0, then, with the notation In this paper, we develop the results [0 [5] to solve the
P(X) = —ATX — XA optimal control problem of ex_tracting the greatest poesibl_
amount of energy from a passive system, and to characterise
—(CT =XB)(D+D")""(C = B"X), (9 the set of solutions to the LMI considered in the positivatre
andAp(X):= A— B(D +DT)"Y(C — BTX), (10) lemma, in the absence of any controllability or observapbili
assumptions. The main results in this section are in the next

the conditions (g)—(c) also relate to the spectral_ _proepem)if three theorems, which will be proved in Sectign$ IV aid V.
Ar(X) for solutionsX to the ARET'(X) = 0. Critically to Theorem 10-et B, and B™Y) be as in [0L) and{4) with

this paper, it is typically assumed th@d, B) is controllable m = n: let S°* be as in Definitiori5: and I6F, andQ be as

and(C, A) is observable. . : : )
Lemma 7 (Positive-real lemmalet B, be as in[(lL) with in (8) and 7). The following are equivalent.

m = n, (A, B) controllable and(C, A) observable; lets;? 1 Sa” (o) < oo for a"_XO(E H)%d (ie., B is passive).
and S°* be as in Definition§]5 arid 6, and I8tand H be as 2. The external behavids;""’ takes the form off{5), where
in (7)—(8). The following are equivalent: (P,Q)isa positived-ietzial pair.

b A o i, 3 T SR s )0
S7P(x0) < oo for all xo € RY, Phe \T0) 7 270 =0 T s
H is positive-real X_ > 0; (i) QX_) > 0; (i) if z € RY, thenV,z =

There existsX € R¢*¢ such thatX > 0 andQ(X) > 0. 0 <= X_z=0;and (V) if X € R{*? satisfiesX > 0
Sa?(x0) = +x' X_x0 and S7" (x0) = 2x3 X4xo, where andQ(X) 20, th_enX, < X. N
X_, X, € R¥™4 gatisfy (i) A(X_) >0 andQ(X,) > 0; Moreover, if (C, A) is observable and the above conditions
and (ii) if X € R%*? satisfies(X) > 0, then0 < X_ < hold, then (i) specd) € C_; and (i) if X € R{*? satisfies
X < X,. Q(X) >0, thenX_ < X.

If, in addition, D+DT >0 andT'(X), Ar(X) are as in[(9)- Remark 11:We note from Theorerm 10 that, for a passive

' ! ' d isfi — i i Ip _
(I0), ther 155 are equivalent to each of the following: system,z € R satisfiesV,z = 0 if and only if 5.”(z) = 0.

. : . . In words, the available energy of the statds zero if and
6. There exists a uniqu& _ € R4*4 satisfying (i) X_ > 0; .
(i) T(X_) = 0: and (iii) spe€Ar(X_)) € C._ . only if z is an unobservable mode (we calan unobservable

. . AT mode if (0,0,x) € Bs wherex(t) = e#'z for all t € R). A
7. There exists a uniqu& . € R4*4 satisfying (i) Xy > 0; . - )
(i) T(X.) = 0: and (iii) Spe€Ar(X+)) € C. . The next theorem provides an explicit expression for the

available energy for the case wifh + D7 > 0.

arwdE

I}/Io;eover, if copditions[](li éa;nd[]? hold, thef;”(xo) = Theorem 121et B, be as in[{lL) withm = n; let SJ” be
2%0 X—XO_ and Sr’)p (x0) = 3%p X4Xo. as in Definitior[5; lefV,, T" and Ar be as in[(B),[{B) and (10),
Proof: See [2, Sections 3-5]. B respectively; and leD-+D7>0. The following are equivalent:

It was shown in[[5] that, if controllability and observabjli op . wy) .
are not assumed, then the positive-real condition is nacpssl' Sa” (x0) < for all Xodded (!.e.,.Bg b.’) 'S passwfa).“
but not sufficientor there to exist a solution to the LMI in the 2 There eX'StS_LX: € K szztsfymg. M X = 0; (i)
positive-real lemma (conditidd 4 in Lemrfi 7). A new condi- PX-) = _0’ (g') .'f ?f €R Sat'SfﬁSVOz :d 0, the}n
tion was provided in terms of the polynomial matricBsQ Xz = OL and () i /\76 Cy andz € C° satisty
describing the external behavior (see Lenimha 1). Specificall AF(X*).Z = Az, then-leoz =0
it was shown that there exists a solution to the LMI if andloreover, if these conditions hold, théif” (xo)=5x{ X -xo.

only if (P,Q) are a positive-real pair, defined as follows. T_he final theor.em provides an explicit expression for the
Definition 8 (Positive-real pair)Let P,Q € R**"[¢]. We available energy in the general case. o
call (P, Q) a positive-real pairif the following hold: Theorem 131et B, be as in[{L) withm = n; let 5," be
(8) POVQOT + QO)P(V)T > 0 for all A € C, . asin Deﬁmuorﬂé;_ and leV, and H be as in[(B) and{8). The
(b) rank[P —Q] (\)) =nforall A e C,. foIIovglng are equivalent: . e .
() If p € R*[¢] and A € C satisfy p? (PQ* + QP*) = 0 1. Sa"(x0) < oo for all xg € R? (i.e., B is passive).
andp(\)” [P —Q] (A) =0, thenp() = 0. 2. There existsX_ € R%*? satisfying (i) X_ > 0; (ii) if

z € R? satisfiesV,z = 0, then X_z = 0; and (iii) there

. ; ; (u,y)
Remark 9:1f B; is as in [1), then3; takes the form exist real matriced, and W such that

indicated in Lemmall. WithP, Q as defined in Lemmial 1Y
is nonsingular, andl := Q' P satisfies[(B). Then, condition  (ili@) _ATX; - X—TA =L"L,C-B"X_ =W"L, and

of Definition[8 is equivalent toH being positive-real D+ D =W a”? .

[5. Sections 4-5]. Also, conditiofi {b) is equivalent to the (ilb) Z(&)=W+L((I-A)"'B is a spectral factor of
stabilizability of B{*Y). Finally, a physical interpretation of H+H"

condition[(c) is given in[[b, Sections 4-5]. This conditiorMoreover, if these conditions hold, thélﬁ")(xo)zéxoTX_xo.
relates to the fact that, if (fu,y,x) € Bs andt1 > to In proving Theoremb10, 12 and]13, we show how to com-
satisfy x(tgp) = x(t;) = 0 and fttol (uTy)(t)dt = 0; (i) pute the available energy,” and obtain a linear state feed-



back law such that, withxy = x(to), then [>° —(u”y)(t)dt andC=CT'=[-1 0 0 0].

. . . UT—'

IS 3\;b|trarlly close taS,” (xo) (sele Rer_r|1|arICl6). he distincti We note that the final three columns B§7—! are zero (so
e next present an example to illustrate the distinCtiqRis circyit also violates assumption (v)), and it followsth

between the results in this section and other papers in eoreniID that_ = 77X T where X_ — diag(/\ O)

literature that deal with S|mllar objectives. . and A is the least real positive number satisfying
It has long been recognised that the controllability and ob-

servability assumptions in the positive-real lemma areund 1_ i7x _ X A T _ X B 2A 0 -1
restrictive, and there have been many notable attemptdato re[ C_BTX DLDT |~ 0 O3x3 0| >0.
these assumptions. A comprehensive summary is provided-in - -1 0 2

[6, Section 3.3] (see also][9] for additional properties lwé t 11,5 \ — L, and from Theoreri 10 we conclude that, with
LMI Q(X) > 0). These results focus on the equivalencg0 — x(0), thenSg” (xo) = (i1 + is — v3 — v4)(0))2. Note

of the positive-real condition with the existence of s@u8 4t more energy can be extracted from this system than can
X € R4 to an LMI (similar to conditiorB of Theorem po ovtracted from the systel = {(u,y) € L% (R,R) x

[I0) or an ARE (similar to conditiofl 2 of Theordm]12) [10]—zloc (R, R) | y = u} (for which [ —u(t’)é(t)dt <0), éespite
[13]. None of these papers explicitly consider the optim@lig tact that both systems have the same transfer function.
control problem in Definitiorl 5. Also, each of these papers In Remark[IB, we will show how to extract the greatest

introduce alternative assumptions that are not necessary f,qgiple amount of energy from this circuit. Following that
guaranteeing a solution to the optimal control problem.sBhe o mark we leti — —(D+DT)"Y(C — BTX_)x = 1(iy +
' - )X =3

assumptions include: (i) spe¢) € C_ [12], [13]; (ii) (A, B)
is stabilizable[[10],[[1]; (iii)H + H* is nonsingular[11]; (iv) L _
H(jw)+H(—jw)T > 0 for all w € R [10], [13] (note that this i ( szga)*je,igz‘j?()(gf))*j‘s‘;f()tgzz‘jz)%
implies (iii)); and (v) (C, A) is observable[[10],11]. A key H(t) = 3| aint) (s —ia ) (O)+ (eos(t) ) (o (0) |
objective of this paper is to avoid such assumptions emtirel sin(t) (i1 —i2) (0)+(— cos(t)+e ) (v3—v4)(0)

We al§o note that several papers haye sought Fo ‘;emonStWi%reupom(t) _ _%e—t((il Fin —v3 —v2)(0)) = —i(t). It
the equivalence of the conditions (B)(jw) + H(—jw)” >0 a1 then be verified thqﬁ’o —i(t)yo(t)dt = L((iy +is —v3 —
for all w € R; and (b) there exist& € R*“ (not necessarily )(0))2 = ST (xo). 8
non-negative definite) such th&(X) > 0 [14], [15]. The
papers([16],[[1]7] consider a similar problem using the fdrma
ism of the behavioral approach. These papers again inteoduc 4 — [ 0 1] B— [O] C=1[0 1], andD = 0.
additional assumptions. Specifically, [14] assumes thas -1 0}’ 2]’ ’
unmixed and [15] assumesign controllability Both of these From Theorerf 20, we find th&” (x(0)) = i((z’1+i2)(0)2+

conditions imply the assumption (v)jwl — A B] has full (. 11,)(0)2). Again, RemarkT6 explains how to extract the

row rank for allw € R. Also, [17] assumes conditions (iil), greatest amount of energy from this circuit. In that remark,

(v) and (vi); and[[16] considers only single-input singlefout

systems that satisfy conditions (v) and (vi). A= [ 0 1 } - { 0 } C.= [0 i} D.=¢
However, there are physical systems that do not satisfy any —1 =2’ 2V1+e]’ VIt ] 7

of the assumptions in these papers. For example, consieler){gzé(ll—_Jij)[’ Ue= — %(U3+U4)’ andu=—(v3+v4)=—7.

two electric circuits in FiglIl. Note that, for each of thege c e .

