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ABSTRACT 

 

Heterozygous mutations and deletions of the gene that encodes the transcription factor 

hepatocyte nuclear factor 1β (HNF1B) are the commonest known monogenic cause of 

developmental kidney disease. However, diagnosis remains challenging due to phenotypic 

variability and frequent absence of a family history. There is also no consensus as to when 

HNF1B genetic testing should be performed. This thesis includes work looking at the 

identification of HNF1B-associated disease. 

 

An HNF1B score was developed in 2014 to help select appropriate patients for genetic 

testing. The aim in chapter 2 was to test the clinical utility of this score in a large number of 

referrals for HNF1B genetic testing to the UK diagnostic testing service for the HNF1B 

gene. An HNF1B score was assigned for 686 referrals using clinical information available 

at the time of testing; performance of the score was evaluated by receiver-operating 

characteristic curve analysis. Although the HNF1B score discriminated between patients 

with and without a mutation/deletion reasonably well, the negative predictive value of 85% 

reduces its clinical utility. 

 

HNF1B-associated disease is due to an approximate 1.3 Mb deletion of chromosome 

17q12 in about 50% of individuals. This deletion includes HNF1B plus 14 additional genes 

and has been linked to an increased risk of neurodevelopmental disorders, such as 

autism. The aim in chapter 3 was to compare the neurodevelopmental phenotype of 

patients with either an HNF1B intragenic mutation or 17q12 deletion to determine whether 

haploinsufficiency of the HNF1B gene is responsible for this aspect of the phenotype. Brief 

behavioural screening showed high levels of psychopathology and impact in children with 

a deletion. 8/20 (40%) patients with a deletion had a clinical diagnosis of a 

neurodevelopmental disorder compared to 0/18 with a mutation, P=0.004. 17q12 deletions 

were also associated with more autistic traits. Two independent clinical geneticists were 
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able to predict the presence of a deletion with a sensitivity of 83% and specificity of 79% 

when assessing facial dysmorphic features as a whole. These results demonstrate that the 

17q12 deletion but not HNF1B intragenic mutations are associated with 

neurodevelopmental disorders; we conclude that the HNF1B gene is not involved in the 

neurodevelopmental phenotype of these patients. 

 

Extra-renal phenotypes frequently occur in HNF1B-associated disease, including diabetes 

mellitus and pancreatic hypoplasia. Faecal elastase-1 levels have only been reported in a 

small number of individuals, the majority of which have diabetes. In chapter 4 we 

measured faecal elastase-1 in patients with an HNF1B mutation or deletion regardless of 

diabetes status and assessed the degree of symptoms associated with pancreatic 

exocrine deficiency. We found that faecal elastase-1 deficiency is a common feature of 

HNF1B-associated renal disease even when diabetes is not present and pancreatic 

exocrine deficiency may be more symptomatic than previously suggested. Faecal 

elastase-1 should be measured in all patients with a known HNF1B molecular abnormality 

complaining of chronic abdominal pain, loose stools or unintentional weight loss. 

 

Hypomagnesaemia is a common feature of HNF1B-associated disease and is due to renal 

magnesium wasting. The aim in chapter 5 was to measure both serum and urine 

magnesium and calcium levels in individuals with an HNF1B molecular defect and 

compare to a cohort of patients followed up in a general nephrology clinic in order to 

assess their potential as biomarkers for HNF1B-associated disease. The results of this 

pilot study show that using a cut-off for serum magnesium of ≤0.75 mmol/L was 100% 

sensitive and 87.5% specific for the presence of an HNF1B mutation/deletion. All 

individuals in the HNF1B cohort had hypermagnesuria with fractional excretion of 

magnesium >4%; a cut-off of ≥4.1% was 100% sensitive and 71% specific. This suggests 

serum magnesium levels and fractional excretion of magnesium are highly sensitive 

biomarkers for HNF1B-associated renal disease; if these results are confirmed in a larger 

study of patients with congenital anomalies of the kidneys or urinary tract they could be 

implemented as cheap screening tests for HNF1B genetic testing in routine clinical care. 
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CHAPTER 1 
 

Introduction 
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1.1 Structure and aims of thesis  

 

This thesis aims to explore some of the issues surrounding disease recognition in 

individuals with heterozygous mutations and deletions in the gene that encodes the 

transcription factor hepatocyte nuclear factor 1β (HNF1B). 

 

The introduction in chapter 1 involves a comprehensive review of HNF1B-associated 

disease at the time of commencing this Doctor of Medicine programme, with an emphasis 

on both the renal and extra-renal clinical characteristics. 

 

Diagnosis of HNF1B-associated disease is challenging due to phenotypic variability and 

frequent absence of a family history despite an autosomal dominant inheritance pattern. 

An HNF1B score was developed in 2014 to help select appropriate patients for genetic 

testing. The aim in chapter 2 was to test the clinical utility of this score in a large number of 

referrals for HNF1B genetic testing to the UK diagnostic testing service for the HNF1B 

gene. 

 

HNF1B-associated disease is due to an approximate 1.3 Mb deletion of chromosome 

17q12 in about 50% of individuals. This 17q12 deletion includes HNF1B plus 14 additional 

genes and has been linked to an increased risk of neurodevelopmental disorders, such as 

autism; this is a source of concern for patients and their families. The aim in chapter 3 was 

to systematically compare the neurodevelopmental phenotype of individuals with either an 

HNF1B intragenic mutation or 17q12 deletion to determine whether haploinsufficiency of 

the HNF1B gene is responsible for this aspect of the phenotype. This should allow for the 

provision of more accurate information on diagnosis and prognosis in the clinical setting. 

 

There is still no consensus as to when HNF1B genetic testing should be performed. In 

view of the phenotypic variability that is seen in HNF1B-associated disease and the 
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expense attached to genetic testing, additional tools before genetic screening would be 

helpful to improve both recognition of the condition and cost-effectiveness of genetic 

testing. Chapters 4 and 5 are concerned with the assessment of potential biomarkers for 

HNF1B-associated disease. Faecal elastase-1 levels have only been reported in a small 

number of individuals with HNF1B-associated disease, the majority of which have 

diabetes. The aim in chapter 4 was to measure faecal elastase-1 in patients regardless of 

diabetes status, as well as assess the degree of symptoms associated with pancreatic 

exocrine deficiency. Hypomagnesaemia is a common feature of HNF1B-associated 

disease and is due to renal magnesium wasting. It is unknown if hypermagnesuria is also 

seen in patients even when serum magnesium measurements fall within the normal 

reference range. The aim in chapter 5 was to measure both serum and urine magnesium 

and calcium levels in individuals with an HNF1B molecular defect and compare to a cohort 

of patients followed up in a general nephrology clinic in order to assess their potential as 

biomarkers for HNF1B-associated disease. 

 

The discussion in chapter 6 provides an overview of the main findings of each chapter 

including the clinical impact of the results, limitations of the data and areas for future 

research within the context of the most current literature. 
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INTRODUCTION 

 

Hepatocyte nuclear factor 1β (HNF1B) is a homeodomain-containing transcription factor. 

HNF1B has known functions in nephron development and heterozygous mutations and 

deletions are the most common known monogenic cause of developmental renal 

disease.[1-4] Renal cysts are the most commonly observed clinical feature in HNF1B-

associated disease, and numerous affected individuals additionally exhibit early-onset 

diabetes mellitus; this led to the description of the renal cysts and diabetes (RCAD) 

syndrome.[5] Since initial reporting of the early cases in 1997, it has become evident that 

additional clinical features are also associated with molecular defects in HNF1B.[6-8] 

These features include pancreatic hypoplasia,[9, 10] genital tract malformations,[11] 

abnormal liver function,[7, 12] hypomagnesaemia,[13] hyperuricaemia, and early-onset 

gout.[14] HNF1B-associated disease is, therefore, considered to be a multi-system 

disorder (Figure 1.1). 

 

The discovery of HNF1B gene mutations as a cause of developmental renal disease arose 

from unexpected findings in the study of maturity-onset diabetes of the young (MODY).[6-

8] MODY is a monogenic form of early-onset diabetes mellitus that is typically diagnosed 

before the age of 25 years. MODY is inherited in an autosomal dominant manner and 

results from pancreatic β-cell dysfunction.[15] The most common cause of MODY is 

mutation of the gene encoding the transcription factor HNF1A,[16] which binds to the same 

DNA sequence as HNF1B, and both proteins show >80% sequence homology.[17] This 

made HNF1B a good candidate gene for MODY cases without a known genetic cause and 

a mutation associated with early-onset diabetes mellitus was first reported in a Japanese 

family in 1997.[6] Renal disease was also present in the three affected individuals in this 

family, which ranged in severity from persistent proteinuria to chronic renal failure. Bilateral 

renal cysts were subsequently identified in the individual with proteinuria.[7] The 

association of diabetes mellitus with non-diabetic renal disease was strengthened by the 

identification of two additional families with a heterozygous mutation in HNF1B.[8, 11] 

Many of the affected family members additionally had abnormal liver function and genital 
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malformations, providing the first evidence that a mutation in HNF1B could result in a 

multi-system disease. 

 

 

Figure 1.1  Renal and extra-renal phenotypes frequently observed among patients with hepatocyte nuclear factor 1β-

associated disease 

 

This Review focuses on HNF1B-associated renal developmental disease. We first provide 

an outline of the molecular genetics of this disorder. We next discuss functional studies, 

including the use of animal models in determining the expression of HNF1B during 

embryonic development. The various phenotypes thus far associated with HNF1B 

mutations and deletions are described and finally, we highlight key areas for future 

research. 
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MOLECULAR GENETICS 

 

HNF1B is a member of the homeodomain-containing superfamily of transcription factors, 

functioning either as a homodimer or as a heterodimer with HNF1A to regulate gene 

expression. The HNF1B gene is located on chromosome 17q12 and the protein has three 

distinct functional domains: the dimerization domain, the DNA binding domain, and the 

transactivation domain (Figure 1.2). Genetic changes comprise base substitutions or small 

insertions/deletions in 24/58 (41%) adult patients and 51/116 (44%) affected children or 

foetuses; deletions of the entire gene account for 34/58 (59%) adult patients and 65/116 

(56%) affected children or foetuses.[1-3, 13, 18-24] 

 

 

Figure 1.2  Distribution of mutations within the gene that encodes hepatocyte nuclear factor 1β. 

The mutations shown in the schematic are documented in the Human Gene Mutation Database (accessed on 25 March 

2014); here, they are grouped by mutation type within each of the nine exons and splice sites of the transcript. The 

numbered boxes refer to the exons. The functional domains of the HNF1B protein are shown beneath the gene 

transcript. Each symbol represents a separate mutation rather than an individual patient. Approximately 50% of patients 

have a whole-gene deletion (not pictured) although break points might not have been mapped or reported. Approved 

cDNA and protein level mutation names are shown in Appendix A. 

Abbreviations: HNF1B, hepatocyte nuclear factor 1; POUH, Pit-1Oct-1/2Unc-86 homeodomain; POUS, Pit-1Oct-1/2Unc-

86 specific. 

 

More than 50 different HNF1B mutations have been reported, including missense, 

nonsense, frame-shift and splicing mutations (Figure 1.2). The majority of identified 

mutations are clustered in the first four exons of the gene, with exons 2 and 4, and the 
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intron 2 splice site being mutation site hotspots.[25] There does not appear to be a 

correlation between the type or position of the mutation with particular clinical features.[26] 

Expression of the phenotype can vary considerably between families harbouring the same 

HNF1B mutation, as well as between affected members of individual families, which 

suggests that additional genetic and/or environmental modifiers might influence the 

HNF1B phenotype. Stochastic variation in temporal HNF1B gene expression during early 

development could also increase phenotypic diversity. 

 

Whole-gene deletions of HNF1B were reported eight years following the first coding 

mutation.[27] The region of chromosome 17 that encompasses the HNF1B gene is 

susceptible to genomic rearrangement, which is mediated by non-allelic homologous 

recombination between segmental duplications flanking a 1.5-Mb region.[28] This type of 

genomic rearrangement is not detected by conventional direct sequencing techniques and 

instead requires gene dosage analysis; however, this will be facilitated by the increasing 

use of next generation sequencing technology.[29] Partial gene deletions have also been 

reported.[27] 

 

There is no evidence to suggest that patients with a whole-gene deletion have a different 

phenotype to those with coding or splice site mutations. This is consistent with 

haploinsufficiency as the underlying disease mechanism.[20, 27] HNF1B-associated 

disease is generally considered to be inherited in an autosomal dominant manner. 

Nevertheless, whole-gene deletions, as well as coding and splice site mutations, can also 

arise spontaneously;[19, 26] the prevalence of spontaneous HNF1B deletion is reported to 

be as high as 50%.[18, 20] This explains why there is often no family history of renal 

disease or diabetes mellitus. The high frequency of de novo deletions is explained by the 

presence of flanking segmental duplications, and the increased rate of spontaneous 

mutations probably arises as a result of the decreased biological fitness of affected 

individuals.[28] Reduced fertility, as a result of genital tract malformations, has been 

reported among patients with HNF1B-associated disease; furthermore, the wide 

phenotypic variability might not be compatible with life, as is seen in cases of severe 
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congenital abnormalities of the kidneys and urinary tract (CAKUT) detected on prenatal 

ultrasonography and leading to termination of pregnancy.[11, 30] 

 

FUNCTIONAL STUDIES 

 

Organ development can be a highly conserved process between different species. The 

zebra fish shows high conservation of renal organogenesis with mammals and is therefore 

a convenient model system for functional studies. Three mutant alleles of vhnf1, the zebra 

fish homologue of HNF1B, were isolated in a zebra fish insertional mutagenesis screen. 