cuits, the pail(4, B) is not stabilizable. This implies that thereVe then leti = u and v = y. In this case,i and v

is no state feedback law that transfers the internal cisramd  @'€ independent of, and it can be verified that(t) =

voltages to zero (however, there is a state feedback law thgg (i1+i2)(0) + (feit — ¢ (v + 04)(0) = —v(t) and

transfers the external currents and voltages to zero, andJso —#(t)v(t)dt = 5 ((i1+i2)(0)* +(v3+v4)(0)?) = Sa” (xo)-

the external behavidB{"*” is stabilizable). Also, both circuits ~ VW& €nd this section with a remark about the optimal control

violate assumptions (i), (ii) and (vi) in the previous dission, Problem in Definitior 5 concerning the required energy.

and the circuit on the right hall + H* = 0 (and so violates ~ Reémark 14:The required energy,” (xo) is not considered

assumptions (jii) and (iv)). Now, consider the circuit ore thin Theorems I0. 12 arid 113. B, is as in [1) and(4, B) is
left. Following notd A1, we let controllable, thers,-* (xq) corresponds to the energy required
’ to transfer the state t®, from the origin. However, if3; is

19 —v3 — vy ). From the variation of the constants formula (2),

v3
Va

Now, consider the circuit on the right of Figl 1. We let

1 1 -1 -1 1 -1 1 1 not controllable, then there exisy € R¢ which cannot be
T 01 0 O o7 — 0 1 00 reached from the origin, so the required energy for suclestat

00 1 0]’ 0 0 1 of” is undefined. Indeed, the controllability ¢f, B) is related
00 0 1 0 0 0 1 to the existence of an upper bound to the setXot RZ*4

) ) _ which satisfy conditiofil3 of Theorem110. Specifically, if the
which transform the system into observer staircase form: existz € C¢ and A € C such thatz? [\[—A B = 0,
1 0 0 0 0] thenz”2x = X\zTx, and soz”x(t) = e*!~t0)zTx(t,) for
. _ _ R all t € R, whencez"x(ty) # 0 implies thatx(t) # 0

A=TAT™ = _1 ? _1 _01 B=TB= } for all ¢ € R. If, in add(iti(zn, A € C_, then the(re) are no

0O -1 0 0 1| trajectories satisfying?x(t) # 0 andlim;_, . (x(¢)) = 0.



andx be as in the previous paragraph, ﬁé Ty)(t)dt =
kf dt<S"P( ). If X_z =0, thenO—S"P(z)>

kfto t, s0y(t) = CeAlt=to)g = 0 for all t > t,.
This implies é[xkz =0 (k = 0,1,2,...), which implies
CA*z=0(k=0,1,2,...), henceV,z = 0.

To provel4(ii), note from Lemmh B.3 thai,” is a stor-
age function (with respect tm”y). Thus, S;*(x(t1)) <
S (uly)(t)dt + Sa7 (x(to)) for all (u,y,x) € B, and
t1 > to. From the variation of the constants formuld (2)-
@), for any givenxy, € R? and uy € R, there ex-
ists a(u,y,x) € Bs with x differentiable, x(ty) = =xo,
=1 ¢=[0 1 0 0],D=0 and u(ty) = wup. Thus, (uy)(to) — % (Sa"(x))(t0) =
Bl=0| [-1 j 2 —2j][jI-A B]=0 %[x{ uf]Q(X_-)col(xo wug) >0, and so(X_) > 0.
- H(©:=D+ 0= A)"B=2% ~ To proveld(iv), note that if¥ > 0 and2(X) > 0, then

4x — Ax + Bi,v = Cx + Di,

x=col (i] i2 v3 ’U4)

1],D
i -5 1 —1[jI-A
H(g)=D + C(¢1 — A)~"

Fig. 1. Two electric circuits with uncontrollable and unebsble state-space 2 fttol (uTy) (t)dt . [(XTXX)(t)} tq

representations.
= [P ([xT uT]Q(X)col(x w))(t)dt, (12)

In fact, for a passive system, the following two condltlon§O Txx(t) < [ (uTv)(E)di+ Lx ()T Xx(ta). With
are equivalent: (i) the LMI in conditioh]4 of Lemnid 7 ha ( :)( ::) nglio_foioa(lrxz’)é )Rd+i2t>;fjlfc))ws :{h(a(;)é is a

d
o upper bound; "}nd (i) there exists # z € C _and storage functlon Thus? Xx¢ > xI' X_x, for all xo € R¢
A € C_ such thatz” [A\I-A B] = 0. To see that (ii)= b
, dxd - o y Lemma[B.B, which impliesy > X_.
(i), let X € R satisfy Q(X) > 0 and X = zz" +zz" . d=[B Immediate
Then, for any givem > 0, 0 < X + aX € R;> satisfies = [l  Recall from the proof of{l1= [(iv) that
.Q().QFOZX) = Q(X)—a(A+))diag (X _ 0) > 0. Conversely, S(x0) = +x1" Xx, is a storage function (with respecttd’y).
if (i) does not hold, then there exist& < R?*" such I
that spe BK ' C.. Then. for anv aiver R Condition[1 then follows from LemmiaB.3.
th P CAt + i ). et * ' B y gt'r\]/ O_EK ' It remains to show that, ifC, A) is observable and condi-
ere exists a trajectoryu,y,x) € By With u = KX, 009 0 hold then (i) spéd) € C_; and (i) if X € RIxd
x(to) = xo and lim¢_o(x(t)) = 0. Finally, for this satisfies(X) > 0, then X < X
trajectory, it can be shown that (a) there exidfse Rdxd A = -
Condition (i) follows from [3, Theorem 3.7.5], as condition

1,7
such thatf Ty)(t)dt < 3x§ Xxo0; and (b) |fX satisfies @ implies thatX_ > 0 and—ATX_ — X_A > 0.
condition[4 Of Lemm@? the%x Xxo < [U (Ty)(Ddt. T 10 see (ii), letX € R9*? satisfy Q2(X) > 0, and note that
It follows that (i) does not hold. 5 @) holds. Then, for any givem, € R? ande > 0, there

The following two sections provide the proofs of Theorem@xists(u v, %) € B, with x(fo) = xo and#; > t, such that
[10,[12 and_I3. Then, in Sections] VI=VIlI, we state and prove e -

three analogous theorems relevanntm-expansive systems f;“ —(uTy)(t)dt=S5a" (x0)—e<3 (x3 Xxo—x(t1)T Xx(t1)).
. <

We will show that there existd/ € R (independent ofe)

such thatx(¢;)7 Xx(t;) > Me. This implies that? X _x, <
In this section, we prove Theorem]10. The proof uses thOX xo + (1 — M). Sincee can be chosen to be arbitrarily

concept ofstorage functiongnd the results in Appendix] B. small, we conclude that_ < X
Proof of TheorenﬂOThat[] <= s shown in[[3]. To obtain the bound\/ 7Ie_tk > 0 be such thatl + kD is
H%e’::\/[% prostEirli [?01:3' ~ 0 such thatl + kD is nonsingular; letC' and A be as in[I1); let(t;) = x;; and
= ' P . . let (Q(t),¥(¢),%x(t)) = (u(t),y(t),x(t)) for all tm <t < ty,
nonsingular, and let € R be fixed but arbitrary. Then, let andx(t) PAlt—t)y a(t) kCx(t), and§(t) = Cx(t)
= 1, = - y =

C:=(I+kD)'CandA:=A—-kB(I+kD)'C; (11) forallt > t;. Then(a,y,%) € B, with X(t9) = xo. Next,
consider a fixed > 0, and let® == [, A" "CTCeAmdr.

From earlier in the proof(C, A) is observable sincéC, A)
is, and so0 > 0. Moreover,

IV. PASSIVE SYSTEMS AND THE AVAILABLE ENERGY

let x(t) = e(t—to)g for all t € R; and leta = —kC% and
v = C’x It can be verified tha([u ¥, %) € B, X(to) = 2, and
ft dt—kft y)(t)dt > 0. Thus, Sa? (x0) =
—xOX X0 for someX_ € RdXd with X_ > 0 by Lemma [+ _(@7§)(t)dt = S57(x0) — € + kxT Ox1 < Sq” (x0),
B.4 (it is conventional to mclude thé) It remains to show
that X_ satisfies conditionis] 4(ii)—(iv). SO xf@xl < e/k. Now, let XA > 0 denote the least eigenvalue
The proof off4(iii) is inspired by[[2, Proof of Lemma 1].of O. Also, if X > 0 we let u := 0, and otherwise we let
Note initially that, sinceX_ > 0, then any givenz € R? ;1 < 0 be the most negatlve eigenvalue &f By Rayleigh’s
satisfiesX_z = 0 <= z/'X z =0 <= S;°(z) =0, quotient,x? Xx; > uxIx; > “xl Ox; > = Which gives
whenceV,z = 0 = X_z = 0 by LemmdB.5. Now, lein, y, the boundM = u/(kN). |



V. EXPLICIT CHARACTERISATION OF THE AVAILABLE Case (ii): (C, A) not observable. Consider the observer
ENERGY staircase form (see nofe[A.1), and Bf and S¢ be as in

i _ T
In this section, we prove Theoreins 12 &ndl 13. We also Shma[Ep (W'ﬂ;a(_“’ y) = y). It follows frorrZzXLdemma
how to compute the available energy of a passive system. B3 thatX_ = T'"diag (X 0) T where X_ € R{*¢ with

Proof of Theoreni12:With the notation 1%l X _%o = 877 (%0) for all %o € R%. With
I 0] D(X)=—AL, X-X A, —(CT—XB,)(D+D")~}(C,—BF X),
SX=\pypryiBrx-c) 10 @3 0 Ty-1 Ty
( ( ] and A (X):=Ay,— By (D+DT)"(C1— BT X), (17)
then 5(X) is nonsingular and it follows from case (i) thatX_ > 0, [(X_) = 0, and
r _[n(x) 0 ] spe¢Aq (X)) € C_. Also, it can be verified thal' (X _) =
S(X)QAUX)S(X) = [ 0 D+DT|" (14 TTdiag(P(X_) 0)T; and
Thus,Q(X) > 0 <= T(X) > 0. TA(X -1 — [Afgf() 0 ] 18
= 1. From [14),X_ > 0 and Q(X_) > 0, so r(X-) Aoy Ao |’ (18)

Sa?(x9) < oo for all xo € R¢ by TheoreniI0.
=M@ SinceS;"(x¢) < oo for all xo € RY, then
Sa?(x0) = 3x3 X_xq for someX_ € R¥*? satisfying (i)
X_ >0, (i) Q(X_) >0, and (iii) if z € R, then X_z =
0 < V,z = 0, by Theoren{_I0. It remains to show tha
shown thatV,z = 0.

CO‘?SIgﬁg;vﬂégil:i?i%\a)?ﬁeaig(Slitlsf;lij.UT.Y- From the ! remain1s tTo show that ifY_ satisfies conditiofi]2, then
proof of Theoren{ 10y satisfies the conditions of Lemma’e (X0) = 3% Xxo. To prove this, fo";‘ssum? thet, 4)
B.4, so [(35) holds from the proof of that lemma. Also, fol> observable, and we show thathf € R;™“ satisfiesX > 0,
any givents > t; > to and(u,y,x) € B, with x(t9) = xo, X 7 X, andI'(X) =0, then speAr (X)) £ C_.. The case
- T with (C, A) not observable can then be shown by considering
f;f? —o(u,y)(t)dt < ﬁtl —o(u,y)(t)dt + So7 (x(t1)) the observer staircase form as in the proof of case (ii) above
’ . Lot If T(X) = 0, then QX) > 0, sOoY = X —
=577 (x0) = 3 Jy, (X" uTJQ(X ol (x w))(t)dt.  x— > 0 by Theorem[ID. Also, by direct calculation,
By taking the supremum over all > ¢; andu € £ (R, R™), Ar(X2)TY+Y Ar(X-)+Y B(D+D")~'BTY = 0. From

and usin from the proof of LemriaB.4, we find that before, (Ar(X_), B) is stabilizable, so from[[4, Proof of
9l35) P Lemma A.1] we find thatAr(X_) + B(D+DT)"!BTY =

0<  sup ft’: —([x" uT]QX_)col(x wu))(t)dt  Ap(X) satisfies speeir(X)) ¢ C_. ]
ueLE(R,R™) Remark 15From the proof of Theorenis L0 ahd 12, in order
such that(u,y,x) € Bs,x(to) = %o, (15) to find the matrixX_ in those theorems, it suffices to find an
X_ € R¥*4 gatisfyingI'(X_) = 0 and spe¢Ar(X_)) € C_
for the case wit{C, A) observable. This can be obtained from
Whe controller staircase form [3, Theorem 3.3.4]:

A A
0 Ay

with (41, B1) controllable. SinceC, A) is observable, then
so too is(Cy, Ay1). FurthermoreD + Cy(E1—A11) 1By =
From [18, Section 2.3], for any giveny, > ty, the above D + O(gle)‘lB, which is positive-real (see Remalk 9).
infimum is equal tax? P(to—t1)x, where P is an absolutely Thus, withI' and A;. as in [1T), there exists a uniqug; > 0

where Ayy = Ay — By (D+DT)~1(CT—BT X _). Now, sup-
pose\ € C; andz € C? satisfy Ar(X_)z = Az, and letT;

be as in not¢ All. Sincal — Af(f(,) is nonsingular for all
(\ € C4, then [I8) implies thafz = 0, and it is then easily

for any givenx, € R? andt; > t, € R. SinceQ(X_) > 0,
then the above inequality must be satisfied with equality.
let v :=u+ (D+D7)~}(C — BT X_)x, so [I3)-{(Ib) imply
0= inf [ (&TD(X_)x + v (D+DT)v)(t)dt
vELY(R,R™) "0
such thatx € £5°(R, R?), &= Ar(X_)x+Bv, x(ty)=xo.

— [ } TB= m cT'=[Cy G, (19)

continuous matrix function that satisfié¥0) = 0 and satisfyingI'(X1,) = 0 and spe€Ad;(X11)) € C- [2, Lemma
2]. This can be efficiently computed using the methods in [3,
— 4P = PAR(X_)+ Ar(X)'P Chapter 6]. Next, note thdtd, B) is stabilizable sincéC, A)

— PB(D+D")"'BTP+TI(X_). (16) Is observable (see Remaiks 4 and 9), so &pgg € C_ [7,
Corollary 5.2.31]. Thus, fromi_[3, Theorem 3.7.4], thereséxi

Sincex, € R can be chosen arbitrarily, théP(t) = 22 (t) =  a unique real’, satisfying the Sylvester equation:
0 for all t <0, and sol'(X_) = 0 by (18).

To show conditio2(iv), we consider the cases:((i) A) AL X+ XH A (X))
observaple; and (iifC, A) not observable. = AL Xy, — CT(D+DT) " (01— BT X11),

Case (i): (C, A) observable. We note thaf Al — A B]| _ T _
has full row rank for all\ € T, (see Remarkgl4 ard 9)_and a unique reak > 0 satisfying the Lyapunov equation:
This implies that[Al — Ar(X_) B] has full row rank for (AL 247 As)
all A € C4, so(Ar(X_), B) is stabilizable. The proof of this e S .
condition is then identical ta [4, Lemma 7]. = (G2 = X2 X1 C1)(D+D7) " (Co=Cri X1y Xuz).



Then, with the notation

Ajg = Ajg—By(D+DT) "1 (Co—BI X19),
X1 X12 T
XL Z+ XLX ' X

it can be verified thatX_ > 0, T'(X_) =0, and
Ap(X11) A12} _

andX_ =TT {

0 Ago

This implies that speeir(X_)) spe¢Ap(Xi1)) U
spe¢Aqs) € C_, so X_ is the matrix in Theorerhi 12. A
To finish this section we prove Theorém] 13.
Proof of Theoreni 13: That[2 = [ is immediate from
Theoren! 1D, sinceX_ > 0 satisfiesQ(X_) > 0. It remains

TArX )T = {

3) If, for i = k—1,[(R2)] and (RJ) are satisfied Hut (R4) is not,

thendeg (det (Qr)) < deg (det (Qx—1)) (Lemmal[D.4).
This inductive procedure terminates in a finite number giste
with matricesP,,, and Q.,, that satisfy conditiong (RI[)—(R4).
The procedure is inspired by the sequence of transformetion
outlined in [3, Section 8.4]. In contrast ta [3], we also cioles
the case of uncontrollable systems.

Next, we consider the following four statements:

(S1) There exist polynomial matricéd;, N;, U;, V;, E;, F;

M, N;||-D;, I -C;| |-F @ O

U; V;] [—Bi 0 A } N [—Ei —F; I]’
whereA;(¢) := £I—A;, and the leftmost matrix is unimodular.
~ATX-Xx4A; CI'-XB

such that{

(S2) WithQ;(X) == [ } thenX;

to show thafll=-[2, and if X_ has the properties indicated injs a real matrix that satisfies (i; > 0; (i) Q:(X;) > 0; and

condition2 thenSq” (xo) = 3x3 X_xo. We will prove this for
the cases: (i(C, A) observable and+D™ > 0; (i) (C, A)
observable; and finally (iiifC, A) not observable.

Case (i) (C,A) observable and D+D7T > 0. It

suffices to show thaX _ satisfies conditiofl2 in Theoreml12Q;(X;)=
if and only if X_ satisfies conditiohl2 in the present theorem.
First, let X_ satisfy condition[R in Theorerh 112. Since

D + DT > 0, then there exists a nonsinguldr satisfying
WTW =D+ D". We letL .= (WT)~(C — BTX_), and
we obtain—ATX_ — XTA—-LTL=T(X_)=0.

(iii) if X is a real matrix that satisfie¥ > 0 andQ;(X) > 0,
then X; < X.

(S3) X;, L; andW; are real matrices such that; > 0 and
~-ATX,—x;A; CT—X,B; LY
{ }: [WF] [Li Wi

C,—BTX;  D;+DY
(S4) PIL_- As _Vfl has full row rank for all\ € C.
From notes [ANEA]2, there exist real matrices

Ay, B, Cy Dy, such that conditio (SL) holds. Then,

Now, let Z(¢):=W+L(¢I—A)~1 B. From Theorems10 and from case (i), there is a uniqu,, for which there exist.,,,

[12, spe¢A)eC_ and speAr(X_))eC_. Also,

M—-A -B] [M-Ar(X.) —-B I 0 (20)
L W 0 W |W™iL I|-

The matrices in[{20) have full row rank for alle C, soZ

is a spectral factor foff + H* by LemmaD.1.

and W, that satisfy conditiong (SB3) arid ($4). Furthermore,
by TheorenfID, thisY,, also satisfies condition (§2). Then,
using Lemmag_DIJ2=Dl4, we find that there are unidgug
for which there existL; and W, that satisfy conditions

[(S3) and[(S4), and thes&; also satisfy conditior (SR)

(i=m-—1,...,1). Now, let

Next, let X_ satisfy condition R in the present theoremgs:{(u’y’xl)eﬁlgc (R, R™) x L1 (R, R") x £'° (R, Rdl) |

SinceW + L(&I — A)~!'B is a spectral factor o + H*,
thenW is nonsingular. Thusl, = (WT)~*(C - BTX_), and
MNX_)=-ATX_—-X_A-LTL = 0. As before, spect) €
C_, so the matrices if(20) have full row rank for allc C
by LemmaD.1, and so spetr(X_)) € C_.

Case (ii) (C, A) observable. Let P and(@ be as in

Theoren 1D, and leP; .= P and@; := Q. If P, andQ; do

dX1 —
dt

SinceP = P, andQ = @1, then from not¢_A.P we conclude
that (Cy, A1) is observable and™) = B{"Y) Thus, from
note[A.3, there exists a nonsinguldr € R4*? such that
(34) holds. It can then be verified that_ = T7X,T,
L = LT, andW := W; satisfy conditio R in the present

A1xy + Byu andy = Cyx1 + Dlu}.

not satisfy the conditions of case (i), then we will construgheorem statement; anti_ satisfies (af2(X_) > 0; and (b)
P, Qm € R™*"m[¢] that do. Specifically, we consider theif X ¢ R?*¢ satisfiesX > 0 andQ(X) > 0, thenX_ < X.

following four statements:

(R1) P, Q,; € R™*"i[¢] where(P;,Q;) is a positive-real
pair andQ; ' P; is proper.

(R2) D; = limg_,0o (Q; ' P;(€)) is symmetric.

(R3) P, is nonsingular and); = diag(Z,, 0).
By Theorem[ID, P, and @ satisfy condition[(R3).
Then, using Lemma$é_D.P=D.4, we construgt,..., P,
Q2, ...,Qm such that conditiof (R]L) is satisfied;<n;_1,
anddeg (det (Q;))< deg (det (Q;-1)), fori = 2,...,m; and

Since X_ is uniquely determined by conditions (a)—(b), then
Sa?(x0) = $x4 X_xo by TheoreniID.

Case (iii) (C, A) not observable. Consider the observer
staircase form (see nofelA.1), 90+ C,(£1—A11) ' B -
D+C(£I-A)~1B, and letT be as in notEA]1 anB, andS?
be as in Lemm&BI5 (for the casgu, y) = uly). It follows
from LemmdB.b that_ = T7diag(X_ 0) 7 whereX_ €
R with 1% X _%o = 5S¢ (o) for all %o € R?. From case
(i), X_ is the unique real matrix satisfying (&_ > 0; and
(b) there exist real matrices, W such that

1) If, for i = k— 1,[[R2) is not satisfied, thdn (R2) is satisfied (b1) —AL, X_—X_A;,=LTL, C,—BfX_=WTL, and

for : = k (LemmalD.2).

D+ DT = WTW:; and

2) If, for i = k—1,[[R2) is satisfied b§f (RB) is not, then (R2) (b2) W+L(£1-A11)~' B, is a spectral factor of +H*.

and[(R3) are satisfied far= k; and if P,_; is singular
thenn, < ni_; (LemmalD.3B).