These mutants formed renal cysts and exhibited an underdeveloped pancreas and 

liver.[31] 

 

The Xenopus laevis (frog) model system can also be used to study the development of the 

pronephros, the functional kidney throughout larval development, which is favourable 

owing to its simplicity and ease of accessibility. Nine different HNF1B mutations, 

associated with various renal phenotypes in humans, have been evaluated in Xenopus. In 

vitro analysis showed that seven of the subsequent mutant proteins failed to bind DNA, 

whereas two retained an intact DNA-binding domain and could bind DNA efficiently. Intact 

DNA binding correlated with the ability of the mutant protein to form dimers with wild-type 

protein and transactivate target genes. These modelled mutations all interfered with 

pronephros development to differing degrees when introduced into Xenopus embryos. The 

pattern of pronephros development seen in the developing embryo does not strictly 

correlate with the properties observed in vitro or in transfected cell lines, suggesting that 

functional studies in Xenopus may define features of the HNF1B transcription factor that 

are not detected in cells grown in culture.[32] 

 

The transactivation potential of HNF1B depends on the synergistic action of the histone-

acetyltransferases CREB-binding protein (CBP) and p300/CBP-associated factor (PCAF). 
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The transcriptional impairment of HNF1B mutants with normal DNA-binding activity 

correlated with the loss of association with one of these coactivators in co-

immunoprecipitation studies. The activity of these mutant proteins in cell lines was not 

increased by the synergistic action of CBP and PCAF. Thus HNF1B-associated disease 

may result not only from defective DNA binding but also from diminished transactivation 

function through impaired recruitment of coactivator proteins.[33] 

 

Investigation into the effect of HNF1B mutations within the intron 2 splice site was initially 

challenging owing to difficulties in accessing tissues with high levels of endogenous 

HNF1B expression.[14] These studies have been facilitated by the use of ectopic HNF1B 

transcription in Epstein-Barr virus-transformed lymphoblastoid cell lines; that is, making 

use of the presence of very low quantities of correctly spliced tissue-specific mRNAs in 

non-expressing tissues. This technique has been used to demonstrate how two mutations 

of the intron 2 splice donor site result in the deletion of exon 2 and are predicted to cause 

premature termination of the HNF1B protein.[34] Comparable levels of mRNA have been 

demonstrated in both renal tubule cells isolated from overnight urine and lymphoblastoid 

cells collected from the same patient with a HNF1B mutation.[35] Subsequent work has 

confirmed that measuring mRNA expression in urinary sediment can be a useful approach 

to assess the renal epithelial transcriptome in HNF1B-associated renal disease.[36] 

 

THE ROLE OF HNF1B IN RENAL DEVELOPMENT 

 

HNF1B is widely expressed in multiple foetal tissues and is required for visceral endoderm 

specification.[37] HNF1A is expressed later than HNF1B and is activated only during 

organogenesis.[38] In adult mice and rats, these transcription factors are expressed in the 

liver, kidneys, pancreatic islets, stomach and intestine. HNF1B is predominantly expressed 

in the kidneys, but is also expressed in the gonads, thymus and lungs. HNF1A is most 

highly expressed in the liver.[39] Despite the high degree of homology between these two 

transcription factors and the shared DNA binding site,[17] mutations in HNF1B usually 
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result in a multi-system disease, whereas mutations in HNF1A have to date solely been 

reported to cause MODY. This phenotypic variation is probably a reflection of the 

differential timing and localisation of expression of HNF1A and HNF1B during 

development. 

 

Accurate development of the kidneys depends on the appropriate interaction between the 

ureteric bud and metanephric mesenchyme. The ureteric bud gives rise to the ureter, renal 

pelvis, and collecting duct, whereas the metanephric mesenchyme gives rise to the 

nephron.[40] Renal development starts with the induction of the ureteric bud from the 

nephric duct following glial-derived neurotrophic factor (GDNF) secretion from the adjacent 

metanephric mesenchyme, which activates the receptor tyrosine kinase Ret via the co-

receptor GDNF-family receptor α1. The renal collecting system is formed by the invasion 

of the ureteric bud into the metanephric mesenchyme, with subsequent elongation and 

branching. Groups of mesenchymal cells proximal to the ureteric bud tips form pretubular 

aggregates, which differentiate first into comma-shaped and S-shaped bodies, and finally 

into the Bowman’s capsule and tubules.[41] The exact role of HNF1B during this complex 

process remains to be fully determined. In situ hybridisation studies using human tissue 

samples have shown that HNF1B mRNA is highly expressed in the foetal collecting ducts, 

with lower levels of expression in the metanephric mesenchyme.[42] Several mouse 

studies have suggested that Hnf1b has an important function during the early stages of 

urogenital development.[43, 44] Absence of Hnf1b expression in the ureteric bud can 

result in abnormal ureteric bud branching and a failure of surrounding mesenchymal cells 

to transition into epithelia, a key step in early nephrogenesis.[43] Hnf1b seems to act 

upstream of Wnt9b and alters Wnt signalling, a pathway known to be crucial in early renal 

development.[43, 44] 

 

Various animal models of Hnf1b deficiency have been used to examine the role of HNF1B 

during development. Germline inactivation of Hnf1b in mouse embryos is lethal, with death 

at day 6.5–7.0 postconception.[37] Renal-specific inactivation of Hnf1b in mice results in 

polycystic kidneys. This phenotype is associated with a marked reduction in the 
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transcriptional activation of the cystic disease genes Umod, Pkhd1 and Pkd2. Hnf1b binds 

to DNA elements in these genes.[45] Further work also suggests a link between Hnf1b and 

Pkhd1 during kidney development. Transgenic mice expressing a dominant-negative 

Hnf1b mutant gene under the control of a kidney-specific promoter, develop renal cysts. 

The cells lining these cysts lack Pkhd1 mRNA; however, this transcript is present in 

surrounding morphologically normal tubules.[46] 

 

HNF1B is thought to have a role in tubular development within the nephron. In mice, 

inactivation of Hnf1b in the metanephric mesenchyme leads to the formation of aberrant 

nephrons. These nephrons are characterised by glomeruli with a dilated Bowman’s space 

directly connected to collecting ducts via a primitive tubule, owing to the absence of the 

proximal and distal tubules and loop of Henle. Lack of Hnf1b protein expression also 

results in deformed S-shaped bodies that lack the typical bulge of epithelial cells in the 

mid-limb, which usually gives rise to the proximal tubule and the loop of Henle. This 

phenotype might be associated with defective Ixr1, Osr2 and Pou3f3 gene expression plus 

abnormal Notch signalling activation.[47] The Notch signalling pathway is known to be 

important in tubular segmentation and glomerular formation.[48] 

 

RENAL PHENOTYPE 

 

Prevalence 

CAKUT is common and a frequent cause of chronic kidney disease and end-stage renal 

disease; it accounts for >40% of cases in children in the United States. [49, 50] The term 

covers a broad range of disorders and several genes have been implicated in the 

pathogenesis of renal malformations, including HNF1B. Table 1.1 summarises the 

prevalence of HNF1B-associated renal disease in several study cohorts of ≥50 individuals, 

where both mutation and deletion screening of HNF1B was performed. The mean overall 

detection rate of HNF1B gene anomalies was 19%, ranging from 5–31% depending on the 
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phenotypic selection of the cohort. By contrast, HNF1B mutations and deletions are an 

infrequent cause of MODY and are likely to account for <1% of cases.[51] 

 

Study Cohort Detection rate  

Ulinski et al. (2006)[18] Children with one of the following features: renal cysts; 
hyperechogenicity; hypoplasia; or a single kidney (n=80) 

25 (31%) 

Weber et al. (2006)[3] Unrelated European children with renal hypodysplasia and 
chronic renal insufficiency, defined by an eGFR 15–75 
ml/min/1.73 m

2
 (n=99) 

8 (8%) 

Decramer et al. 
(2007)[19] 

Foetuses with either cortical microcysts or isolated 
hyperechogenicity and/or bilateral foetal hyperechogenic 
kidneys (n=62) 

18 (29%) 

Edghill et al. (2008 and 
2006)[20,26] 

Unrelated white subjects with unexplained renal disease 
categorised as follows: renal cysts and cystic dysplasia; 
glomerulocystic kidney disease; atypical familial juvenile 
hyperuricaemic nephropathy; renal dysplasia; renal 
malformations; other (n=160) 

38 (24%) 

Adalat et al. (2009)[13] Children with one of the following features: renal cysts and 
diabetes mellitus; undiagnosed renal cystic disease; or index 
patient with kidney malformations and a family history of 
renal disease, diabetes mellitus or gout (n=91) 

21 (23%) 

Nakayama et al. 
(2010)[21] 

Japanese subjects with one of the following features: renal 
hypodysplasia; unilateral multicystic dysplastic kidney; a 
single kidney; or cystic kidneys (n=50) 

5 (10%) 

Heidet et al. (2010)[4] Unrelated subjects with one of the following features: 
hyperechogenic kidneys with a size ≤3 SD; multicystic kidney 
disease; renal agenesis; renal hypoplasia; cystic dysplasia; or 
hyperuricaemic tubulointerstitial nephropathy not associated 
with UMOD mutation (n=377) 

75 (20%) 

Thomas et al. (2011)[2] North American children ≤16 years with renal aplasia or 
hypoplasia enrolled in the Chronic Kidney Disease in Children 
study (eGFR 30–90 ml/min/1.73 m

2
) (n=73) 

4 (5%) 

Madariaga et al. 
(2013)[1] 

Foetuses with severe congenital abnormalities of the kidneys 
and urinary tract, that appeared isolated by foetal 
ultrasonography and led to termination of the pregnancy 
(n=103) 

12 (12%) 

Study cohorts of ≥50 subjects with renal disease were analysed. Both mutation and deletion screening of the 
HNF1B gene was performed on all subjects included in these cohorts. Abbreviation: eGFR, estimated 
glomerular filtration rate. 

 

Table 1.1  Detection rate of HNF1B genetic abnormalities 
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Morphology 

Considerable variation is seen in the phenotype of HNF1B-associated renal abnormalities, 

despite the single genetic aetiology. Morphological renal abnormalities are commonly 

identified by ultrasound. Magnetic resonance imaging (MRI) can be used in selected cases 

and might be useful in the detection of extra-renal clinical features, such as pancreatic 

structural abnormalities.[52] Prenatal ultrasound can often detect clinical features of 

HNF1B-associated renal disease in the developing foetus, where the most frequently 

observed phenotype is isolated bilateral hyperechogenic kidneys of normal or slightly 

increased size.[19] In the postnatal period, the majority of these affected individuals have 

normal-sized or small kidneys with hyperechogenicity and/or renal cysts, which suggests a 

retardation of renal growth following birth.[4] 

 

Cystic disease, including cystic dysplasia, is the main renal phenotype in both paediatric 

and adult populations. In the largest case series described to date, cystic disease was 

present in 73% of patients with HNF1B-associated kidney disease.[4] The major caveat 

when determining the prevalence of different renal characteristics is that no population-

based data currently exists and the majority of the cohorts previously described were pre-

selected for particular kidney abnormalities (see Table 1.1 for examples). Cysts are usually 

small in size,[18] often arising within the renal cortex, and are not reported to progressively 

increase in number over time.[22] Single kidneys were reported among five of 24 adults 

carrying HNF1B mutations/deletions, the largest series so far of adults with HNF1B-

associated disease.[22] Single kidneys were initially hypothesised to be the result of 

involution of multicystic dysplastic kidneys over time; however, unilateral renal agenesis 

has also been identified by prenatal foetal imaging in 4/56 affected cases.[4, 18] 

 

Other reported structural abnormalities include renal hypoplasia, horseshoe kidney (fusion 

of the two kidneys during embryonic development into a horseshoe-shaped structure) and 

duplex kidney.[3, 18, 20] Collecting system abnormalities, such as pelviureteric junction 

obstruction, have also been identified, but usually occur in conjunction with other renal 

structural abnormalities.[25] Isolated bilateral hydronephrosis and hydroureter have also 



30 
 

been reported.[13] HNF1B molecular defects were found in 2/34 individuals with prune-

belly syndrome, which is characterised by a triad of dilatation of the urinary tract, 

deficiency or absence of the abdominal wall musculature and bilateral undescended 

testes.[53-55] 

 

In the minority of cases, renal imaging can appear normal;[9, 22, 51] however, it is unclear 

how often this occurs as the majority of cohorts with HNF1B-associated disease that have 

been studied were pre-selected for kidney abnormalities. In view of the intra-familial 

variability in clinical features that is seen, it will be important to systematically collect 

phenotypic information from all affected family members as well as the proband. 

 

Histology 

Renal biopsies are not performed in many cases of HNF1B-associated disease, because 

renal cysts, or other structural anomalies, are often visualised by imaging. 19 histology 

results have been reported in the literature. The majority of these biopsies were performed 

as part of explorative clinical investigation of unexplained renal impairment before a 

genetic diagnosis being established; others have resulted from post-mortem examination 

following termination of pregnancy. Considerable variation was observed in the histological 

diagnosis, including hypoplastic glomerulocystic kidney disease (cortical glomerular cysts 

with dilatation of the Bowman spaces and primitive glomerular tufts in ≥5% of the cysts) 

among six patients;[3-5, 56] oligomeganephronia (reduced number of enlarged nephrons) 

in three patients;[9, 11, 57] and cystic renal dysplasia in two patients.[30, 58] All of these 

different renal phenotypes probably arise from abnormal nephron development. Other non-

specific features include interstitial fibrosis, enlarged glomeruli/nephrons and glomerular 

cysts.[9, 57] 

 

Malignancy 

Imaging to screen for chromophobe renal cell carcinoma (RCC), a rare subtype of kidney 

cancer, should be considered for individuals with HNF1B gene anomalies. Following the 
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observation of chromophobe RCC in a patient with a known HNF1B mutation,[9] a series 

of 34 randomly selected renal neoplasms were screened for HNF1B gene inactivation. 

Biallelic inactivation was identified in 1/11 tissue samples owing to the development of a 

somatic HNF1B gene deletion in addition to a germline mutation.[59] Overexpression of 

HNF1B is common in clear cell ovarian cancer.[60] Several genome-wide association 

studies have also linked genetic variation in the HNF1B region with a risk of endometrial 

and prostate cancer.[61-64] 

 

Biochemical abnormalities 

Hypomagnesaemia: Hypomagnesaemia is a common feature of HNF1B-associated 

disease.[4, 13, 22] This condition was detected in 8/18 (44%) children with HNF1B 

mutation/deletion under follow-up for renal malformation; hypomagnesaemia was 

accompanied by hypermagnesuria and hypocalciuria. With the exception of one patient 

who presented with tetany, symptoms attributable to hypomagnesaemia were not reported 

in the other cases. HNF1B regulates the transcription of FXYD2, a gene that encodes the 

γ subunit of the Na+/K+-ATPase and is involved in the reabsorption of magnesium in the 

distal convoluted tubule.[13, 65] A mutation in FXYD2 has been reported in one family to 

date with autosomal dominant hypomagnesaemia and hypocalciuria.[66] This finding 

suggests an additional role for HNF1B in the maintenance of tubular function. 