Then, with L := [L 0]T, andW = W, it can be verified that
condition[2 of the present theorem statement holds. Also, if



X_, L andW are real matrices satisfying conditibh 2, thems ¢ — oo and j; Ty)(t)dt > 3x(to)T" X<x(to) by

X_ =T"diag(X_ 0) 7 for some0 < X_ € RdXd with ). Flnally, |t can be verlfled thakc — X_ ase — 0,
i T r . SO ft t)dt can be made arbitrarily close to the
{(T ) O} {‘A X*T_X*A ¢ _XTB] {(T ) O} supremumS (xo) by takinge sufficiently small.
0 1 C-B" X D+D 0 1 A similar argument holds for non-expansive behaviors
—AT X —X A, 0| CT-X_B; (considered in the next three sections). In this case, we let
= 0 0 0 ) Ac=A,B;:=B,Cc:=(1—¢€)C, D.:=(1—¢)D. A
ci-BIX. 0| Dtp7
V1. NON-EXPANSIVE SYSTEMS
This implies thatl, = [L 0T, andW = W where L and | addition to the results on passive systems, we also extend
W satisfy the aforementioned conditions (b1) and (b2). Theihe famous bounded-real lemma to systems that are neither
from case (i) and Lemma B. 554" (x0) = Sa”(Tixo) = observable nor controllable. This lemma is concerned with
oTTTX—Tlxo = %4 X_xo for all xo € R”. B non-expansiveystems, defined as follows.
We conclude this section with a remark about computing pefinition 17 (Non-expansive systerhpt B, be as in[{L).
the optimal control. For any givenx, € R?, let

Remark 16:1f B, in (1) satisfiesn = n and D+D7T > 0,
and Ar(X_) in TheorenIR satisfies spetr(X_)) € C_, &% (x0) = {f:ol (yTy —uTu)(t)dt | t; > to, (u,y,x) € By,
then u = —(D+DT)"Y(C-BTX )x and (u,y,x) € andx(to) = xo .

B, imply [ —(uTy)®)dt = —1[x"X_x)(t)],! and . oo
%:AF(X_)X. Thus, ifx(to)zxo,thenft —(uTy)(t)dt = Then the ava_llablejgstoraglsa satisfies (i) Sa.(xo) =
7% (x0) 0 sup(8 (x0)) if &.?(x0) is bounded above; and (ii)

Sa?(x¢) = oo otherwise. IfS;?(xg) < oo for all xy € RY,
thenB; is callednon-expansive
In our results, the following new concept obaunded-real
ng)aw plays a central role.
Definition 18 (Bounded-real pair)Let P € R™*"[¢] and
€ R™*™[¢]. We call (P,Q) a bounded-real pairif the
following hold:
@ QNQN)T — PPN >0 forall A e C,.
(b) rank[P —Q] (A\)) =m forall A€ C,.

If, on the other hand, D+D? is singular or
spe€Ar(X_)) ¢ C_, then there still exists a linear
state feedback law such that, witky := x(ty), then
ft t)dt comes arbitrarily close to the supremu
S (x ) Th|s can be constructed as follows. First, it follow:
from note[A.l and LemmBa_B.5 that no generality is lost i
assuming(C, A) is observable. We then let > 0, and we
note that(I + eD) is necessarily nonsingular. We define

Ac=A— B(I +€D) '€C, Bo=B(I +eD) " '\/1 + ¢, () Ifpe R:[f] and ) € C satisfy p" (QQ* — PP*) =0
d P — =0, th =0.
C.:=0=) ([ 4 ¢D)"'C, Do=(D + eI)(I +¢D)~*, and andp(\)" [P ~Q] (A) =0, thenp(}) = 0

Vite? Remark 19:It can be shown that, ifP, Q) is a bounded-
Bi={(uc,ye,x)€LE® (R,R™) x L5 (R,R") xL5° (R,R?) |  real pair, then@ is nonsingular and|Q—1P||<1. But the
= Acx + Beu, andy. = Cex + D.u.}, converse is not true. For example, H(¢) = Q(&) = &+1,
_ then||Q ! P| =1, and conditiod (B) in Definition 18 holds,
sou. = (utey)/v1+e? andy. = (y+eu)/v1+ e satisfy but not conditiorf (@), s¢P, Q) is not a bounded-real pait
- b T In this section, we provide necessary and sufficient condi-
Jog (uly)()dt = [, "(a"y)(t)dt tions for a system to be non-expansive (in the absence of any
e ti T T controllability and observability assumptions). Thedate(a)
+ == [, (fuc +yly)(t)dt, (21) y y P
= 2 the existence of matrice¥ € R4*? such thatX > 0 and
and (u,y,x) € B if and only if (u.y.x) € B:. T T T
Also, with H(§) == D+C(EI-A)"'B and H.(¢) = A(X):= _A_gT_OX_AB_T)C; ¢ _?_DD_TgB
D A+C(E1-A.)"'B,, thenH, = (H+e])([+eH) L 1t can
then be verified thatl. (jw) + H.(—jw)” > 0 for all w € R, satisfiesA(X) > 0; and (b) the bounded-real pair concept.
D.+ DT > 0, and H, has no poles |rtCJr Since, in addition, Also, if I — DT D > 0, then, with the notation
(C, A) is observable andA, B) is stabilizable, then it can Y T
be shown that spéd.) € C_. It then follows from [11] that I(X) = _ATX - XA-C OT - .
there existsX¢ € R?<? such that —(C"D+XB)(I-D" D) (D'C+ B X), (23)

and Ay (X) == A+ B(I — D" D)"Y (D" C + BTX), (24)

(22)

—AlX<-Xx<A—(CI-X B)(DA+DI) ' (C.—BI X<)=0,

and spe¢A. — B.(D. + DT)"}(C. — BTX<)) e C_, conditions (a)—(b) also relate to the spectral properties o
Apn(X) for solutionsX to the AREII(X) = 0. The results

and it follows that ifu. = —(D.4+D!)"'(Cc—B!'X¢)x in this section are presented in the next three theoremshwhi

and (ue,ye, ) € B, thenx(t) — 0 ast — oo, and we prove in Sections VIEVII.

ft (uly)(t)dt = ix(to)" X< x(tg). Thus, ifu = (I + Theorem 20Let B, BY), v, and A be as in[(1),[[4),[{6)
eD)"H(/1+ €2u. — ¢Cx) and (u,y,x) € B,, thenu, = and [22), respectively; and I8¢ be as in Definitiof 17. The
(u+ey)/V1+e€? andy. = (y + eu)/v1+ €2, sox(t) — 0 following are equivalent:



[

. 8a7(x0) < oo for all xg € R? (i.e., By is non-expansive). Proof of Theorerh 20:We will first show the two chains
2. The external behavids{™¥ takes the form off{5), where of implicationsi=> @ = B = [, and2= 2 = B.

(P, Q) is a bounded-real pair. 0=0d=08=0 First, let z € R? and let
3. There existsY € R?*¢ such thatX > 0 andA(X) >0. x(t) = eAt-lz forall t € R, & = 0, andy = C%. Then
4. S7°(x0) = x{ X_xo, Where X_ € R%*? satisfies (i) (u,y,%x) € B,, %(ty) = z, and ftil Ty —aTa)(t)dt > 0.

X_ > 0; (i) ACX-) =20 (iii) if 2 < de' then  gecond, note thatf,” (u"u — yTy)(t)dt — [XTXx]Zl -

Voz =0 <= X_z=0; and (iv) if X € R{*“ satisfies ., -, N . 0

X >0 andA(X) >0, thenX_ < X. to.([x u’ A(X)col (x_ u))(t)dt. With these two obser-
vations, the present implications can be shown in a similar

Moreover, if (C, A) is observable and the above conditions S .
hold, then (i) specd) € C_; and (ii) if X € Ré*d satisfies manner to the corresponding implications in Theofem 10.

) . . .
A(X) >0, thenX_ < X, = [@.  Consider the observer staircase form (see note

Remark 21:From [4, Theorems 3-6], i{ A, B) is con- AT, and let
trollable, then (i) for a system to be non-expansive it is . — AT X-X A, -CTC, —CTD-XB
necessary and sufficient for ti#&., norm of the system’s = —DT¢-BTX I-DTD
transfer function to be bounded above by one; and (ii) the set
of solutions to the LMI in the bounded-real lemma (condiffbn |f there existsX < lexd satisfyingX > 0 and A(X) >0,
in Theoreni 2D) is bounded. However, both of these conditiofifen X := TTdiag(X 0) T satisfiesX > 0 andA(X) > 0.
can fail to hold wher(A, B) is not controllable. A Thus, it suffices to prove this implication for the case with
Theorem[ 2R provides an explicit solution to the optimalc, A) observable. We will prove this for the cases:fi)= n,
control problem in Definitio 17 in the cade— DD > 0. (i) n < m, and (i) m < n.
Theorem 221 et B,, V;,, H, 1l and Ay be as in[(1),[(6).L(8). 'case (): m = n. Let A(€) = €I — A, and let
(23) and [24), respectively; let; be as in Definitiofil7; and p/ N ¢, v, E, F and G be polynomial matrices satisfying
let 7 — D"'D > 0. The following are equivalent conditions (a) and (b) in nofelA.2. From ngiE .4, there exist

1. Sgg (X()) < oo for all Xo € Rd (i.e.,Bs is non-expansive). a Signature matrixx, and matrices
2. There existsX_ € RZ*4 satisfying (i) X_ > 0; (i)

I(X_) = 0; (i) if z € R? satisfiesV,z = 0, then Q=3(Q-Px)andP = }(PY +Q) (25)
X_z = 0;and (iv) if A\ € C, andz € C? satisfy N _ o
An(X_)z = Az, thenV,z = 0. such that) is nonsingular and)~! P is proper. Now, letD :=

Moreover, if these conditions hold, théi§* (xo) = x2 X _xo. lime 00 (Q™' P(§)) and D := hmfﬁoo(Qflp(ﬁ))' Note that
IPY)Q~'P = I+ Q~'PY, so by taking the limit as

Theoren{ 2B solves the optimal control problem in Definil — @~ _ . :
tion[I7 in the general case. & — oo we obtain(I — DX)D = I 4+ D¥. Thus, ifz € R™

Theorem 23:Let B,,V, and H be as in[l),[(8) and18), andz" (I — D) =0, thenz” (I + DY) = 0, soz = 0. Hence,
respectively; and les® be as in Definitiofi 7. The following ({ — D) is nonsingular, and
are equivalent: A (7 1 o 1
1. Sa%(x0) < oo for all xo € R? (i.e., B, is non-expansive). D=(I-Dx)"(I+D¥) =2 - D) L (28)
2. There existsX_ € R%*4 satisfying (i) X_ > 0; (i) if  Now, let

z € R? satisfiesV,z = 0, then X_z = 0; and (iii) there

exist real matriced. and W such that {]\ff N] :: [%I 10 } {M N} [I_DE 0 }
iia) —ATX_ —X_ A—CTC = LTL,—DTC—BTX_ — v v 0 B U Vv]|-Bz VoI’
W'L,andI - D'D = WTW; and so all of the above matrices are unimodular. Then, with
(iiib) Z(&) :== W + L(EI-A)~'B is a spectral factor of
I—H*H. A=A+ BY(I-D%)"'C, B:=V2B%(I —D%)"!,
Moreover, if these conditions hold, theéif® (x¢) = x%' X _xq. C =21 — D2)71C, A(€) =€l — A,
Remark 24:As is the case with the positive-real lemma, . L . L
there have been many notable attempts to relax the conf = W(EE —F), andF == W(EEJFF)’ (27)

trollability and observability assumptions in the boundtedll
lemma. A particularly well known result is the so-calle
strictly bounded-real lemmal[6, Lemma 5.6.5]. This lemma M N[-D I -C _p Q 0
proves that, if5; is as in [(1) and spéel) € C_, and H,II [U f/] [_B 0 /t] = [—E P T
and Ay are as in[(B) [(23) an@ (24) thdi/ || . < 1 if and only

if 7—D"D >0 and there exists{ > 0 such thalll(X) =0 Hence, (4, B, C, D) is an observable realization ¢, Q)

and spe€An (X)) € C_. A (see not€AR). Sinc@ = 1(Q—PX) andP = L(PE+Q),

then it follows from note§ C1230.4 thaP, Q) is a positive-
real pair. Thus, from Lemma 1 and TheorEm 10, there exists

dt can be verified thatC, A) is observable, and

} . (28)

VII. N ON-EXPANSIVE SYSTEMS AND THE AVAILABLE

STORAGE X € R%*4 gych thatX > 0 and
To prove Theorerf 20, we will employ transformations that s
relate non-expansive and passive systems, and similas-tran . 7 _ATX-XA CT—_XB

formations that relate positive-real and bounded-reaispai Q(X) = O—_BTX D+DT (29)
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satisfies)(X) > 0. Furthermore, with M= [@. First, we note from Theorem RO thaP, Q) is
a bounded-real pair sincg;’(xg) < oco. We will show that

S = —iC Sl —ODE)E , (30) this implies conditiorf R for the cases: (i, A) observable
V2 \/5( andm = n; (i) (C,A) observable andn > n; (iii) (C,A)

then it can be verified tha&TQ(X)S = A(X), which is non- observable.and@ < n; then finally (iv) (C, A) not observable.

negative definite sinc@(X) is. This proves case (i). Case (i) (C,A) observable, m = n. Let
Case (i):m>n. LetP:= [P 0, (m_n]andQ = Q. %,P,Q,A,B,C, and D be as in case (i) in the proof

It is easily shown from notEI0.1 tha®, Q) is a bounded- °f @ = B in Theorem[2D. From that proof, />, Q) is

real pair. Also, withA=A, B—= (B Ouscimon)] C=C, and 2 positive-real pair, and(A,B,C,D) is an observable

P [D O], it can be verified thatA, B,C, D) is realization of(P, Q). From Theorenl 12, with the notation
- mx(m—n 1 3 3 )

an observable realization f6P, Q) if and only if (A, B,C, D) ¢ vy . _ AT x_ y A (CT— X B)( DDV -1 (C— BT X

is an observable realization f¢P, Q). With (X) : O A( . )(A * . ) )
] T andAn(X) = A - B(D+D")"'(C - BT X),

 [FATX-XA-CTE -CTD-XB

M) =" prélpgry prp |0 G

there existsX e R%*? such thatX > 0, I'(X) = 0, and

R Ap(X C_. 1t then b ified thall(X) =
then A(X) = diag(A(X) I). From case (i), there existsSApe¢ p(X)) € can then be verine (X)

2 ) N I'(X) and A (X) = An(X), so conditiori 2 holds.
X > 0 such thatA(X) > 0. This X also satisfies\(X) > 0. Case (i) (C, A) observable, m > n. LetP, 0, 4, B,C
Case (i) m < n. . In this case, letP := ~ ? ’ ; I

A B and D be as in case (i) in the proof &f 2- 3 in Theorem

CBOl(g é(ﬁnfrmgn)bQ = d'ag(Qd gﬁzfr]z)jj(nfén))' A=4" b0 so(P,0) is a bounded-real pair, ar(dt, B, C, D) is an
=B, C=col( . (n—m)xd), and.J=co ( ("—m)X"_)’ observable realization fofP, Q) if and only if (A, B,C, D)

and letA(X) and A(X) be as in[(2R) and (31), respectivelyjs an ohservable realization f6P, 0). Also, let

Then(P, Q) is a bounded-real pair (this is easily shown from

note[@.1),A(X) = A(X), and the proof is similar to case (ii). fj(x) := —~ATX — XA - CTC
4= [@. We will prove this for the two cases ({(C, A A - A A1, Am oA

observable; and (ii{C, A) not observable. mA . (C"D + XBA)(I B PTP) I(PT? + {BTX)’ (32)
Case (i): (C, A) observable. We consider the case = andAy(X):= A+ B(I —D"D)""(D"C+B"X). (33)

n. The proofs for the casess > n andm < n are then . .

similar to the corresponding cases in the prooflet43. Let It can be verified thall(X) = II(X) and A (X) = An(X),

3, P,Q,A, B,C,D,andQ(X) be as in case (i) of the proof of so this case follows from case (i).

= [3. Then, from that proof(A, B, C, D) is an observable Case (iii) (C, A) observable, m < n. In this case, we

realization of (P,Q), and 2(X_) > 0. Thus, (P,Q) is a let P,Q,A,B,C, and D be as in case (iii) in the proof of

positive-real pair by Theorem110, $&, Q) is a bounded-real @ = 3 in Theoren{20. Then, withI(X) and Aﬁ(X) as in

pair by note§ C12-Cl4. (32)-(33), we obtaifl(X) = TI(X) and A¢(X) = Ap(X).
Case (ii): (C, A) not observable. Consider the observer The proof then follows the argument in case (ii).

staircase form (see nofe[A.1), and letbe as in[(3lL). Then  Case (iv)(C, A) not observable. This can be proved in

X_ =T"diag(X_ 0)T whereX_ € R¥?, A(X_) > 0 the manner of case (i) in the proof Bft [2 in TheoreniIP.

and X_ > 0. Also, with B, as in noteAl, theB{"Y) = Finally, with a similar proof to the corresponding implica-
B™Y) as shown in that note. Conditiéh 2 then follows frontion in TheorenIR, we find that ik _ satisfies conditiofi]2
case (i). of the present theorem, thef? (xo) = x7 X _xo. [ |

It remains to prove conditions (i)—(ii) in the final paragnap Proof of Theoreni 23:[2 = [M.  This follows from
of the present theorem statement. To see (i)\Met C, and Theoren{2D, sinc&_ >0 andA(X_) > 0.
z € C? satisfy (\] — A)z = 0, and note that” (A" X + For the remainder of the proof, we Igf, A) be observable
XA)z = (AM+A\)z" Xz. Since—ATX — XA - CTC > 0, andm = n. The casesn > n andm < n can be shown by
thenz'CTCz < —2R(\)z" Xz < 0, soCz = 0. If (C, A) augmenting to the case = n as in the proof of Theorem 22.
is observable, them = 0, so spe¢Ad) € C_. The proof The casg(C, A) not observable can be shown with a similar
of condition (ii) is similar to the corresponding conditiam argument to the corresponding implication in Theoferh 13.
TheorenID, using the observations in the second paragrapiff = [, Since S5?(x¢) < oo for all xo € RY, then
of this proof. B (P,Q) is a bounded-real pair by Theorein]20. Next, let
S,P,Q,A,B,C, and D be as in case (i) in the proof @i 2
VIII. EXPLICIT CHARACTERISATION OF THE AVAILABLE = [3 in Theoren 2D (sd — DX is nonsingular aqu,A)
STORAGE FOR A NONEXPANSIVE SYSTEM is observable), and let/ (¢) :== D + C(&I — A)~B. Then

This section contains the proofs of Theorémis 22[and 23. THg_v Q)isa positive-real pair, so from Theorefns [0l 13 there
proofs provide methods for calculating the available gjera XISt rAeaI matrlce?(_,AL, AaanAth X- = OASU(fh tr)at
for a non-expansive system by using the results in Se€flon(®) —A"X_ —-X A=L"L,C-B"X_ =W7"L, D+D" =
Proof of Theoreni 22:[2 = [I.  This follows from WTW; and o o
Theorenl 2D, since&X_ > 0 andA(X_) > 0. b) Z(&):=W+L(éI—-A)"1B is a spectral factor oH+H*.
£ p



11

Then, letL .= L——-WC andW = S-W(I-DY)X, and it APPENDIX A
can be verified that condition (iiia) holds. Also, OBSERVABLE REALIZATIONS OF BEHAVIORS
{/\ITA —BH Il . 0 }_{/\I—A —B]. In this appendix, we present several results on observable
L w _ﬁc E(I_DE)E L w realizations which are used in the proofs of the main thesrem

L These results build on Lemmak 1 did 2.
From Theoreni 10, spéd) € C_. Also, from Theoreni 20, _
spe¢A) € C_. Since, in addition(/—DY) is nonsingular, Al1 Let B, andV, be as in[(ll) and {6); let the columns of

then a similar argument to the proof of LemialD.1 shows € R**(“~% be a basis for the nullspace of; let S =

that Z is a spectral factor of — H*H. [S1 S»] be nonsingular; and le§~" = T' = col Ty T)
Finally, we prove that if X_ satisfies conditiori]2, then (Partitioned compatibly with5). Then,

Sa?(x0) = xFX_xo. It suffices to show thatX_ is

uniquely determined by conditionl 2. To show this, we Iet{Tl] A [51 32] — [All 0 } , C [51 32} — [Cl 0],

S, P,0. A, B,C,D and H be as in the previous paragraph.72 A2 As

Following that paragraph, ifX_ satisfies conditioi]2, then ,
L:=L+WX(I - D) 'C andW = vV2WX(I — D¥)~* and (C1, Ay1) is observable[]7, Corollary 5.3.14]. Further-

satisfy the aforementioned conditidns] (a) (b). From-Th&0re, with the notatiorB, = 11 B, By := 1> B, and

orem[I3, these conditions uniquely determikie. ] R . | | | g
Bs={(u,y,%) € £3° (R,R") xL3" (R,R") xL3(R,RY)
@ = X = X
REFERENCES such that$; = A;1x + Biu andy = C1x + Du},
(1] iChvl\q/illems,'\;lDisHsirftivF dlyr:%mical gﬁte;;sl Iig;tzbr@ral theory” then it is easily shown from the variation of the constants
rch. Ration. Mech. Analvol. 45, pp. -351, . (wy) _ pp(uy) ;
[2] ——, “Dissipative dynamical systems, Part Il: Linear ®ms with forr_nUIa Q)_@) thatBS_ = Bs - Thus, if P and Q are
quadratic supply ratesArch. Ration. Mech. Analvol. 45, pp. 352— as in Lemmd[R, then it follows from LemmBs[1-2 that there
393, 1972 exists an observable realization f@P, Q).