 

Hyperuricaemia: Hyperuricaemia has been associated with disorders resulting from 

genetic abnormalities in HNF1B,[14] although serum urate levels have not yet been 

systematically measured in a large cohort. Patients might additionally present with early-

onset gout, and some affected individuals with hyperuricaemia, early-onset gout and renal 

disease meet established criteria for familial juvenile hyperuricaemic nephropathy, a 

condition usually caused by mutations in UMOD, which encodes uromodulin.[67] The 

cause of hyperuricaemia in HNF1B-associated disease probably reflects both altered urate 

transport in the kidney and an early manifestation of renal impairment. Mice with renal-

specific inactivation of Hnf1b develop polycystic disease, and exhibit markedly reduced 

transcriptional activation of Umod.[45] The majority of causative mutations in UMOD that 
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result in familial hyperuricaemic nephropathy are considered to exert dominant negative 

effects; therefore, it remains unclear how the same phenotype is associated with HNF1B 

haploinsufficiency.[4] 

 

Renal function 

Renal function is usually impaired in HNF1B-associated disease but can range from 

normal to end-stage renal disease (ESRD). A slowly progressive deterioration of renal 

function throughout adulthood has previously been described; a median yearly decline in 

the estimated glomerular filtration rate (eGFR) of 2.45 ml/min per 1.73 m2 was observed in 

a study of 27 adults with an HNF1B mutation/deletion and a wide variety of renal 

phenotypes.[22] Four patients (15%) in this series progressed to ESRD, which is 

consistent with the frequency reported in a systematic review (12.8%).[25] The age at 

diagnosis of ESRD remains unpredictable, and has even been reported in early 

childhood.[20] The impact of causative mutations in HNF1B on renal function in the 

paediatric population is difficult to interpret owing to the young age of the patients and the 

lack of long-term follow-up. HNF1B gene anomalies can also be associated with severe 

prenatal renal anomalies, which may result in oligohydramnios, pulmonary hypoplasia and 

renal failure. This situation can in turn lead to perinatal death, the requirement for early 

renal replacement therapy or parental request for termination of the pregnancy.[1, 4] 

 

Individuals with HNF1B-associated disease who are likely to require renal replacement 

therapy should be considered for renal transplantation. This patient group is at increased 

risk of developing new-onset diabetes after transplantation (NODAT), and an 

immunosuppressive regimen that avoids tacrolimus and reduces corticosteroid exposure 

may be beneficial.[68] Simultaneous pancreas and kidney (SPK) transplantation, a 

procedure usually reserved for patients with type 1 diabetes mellitus and ESRD, might be 

an option for patients with HNF1B-associated disease who present with both diabetes 

mellitus and ESRD. Three individuals with HNF1B-associated disease were successfully 

treated with either SPK or pancreas-after-kidney transplantation, and remained free of the 

need for insulin therapy 1 year after the procedure.[69, 70] 
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Age group Differential diagnosis Key distinguishing features Diagnostic tests 

Paediatric 

(≤16 years) 

 

Early-onset ADPKD Family history; diffuse cortical cysts Renal ultrasound; PKD1 and 
PKD2 genetic testing in selected 
cases 

ARPKD Medullary cysts; oligohydramnios with 
Potter’s phenotype, absent urine from 
the foetal bladder and pulmonary 
hypoplasia in severe cases; congenital 
hepatic fibrosis 

Renal and abdominal 
ultrasound; PKHD1 genetic 
testing in selected cases 

Cystic dysplasia 
(idiopathic) 

Echobright kidneys with cysts and 
decreased corticomedullary 
differentiation; absence of extra-renal 
features 

Renal ultrasound and 
99m

Tc-
DMSA* renography 

Multicystic dysplastic 
kidney (idiopathic) 

Unilateral; multiple unconnected cysts of 
varying size; absent renal pelvis and renal 
parenchyma; absence of extra-renal 
features 

Renal ultrasound and 
99m

Tc-
DMSA* renography 

Nephronophthisis Small kidneys with corticomedullary 
junction cysts; associated with several 
extra-renal features, including retinitis 
pigmentosa and ocular motor apraxia 

NPHP genetic testing; renal 
biopsy in selected cases 

Obstructive dysplasia Dilated upper tract Renal ultrasound 

Tuberous sclerosis Cysts and angiomyolipomas; skin 
fibromas; central nervous system 
involvement 

Dermatological and ophthalmic 
evaluation; cranial MRI; renal 
ultrasound; TSC1 and TSC2 
genetic testing in selected cases 

Adult 

(>16 years) 

 

Acquired cysts Long duration of renal impairment and/or 
need for dialysis; shrunken kidneys; no 
family history 

Renal ultrasound 

Autosomal dominant 
polycystic kidney disease 

Enlarged kidneys with progressive 
increase in cyst burden over time; extra-
renal cysts in liver, pancreas and spleen; 
intracerebral aneurysms; cardiac valvular 
abnormalities 

Renal and abdominal 
ultrasound; cranial magnetic 
resonance angiography in 
selected cases; PKD1 and PKD2 
genetic testing in selected cases 

Autosomal recessive 
polycystic kidney disease 

Medullary cysts; hepatic periportal 
fibrosis; portal hypertension 

Renal and abdominal 
ultrasound; PKHD1 genetic 
testing in selected cases 

Medullary sponge kidney Normal-sized kidneys or renal 
hypertrophy with echogenic medullary 
pyramids and calcification; usually 
asymptomatic but might be associated 
with urinary tract infection and 
nephrolithiasis 

No diagnostic tests 
recommended as this is a benign 
condition with no specific 
treatment 

Simple cysts Cortical cysts; normal-sized kidneys; 
absence of extra-renal features 

Renal ultrasound 

Von Hippel–Lindau 
syndrome 

Multiple tumours in the central nervous 
system, retina, adrenal glands, pancreas 

Renal ultrasound +/- CT and/or 
MRI; 24 hour urine collection for 
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and kidneys; renal cell carcinomas catecholamines and 
metanephrines; VHL genetic 
testing 

*Cystic dysplasia and multicystic dysplastic kidney are usually idiopathic but may also be seen in HNF1B-associated disease; 
renal ultrasound and 

99m
Tc-DMSA will not distinguish between idiopathic cases and those with a known genetic cause. 

Abbreviations: HNF1B, hepatocyte nuclear factor 1; NPHP, nephronophthisis; PKD1, polycystic kidney disease 1; PKD2, 
PKD2, polycystic kidney disease 2; PKHD1, polycystic kidney and hepatic disease 1; 

99m
Tc-DMSA renography, technetium-

99m-labelled dimercaptosuccinic acid; TSC1, tuberous sclerosis 1; TSC2, tuberous sclerosis 2; US, ultrasound; VHL, Von 
Hippel–Lindau tumour suppressor, E3 ubiquitin protein ligase. 

 

Table 1.2  Differential diagnosis of renal cysts by age group at presentation[52, 71, 72] 

 

Differential diagnosis 

The differential diagnosis of HNF1B-associated kidney disease is wide given the 

considerable variation in renal phenotypes. Here we discuss the most common 

presentations of HNF1B-associated kidney disease. Moderately enlarged bilateral 

hyperechogenic kidneys are often identified following prenatal ultrasound scanning; 

autosomal recessive and autosomal dominant polycystic kidney diseases are the main 

differential diagnoses in such cases.[52] To facilitate diagnosis, ultrasonography should 

also assess for any associated extra-renal abnormalities and a complete family history is 

useful, with particular emphasis placed on renal disease and diabetes mellitus. Renal 

cysts are usually visualised after birth; Table 1.2 summarises the main differential 

diagnoses to consider depending on the age at presentation. Individuals with HNF1B-

associated kidney disease might present with other forms of renal tract malformation, 

including renal agenesis or hypoplasia. The differential diagnosis in these cases can 

include other multi-organ syndromes that are not covered in this Review, such as 

branchio-oto-renal syndrome and renal coloboma syndrome. 

 

EXTRA-RENAL PHENOTYPES 

 

Diabetes mellitus 

HNF1B has an important function in the early development and differentiation of the 

pancreas.[73, 74] HNF1B gene anomalies can, therefore, result in both reduced endocrine 
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and exocrine function. Diabetes mellitus is the most frequent extra-renal phenotype 

detected and it usually presents following renal disease in patients with an HNF1B-

associated disorder that was identified in childhood. The mean age at diagnosis of 

diabetes mellitus is 24 years,[25] but can vary from the neonatal period[75, 76] to late 

middle age.[26] In a cohort of 27 adult HNF1B mutation/deletion carriers with a median 

age of 35 years, diabetes was present in 13 (48%); none of the patients in this series 

developed diabetic retinopathy or neuropathy before the close of the study.[22] Diabetes 

mellitus might manifest as NODAT and analysis of the HNF1B gene should be considered 

among individuals with unexplained CAKUT undergoing transplantation, to improve post-

transplant management.[68] Presentation with diabetic ketoacidosis has also been 

described.[39] The majority of patients with HNF1B-associated diabetes mellitus respond 

poorly to sulphonylureas and so require treatment with insulin.[25, 77] By contrast, 

individuals with HNF1A-associated diabetes mellitus respond extremely well when treated 

with sulphonylureas. 

 

The pathophysiology of diabetes mellitus reflects a combination of -cell dysfunction and 

insulin resistance. Dysfunction of -cells results in reduced insulin secretion, which is likely 

to be a consequence of pancreatic hypoplasia.[10] Decreased insulin secretion in utero 

leads to intrauterine growth retardation and low birth weight.[76] Patients with HNF1B 

mutations/deletions have reduced insulin sensitivity to endogenous glucose production but 

peripheral insulin sensitivity is normal.[78] This situation results in hyperinsulinaemia and 

associated dyslipidaemia, with raised levels of triglycerides and reduced levels of high-

density lipoprotein.[77] 

 

Exocrine pancreatic dysfunction 

Pancreatic hypoplasia has been described in several individuals with HNF1B-associated 

disease.[9] Imaging studies have shown a reduced pancreatic structure, with less tissue 

corresponding to the body and tail of the pancreas and a slightly atrophic pancreatic 

head.[10] These characteristics are consistent with agenesis of the dorsal pancreas, the 

embryonic structure that gives rise to the pancreatic body, tail, and a small region of the 
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head. Studies in mice looking at pancreas development revealed that embryos completely 

deficient in Hnf1b had a significantly reduced dorsal pancreatic bud that was only 

transiently present, whereas the ventral bud was undetectable.[74] Two cases of complete 

pancreatic agenesis have been described in foetuses with severe renal abnormalities, 

which were found to have an HNF1B genetic abnormality following induced termination of 

the pregnancy.[1, 79] 

 

The majority of patients with pancreatic hypoplasia also have subclinical pancreatic 

exocrine dysfunction, as evidenced by faecal elastase deficiency.[9, 10] Detailed 

assessments of pancreatic function, using rapid endoscopic secretin stimulation tests and 

secretin-stimulated MRI, have confirmed this co-morbidity among patients with HNF1B-

associated disease.[80] Pancreatic exocrine hypersecretion has also been observed in 

affected individuals, and could be a compensatory mechanism for diminished pancreatic 

volume. These data suggest that the small pancreas observed in individuals with HNF1B 

mutations/deletions might be to the result of hypoplasia rather than atrophy. 

 

Genital tract malformations 

Genital malformations were described in some of the first cases of HNF1B-associated 

disease, providing an early clue that it is a multi-system disorder.[11] Such malformations 

are most common among females, and are usually caused by abnormalities in uterine 

development.[25] In a cohort of 108 females with congenital uterine abnormalities, 

heterozygous mutation or deletion of HNF1B was found in 9/ 50 patients (18%) who had 

both uterine and renal abnormalities, but in none of the 58 cases with isolated uterine 

abnormalities.[24] In the female embryo, the Müllerian ducts develop into the uterus, 

fallopian tubes, cervix, and the upper part of the vagina. Müllerian duct aplasia results in 

the formation of an underdeveloped, rudimentary uterus and vaginal aplasia, and affected 

individuals are infertile.[11] The corpus and cervix of the uterus and the upper third of the 

vagina are formed by fusion of the caudal parts of the Müllerian ducts. Failure of fusion 

can result in a bicornuate uterus, uterus didelphys or a double vagina.[58, 81] HNF1B is 

also a candidate gene for Mayer-Rokitansky-Küster-Hauser syndrome, which involves 
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congenital aplasia of the uterus, cervix and upper vagina with primary amenorrhoea and 

infertility.[82, 83] 

 

Various genital tract malformations have been reported among males, including 

cryptorchidism, agenesis of the vas deferens, hypospadias, epididymal cysts and 

asthenospermia[9, 22, 58]; however, the potential implication of this association with 

HNF1B molecular defects is unclear owing to the small number of reported cases. 

 

Abnormal liver function 

Liver dysfunction in association with HNF1B gene mutations has been clinically 

documented since some of the original publications describing HNF1B-associated 

disease.[7] Liver dysfunction is a common clinical finding[9, 22] that usually manifests as 

an asymptomatic rise in the levels of liver enzymes, particularly alanine aminotransferase 

and γ-glutamyl transferase.[25] Four patients have been reported with neonatal 

cholestasis, with the results of liver biopsy indicating a reduction in the number of 

intrahepatic bile ducts.[19, 23, 84, 85] This infrequent phenotype is consistent with the 

paucity of bile ducts seen in mice with a liver-targeted deletion of Hnf1b.[86] Electron 

microscopy has demonstrated a reduction of normal primary cilia on the epithelial cells of 

the bile duct among patients with HNF1B genetic abnormalities, which could also 

contribute to cholestasis.[87] 

 

Other clinical features 

Increasing interest has focused on whether HNF1B gene anomalies might be associated 

with neurodevelopmental disorders. A 1.4 Mb deletion at chromosome 17q12, which 

includes the HNF1B gene, was found in 18/15,749 patients referred for clinical genetic 

testing because of autism spectrum disorders, developmental delay or cognitive 

impairment.[88] Seizures, structural brain abnormalities, mild facial dysmorphic features 

and macrocephaly have also been reported.[88, 89] The deleted stretch of DNA contains 

15 genes; therefore, it is not clear what genetic mechanism gives rise to these observed 
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neurodevelopmental phenotypes. In a cohort of 53 children with whole gene deletion of 

HNF1B and cystic kidney disease, three had a diagnosis of autism.[90] This was more 

common than the 1/150–1/300 prevalence of autism recorded in the general paediatric 

population and suggests further work is needed in this area to ascertain the exact 

incidence in this group of patients. Nephrologists should therefore be aware of this 

potential association to ensure that referral to appropriate psychiatric services can be 

made where applicable. 

 

Early development of hyperparathyroidism may be a previously unrecognised feature of 

HNF1B-associated disease. Relatively high levels of parathyroid hormone (PTH) ranging 

from 6.6-16.4 pmol/L, given the degree of renal function decline, have been reported in 

6/11 unselected patients with known HNF1B gene anomalies undergoing follow-up at a 

single centre. Five of these six patients had hypomagnesaemia, which usually inhibits the 

release of PTH, whereas their plasma levels of calcium and phosphate were within the 

normal range. In vitro studies demonstrated that wild-type HNF1B can inhibit transcription 

of PTH; mutant HNF1B lacked this property.[91] 

 

Other clinical features, including hearing loss and pyloric stenosis, have been reported in a 

small number of individuals with an HNF1B mutation/deletion.[25] Nevertheless, a causal 

link with HNF1B gene anomalies remains to be established. 