[3] B. D. O. Anderson and S. VongpanitlerNetwork Analysis and Synthe- : _ .
sis  Upper Saddle River, NJ: Prentice-Hall, 1973. [Al2 Let B, be as in [(Il) andA(§) = &I — A. Then

[4] B. P. Molinari, “The time-invariant linear-quadraticptimal control (4, B, C, D) is an observable realization foP, Q) if and only
problem,” Automatica vol. 13, pp. 345-357, 1977. if P e R™"[¢],Q e R™*™[¢], and there exist polynomial

[5] T.H. Hughes, “A theory of passive linear systems with ssuamptions,” ; iti
Automaticavol. 86, pp. 8797, 2017 matricesM, N,U,V, E, F and G such that (a) conditions] 1

[6] B. Brogliato, R. Lozano, B. Maschke, and O. Egelamissipative and[2 of Lemmd]l hold; and (b(); = I_d: To see this,
Systems Analysis and ControlLondon : Springer-Verlag, 2007. note from the final block column in conditidd 1 of Lemma

[7] J. W. Polderman and J. C. Willemdntroduction to Mathematical that. for an ivern C andz C? thenCz = 0 and
Systems Theory: A Behavioral ApproaciNew York : Springer-Verlag, o ! y 9 < < y

1998, (M —A)z =0 if and only if G(\)z = 0. It then follows from
[8] T. H. Hughes, “Behavioral realizations using companiuatrices and [[7,, Theorem 5.3.7] tha€ in Lemma[l is unimodular if and

the Smith form,"SIAM Journal on Control Optim.vol. 54, no. 2, pp. only if (C, A) is observable. Furthermore, @ is unimodular,
845-865, 2016.

[9] M. K. Camlibel, L. lannelli, and F. Vasca, “Passivity andmplementar- then b}’ pre-multiplying bOth sides in F:Oﬂdltl@l 1 of I_-emma
ity Mathematical Programmingvol. 145, no. 1-2, pp. 531-563, 2014.[1 by d|ag(I G*l) we obtain polynomial matrices satisfying
[10] ‘|]3 Collaldo, R. I]:ozartlot,)_landblR. .]ortlanstolgl,E “(T)n Kalmanzwtakicht-_ conditions (a) and (b)
opov lemma for stabilizable system rans. on Automatic . -
Control, vol. 46, no. 7, pp. 1089-1093, July 2001. [AI3 Let P and@ be as in Lemmal2. IfA, B,C, D) and
[11] W. Sun, P. P. Khargonekar, and D. Shim, “Solution of tresipve (A, B, C, D) are two observable realizations @P, @), then
real control problem for linear time-invariant systemi&EE Trans. on  there exists a nonsingulﬁ?eRdXd such that
Automatic Contral vol. 39, no. 10, pp. 2034-2046, October 1994.
[12] L. Pandolfi, “An observation on the positive real lemtagurnal of . 1A . 1 .
Mathematical Analysis and Applicationgol. 255, no. 2, pp. 480-490, A=TAT ", B=TB, C=CT ", andD =D. (34)
Mar 2001.
[13] S. Kunimatsu, K. Sang-Hoon, T. Fujii, and M. IshitobiOfi positive . dxd ~ dxd. .
real lemma for non-minimal realization system®foceedings of the 10 See this, letd € R**¢ and A € R let V, be as in
17th IFAC World Congress, Seoup. 5868-5873, 2008. @); and letV, := col(C CA --- CA41). It follows from

[14] A. Ferrante _and L. Pandolfi, “On the solvability of thesiiive real the variation of the constants formul@d (ﬂ—(3) that, for any
lemma equations,Systems and Control Lettergol. 47, no. 3, pp. 211— 5

219, October 2002. givenz € R?, there existg: € R? such thatCe4ts = Ce?z
[15] A. Ferrante, “Positive real lemma: Necessary and dafficconditons for all ¢ € R. Suppose initially thatd < d. Sincez is

for the existence of solutions under virtually no assumjo IEEE ; ; dxd YAk k
Trans. on Automatic Contrplol. 50, pp. 720-724, May 2005. arbitrary, there mUSt_eXIg €R N such thal’ A™T" = ACA
[16] M. K. Camlibel, J. C. Willems, and M. N. Belur, “On the dipativity of (k=0,1,...). In particular,V, =VoT.As (C,A) and(C, A)
uncontrollable systems,” ifProceedings of the 42nd IEEE Conferenceare observable, thel, and V, have full column rank, so
on Decision and Control, HawaiDec. 2003. d —dandT = T \—11/T which is nonsinaular (with
[17] D. Paland M. N. Belur, “Dissipativity of uncontrollablsystems, storage ,,_; T (_‘io ‘;") Vo Vo, . J 9_1 (
functions, and Lyapunov functions3IAM Journal on Control Optimp. 1~ = (Vo Vo)™V Vo). In particular,C' = CT~1. Also,

vol. 47, no. 6, pp. 29302966, 2008. since V,A = V,AT, then A = (VIV,)"'WIV,AT-! =
[18] B. D. O. Anderson and J. B. Moorkinear Optimal Contral Prentice- 7 A7—1. Finally, from the variation of the constants formula
Hall, 1971. ’ S

[19] B. P. Molinari, “Nonnegativity of a quadratic functiali’ SIAM Journal @)_B)* we reqwreVOB = VoB, so B = TB. A similar
on Contro| vol. 13, no. 4, pp. 792-806, July 1975. argument applies whed > d, and completes the proof.
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APPENDIXB z € R? and we denote théth entry ofz by z;, and it follows
STORAGE FUNCTIONS thatSg (z) = ST(0, zier) = W (XL, zieq, S0, zje;) =
The storage function concept features in many classical;_, Z;l:l ZziW(eiej)z =4, Z;—lzl 2 Xijz; = 2" Xz.
proofs of the positive-real lemma, e.gl) [1[] [2]. Here, in It remains to show conditions (i) and (ii). We first show
contrast to [[1], [[2], we present results on storage funetiothat, for any givert; > t,
without any controllability assumptions. " to
We consider the following optimal control problem. Sa (x0)= oo JUP S —(o(ay))(®)dt,
Definition B.1:Let B, be as in[(l); let(u,y) := u” S u+ uELF(RRR) 0220
2uT212y+yT222y for someX; € R?Xn7 Yo € R"*™ and such that(u,y,x) S BS,X(to) = Xg. (35)

Xm - R d
Yg2 € R and, for any givenx, € R, let To see this, let; >ty and(u,y,x) € B, with x(tg) = xo sat-

” " isfy [ —(o(u,y))(t)dt = S (xo) — € for somee > 0. Then,
e — > to . N a .

€1(x0) = {Jf,, —o(w.y)(®)dt | t1 = to, (u,y,x) € By, from the conditions in the lemma statement, there exist ¢,

andx(to) = xo}.  and(w,y,%) € B, such thata(t) = u(t), y(t) = y(t), and

~ to ~ .
Then theavailable storages? with respect to the supply rateX() = x(?) fortall to <t <ti;andf,* —(o(1,y))(t)dt > 0.
o satisfies (1)S7(xo) = sup(£7(xo)) if £7(xo) is bounded ltfollowsthat [, —(o(@, ¥))(t)dt > S7(x0)—eforall ¢ > t;.
above; and (ii)S7 (x¢) = oo otherwise. But S7(xq) > ft’; —(o(a,y))(t)dt, ande > 0 can be made
Note, withX,; = I, ¥15 = 0 and Xy, = —1I (resp.,X11 = arbitrarily small by choosing; andu. This proves[(35).
Yoo =0, X1 = 1), thenSJ = 577 (resp.,S¢ = Sa*). Asin To prove (i), we letx;,x, € R? and A € R be fixed but
[1], we define a storage function with respecitas follows. arbitrary, and we show tha? (Ax; +x2) + AS% (x1 — x32) <
Definition B.2:Let B, be as in[[ll), and let be as in S7(\x; — x2) + AS7(x; + x2). To see this, suppose instead
Definition[B.1. We saysS is a storage functiorwith respect that there exists > 0 such that
to the supply ratec if (i) S(xo) € R and S(xg) > 0 for
all xo € RY; (i) S(0) = 0; and (iii) if (u,y,x) € B, and ST (Ax1+x2)+AST (x1—x3)
t1 > to € R, thenS(x(t)) < [ (o(w,y))(t)dt + S(x(to)). = 57(Ax1—X2)+AST (x14x32) + . (36)
The next lemma proves that the boundedness of the available
storage is equivalent to the existence of a storage functionThere exist(u,,yq.,x.) € Bs with x,(tg) = Ix; + xo,
Lemma B.3Let B; be as in[(LL); and let and .S be as in (uy,y», %) € Bs With x,(¢0) = x1 — x2, andéy > o, with
Definition[B.1. The following hold:

1. If $7(xo) < oo for all xo € R, then 57 is a storage  Sa (AX1 +X2) + AS7(x1 — x2)

function with respect t@. < f:ol(—a(ua,ya) — Mo(up, yp)))(t) +€/2. (37)

2. If there exists a storage function with respectt@enoted
S), then S (xg) < S(x¢) < oo for all xo € R, Now, let(uc, ye, Xc) = (A=1)/(1+A)(Wa, Ya, Xa) +22/(1+
Proof: See [[1, Theorem 1]. [ A)(uy, yp,xp) and (ua, ya,xq) = 2/(1 + A)(Uas Ya,Xa) +

In the next lemma, we prove that the available storadé—*)/(1+XA)(w,ys,xp). It can be verified that (u,, ya) +
57 (xo) is a quadratic form in,, under an assumption whichA? (W, ¥s) = (e, ye) + Ao (ug, ya), Xe(to) = Ax; —x2 and
is satisfied by both passive and non-expansive systems. Xd(fo) = X1 + X2 It follows from (38){37) that

Lemma B.4Let B, be as in[(L); and let and S? be as 59(\ ASY (x1 —
in Definition[B.. Also, for any givere € R? andt, € R, a (A1 +3z) +A57 (%1 = x)

let there existt; > tp, and (u,y,x) € Bs with x(tp) = z, < f;il(—o(uayc) — Ao(ua,ya)))(t) +¢/2
such that— fttol (o(u,y))()dt > 0. If S7(x¢) < oo for all < 87 (Ax1—x2)+ASY (x1+X2) + €/2
xo € RY, then there exists{ € RZ*? with X > 0 such that = S7(Ax1 + X2) + AST(x1 — x2) — €/2,
59 (x0) = xF X% for all xo € R%. ¢ ¢
Proof: For any givenx;,x, € RY, we letW(x;,x3) ;== a contradiction. Substituting —x, for x, in the

1(S7(x1+x2) — SJ(x1 —x2)). We then lete; denote thejth above argument givesSy (Axi—x2)+ASY (x1+x2) <
column of the identity matrix;, we let theijth entry of X S7(Ax1+x2)+AS? (x1—x2), and completes the proof of (i).