 

AREAS FOR FUTURE RESEARCH 

 

HNF1B-associated disease was first described in 1997, and despite the subsequent 

identification of many affected patients, research questions still remain regarding its 

functional and pathological consequences. The prevalence of HNF1B gene anomalies in 

the general population is unknown and it is likely that many cases remain undetected 

owing to the variable phenotype and frequency of de novo gene deletions. One study 
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identified three individuals with an HNF1B deletion from a group of 258 patients who met 

the clinical criteria for MODY and were not known to have renal disease.[51] Gene 

mutations were not assessed in this study so it is possible that other patients in this cohort 

had HNF1B-associated disease that was not identified. This observation highlights the 

requirement for an improved method of patient selection for genetic testing so that HNF1B-

associated disease can be recognised and treated appropriately. Faguer et al. described 

an HNF1B score to be used as part of an algorithm for diagnosing HNF1B-associated 

disease. This score was created using a weighted combination of clinical features based 

on the frequency and specificity in HNF1B-associated disease reported in the published 

literature. The most discriminative characteristics included renal hyperechogenicity, cystic 

kidneys, MODY, pancreatic hypoplasia or exocrine insufficiency and genital tract 

abnormalities. 15 different clinical features are assessed in the score, which reflects the 

wide heterogeneity of organ involvement seen in this disease. It should, therefore, prove a 

useful tool for selecting patients for HNF1B testing but first requires validation in 

prospective studies in different populations.[92] 

 

Studies showing a link between large deletions at chromosome 17q12 and 

neurodevelopmental disorders has led to speculation about the underlying mechanism and 

whether deletion of HNF1B within this region may be involved.[88, 89] HNF1B gene 

anomalies have not previously been associated with abnormalities of neural development 

and function. Further investigation in a large cohort of individuals with both HNF1B 

mutations and deletions is therefore required, and would have important implications for 

patient management. 

 

The reasons for phenotypic variation in HNF1B-associated disease remain poorly 

understood. It is uncertain if such variation reflects the functional effects of different gene 

anomalies; stochastic variation resulting from minor differences in temporal expression in 

early development; genetic modifiers; or the contribution of additional neighbouring deleted 

genes in those patients with the 1.5-Mb deletion that includes HNF1B. Comparing large 

groups of patients, for example those with extreme phenotypic variation and those with 
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whole-gene deletions versus coding or splice site mutations, could help to identify some of 

the determinants of this varied phenotype. It will also be important to establish a 

prospective paediatric cohort, as the follow-up of affected children and adolescents will 

allow the development and progression of different clinical features to be studied. 

 

Discoveries in zebra fish and mouse models have helped to identify how Hnf1b functions 

during different stages of renal development; however there is still much to be learned 

about the complex molecular pathways that are involved. The increasing use of next 

generation sequencing, which can allow sequencing of the entire human genome within 

several days, is predicted to identify novel genes involved in CAKUT over the next few 

years.[93] These gene products may act upstream or downstream of HNF1B and will 

therefore help to elucidate further the role of HNF1B in nephrogenesis. 

 

CONCLUSIONS 

 

HNF1B first generated interest in 1997 as a potential candidate gene for MODY; it is now 

known to be the most frequent monogenic cause of developmental renal disease. 

Molecular defects in HNF1B result in a multi-system disorder and some work has 

suggested that neurodevelopmental features, such as autism spectrum disorders, might 

be part of the phenotype among individuals with whole-gene deletions. HNF1B-associated 

disease is characterised by marked clinical heterogeneity, and a positive family history is 

often lacking; as a result, many patients are likely to have been missed. Further work is 

required to improve the identification of appropriate patients for genetic testing and to 

understand the phenotypic variation. HNF1B genetic testing should be considered for all 

patients with developmental renal disease, particularly if renal cysts or hyperechogenicity 

are detected or other extra-renal clinical features are present. 
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REVIEW CRITERIA 

 

PubMed was searched using the following terms: “maturity onset diabetes mellitus of the 

young type 5”, “renal cysts and diabetes mellitus syndrome”, “hepatocyte nuclear factor 1 

beta”, “transcription factor 2”, “HNF1beta”, “HNF1B”, “TCF2”, “MODY5” and “RCAD”. The 

search was restricted to articles published in English between January 1997 and June 

2014. Other references and relevant articles published before 1997 were derived from the 

authors’ knowledge of the published literature. 
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INTRODUCTION 

 

Heterozygous mutations and deletions in the gene encoding the transcription 

factor hepatocyte nuclear factor 1β (HNF1B) result in a multi-system disorder. 

They are the most common known monogenic cause of developmental kidney 

disease, which is present in the majority of cases.[1-3] The renal phenotype is 

very variable; cysts are the most frequent feature but single kidneys, 

hypoplasia, horseshoe kidneys, duplex kidneys, collecting system 

abnormalities, bilateral hydronephrosis and hyperuricaemic nephropathy may 

also be seen.[3, 4, 13, 14, 18, 20, 22, 25] HNF1B-related disease is often 

detected on prenatal ultrasound scanning, where bilateral hyperechogenic 

kidneys with normal or slightly increased size are commonly found.[19] Other 

clinical features include young-onset diabetes, pancreatic hypoplasia, genital 

tract malformations, deranged liver function tests, hypomagnesaemia, 

hyperuricaemia and early-onset gout.[5, 7, 9-14] Genetic changes comprise 

whole-gene deletions in approximately 50% of patients and base substitutions 

or small insertions-deletions in the remainder.[20, 27] Both may arise 

spontaneously; de novo whole-gene deletions are seen in about 50% of 

cases.[18, 19, 26] This means there is often no family history of renal disease or 

diabetes. 

 

Given the marked clinical heterogeneity of HNF1B-related disease and frequent 

absence of a relevant family history, diagnosis is often challenging and it is 

likely that many cases remain undetected. Faguer and colleagues have recently 

developed a HNF1B score as a tool to help healthcare professionals select 

appropriate patients for genetic testing (Table 2.1).[92] It is calculated using 17 

items, which include family history, antenatal discovery and organ involvement. 

The score performed well when tested in a cohort of 433 patients referred to the 

University Hospital of Toulouse in France for HNF1B gene analysis, with 

negative predictive value >99% and sensitivity 98.2% using a cut-off score of 8. 

We aimed to replicate this study by testing the clinical utility of the HNF1B score 

in a cohort of 686 patients who had undergone genetic testing for HNF1B 

molecular defects at Exeter Molecular Genetics Laboratory, which provides the 

UK national diagnostic testing service for the HNF1B gene. 
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Characteristics Item Value 

Family history  +2 

Antenatal renal abnormalities Uni/bilateral abnormality by prenatal renal 
ultrasound scanning 

+2 

Kidneys and urinary tract   

     Left kidney Hyperechogenicity +4 

 Renal cysts +4 

 Hypoplasia +2 

 Multicystic and dysplastic kidney +2 

 Urinary tract malformation +1 

 Solitary kidney +1 

     Right kidney Hyperechogenicity +4 

 Renal cysts +4 

 Hypoplasia +2 

 Multicystic and dysplastic kidney +2 

 Urinary tract malformation +1 

 Solitary kidney +1 

     Electrolyte or uric acid disorders Low serum Mg
2+

 (<0.7 mmol/l) +2 

 Low serum K
+
 (<3.5 mmol/l) +1 

 Early-onset gout (>30 years of age) +2 

     Pathological findings Oligomeganephronia or glomerular cysts +1 

Pancreas
a
 MODY or hypoplasia of tail and neck of the 

pancreas or pancreatic exocrine insufficiency 
+4 

Genital tract Genital tract abnormality
b
 +4 

Liver Liver test abnormalities of unknown origin
c
 +2 

Abbreviations: HNF1B, hepatocyte nuclear factor 1β; MODY, maturity-onset diabetes of the young. 
This score should be assessed after ruling out easily recognisable inherited renal diseases e.g. autosomal dominant 
or recessive polycystic kidney disease and renal coloboma syndrome. 
a
Maximal value of the item pancreas is 4. 

b
Bicornuate uterus, hemiuterus, uterus and upper vagina aplasia, epididymal cysts, bilateral absence of vas 

deferens. 
c
After exclusion of autoimmune, toxic or viral hepatitis. 

 

Table 2.1  HNF1B score created by Faguer and colleagues (taken from reference 92) 

 

CONCISE METHODS 

 

Probands with renal disease referred for HNF1B genetic testing to Exeter 

Molecular Genetics Laboratory from 1998 to 2012 were included; the criterion 

for referral was suspicion of HNF1B-related disease by the referring clinician. 

Informed consent was obtained from individuals to perform genetic testing as 

part of their clinical care and the study was conducted in agreement with the 

Declaration of Helsinki Principles. Mutation screening was performed by 

sequencing of coding exons and exon-intron boundaries together with gene 

dosage assessment by multiplex ligation-dependent probe amplification as 

previously described.[20, 26] Clinical details were obtained from referral 
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information and used to assign an HNF1B score as described by Faguer et 

al.[92] 

 

The characteristics of interest were renal structural anomalies not due to other 

recognised causes (including antenatal renal abnormalities, hyperechogenicity, 

cysts, hypoplasia, multicystic dysplastic kidney, urinary tract malformations, 

solitary kidney and glomerular cysts/oligomeganephronia on biopsy), young-

onset diabetes (defined by age at diagnosis ≤35 years), pancreatic hypoplasia 

or evidence of pancreatic exocrine failure (either reduced faecal elastase or 

requirement for enzyme replacement therapy), a positive family history of either 

renal disease or diabetes in parent/child, genital tract malformations (including 

aplasia of the uterus and upper vagina, bicornuate uterus, hemiuterus, absence 

of vas deferens and epididymal cysts), liver test abnormalities of unknown 

aetiology, hypomagnesaemia (serum Mg2+ <0.7 mmol/l) and early-onset gout 

(defined by age at diagnosis <30 years). 

 

The discriminatory ability of clinical features was determined by comparing 

proportions in patients with and without an HNF1B gene mutation/deletion. 

Pooled odds ratios (OR) were estimated for different characteristics using both 

this UK dataset and published data in the recent paper by Faguer et al. from a 

cohort of 433 patients referred to the University Hospital of Toulouse in France 

for HNF1B gene analysis.[92] 

 

Performance of the HNF1B score in the UK cohort was evaluated by receiver-

operating characteristic (ROC) curve analysis. Negative predictive value (NPV), 

positive predictive value (PPV), sensitivity and specificity were calculated using 

the recommended cut-off score of 8. 

 

Statistical analyses 

Differences in the frequencies of clinical features and HNF1B score were 

assessed using the Fisher’s exact test for categorical variables and the Mann-
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Whitney U-test for continuous variables. Effect size estimates were summarised 

using OR with 95% confidence intervals (CI). Pooled OR were estimated using 

the Mantel-Haenszel method with calculation of the 95% CI using the Robins, 

Breslow and Greenland variance formula. Discrimination between patients with 

and without an HNF1B mutation/deletion was assessed by determining the area 

under the curve of the ROC curve derived from the score. A P-value of <0.05 

was considered to be statistically significant. All analyses were carried out using 

SPSS (version 22) and StatsDirect (version 2.7.8) statistical software. 

 

RESULTS 

 

UK cohort description 

The cohort included 686 unrelated patients, with a male:female ratio of 1:1. 416 

individuals (60.6%) were aged ≤16 years. The majority of the cohort had a 

congenital anomaly of the kidneys or urinary tract (CAKUT): 408 children 

(98.1%) and 246 adults (91.1%). A total of 177 patients (25.8%) from the 686 

referred for genetic testing were found to have a heterozygous HNF1B gene 

anomaly: 78 (44.1%) had base substitutions or small insertions-deletions, 92 

(52.0%) had whole-gene deletions and 7 had partial-gene deletions (4.0%). 

 

The characteristics of the cohort are summarised in Table 2.2. In the paediatric 

population, detection of antenatal renal abnormalities, renal hyperechogenicity 

and renal cysts were all more common in HNF1B mutation/deletion carriers 

(P=0.0003, P=0.0008 and P=0.001, respectively). This is in contrast to the adult 

population where hypoplasia was the only discriminatory renal characteristic (P 

<0.0001). Young-onset diabetes was the only clinical feature to discriminate 

between patients with and without an HNF1B mutation/deletion in both the 

paediatric and adult cohorts (P=0.0002 and P <0.0001, respectively). The 

median age at diagnosis of diabetes was also younger in those with HNF1B-

related disease at 16.5 years (IQR 12-26.8) compared to those without (median 

age 32.5 years, IQR 15.3-49.8), P <0.0001. Pancreatic hypoplasia and/or  
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 Total  
 

P 
OR (95% CI) 

Children (≤16 years)  
 

P 
OR (95% CI) 

Adults (>16 years)  
 

P 
OR (95% CI) 

HNF1B status HNF1B status HNF1B status 

Mutation/deletion 
n=177 

Normal 
n=509 

Mutation/deletion 
n=116 

Normal 
n=300 

Mutation/deletion 
n=61 

Normal 
n=209 

Renal phenotype 

Antenatal renal abnormalities 54 (30.5%) 83 (16.3%) <0.0001 
2.3 (1.5-3.4) 

53 (45.7%) 80 (26.7%) 0.0003 
2.3 (1.5-3.6) 

1 (1.6%) 3 (1.4%) 1 
1.1 (0.1-11.2) 

Hyperechogenicity 23 (13.0%) 22 (4.3%) 0.0002 
3.3 (1.8-6.1) 

21 (18.1%) 20 (6.7%) 0.0008 
3.1 (1.6-6.0) 

2 (3.3%) 2 (1.0%) 0.2 
3.5 (0.5-25.4) 

Renal cysts 136 (76.8%) 314 (61.7%) 0.0002 
2.1 (1.4-3.0) 

93 (80.2%) 190 (63.3%) 0.001 
2.3 (1.4-3.9) 

43 (70.5%) 124 (59.3%) 0.1 
1.6 (0.9-3.0) 

Hypoplasia 21 (11.9%) 24 (4.7%) 0.002 
2.7 (1.5-5.0) 

6 (5.2%) 16 (5.3%) 1 
1.0 (0.4-2.5) 

15 (24.6%) 8 (3.8%) <0.0001 
8.2 (3.3-20.5) 

Multicystic and dysplastic kidney 6 (3.4%) 26 (5.1%) 0.4 
0.7 (0.3-1.6) 

6 (5.2%) 25 (8.3%) 0.3 
0.6 (0.2-1.5) 

0 1 (0.5%) 1 
0 (0-65.1) 

Urinary tract malformations 19 (10.7%) 52 (10.2%) 0.9 
1.1 (0.6-1.8) 

13 (11.2%) 29 (9.7%) 0.7 
1.2 (0.6-2.4) 

6 (9.8%) 23 (11.0%) 1 
0.9 (0.3-2.3) 