be defined as{;; .= W(e;,e;) (i,5 =1,...,d), and we will To see (i), suppose instead that there exists0 such that
show thatX is symmetric andb? (z) = z” Xz for all z € R, . . . .
To prove this, we will show that, for any givety, x; € R¢ Sa (x1+%2)+57 (x1—%2)+e = 2(57 (x1)+57 (x2))-

and\ € R, then Let t1 > to and (ug,ya,Xa), (W, ¥, Xs) € Bs with

(i) W(Ax1,x2) = AW (x1,%3); and xq(to)=x1 andx,(to)=x, be such that

(i) Sg(x1+x2) + 57 (x1 — x2) = 2(57 (x1) + 57 (x2))- .
From [19, Lemma 3], condition (ii) implies that, for any give 1o —(0(Wa,ya))()dt + § > S7(x1), and
X1,X2,Z € Rd, then (Ila) W(Xl,XQ) = W(Xg,xl); (Ilb) i olu Hdt + £ > S%(x,).
W(x1 + X2,2) = W(x1,2) + W(x2,2); and (iic) S7(z) = Jig (o, yu))(O)dt + 5 > 5 (x2)

W (z,z). Together with condition (i), we conclude thHf is Similar to [19, p. 796], we letl,, ¥4, Xs) = (W4, Ya,Xa) +
a symmetric bilinear form, an&” is symmetric. We then let (uy, ys, %) and (Qy, ¥5,%X5) = (U4, Ya,Xa) — (Up, Yo, Xp)-
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Then (Uq, Yo, Xa), (Gs, ¥, %) € Bs, Xa(to)=x1+x2, and [C2 Let P,Q € R™™"[¢]; let J, be as in[(3D); let’ €
xp(to)=x1—x2, Whence R™*"[¢] and S € R*"**" be nonsingular withs.J,, ST = J,:
and letP,Q € R™"[¢] satisfy [P —Q] =Y [P —Q]S.

R ) Then (P, Q) is a positive-real pair if and only ifP, Q) is a

> [ —(0(fa, Fa) (W)t + [ —(o (s, 3)) (t)dt positive-real pair (this follows from nofelT.1).
= 2(J (o0, ya)) (Ot + [ (o (w, y2))()dt) Q3 Let £ Q € RUIE let Jn and X, be as in (30,

0 " . N . . letY e R™"[¢] and S € R*"**" be nonsingular with
> 2(57 (x1)+57 (x2) =) = 57 (x1+x2) +57 (1 =%2)+3, g7 oT — S0 and letP, Q € R™"[¢] satisfy [P —Q] =

a contradiction. Thus, S7(x;+x2)+S%(x1—x2) < Y [P —Q]S.Then(P,Q)is abounded-real pair if and only

2(S7(x1)+S%(x2)). A similar argument shows thatif (P, Q) is a positive-real pair (this follows from nofe C.1).

S7(x14+X2)+S7 (x1—x2) > 2(S89(x1)+S5%(x2)), and [C4 Let X € R™" be a signature matrix (i.e.y is

completes the proof of (ii). m diagonal with diagonal entries1), let P,Q € R™*"[¢], and
We next consider a related optimal control problem cofet @ = 3(Q — P¥) and P == 5(PX + Q). Then(P,Q)
cerning theobserver staircase forrm note[A.]: is a bounded-real pair if and only {fP, @) is a positive-real

Lemma B.5:Let B be as in[(l); letr and S¢ be as in pair (this follows from notd CI3). Also, i?,Q € R™*"[¢]
Definition[B1; let.S9 (xo) < oo for all xo € R%; let 7; and andQ~'P is proper, then there necessarily exists a signature

B, be as in not€ &l1; and let matrix ¥ and matrices) = 3(Q—PY) and P := 1(PY+Q)
SN t such that@ is nonsingular and)~'P is proper. To obtain
Sa (%0) = sup Jio —(o(a,y))(B)dt, such matricesy, P and @, we let P := (P + Q) and

t1>to,ucLI(R,R™) ~ 1 ~ < !
Q=3@Q—-P),soP =P-QandQ = P+ Q. We

such that(u,y, ) € By, X(to) = Xo- (38) then lets; and S, € R™" be matrices that select columns
from P and Q to achieve the maximal determinantal degree.
l.e., (i) S1 andS; are diagonal matrices with all entries either
0 or 1; (ii) 1+ S = I; and (iii) deddet (PS; + QS,)) takes

s maximum value among all matricég and .S, that satisfy
and (ii). We then letP .= PS, + Q5S1, Q := PS; + QSa,

d¥ = Sy, — Sy, soX is a signature matrix. The method in
[5, Proof of Theorem 9] then proves th@t ' P is proper.

ThenS? (xo) = S (T1xo) for all xo € R In particular, with
V, as in [6), thenz € R? and V,z = 0 imply S?(z) = 0.
Proof: Let T = col (T1 T%) be as in not&A]L. It can
be shown from the variation of the constants formila (2)—(%%
that (i) if (u,y,x) € B, satisfiesx(to) = xo, then there exists
(u,y,%) € B, with x(tg) = Tixo; and (i) if (u,y,x) € &N
B, satisfiesx(ty) = %o, andx; € R ¢, then there exists
(u,y,x) € Bs with x(to) = T~ 'col (%o %1). Now, consider

a fixed but arbitrary, € R?. It follows from (i) that APPENDIXD
) EXPLICIT CHARACTERISATION OF THE AVAILABLE
Sq(x0) < sup o —(o(u,y))(t)dt, ENERGY. SUPPLEMENTARY LEMMAS

t1>t0,ue LI°(R,R™) L .
In this final appendix, we present four supplementary lem-

such thaf(u,y, %) € Bs, X(to) = Tixo, mas used in the proof of Theordm]13.
i.e., S (x0) < S7(T1xo). Similarly, from (i), it can be shown Lemma D.1:L_et.BS andH be as inl(1) and (8) witm = n;
that S7 (xo) > S7(T1xq), S0S7 (xo) = S (Tixo). Finally, if let spe¢A) € C_; let X_, L and W be real matrices that
V,z = 0, then it can be shown thaf,z — 0. As 57 is a satisfy conditiori R(iiia) of Theoreim13; and let

storage function by LemnfaB.3, th =57(0)=0. m A
g Y #(2) =520) Z(€) =W + LI — A)"'B and Y (¢) == FIL 4 vﬂ .
APPENDIXC ThenZ*Z=H+H*, andZ is a spectral factor foff + H* if

POSITIVE-REAL AND BOUNDED-REAL PAIRS and only if Y'(\) has full row rank for allA € C;..

Here, we provide several results relating to the new coscept  Proof: That Z*Z = H + H* follows by pre-multiplying

of positive-real and bounded-real pairs. Q(X) in (@) by [BT(_gj — AT~ [] and post-multiplying
[C.1 LetP € R™*"[¢] and@ € R™*™[¢]; and let by col((¢I — A)~*B I). Since spegd) € C_, thenZ is
110 I 7 0 analytic inC.. Finally, consider a fixed but arbitratye C,,
Iy = = [ "} y S = { " } ) (39) so Al — A is nonsingular. It remains to show that(\) has
2 In 0 0 —Im full row rank if and only if Y(\) does. This follows from

V)= [P QS [P QO and @) T
®(n,§) = [P —Q] (m)Jn [P —Q} " if m=n. (41) {Z()\) L ]_ { L W} [ I 0l

Then (P, Q) is a positive-real pair (resp., bounded-real paigince the rightmost matrix in this equation is nonsingulm.

if and only if () ®(A,A) < 0 (resp.,¥(A\,A) < 0) for all  The final three lemmas relate to the decomposition in case
A € Cy; (i) rank([P —Q] (V) = n forall X € Cy; and i) in the proof of Theorenid3. We refer back to that proof
(iii) if p € R*[¢] and A € C satisfy p(£)"®(&,—€) = 0 for definitions of condition§ (RL)=(RW) afid (3L)—(54).
(resp.,p(§)T¥(¢,—¢) = 0) andp(\)T [P —Q] (A) = 0, Lemma D.21et P, 1, Q. satisfy[(R1) fori = k—1, and
thenp(}) = 0. let Dy, = lime o0 (Q5 2, Pe_1(€)). The following hold.




1. LetP, = P_ _%Qk—l(Dk—l_D%ll) anko = Qk—l-
Then[(RI) and (R2) hold foi = k.
2. Let Ay, By,Cy, Dy satisfy [(ST) for i=k; and let
AkflizAk, kalisz, andOk,lzzCk. Then:
a) [(S7) holds fori=k—1.
b) Let Xy 1, Li_1,Wi_1, Xy, Ly, and Wy be real ma-
trices with X, = Xp_1 > 0, Ly = Lp_,, and
Wy = Wi_1. Then ()[(S3) holds for = k—1 if and
only if holds fori = k; and (ii) [(S4) holds for
i = k—1 if and only if[(S4) holds fori = k.
Proof: Condition [l Clearly, Q;'Py
Qil Peo1 — 3(Dy-1—DF)), so Q;'P. is proper
and limg oo (Q, P (€)) lime oo (1 P () —
2(Dp-1—DF_,) = 3(Dy—1+D]_,). Next, let

G_ I 0
~ [3(Dg—1=Df_y) I}
Then [P, —Q] =[Pi-1 —Qk-1] S, and it follows from

note[T.2 that{ P, Q%) is a positive-real pair.

Condition Let Ay, My, Ny, Ui, Vi, Ei, F}, be as in
[(ST) for the casé = k; and letEy_1 == By — 3 F%(Dyp—1 —
DI ), Fy—1 = Fy, My_1 == My, Ny_1 = Ny, Up_1 =

U, and Vj_1 = Vj. By post-multiplying both sides of the diag( 0) where H is nonsingular andime_, . (7 (€))

relationship in (S1) for the case=k by diag(S~—' I), we
find that[(ST)) holds foi=k—1. Finally, conditioiZb follows
since Dy, + DI = Dy_1 + DI ,. Thus, withQ;(X;) as in

@, thenQy (Xx) = Qk—l(Xk—l)- [ |
Lemma D.3Let P;_1, Qr—1 satisfy[(RI}E(R3) fori=k—1,
and letn; = normalrankP;_1), my = nix_1 — ng, and

rip:=rankDy_1). The following hold.

1. There exists a nonsinguldi € R™x-1*"k-1: unimodular
Y € R%—1Xm-1[¢] and Qu € R™X™k[¢]; Qa0 €
R™*mk (€] and Py, Qy, satisfyind (RI)F(R3) foi=k, with

P @11 . (82)

e 0 i |Qk
0 0] Y Qe ()= [ 0 Qo
2. Let Ay, By, Cy, Dy, satisfy[(S1) fori=Fk; and Aj_1:=Ay,

Bi—1:=[Br 0]T7!, Cp_1==(T""Tcol(Cr 0), and

Dy—1:=(T~")Tdiag(Dr 0)T~'. Then:

a) [(S7) holds fori = k—1.

b) Let Xx_1,Ly—1 and Wj,_; satisfy[(S3) fori = k—1;
partitonT asT =: [Ty T] with T} € R™~1*"* and
Ty € R—1X™mk- and letXy = Xg_1, Ly = Ly_1, and
Wy = Wi_1Ty. Then (I) Wi_1T5 = 0; (II) holds
for i = k; and (i) if holds fori = k—1, then[(S4)
holds fori = k.

c) Let X, L, and W), satisfy[(SJ) fori = k; and let
Xp1=Xg, L1 = Lk,ande 1= [Wk 0] -1
Then ()[(S3) holds fori = k—1; and (i) if [S4) holds
for i = k, then[(S4) holds fo = k—1.