Solitary kidney 14 (7.9%) 54 (10.6%) 0.4 
0.7 (0.4-1.3) 

6 (5.2%) 21 (7%) 0.7 
0.7 (0.3-1.8) 

8 (13.1%) 33 (15.8%) 1 
0.8 (0.4-1.8) 

Glomerular cysts or 
oligomeganephronia on biopsy 

4 (2.3%) 10 (2.0%) 0.8 
1.2 (0.4-3.7) 

2 (1.7%) 8 (2.7%) 0.7 
0.6 (0.1-3.1) 

2 (3.3%) 2 (1.0%) 0.2 
3.5 (0.5-25.4) 

Pancreas phenotype 

Diabetes with age of onset ≤35 years 60 (33.9%) 59 (11.6%) <0.0001 
3.9 (2.6-5.9) 

26 (22.4%) 25 (8.3%) 0.0002 
3.2 (1.7-5.8) 

34 (55.7%) 34 (16.3%) <0.0001 
6.5 (3.5-12.1) 

Hypoplasia or exocrine failure 7 (4.0%) 1 (0.2%) 0.0004 
20.7 (2.5-169) 

1 (0.9%) 0 0.3 
- 

6 (9.8%) 1 (0.5%) 0.0006 
22.7 (2.7-192) 

Other features 

Family history 64 (36.2%) 184 (36.1%) 1 
1.0 (0.7-1.4) 

36 (31.0%) 76 (25.3%) 0.3 
1.3 (0.8-2.1) 

28 (45.9%) 108 (51.7%) 0.5 
0.8 (0.4-1.4) 

Genital tract malformations 9 (5.1%) 16 (3.1%) 0.2 
1.7 (0.7-3.8) 

1 (0.9%) 8 (2.7%) 0.5 
0.3 (0.04-2.6) 

8 (13.1%) 8 (3.8%) 0.01 
3.8 (1.4-10.6) 

Liver test abnormalities 15 (8.5%) 5 (1.0%) <0.0001 
9.3 (3.3-26.1) 

0 2 (0.7%) 1 
0 (0-9.0) 

15 (24.6%) 3 (1.4%) <0.0001 
22.4 (6.2-80.5) 

Hypomagnesaemia 11 (6.2%) 7 (1.4%) 0.001 
4.8 (1.8-12.5) 

3 (2.6%) 6 (2%) 0.7 
1.3 (0.3-5.3) 

8 (13.1%) 1 (0.5%) <0.0001 
31.4 (3.8-257) 

Early-onset gout 3 (1.7%) 13 (2.6%) 0.8 
0.7 (0.2-2.3) 

1 (0.9%) 6 (2%) 0.7 
0.4 (0.05-3.6) 

2 (3.3%) 7(3.3%) 1 
1.0 (0.2-4.8) 

Abbreviations: CI, confidence interval; HNF1B, hepatocyte nuclear factor 1β; OR, odds ratio. 

 

Table 2.2  Characteristics of 686 patients tested for an HNF1B genetic abnormality at Exeter Molecular Genetics Laboratory 
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exocrine failure was significantly associated with HNF1B mutations/deletions in adults 

(P=0.0006) but not children; however, there was only 1 affected patient in the paediatric 

cohort so the numbers were too small to draw any conclusions. In the paediatric 

population, the frequency of other clinical features and a positive family history of renal 

disease or diabetes did not vary between patients with and without a diagnosis of HNF1B-

related disease. However, in the adult population genital tract malformations, liver test 

abnormalities and hypomagnesaemia were all discriminatory (P=0.01, P <0.0001 and P 

<0.0001, respectively). 

 

Estimation of effect size in UK and French cohorts 

We then used pooled data from UK and French cohorts to see if the same clinical features 

were discriminatory; pooled odds ratios (OR) were used to estimate effect size for the 

different characteristics (Figure 2.1). In the paediatric referrals, antenatal renal 

abnormalities, renal hyperechogenicity and cysts were the renal characteristics with the 

largest OR of 2.5 (95% CI 1.7-3.7), 4.4 (2.7-7.2) and 2.5 (1.6-3.8), respectively. OR for 

young-onset diabetes and pancreatic hypoplasia/exocrine failure were 2.9 (1.6-5.1) and 

15.9 (1.8-143). In the adult referrals, hypoplasia and cysts were the renal structural 

anomalies with the highest OR (3.6, 95% CI 1.9-7.1, and 1.9, 95% CI 1.1-3.2, 

respectively). OR for the pancreatic phenotype were similar to those seen in children. 

Large OR were seen for genital tract malformations (2.5, 1.1-5.2), liver test abnormalities 

(10.1, 4.5-23) and hypomagnesaemia (15.5, 4.6-52). This is in contrast to the paediatric 

population where the OR for these other clinical features were all <1. The 95% CI for some 

of these characteristics, such as pancreatic hypoplasia or exocrine failure, are very wide 

and this reflects the small number of patients affected. 

 

Evaluation of HNF1B score in UK cohort 

The median HNF1B score was higher in patients with an HNF1B mutation/deletion as 

compared with those without (10 [IQR 8-13.5] versus 8 [IQR 4-10], P <0.0001). There was 

no significant difference in score between those with whole-gene deletions and those with 

base substitutions or small insertions-deletions. The ROC curve, with HNF1B genetic test 

result as the dependent variable, is shown in Figure 2.2; area under the curve = 0.72 (95% 
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CI 0.67-0.76). Using the suggested cut-off score of 8 gave a sensitivity of 80%, specificity 

of 38%, NPV of 85% and PPV of 31%. The statistical performance of the HNF1B score 

using different cut-off scores is shown in Table 2.3. 
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Figure 2.1  Forest plot showing the pooled odds ratios for making a genetic diagnosis of HNF1B-related disease for 
different clinical features in A) the paediatric and B) the adult cohorts of the combined referrals for HNF1B genetic testing 
to both Exeter, United Kingdom and Toulouse, France (n=1,119). 
Other renal abnormalities include multicystic dysplastic kidney, urinary tract malformations, single kidney and glomerular 

cysts/oligomeganephronia on biopsy. Abbreviations: CI, confidence interval; DM, diabetes mellitus; HNF1B, hepatocyte 

nuclear factor 1β; OR, odds ratio. 
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Figure 2.2  Receiver-operating characteristic curve showing the discriminative ability of the HNF1B score for all referrals 
for HNF1B genetic testing to Exeter Molecular Genetics Laboratory. 
c-statistic = 0.72 (95% confidence interval 0.67 – 0.76). c-statistic was 0.71 (95% confidence interval 0.65-0.76) in the 

paediatric cohort and 0.75 (95% confidence interval 0.69-0.82) in the adult cohort. 

 

 

HNF1B score Sensitivity (%) Specificity (%) Negative predictive value 
(%) 

Positive predictive value 
(%) 

Missed cases (n) 

≥2 100 7 100 27 0/177 

≥4 95 20 92 29 9/177 

≥5 92 28 91 31 15/177 

≥6 86 31 87 30 24/177 

≥7 81 36 84 30 34/177 

≥8 80 38 85 31 35/177 

≥9 70 65 86 41 54/177 

≥10 69 67 86 42 55/177 

≥12 41 88 81 54 104/177 

Abbreviations: HNF1B, hepatocyte nuclear factor 1β. 
Figures for the suggested cut-off score of 8 are given in bold italics. For comparison, sensitivity was 98%, specificity 41%, negative 
predictive value 99% and positive predictive value 20% using a threshold of 8 in the work published by Faguer and colleagues and 
only 1 of the 56 confirmed cases would have been missed.[20] 

 

Table 2.3  Sensitivity, specificity, negative predictive value and positive predictive value of HNF1B score using different 

cut-off scores 
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DISCUSSION 

 

In this study, we retrospectively generated an HNF1B score for 686 referrals for HNF1B 

genetic testing to one UK centre and found it discriminated between patients with and 

without a mutation/deletion reasonably well with an area under the curve of 0.72. This 

provides further evidence that this clinical scoring system may be a useful screening tool 

to select individuals for HNF1B genetic testing. Applying the suggested cut-off score of 8 

gave a sensitivity of 80% and a NPV of 85% so this threshold cannot be reliably used to 

exclude individuals with a lower score from genetic testing. 

 

This work has limitations which may explain the lower NPV of the HNF1B score in this 

cohort (85% versus 99.4% in the original French cohort). 35 confirmed HNF1B 

mutation/deletion carriers in our referrals had a score below 8 so would not have been 

initially considered for HNF1B genetic testing according to the diagnostic strategy 

suggested by Faguer and colleagues.[92] Some of these false negative results may be the 

result of the score being calculated retrospectively using clinical details available at the 

time of referral. These were based on routinely collected clinical information so not all 

characteristics were systematically assessed for. We also included all patients who 

underwent HNF1B genetic testing at our centre from 1998 to 2012 and some of the clinical 

features, such as hypomagnesaemia, have only been associated with HNF1B-related 

disease in recent years. Use of the HNF1B score is suggested as part of a diagnostic 

algorithm where genetic testing should be reconsidered in individuals with a score <8 if 

new features suggestive of HNF1B-related disease occur. Many of the patients in our 

dataset may have scored ≥8 with more complete data during follow-up. It will therefore be 

important to assess the performance of the score in a prospective study. 

 

There are differences between the UK and French datasets. In the UK cohort, many of the 

renal structural anomalies were less common in individuals regardless of their HNF1B 

status compared to a large group of patients referred to a centre in France for HNF1B 

gene analysis; antenatal renal abnormalities were seen in 137/686 (20.0%) UK referrals 
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but 153/433 (35.3%) French referrals.[92] In contrast, young-onset diabetes was more 

prevalent in the UK cohort with 33.9% of HNF1B mutation/deletion carriers affected 

compared to only 5.4% in the French dataset. These differences are likely to reflect the 

fact that the Exeter Molecular Genetics Laboratory has a particular interest in maturity-

onset diabetes of the young (MODY) whereas the University Hospital of Toulouse 

specialises in inherited renal disease. However, it also highlights the importance of 

appropriate counselling and monitoring for diabetes in affected individuals and their 

families. In both UK and French datasets, patients underwent genetic testing based on 

clinician suspicion of HNF1B-related renal disease and the majority had CAKUT. This has 

led to a selection bias that limits the applicability of the study results. This is in keeping 

with the literature to date, where the majority of cohorts with HNF1B-related disease that 

have been described were pre-selected for particular kidney abnormalities.[1-4, 6, 7, 9, 11, 

19] 

 

In the absence of any current population-based data, these two large datasets provide an 

important source of information on HNF1B-related disease. Similar clinical features 

discriminated between patients with and without an HNF1B mutation/deletion in both UK 

and pooled datasets, with both showing differences between paediatric and adult cohorts. 

Antenatal renal abnormalities, renal hyperechogenicity and cysts were discriminatory in 

children, whereas renal hypoplasia and cysts were discriminatory in adults. Pancreatic 

abnormalities were discriminatory in both age groups whereas genital tract malformations, 

liver test abnormalities and hypomagnesaemia all had a large effect size in adults only. 

Due to the small numbers, some of the OR have very large CI so the true effect size is 

difficult to estimate. However, the data suggests that the antenatal detection of renal 

hyperechogenicity or cysts plus the presence of either diabetes or pancreatic hypoplasia in 

children should prompt clinicians to consider a diagnosis of HNF1B-related disease. In 

adults, the renal phenotype seems to be less discriminatory so extra-renal features are 

worth testing for in order to decide whether genetic testing may be required. The collection 

of systematic data on clinical features and biomarkers in a large cohort of HNF1B 

mutation/deletion carriers unselected for phenotype will allow more accurate modelling in 
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different age groups and may lead to the evolution of a simpler score based only on the 

most discriminative features. 

 

In summary, we have replicated the discriminative power of the recently-described HNF1B 

score in a large cohort of individuals referred for HNF1B genetic testing to one UK centre. 

The lower NPV and sensitivity using the suggested cut-off of 8 would have led to missed 

cases of HNF1B-related disease in this dataset. This highlights the need for validation in a 

prospective cohort and recalculation of the score if a new feature of HNF1B-related 

disease occurs. 
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INTRODUCTION 

 

Heterozygous mutations and deletions in the gene encoding the transcription factor 

hepatocyte nuclear factor 1β (HNF1B) are the commonest known monogenic cause of 

developmental kidney disease.[1-3] The phenotype of HNF1B-associated renal disease is 

very variable despite this single genetic aetiology. Abnormalities are often detected on 

prenatal ultrasonography, where bilateral hyperechogenic kidneys with normal or slightly 

increased size are commonly found.[19] Cystic disease, including cystic dysplasia, is 

usually seen in both paediatric and adult populations but other developmental kidney 

disease has been reported, including single kidneys, hypoplasia, horseshoe kidneys, 

duplex kidneys, collecting system abnormalities, bilateral hydronephrosis and 

hyperuricaemic nephropathy.[3, 4, 13, 14, 18, 20, 22, 25] Biochemical abnormalities, 

including hypomagnesaemia and hyperuricaemia, are common.[13, 14] HNF1B-associated 

disease is a multi-system disorder; extra-renal phenotypic features include early-onset 

diabetes mellitus, pancreatic hypoplasia, genital tract malformations and abnormal liver 

function tests.[5, 7, 9-12] Genetic changes in the HNF1B gene comprise either whole-gene 

deletions (approximately half of patients) or intragenic mutations (base substitutions or 

small insertions/deletions within the HNF1B gene).[20, 27] Both may arise spontaneously; 

50% of whole-gene deletions are de novo.[18, 19, 26] This means there is frequently no 

family history of renal disease or diabetes. 

 

The majority of patients with a whole-gene deletion have an approximate 1.3 Mb deletion 

at chromosome 17q12, which includes the entire HNF1B gene.[94] These recurrent 

microdeletions of 17q12 are mediated by flanking segmental duplications via nonallelic 

homologous recombination.[28] Unlike most genomic disorders, the 17q12 deletion was 

not initially thought to be associated with developmental delay or intellectual disability. 

More recent work has shown that neurodevelopmental disorders, including autism 

spectrum disorders (ASD), are part of the phenotype in patients referred for testing via 

clinical genetics rather than renal services.[88, 95-98] A study by Laffargue et al. suggests 

that the neuropsychological phenotype is less severe than that previously reported when 

the 17q12 deletion is identified secondary to renal abnormalities.[94] Comparison of 26 
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children with HNF1B deletions and 13 with point mutations under the care of paediatric 

nephrologists showed no significant differences in relation to learning abilities and 

schooling, although the deletion group tended to have lower intelligence quotients (IQs) 

and more educational difficulties at school than those with a mutation. However, formal 

neuropsychological evaluation was only carried out in a small subset of the cohort (11/39) 

and several of the children included in the study were too young to evaluate for schooling 

difficulties and ASD. 

 

The 1.3 Mb deleted region contains 14 genes in addition to HNF1B and it is not clear what 

genetic mechanism gives rise to this neurodevelopmental phenotype. One hypothesis is 

haploinsufficiency of one of these 15 genes. HNF1B is involved in hindbrain development 

in both zebra fish and mice and so is a good candidate to be the aetiological gene.[99, 

100] There have been rare reports of learning difficulties and epilepsy in five patients with 

HNF1B gene mutations, which would support this.[5, 22, 101] Another candidate is LHX1, 

which is also expressed in the brain during early development; a mouse model with a 

targeted mutation of Lhx1 confirms its role as a key regulator of the vertebrate head 

organiser.[102, 103] A study investigating new hotspots of copy-number variation 

associated with ASD has implicated ACACA within the 17q12 deletion.[104] However, no 

single gene deletions or mutations resulting in haploinsufficiency and neurological disease 

in humans have been detected in either of these genes to date. An alternative hypothesis 

would involve more complex interactions between genes within the deleted 17q12 region 

and other transcription factors giving rise to an increased risk of neurodevelopmental 

disorders.[94] In this study, we systematically compared the neurodevelopmental 

phenotype of patients with either an HNF1B intragenic mutation or 17q12 deletion to 

determine whether haploinsufficiency of the HNF1B gene is responsible for this aspect of 

the phenotype. 
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METHODS 

 

Recruitment and HNF1B genetic analysis 

Participants were recruited from January 2013 to October 2015 from four sites in the UK 

(adult renal and diabetes units at the Royal Devon and Exeter Hospital; paediatric renal 

units at Great Ormond Street Hospital for Children, Evelina London Children’s Hospital 

and Birmingham Children’s Hospital). Inclusion criteria included the presence of either an 

HNF1B intragenic mutation or whole-gene deletion on genetic testing performed due to 

underlying renal abnormalities or diabetes and current age ≥4 years. All eligible patients 

were invited to participate. Informed written consent was obtained from all adult 

participants and parents of child participants, with assent from those aged <16 years. The 

study was conducted in agreement with the Declaration of Helsinki Principles and 

approved by a regional ethics committee (National Research Ethics Service Committee 

South West – Frenchay). A total of 38 patients from 28 unrelated families with HNF1B-

associated disease agreed to participate. 

 

Initial mutation screening was performed by sequencing of coding exons and exon-intron 

boundaries together with gene dosage assessment by multiplex ligation-dependent probe 

amplification as previously described.[20, 26] Droplet digital PCR was used to confirm the 

presence of an approximate 1.3 Mb deletion at chromosome 17q12 in the 20 patients with 

an HNF1B whole-gene deletion. This assay measured gene dosage for ZNHIT3 and 

HNF1B, the most 5’ and 3’ genes within the recurrent 1.3 Mb 17q12 deletion. Droplet 

digital PCR was performed using the Bio-Rad QX200 (Bio-Rad Laboratories, Hercules, 

CA) and following standard protocols. Briefly, a reaction mix containing 22 ng genomic 

DNA, primers and QX200 ddPCR EvaGreen supermix (Bio-Rad Laboratories) was 

subjected to the automated QX200 Droplet Generator (Bio-Rad Laboratories) to produce 

emulsions according to the manufacturer’s instructions. After PCR using a standard 

thermocycler (Bio-Rad Laboratories), sample fluorescence was assessed by the QX200 

Droplet Reader (Bio-Rad Laboratories) and absolute quantification of amplified DNA 

product was determined by Poisson distribution using QuantaSoft software (Bio-Rad 

Laboratories). A full methodology, including primer sequences, is available in Appendix B. 
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Clinical evaluation 

Renal and extra-renal involvement in participants, including neurodevelopmental 

disorders, was documented using a standardised assessment of medical records and 

participant/parent interview in all cases plus educational psychology reports where 

available. An Index of Multiple Deprivation 2007 score was derived for each participant 

using their postcode and was used as an overall measure of deprivation. Imaging results 

from ultrasonography, computed tomography or magnetic resonance imaging were 

reviewed to look for kidney, pancreas and genital tract abnormalities. Glomerular filtration 

rate (GFR) was estimated using the (i) Schwartz-Haycock formula in children,[105] 

optimised for children with renal malformations assessed in each individual paediatric 

renal unit where possible, and (ii) simplified Modification of Diet in Renal Disease formula 

in adults.[106] GFR was set at 0 for patients on renal replacement therapy. Proteinuria 

was defined as albumin:creatinine ratio >30 mg/mmol or protein:creatinine ratio >50 

mg/mmol. Hypomagnesaemia was defined as serum magnesium <0.7 mmol/L and 

hyperuricaemia as a serum urate level above the upper limit of the normal reference range 

for age and sex from the analysing laboratory. Diabetes was diagnosed either according to 

World Health Organisation guidelines or on the basis of established treatment with oral 

hypoglycaemic agents/insulin. Abnormal liver function tests were defined as serum alanine 

aminotransferase, aspartate transaminase, gamma-glutamyl transferase or alkaline 

phosphatase levels above the upper limit of the normal reference range for age and sex 

from the analysing laboratory. 

 

Brief behavioural screening was carried out in 4-16 year olds using the Strengths and 

Difficulties Questionnaire (SDQ).[107] The questionnaire was completed by parents and 

included 25 items on psychological attributes covering 5 areas: 1) emotional symptoms, 2) 

conduct problems, 3) hyperactivity/inattention, 4) peer relationship problems and 5) 

prosocial behaviour. Scores from areas 1-4 were added together to generate a total 

difficulties score. An impact supplement was also administered, which provided further 

information on chronicity, distress, social impairment and burden to others if the child was 

felt to have a problem. A similar questionnaire with slightly different wording was given to 
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adolescents for self-completion. This self-report version is suitable for young people aged 

around 11-16 years, depending on their level of understanding and literacy.[108] The 

questionnaire templates can be found in Appendix B. 

 

Autistic traits were assessed using the Autism Spectrum Quotient (AQ) in participants of 

normal intelligence (defined in this study as IQ ≥70). Three different versions of this 

questionnaire were available from the Autism Research Centre depending on participant 

age: child (completed by the parent of each child participant aged 4-11 years), adolescent 

(completed by the parent of each child participant aged 12-15 years) and adult (completed 

by each participant aged ≥16 years); see Appendix B.[109-111] AQ scores were converted 

to percentages for standardisation between the different age groups. Cognitive ability was 

assessed in all participants using the Kaufman Brief Intelligence Test, Second 

Edition.[112] This is an individually administered measure of verbal and nonverbal 

intelligence, which yields an overall score known as the IQ composite (an age-based 

standard score with a mean of 100 and a standard deviation of 15). 

 

Facial photographs of participants were taken and assessed by two experienced clinical 

geneticists for dysmorphic features previously associated with the 17q12 deletion. The 

assessors were blinded to the genetic status of each participant. Head circumference was 

measured and converted to a percentile using British 1990 (UK90) growth reference charts 

for children and separate centile charts for adults.[113] Macrocephaly was defined as head 

circumference >90th percentile. 

 

Statistical analysis 

Qualitative variables were described with percentages and quantitative variables with 

median and interquartile range (IQR). Differences between HNF1B gene mutation and 

deletion groups were assessed using the Fisher’s exact test for categorical variables and 

the Mann-Whitney U-test for continuous variables. A P-value of <0.05 was considered to 

be statistically significant. The Bonferroni method was used to correct for multiple 

comparisons when evaluating dysmorphic features and inter-rater agreement between the 
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two independent assessors was quantified using Cohen's kappa coefficient. All analyses 

were carried out using StataSE (version 13.1) and GraphPad statistical software. 

 

RESULTS 

 

General characteristics are similar in both HNF1B mutation and deletion groups 

38 individuals participated in the study; 18 (47%) had a known intragenic HNF1B mutation 

and 20 (53%) had a whole-gene deletion. The intragenic mutations included four 

nonsense, 13 insertions/deletions and one missense change (Table 3.1). The presence of 

the common 1.3 Mb 17q12 deletion was confirmed by dosage analysis of ZNHIT3 and 

HNF1B, the most 5’ and 3’ of the 15 genes within the interval, by droplet digital PCR in the 

deletion group. 

 

Patient study 
number 

Nucleotide change Amino acid change Functional effect Inheritance 

2 c.982_986delCCTCT p.P328fs Frameshift De novo 

4 c.982_986delCCTCT p.P328fs Frameshift Maternal (son of patient 2) 

6 c.1138delG p.V380fs Frameshift De novo 

10 c.544+3_544+4insT p.? Splice site Maternal (daughter of patient 13) 

11 c.544+3_544+4insT p.? Splice site Maternal (daughter of patient 10) 

12 c.544+3_544+4insT p.? Splice site Maternal (son of patient 10) 

13 c.544+3_544+4insT p.? Splice site Unknown 

14 c.544+3_544+4insT p.? Splice site Unknown (half-sister of patient 13) 

20 c.1235dupC p.V413fs Frameshift Maternal (son of patient 23) 

21 c.1006dup p.H336fs Frameshift Unknown 

22 c.1006dup p.H336fs Frameshift Paternal (son of patient 21) 

23 c.1235dupC p.V413fs Frameshift Unknown 

24 c.541C>T p.R181* Nonsense Paternal 

25 c.541C>T p.R181* Nonsense Paternal 

26 c.541C>T p.R181* Nonsense Paternal 

31 c.398A>G p.N133S Missense De novo 

38 c.544C>T p.Q182* Nonsense De novo 

39 c.1048dup p.V350fs Frameshift Unknown 

 

Table 3.1  Details of intragenic HNF1B mutations 

 

Both mutation and deletion groups were similar in terms of general characteristics (Table 

3.2). Median age at study inclusion was similar between the groups, as was gender 
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breakdown. Participants were predominantly of White British origin, reflecting the fact that 

61% were recruited from South West England. Levels of deprivation were similar in both 

mutation and deletion groups as measured using the median Index of Multiple Deprivation 

2007 score. Cysts or cystic dysplasia was the renal phenotype seen most commonly in 

both groups, similar to cohorts with HNF1B-associated kidney disease previously 

 

 HNF1B mutation 
n=18 

17q12 microdeletion 
n=20 

P 

Median age, years (IQR) 19 (13-45) 15.5 (11-35) 0.3 

Sex, n (%) M 8 (44), F 10 (56) M 8 (40), F 12 (60) 1 

Ethnicity, n (%) White 18 (100) White 19 (95), mixed 1 (5) 1 

Median Indices of Deprivation 2007 score (IQR) 25 (16-46) 21 (12-30) 0.4 

RENAL PHENOTYPE 

Renal abnormality, n (%) 
     Cysts/cystic dysplasia 
     Other

a
 

     (Unknown) 

 
12 (67) 
4 (22) 
2 (11) 

 
17 (85) 
3 (15) 

0 

 
0.3 

Median age at diagnosis of renal disease, years 
(IQR) 

0 (0-20) 0 (0-24) 0.7 

Renal replacement therapy, n (%) 3 (17) 1 (5) 0.3 

Median GFR, mL/min/1.73 m
2
 (IQR) 42.6 (31-60) 81.4 (56-91) 0.002 

Proteinuria
b*

, n (%) 
(Unknown) 

2 (13) 
0 

2 (11) 
4 (21) 

1 

Median serum magnesium*, mmol/L (IQR) 0.7 (0.67-0.75) 0.58 (0.53-0.69) 0.01 

Hypomagnesaemia
c*

, n (%) 
(Unknown) 

6 (40) 
1 (7) 

12 (63) 
4 (21) 

0.3 

Hyperuricaemia
d*

, n (%) 
(Unknown) 
     Gout, n (%) 

10 (67) 
2 (13) 
6 (33) 

3 (16) 
7 (37) 
2 (10) 

0.004 
 

0.1 

EXTRA-RENAL PHENOTYPE 

Pancreas 
Diabetes, n (%) 

 
7 (39) 

 
8 (40) 

 
1 

Median age at diagnosis of diabetes (IQR) 19 (18-37) 29 (17-32) 1 

Pancreatic hypoplasia
eᵻ

, n (%) 1 (6) 5 (25) 0.2 

Median faecal elastase, μg/g stool (IQR) 402.5 (170-500) 280 (167-433) 0.8 

Genital tract 
Genital tract malformation

fᵻ
, n(%) 

 
1 (6) 

 
2 (10) 

 
1 

Liver 
Abnormal liver function tests

ᵻ
, n (%) 

 
5 (28) 

 
6 (30) 

 
1 

Abbreviations: F, female; GFR, glomerular filtration rate; IQR, interquartile range; M, male. 
a
Other renal structural abnormalities included single kidney, collecting system abnormalities and bilateral hydronephrosis. 

b
Proteinuria defined as albumin:creatinine ratio >30 mg/mmol or protein:creatinine ratio >50 mg/mmol. 

c
Hypomagnesaemia defined as serum magnesium <0.7 mmol/L. 

d
Hyperuricaemia defined as serum urate level above upper 

limit of normal reference range for age and sex from analysing laboratory. 
e
Hypoplasia of body and/or tail of pancreas. 

f
Genital tract malformations included (i) unilateral undescended testicle and blind-ending epididymis, (ii) bilateral 
undescended testicles and (iii) bicornuate uterus. *Only assessed in individuals with native renal function. 

ᵻ
Not 

systematically assessed for. 

 

Table 3.2  Characteristics of study patients with either an HNF1B intragenic mutation or 17q12 microdeletion 
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described in the literature.[4] Renal function was worse in the mutation group with a 

median estimated GFR of 42.6 mL/min/1.73 m2 (IQR 31-60) compared to 81.4 (IQR 56-91) 

in the deletion group, P=0.002. Serum magnesium levels were lower in the deletion group 

whereas hyperuricaemia was more common in the mutation group; both of these findings 

may be explained by the greater degree of renal impairment seen in the mutation group. 

Diabetes was present in approximately 40% of patients in both groups. Other extra-renal 

phenotypes were also similar between mutation and deletion groups. 

 

The 38 patients included in this study represented 45% of those with HNF1B-associated 

disease who were eligible to take part from the four different sites. Table 3.3 compares the 

general characteristics of participants and non-participants. Briefly, the two groups were 

similar in terms of genetic abnormality, age, gender, levels of deprivation and renal 

phenotype. The only difference was in ethnicity, with other ethnic groups besides White 

being more commonly represented amongst non-participants. However, the data available 

for non-participants was incomplete with 13/47 (28%) having no information on ethnicity 

recorded. 