Proof: Condition[Il ~ Since(Py_1,Qx_1) is a positive-
real pair andQ_; is nonsingular, thenH = Q,;_llPk,l
is positive-real (see Remaifk 9). Since, in additidny,_;

YP, 1T= [

is symmetric, thenD;,_; > 0 by Theorem[ID, so there

exists Ty, € R™-1*"x such thatTl Dy 1Ty, = I, by
Sylvester’s law of inertia (as rafRy_1) = ;). Now, let the

columns of Ty € R™-1*"% pe a basis for the nullspace of
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H (i.e., Ty has full column rank andiT; = 0). Then, since
the nullspace offf is contained in the nullspace db_1,
there existsTy, € R™-1*(m—7) gych that the columns
of [T, T»| are a basis for the nullspace @¥,_;. With
Ty = [Tia Tuw), thenT = [T1 T3] is nonsingular and
TTDy 1T = diag(I,, 0). Also, from [3, Theorem 8.4.1],
TTHT = diag(H 0), where H € R™*"x(¢) is positive-
real and nonsingular.

From [7, Theorem B.1.1], there exists a unimodufare
Rme—1xme-1[¢] such thatQ .= YQr_1 (T~ 17 is upper trian-
gular. LetP := Y P._,T, and note thaQ is nonsingular with
Q'P=TTHT =diag(H 0). SinceP = Qdiag(H 0),
then P and@ (partitioned compatibly with diagif  0)) take
the form indicated in{42). To show th@, in @2) is unimod-
ular, we leth € C andp € R™*[¢] satisfy p(A\)T Qaa(N) = 0
andp” := [0 p”] Y. Itcan be verified thap” (P,_1Q}_,+
Qr—1P;_;) =0andp(\)T [Pic1 —Qi—1] () = 0. Since
(Px—1,Qr—1) is a positive-real pair, this impliep(A) = 0.
Since, in addition,Y" is unimodular, thenp(\) = 0, and
it follows that Q22 is unimodular. It is then easily shown
from noted CHl anfl1C.2 thalPk,Qk) is a positive-real pair.
Moreover, 7THT = TTQ,C \Pia T = diag(Qy; ' P, 0)

T"Dy T = diag(I,, 0). Thus, Py, Q. satisfy[(RIER3)
fori = k.

Condition Let Ay, My, Ny, Ui, Vi, Ex, Fy, be as in
[(ST) for the caseé = k; and let

My Q12| Ny

Mgy N1 ._ [y*l 0] 0 Qaa| O [TT o}

U1 Vi1 |~ 0 I U o v o Il-
k k

It can be verified that each of these four matrices is unimod-

ular. Also, with A; as in[(S1) fori = £ — 1 andi = k, then
Dk 0 —Ck -1
T —Dy_1 I —Cj— 1 T 00
[To %[—B:i 0 Akk,ll} = [_OBk 8 5 ;k H 0 TOT (}]
Thus, WithEk_l = [Ek O} T7-1 and Fi_q = [Fk O] TT,
it can be verified thdf (S]) holds fé=k—1. To sed2b, note

|n|t|aIIy that TngTLIWk_lTQ = TQT(Dk_l + Dgﬁl)Tg =0,
so Wy._1T5 = 0. Next, note that

[€1p A58 9] = {51 Ak—1 =B 1}[1 0] (43)

Ly_1 Wi_1 [0 T

We denote the rightmost matrix in_{(43) by; we let

Qp—1(Xk—1) and Q,(Xx) be as in[(S3), and we note that

STQ_1(Xk—1)S = diag(Qx(Xx) 0). This shows 2b(ii).

Also, sinceS is nonsingular, theh 2b(iii) holds. The proof of

[2d is similar, noting that(43) also holds in this case. =
Lemma D.4Let P;_1, Qr—1 satisfy[(RIME(RI) fori=k—1,

with my := nx_1 — rx—1 > 0. The following hold.

1. There exists0 < K € such
lime o0 (g Py L Qr-1(¢)) =diag(0 K).

2. Let Pk(g) = Qr-1(§) — Pr_1(§diag(0  K¢), and
Q. Py_1. Then [(RI) holds fori k;
deg (det (Q},)) < deg (det (Qx_1)); and there exisD,, €
Rrkflxmk,ﬁzl € Rmerkfl,DQQ e Rmx>*™mk gych that

Rmk XMy

that

I, D
51520@’“ Pp(&)) = Dy, = {Dm 1522} . @
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3. Let Ay, By, Cy, Dy, satisfy [(ST) fori = Fk; partition Finally, thatdeg (det (Qk)) < deg (det (Qx—1)) will follow

By, C,, compatibly with Dy, as B, = [Bl BQ], C, = from condition[3h, noting from the final two block columns
col (¢, (»); and let in [[ST) thatdeg (det (Q;)) = deg (det (A;)).
R Lo . Condition Bl  Let Ay, My, Ny, Ur, Vi, Ei, Fy, be as in

Ay = [Ak —BiC1 ByK~'— BiDiK - } [(ST) for the case = k, partition these matrices compatibly as

T | DnCy = Cy DoyD1s Kt — Dog K1

;1 1 . 2 21712 p 22 A 1 N1 Vs |R, J })1 —Dia|,|-C1
1 —C1 —D1sK~ My M| No |, and | =Dz21 —Dos| |—Cs |,

Bj_1 = |:_[)21 I} , andCj_1 = |: 0 K-1 ] U, U, |V — B1 —Bs |0] Ay
Then: and let A o A
a) IIS—_ID holds fori = k—1. . My 1 Ng—1|__ %; %;z %; 8 15121 f)zzDJlrsz ‘ 8 (IJ
b) Let Xy_1,Lx—1 and Wj;_, satisfy [(S3) fori = |:Uk—1 Vk—1:|_ 0 —0a|-v o || B B ‘_10 :

k—1; partition Lp_; and Wj_; compatibly with 0 I |0 —I]|Ds Do+ K(1+8€)|0 I

Ag—1,Br—1,Cr—1andDy_; asLy_; = [L1 Lﬂ and |t can be verified that each of the above matrices is unimedula
Wi_1 = [W1 W2] and letL, == L, + W1C}, and (the modulus of the determinant of the rightmost matrix is
Wi = [Wi LoK +W;Dio]. Then (i) Wy = 0; (i) equal todet (K)). Also, with E;_; = col(F; 0) and
Xj.—1 has the formX;,_, = diag(Xx K ~1); (iii) with ~ Fr—1(€) = col (Ex(§) 0)+col (¢Ua(¢) 1) [0 K], itcan
X, as in condition (ii), thefi (SB) holds far= k; and be verified thaf (S1) holds far= £—1. Now, let Ly, Wy
(iv) if [S&) holds fori = k—1, ther{(S4) holds foi = k. be as in conditioi 3b. Sinc&/, W), = D 4+ DT =

c) Let Xy, Ly and W, satisfy [(S3) fori = k; part|- diag(27,,_, 0), thenWJ W, = 0, which proves3b(i). To
tion W, compatibly with D, as W, = [W1 Wg} show[3b(ii), we partitionX;_; compatibly withA,_; as

and |eth_1AS= [Lk - Wlél (Wg - Wlﬁlg)K }, X1 Xio

Wi_1 = [Wl 0] and X;_; = diag(Xk K_l). KXp—1= [XlTQ _X22:|'

Then ()[(S3) holds fori = k—1; and (ii) if [S4] holds .
for i = k, then[(S4) holds fo¥ = k—1. SinceC{_, — Xp-1By—1 = L{_ Wi = [LT W1 0],

Proof: Condition@l ~ Since(P;_1, Qk 1) is a positive- thenXy» = 0 and X2, = K~'. Now, note that
real pair andEk_l is nonsingular, themD,?_l_Q_k_l is p(_)s_ltlvg— €1 A, —B1|—B» 0 A, B é 8 P
real. Hence, ifP, ', Q,—1 has a pole at infinity, then it is sim- { O 040 } [ oW 11} 2 P 0|
ple and the residue matriX = lime_oq (3 (P Qu-1)()) L Wil o A
is real and non-negative definitel [3, Theorem 2.7.2]. Thugle denote the rightmost matrix in this equation $ywe let
there exist real matrice$, D and strictly proper real-rational Q—1(Xx—1) andQ(X}) be as if (S3), and by direct calcula-
matricesG, H (partitioned compatibly withD, ;) such that tion we obtainST €y, _1(Xy_1)S = d|ag(Qk(Xk) ) This
roves 3b(iii). Conditio_3b(iv) then follows since the I
PQr-1(8) = Hﬁ 22} &+ [gi g;j } + [gi g;i J(©) Emst matri(x)in the above di(sp}ayed equation is nonsingtgljlar.
-1 1. 10 Hyy Hio Next, let X, Ly, Wi, Xr_1,Lr_1 and Wy_, be as in
Q-1 Pe-1(8) = [ o 0} Ly ] (€ (45) condition[3¢. We recall that the rightmost matrix in the adov
By considering the first block row in the equation= displayed equation (denotes) is nonsingular. We then find
limg o0 (£(Q4 Ly Pe-1 P Qe-1)(€)), we obtain iy = 0 that @ (Xg1)=(5" )Tdiag(ﬂk(Xk) 0) S, so [3¢(i)
and Ji2 = 0. Then, by conS|der|ng the bottom right blockholds, and—3c(ii) follows sinc& ' is nonsingular. [ |
in the equationim_, . (( k,le—1Qk,1Pk—1)(§)) =171, we
find that Jag lime o (EH22(€)) = I, which implies thatJy:
is nonsingular. By lettingk” := .Jo5, we obtain conditiofi]1.
Condition Since Q;'Py(¢) = P Qr-1(§) —
diag (0 Kf), thenQ,;lP;C is proper and positive-real byl[3,
Theorem 8.4.3], andim¢_,.((Q, ' Px)(€)) is equal to the
matrix D in @5). Then, the top left block in the equatio
I =1limg oo (P Qi 1Q Y Pi1)(€)) gives Diy = I,
Next, note tha{ P, —Qi] = [Pr—1 —Qr—1] S where
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-1 0 0 —K¢

With J,, as defined in AppendikIC, it can be verified that
is unimodular andsJ,,S* = J,,, and it is then easily shown
that (P, Q) satisfy conditiong (B) anfl (c) in Definitidn 8.
Since, in additionQ,;lPk is positive-real, ther{ Py, Q) also
satisfies conditiop (&) in Definitidd 8, &, Q1) is a positive-
real pair.
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