 

 Participants 
n=38 

Non-participants
ᵻ
 

n=47 
P 

Genetic abnormality, n (%) 
     Mutation 
     Whole-gene deletion 

 
18 (47) 
20 (53) 

 
17 (36) 
30 (64) 

 
0.4 

Median age, years (IQR) 17 (12-38) 14 (11-20) 0.06 

Sex, n (%) M 16 (42), F 22 (58) M 24 (51), F 23 (49) 0.5 

Ethnicity, n (%) 
     White 
     Mixed 
     Asian 
     Black/African/Caribbean 
     Unknown 

 
37 (97) 

1 (3) 
 
 
 

 
20 (43) 

2 (4) 
9 (19) 
3 (6) 

13 (28) 

 
<0.001 

Median Indices of Deprivation 
2007 score (IQR) 

23 (13-36) 25 (15-36) 0.9 

Renal abnormality, n (%) 
     Cysts/cystic dysplasia 
     Other* 

 
29 (81) 
7 (19) 

 
37 (82) 
8 (19) 

 
1 
 

Abbreviations: F, female; IQR, interquartile range; M, male. 
ᵻ
All had either an HNF1B point mutation or whole-gene deletion on previous genetic testing and current age ≥4 years. 
*Other renal structural abnormalities included single kidney, collecting system abnormalities and bilateral hydronephrosis; 
in 5 cases the imaging results were not known. 

 

Table 3.3  General characteristics of participants and non-participants who were eligible to take part in the study 
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Brief behavioural screening shows higher levels of psychopathology and impact in 

children with a deletion 

Use of the parent-report SDQ revealed more patient difficulties in the deletion group with a 

median total difficulties score of 15.5 (IQR 10-20) compared to 7 in the mutation group 

(IQR 3.5-7.5, P=0.048; Figure 3.1). This is also higher than the mean total difficulties score 

of 8 (standard deviation 5.8) obtained in a normative sample of 10,438 British school-aged 

children.[114] When analysing the four subsections of the total difficulties score, conduct 

problems and peer relationship problems were more common in the deletion group: 

median scores were 2.5 (IQR 2-5) and 4.5 (IQR 1-6), respectively vs. 0.5 (IQR 0-1) and 0 

(IQR 0-0.5) in the mutation group, P=0.04 and 0.02, respectively (Figure 3.2). Five of the 

ten children with a deletion scored above the suggested clinical cut-point of 15; all of these 

children apart from one had already been referred for further psychological evaluation. 

 

 

Figure 3.1  Patient difficulties as shown by parent-report Strengths and Difficulties Questionnaire (SDQ) scores 
(presented as Z-scores) for individuals <18 years with both HNF1B gene mutations (n=4) and 17q12 microdeletions 
(n=10). 
Individual scores are represented as different-shaped points and group medians as black bold horizontal lines. X axis 

represents school-age population mean, red dashed horizontal line above represents suggested clinical cut-point (90th 

percentile). 
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Figure 3.2  Patient difficulties as shown by subsections of the parent-report Strengths and Difficulties Questionnaire 
(SDQ) scores (presented as Z-scores) for individuals <18 years with both HNF1B gene mutations (n=4) and 17q12 
microdeletions (n=10). 
Individual scores are represented as different-shaped points and group medians as black bold horizontal lines. X axis 

represents school-age population mean, red dashed horizontal line above represents suggested clinical cut-point (90th 

percentile). 

 

Trait Median SDQ score (IQR)  

P 

 

British means (standard deviation) 
for 5-15 year olds 

n=4,228 
HNF1B mutation 

n=4 

17q12 microdeletion  

n=3 

Total difficulties 10.5 (6-17) 13 (4-30) 0.5 10.3 (5.2) 

Impact 0 (0-1) 1 (0-7) 0.3 0.2 (0.8) 

Emotional problems 1.5 (1-3.5) 5 (0-6) 0.6 2.8 (2.1) 

Conduct problems 3 (1.5-4.5) 0 (0-7) 0.7 2.2 (1.7) 

Hyperactivity 5 (3-7) 6 (2-8) 0.7 3.8 (2.2) 

Peer problems 1 (0.5-2) 2 (2-9) 0.1 1.5 (1.4) 

Abbreviations: IQR, interquartile range; SDQ, Strengths and Difficulties Questionnaire 

 

Table 3.4  Patient difficulties as shown by self-report Strengths and Difficulties Questionnaire scores for individuals aged 

11-17 years with both HNF1B gene mutations (n=4) and 17q12 microdeletions (n=3). 

Normative British school-age data from a large national survey of child and adolescent mental health is shown as a 

comparison.[114] 
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Parental scores for the impact of these difficulties on the child’s life were similarly high in 

the deletion group with a median score of 5 (IQR 2-8). This was compared to a median 

score of 0 in the mutation group (IQR 0-0, P=0.02) and a mean score of 0.4 (standard 

deviation 1.1) in the large normative sample mentioned previously.[114] Table 3.4 shows 

that use of the self-report SDQ in those aged 11-17 years yielded similar total difficulties 

and impact scores between mutation and deletion groups; however, the numbers in these 

groups were too small to draw any meaningful conclusions (n=7 in total). 

 

Clinical diagnosis of neurodevelopmental disease in patients with a deletion 

8/20 (40%) participants with a deletion had a clinical diagnosis of either an ASD, attention 

deficit hyperactivity disorder (ADHD) and/or learning difficulties requiring a Statement of 

Special Educational Needs or attendance at a special school compared to 0/18 with a 

mutation, P=0.004 (Figure 3.3A). Of these eight patients, four had co-morbidity with 

learning difficulties accompanying a diagnosis of ASD and/or ADHD (Figure 3.3B and 

Table 3.5). According to the second national survey of children’s mental health and well-

being carried out in 2004, the prevalence of ASD in British children was 0.9% and 

hyperkinetic disorder/ADHD was 1.5%.[115] Therefore, the frequency of ASD and ADHD 

found in participants with a deletion in this study far exceeds the baseline population rates. 

 

 

Figure 3.3  (A) Stacked bar chart showing percentage of patients within both 17q12 microdeletion (n=20) and HNF1B 
mutation (n=18) groups with a known neurodevelopmental disorder including autism spectrum disorder (ASD), attention 
deficit hyperactivity disorder (ADHD) and/or learning difficulties requiring a Statement of Special Educational Needs or 
attendance at a special school. (B) Venn diagram illustrating the breakdown and overlap of diagnoses in the eight 
patients with a deletion and neurodevelopmental disorder. 
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Patient 
study 
number 

Age 
(years) 

Sex HNF1B genetic 
abnormality 

Details of 
neurodevelopmental disorder 

SDQ scores AQ IQ 

Total 
difficulties 
score 

Impact 
score 

5 14 Male Whole-gene 
deletion 

(c.1-?_1674+?del) 

ADHD and dyspraxia 
diagnosed aged 5 years; 
treatment with 
methylphenidate; attendance 
at mainstream school with 
Statement of Special 
Educational Needs. 

  68% 114 

8 33 Male Whole-gene 
deletion 

(c.1-?_1674+?del) 

Learning difficulties with 
attendance at special school; 
Asperger’s syndrome 
diagnosed in early twenties. 

  63% 69 

9 8 Female Whole-gene 
deletion 

(c.1-?_1674+?del) 

ASD diagnosed aged 8 years. 17 3 91% 107 

16 9 Female Whole-gene 
deletion 

(c.1-?_1674+?del) 

Difficulties with literacy and 
numeracy skills, attention and 
concentration plus speech and 
language skills; attendance at 
mainstream school with 
Statement of Special 
Educational Needs 
recommending 9.25 hours of 
additional specialist teaching 
support per week. 

10 5 41% 76 

27 12 Male Whole-gene 
deletion 

(c.1-?_1674+?del) 

Extreme delayed speech with 
no words, requiring speech 
and language input; ASD 
diagnosed aged 5 years with 
attendance at special school 
for children with autism since 
age 8 years. 

19 5 84% 76 

33 14 Male Whole-gene 
deletion 

(c.1-?_1674+?del) 

ASD and ADHD diagnosed 
aged 11 years after long 
history of challenging 
behaviours at home and 
school; attendance at special 
school for children with 
emotional and behavioural 
difficulties. 

29 8   

34 16 Female Whole-gene 
deletion 

(c.1-?_1674+?del) 

Specific learning difficulties 
(dyslexic), coordination 
difficulties (dyspraxia) plus 
receptive and expressive 
language delay diagnosed 
aged 8 years; attendance at 
mainstream school with 
Statement of Special 

14 5 34% 50 
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Educational Needs 
recommending 15 hours of 
additional specialist teaching 
support per week. 

35 13 Male Whole-gene 
deletion 

(c.1-?1674+?del) 

Attention Deficit Disorder 
diagnosed aged 6 years; 
treatment with 
methylphenidate. 

28 8 28% 96 

Abbreviations: ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; AQ, Autism Spectrum 
Quotient; IQ, intelligence quotient; SDQ, Strengths and Difficulties Questionnaire. 

 

Table 3.5  Details of study patients with HNF1B-associated disease and a clinically diagnosed neurodevelopmental 

disorder 

 

17q12 deletions are associated with more autistic traits 

Patients with a deletion had a higher median AQ (43% [IQR 28-68] vs. 29% [IQR 16-42] in 

the mutation group, P=0.02), indicating a greater number of autistic traits (Figure 3.4A). 

Although the AQ is not a diagnostic tool, cut-offs have been described for identifying 

individuals who may have clinically significant levels of autistic traits. However, referral for 

a full diagnostic assessment is only warranted if the individual is also suffering a degree of 

distress as a result of these traits.[109-111] 6/38 (16%) participants scored above the 

suggested cut-off; of these, all had a deletion and 3/6 had a confirmed diagnosis of ASD. 

To see if the AQ results were being skewed by a small number of individuals with a high 

number of autistic traits, the analysis was repeated after excluding those with a known 

ASD. Although there was a trend towards a higher AQ in the deletion group (median AQ 

36% [IQR 28-52] vs. 29% [IQR 16-42] in the mutation group), this did not reach statistical 

significance (P=0.08; Figure 3.4B) but may have done so in a larger sample (n=64). 

 

Cognitive ability is similar in both HNF1B mutation and deletion groups 

The median IQ composite was similar in both mutation and deletion groups (97 [IQR 83-

104] vs. 91 [IQR 76-107], P=0.6; Figure 3.5). Two participants with a deletion scored in the 

lower extreme category with IQ <70. 
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Figure 3.4  Quantification of autistic traits using the Autism Spectrum Quotient (AQ) in individuals with HNF1B-

associated disease of normal intelligence (defined as IQ ≥70). 
(A) Inclusion of all study patients with IQ ≥70 (n=36). (B) Exclusion of patients with a clinical diagnosis of an autism 

spectrum disorder (ASD; n=33). 

 

 

 

Figure 3.5  Intelligence quotient (IQ) composite scores in individuals with HNF1B-associated disease. 

Different IQ classifications are shown by the red dashed horizontal lines. 
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Facial dysmorphic features considered as a whole may be predictive of the 

presence of a 17q12 deletion 

Facial photographs were analysed in 33 participants (18 with an intragenic HNF1B 

mutation, 15 with a deletion). None of the facial dysmorphic features previously described 

in association with the 17q12 deletion differed in frequency between the mutation and 

deletion groups (Table 3.6). Variation in results between the two assessors was seen 

although overall inter-rater agreement was fair with a kappa coefficient of 0.4 (95% 

confidence interval 0.3-0.5). A previously undescribed feature of anteverted nares was 

noted in 13/15 (87%) patients with a deletion compared to only 6/18 (33%) with a mutation 

(P=0.004). When facial dysmorphic features were considered as a whole by both 

assessors to predict whether an individual had a deletion, sensitivity was 83% and 

specificity was 79% (Figure 3.6). 9/37 (24%) patients had a head circumference >90th 

percentile but there was no difference in macrocephaly between the two groups (5/19 

[26%] in deletion group vs. 4/18 [22%] in mutation group, P=1). 

 

 

Figure 3.6  Photographs of two study patients with a known HNF1B whole-gene deletion demonstrating the high 

forehead, high arched eyebrows, long philtrum, long face and anteverted nares that, taken as a whole, suggest the 
presence of a deletion. 
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Feature
ᵻ
 HNF1B mutation 

(n=18) 

17q12 microdeletion 

(n=15) 

P* Inter-rater agreement 

Cohen's kappa 
coefficient 

(95% confidence 
interval) 

Strength of 
agreement 

High forehead 10 (56%) 13 (87%) 0.07 0.2 Fair 

Arched & high 
eyebrows 

8 (44%) 8 (53%) 0.7 0.6 Moderate 

Epicanthal folds 0 0 1 - - 

Downslanting 
palpebral fissures 

2 (11%) 4 (27%) 0.4 0.6 Good 

Deep set eyes 4 (22%) 3 (20%) 1 -0.1 Worse than 
expected by 
chance alone 

Ptosis 5 (28%) 7 (47%) 0.3 0.4 Fair 

Depressed nasal 
bridge 

0 3 (20%) 0.08 -0.04 Worse than 
expected by 
chance alone 

Long philtrum 5 (28%) 9 (60%) 0.09 0.2 Poor 

Malar flattening 6 (33%) 10 (67%) 0.08 0.4 Fair 

Full cheeks 4 (22%) 5 (33%) 0.7 0.4 Moderate 

Long face 12 (67%) 12 (80%) 0.5 0.3 Fair 

Facial asymmetry 1 (6%) 3 (20%) 0.3 -0.07 Worse than 
expected by 
chance alone 

Anteverted nares 6 (33%) 13 (87%) 0.004 0.2 Fair 

ᵻ
The presence of a clinical feature was determined using the results of one or both assessors; inter-rater agreement between the 
two assessors was quantified using Cohen's kappa coefficient 

*The Bonferroni method was used to correct for multiple comparisons; statistical significance was re-set at P <0.05/13=0.004 

 

Table 3.6  Assessment of facial dysmorphic features in study patients with either HNF1B mutation or 17q12 

microdeletion by two independent clinical geneticists 
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DISCUSSION 

 

The results of this study demonstrate that a neurodevelopmental phenotype is only seen in 

individuals with a 17q12 deletion. Compared to patients with an intragenic mutation, 

patients with a deletion had a greater number of autistic traits using the AQ and children 

displayed higher levels of psychopathology and impact on brief behavioural screening 

using the parent-report SDQ. Indeed, 40% of participants with a deletion had been 

clinically diagnosed with a neurodevelopmental disorder; ASD and ADHD were seen much 

more commonly in the deletion group than predicted from population prevalence rates. 

Most (17/18) of the patients with intragenic mutations had a nonsense or insertion/deletion 

loss of function mutation, predicted to result in reduced protein expression. The 

discrepancy in neurodevelopmental phenotype between the intragenic mutation and 

deletion groups suggests it is not simply haploinsufficiency of the HNF1B gene that is 

responsible for this aspect of the phenotype in individuals with a 17q12 deletion. 

 

Our findings highlight the importance for nephrologists to be aware of this association 

between 17q12 microdeletion and neurodevelopmental disease to ensure referral to 

psychiatric services where appropriate. The features of conditions such as ASD can range 

from mild to severe and can also fluctuate over time and in response to different life 

events; this variable expression adds to the diagnostic challenges posed by these 

disorders.[116] Individuals with a deletion and their families should be informed of the 

increased risk of a neurodevelopmental disorder so they can report any concerning 

symptoms if they arise to allow prompt investigation. 

 

The results of this study contrast with recent work concluding that when children are 

diagnosed with a 17q12 deletion secondary to renal abnormalities, the 

neurodevelopmental phenotype is less severe than previously suggested in the 

literature.[94] In this French cohort, only 1/26 patients with an HNF1B whole-gene deletion 

were diagnosed with autism as compared to 0/13 in the mutation group. However, the 

percentage of children with normal school progression requiring no educational support 
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was lower in the deletion group (62.5% vs. 82%). It is possible that the lack of statistical 

difference between the two groups in terms of psychomotor development, school 

progression and educational support may be explained by the younger age at study 

inclusion. Although both studies included a similar number of participants and all had 

HNF1B-associated disease identified secondary to renal disease or diabetes, the median 

age at inclusion was only 5.5 years (range 0.8–17) compared to 17 years (range 4–65) in 

our UK cohort. Schooling difficulties cannot be assessed in the very young and the 

features of neurodevelopmental disease may be more apparent as children become older; 

the median age at diagnosis of ASD, ADHD and learning difficulties in our cohort was 8 

years (IQR 5.5-9.5). Earlier work from another French cohort of 53 children with 

hyperechogenic or cystic kidneys and a 17q12 deletion reported autism in 3 cases (5.7%), 

a greater proportion than predicted from the prevalence of ASD in the paediatric 

population.[90] This is in keeping with the increased frequency of ASD in deletion patients 

we described in our study. 

 

When considered in isolation, none of the facial dysmorphic features previously described 

in association with a 17q12 deletion was statistically more common in the deletion group in 

this study. This contrasts with findings by Laffargue and colleagues, who reported that a 

high forehead, deep set eyes and chubby cheeks were more frequently seen in the 

presence of a deletion rather than a mutation.[94] However, when the craniofacial 

characteristics in our series were assessed as a whole, two independent clinical 

geneticists were able to predict the presence of a deletion with a sensitivity of 83% and 

specificity of 79%. This supports the prior hypothesis that the 17q12 deletion is associated 

with a mild but characteristic facial phenotype[88] and that another genetic mechanism 

besides HNF1B haploinsufficiency is causative. 

 

Interestingly, we found that patients with an intragenic HNF1B mutation had a significantly 

lower median eGFR than patients with a deletion, although this is unlikely to be related to 

the neurodevelopmental differences between the two groups. Ulinski et al. described the 

phenotype of 25 children with HNF1B-associated renal disease and found no difference in 
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renal function between individuals with an HNF1B whole-gene deletion and those with 

point mutations.[18] A later series that included 75 patients with HNF1B-associated renal 

disease showed that the proportion of individuals with renal impairment was significantly 

higher in those with a truncating mutation (nonsense, frameshift or splice site) than in 

those with a deletion (P=0.01).[4] The authors hypothesised that the older age of the 

patients with truncating mutations may partly explain the difference in renal function 

between the two groups; however, the mutation and deletion groups in our study were 

similarly matched in terms of median age. 17/18 intragenic mutations described in our 

series were truncating. 

 

The results from this study provide the first detailed description of the neurodevelopmental 

phenotype of both children and adults diagnosed with HNF1B-associated disease. Both 

mutation and deletion groups were similarly matched in terms of general characteristics 

and participants were systematically assessed for neurodevelopmental features using 

validated screening tools. However, several limitations were associated with this work. 

Despite inviting all eligible patients from the four different sites to take part, the study 

cohort represented only 45% of the total due to either inability to contact individuals 

despite several attempts or a negative response to participation. Therefore, the exact 

prevalence and spectrum of neurodevelopmental disorders in HNF1B-associated renal 

disease and diabetes remains unknown. Although individuals were systematically 

assessed using a combination of screening tools, participant/parent interview and review 

of medical records, comprehensive screening tools and diagnostic tests for ASD and 

ADHD were not used. This means less severe disease may have been missed. Finally, 

genetic screening for other known causes of neurodevelopmental disease (e.g. Fragile X, 

other copy number variants) was not undertaken. 

 

None of the patients with an intragenic HNF1B mutation in our study had a diagnosis of 

ASD, ADHD or significant learning difficulties. Five individuals with HNF1B-associated 

disease secondary to gene mutation and either learning difficulties and/or epilepsy have 

been described, although other genetic causes were not excluded.[5, 22, 101] To date, 



76 
 

there have been no reports of HNF1B intragenic mutation and either ASD or ADHD 

presented in the literature. This supports our hypothesis that it is not haploinsufficiency of 

the HNF1B gene that is responsible for this aspect of the phenotype in individuals with a 

17q12 deletion. It also highlights that further work is needed in this area to determine the 

cause of the phenotypic variability seen in these patients. 

 

In summary, 17q12 microdeletions but not intragenic mutations are associated with a 

neurodevelopmental phenotype. All affected families should be informed of this risk and 

referred for appropriate psychiatric assessment if concerning symptoms arise. 
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INTRODUCTION 

 

Hepatocyte nuclear factor 1β (HNF1B) is a transcription factor with important roles in the 

development of the kidney, pancreas, liver and genital tract.[117] Heterozygous mutations 

and deletions of the HNF1B gene are the most common known monogenic cause of 

developmental kidney disease.[1-3] Despite this single genetic aetiology, the phenotype of 

HNF1B-associated renal disease is very variable (Box 1). Biochemical abnormalities, 

including hypomagnesemia and hyperuricemia, are also frequently seen.[13, 14] HNF1B-

associated disease is a multisystem disorder and extra-renal phenotypic features include 

young-onset diabetes mellitus, pancreatic hypoplasia, abnormal liver function tests and 

genital tract malformations.[5, 7, 9-12] Genetic changes comprise either HNF1B intragenic 

mutations (one-half of patients) or an approximate 1.3 Mb deletion at chromosome 17q12, 

which includes the entire HNF1B gene.[20, 27] Both may arise spontaneously, which 

means there is often no family history of renal disease or diabetes.[18, 19, 26] In view of 

the clinical heterogeneity of the condition and frequent absence of a family history, 

diagnosis can be challenging and it is likely that many cases remain undetected. 

 

 

Box 4.1  The variable phenotype of HNF1B-associated renal disease 

 

Imaging of the pancreas in HNF1B-associated disease with either computed tomography 

(CT) or magnetic resonance imaging (MRI) has shown less tissue corresponding to the 

body and tail of the pancreas, with a slightly atrophic head.[9, 10] This is consistent with 
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agenesis of the dorsal pancreas, the embryonic structure that gives rise to the pancreatic 

body, tail and a small section of the head. Pancreatic exocrine hypersecretion has been 

observed in patients with HNF1B-associated disease using secretin-stimulated MRI and 

rapid endoscopic secretin stimulation tests; this is likely to be a compensatory mechanism 

for reduced pancreatic volume and provides further evidence that the small pancreas seen 

on imaging is due to hypoplasia rather than atrophy.[80] Complete pancreatic agenesis 

has been reported in two foetuses that also had severe renal abnormalities and were 

subsequently found to have an HNF1B gene mutation following induced termination of the 

pregnancy.[79] 

 

Pancreatic hypoplasia in HNF1B-associated disease has been associated with subclinical 

pancreatic exocrine insufficiency. This has mainly been studied in small series of patients 

with HNF1B molecular abnormalities and diabetes using indirect tests of pancreatic 

function, usually faecal elastase-1 measurement in stool.[9, 10, 23] Lower exocrine 

pancreatic function involving both ductal and acinar cells has been confirmed in direct 

testing with rapid endoscopic secretin tests and secretin-stimulated MRI in seven 

individuals with HNF1B mutations or deletions.[80] To our knowledge, only one case of 

symptomatic pancreatic exocrine insufficiency requiring treatment in HNF1B-associated 

disease has been described in the literature to date.[85] In this study, our aims were to 

measure faecal elastase-1 in patients with HNF1B-associated disease regardless of 

diabetes status and assess the degree of symptoms associated with pancreatic exocrine 

deficiency. 

 

MATERIALS AND METHODS 

 

Recruitment and genetic analysis 

Participants with HNF1B-associated disease were recruited from January 31, 2013 to 

October 10, 2015 from three sites in the United Kingdom (adult renal and diabetes units at 

the Royal Devon and Exeter Hospital; paediatric renal units at Great Ormond Street 
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Hospital for Children and Evelina London Children’s Hospital), as previously 

described.[118] Inclusion criteria included the presence of either an HNF1B intragenic 

mutation or whole-gene deletion on genetic testing performed due to underlying renal 

abnormalities or diabetes and current age ≥4 years. Informed written consent was 

obtained from all adult participants and parents of child participants, with assent from 

those aged <16 years. The study was conducted in agreement with the Declaration of 

Helsinki principles and approved by a regional ethics committee (National Research Ethics 

Service Committee South West—Frenchay). A total of 29 patients from 20 unrelated 

families with HNF1B-associated disease participated. Mutation screening was performed 

by sequencing of coding exons and exon-intron boundaries together with gene dosage 

assessment by multiplex ligation-dependent probe amplification as previously 

described.[20, 26] 

 

Faecal elastase-1 was also measured in a cohort of healthy controls in order to define a 

low faecal elastase-1 concentration based on the 2.5th percentile. Healthy controls were 

recruited from March 4, 2015 to August 19, 2016 from two sites in the United Kingdom 

(NIHR Exeter Clinical Research Facility at the Royal Devon and Exeter Hospital; Oxford 

Centre for Diabetes, Endocrinology and Metabolism at the Oxford University Hospitals 

NHS Foundation Trust). Inclusion criteria included age 16 to 75 years, ethnicity reflective 

of local demographic and capacity to consent. Informed written consent was obtained from 

all participants. The study was conducted in agreement with the Declaration of Helsinki 

principles and approved by a regional ethics committee (South West - Frenchay Research 

Ethics Committee). A total of 99 individuals participated. The median age of this cohort 

was 61.7 years (interquartile range [IQR] 52.8-66.3). 39/99 (39%) were male and all were 

of White ethnicity. The median faecal elastase-1 concentration was 1580 mcg/g stool (IQR 

1000-2000). The 2.5th percentile for faecal elastase-1 in this cohort was a concentration of 

410 mcg/g stool (Figure 4.1). There was only a weak association between increasing age 

and lower faecal elastase-1 concentrations with Spearman’s ρ -0.2, P=0.02 (Figure 4.2). 
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Figure 4.1  Histogram of faecal elastase-1 (FE-1) concentrations in a cohort of healthy controls (n=99) 

 

 

 

Figure 4.2  Scatter plot of age versus faecal elastase-1 (FE-1) concentration in a cohort of healthy controls (n=99) 
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Clinical evaluation 

Relevant medical details, including symptoms related to pancreatic exocrine dysfunction 

(abdominal pain, loose stools and unintentional weight loss), were documented using a 

standardised assessment of medical records and participant/parent interview. Diabetes 

was diagnosed either according to World Health Organization guidelines or on the basis of 

established treatment with oral hypoglycaemic agents/insulin. In order to measure 

endogenous insulin production, urinary C-peptide/creatinine ratio (UCPCR) was measured 

on a post-prandial urine sample taken approximately two hours after a meal stimulus.[119] 

 

Faecal elastase-1 concentration was assessed by enzyme-linked immunosorbent assay 

on a single spot stool sample at the Royal Cornwall Hospital; healthy control samples were 

tested using a x10 dilution to obtain an absolute value for faecal elastase-1 as the majority 

of samples were expected to have a result greater than the 500 mcg/g detection limit of 

the assay. Faecal elastase-1 <200 mcg/g is considered abnormal, with measurements of 

100-200 mcg/g suggestive of moderate to mild pancreatic exocrine insufficiency and 

measurements <100 mcg/g suggestive of severe insufficiency.[120] Previous imaging 

results from CT or MRI were reviewed to look for pancreas abnormalities. All patients with 

HNF1B-associated disease were also invited to undergo pancreatic MRI using a 1.5-T 

Philips Intera system utilising three-dimensional gradient echo and spin echo sequences, 

with and without fat suppression, at a range of orientations. Images were subsequently 

reviewed and reported by a consultant radiologist in order to assess pancreatic structure 

and ensure there were no incidental findings of clinical concern. 

 

Statistical analysis 

Qualitative variables were described with percentages and quantitative variables with 

median and IQR. Differences between groups were assessed using the Fisher exact test 

for categorical variables and the Mann-Whitney U test for continuous variables. 

Correlations were tested by Spearman’s ρ. A P-value of <0.05 was considered to be 

statistically significant. All analyses were carried out using StataSE (version 14, StataCorp, 

College Station, TX) and GraphPad statistical software (GraphPad Software, La Jolla, CA). 
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RESULTS 

 

Participant characteristics 

The median age of individuals with HNF1B-associated renal disease was 25 years (IQR 

14-44) and 13/29 (45%) were male. The majority of the cohort were White with just 1/29 

(3%) being of Mixed ethnicity. 14/29 (48%) had diabetes. 

 

Exocrine pancreatic deficiency is common in HNF1B-associated disease and can be 

symptomatic 

Faecal elastase-1 was low (below the 2.5th percentile of the control cohort) in 18/29 (62%) 

patients with HNF1B-associated renal disease. 8/29 (28%) had a faecal elastase-1 

concentration suggestive of exocrine pancreatic insufficiency at <200 mcg/g stool (Figure 

4.3); in 4/29 (14%) the measurement was below 100 mcg/g stool, in keeping with severe 

deficiency. 

 

 

Figure 4.3  Bar chart showing percentage of individuals with HNF1B-associated disease with faecal elastase-1 (FE-1) 

measurements <100 mcg/g stool (suggestive of severe pancreatic exocrine insufficiency), 100-200 mcg/g stool 
(moderate to mild insufficiency), 200-500 and >500 mcg/g stool. 
The dotted red line indicates that 3/99 (3%) of healthy controls had a FE-1 measurement of 200-500 mcg/g stool, 

whereas in the remainder it was >500. 
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3/8 individuals with a faecal elastase-1 measurement <200 mcg/g stool suffered with 

abdominal pain, loose stools and/or unintentional weight loss. All reported symptomatic 

improvement and weight gain after commencing pancreatic enzyme replacement therapy. 

In all three cases it had taken several months for symptoms to be attributed to faecal 

elastase deficiency and treatment to be commenced (Table 4.1). 

 

 

Table 4.1  Details of symptomatic faecal elastase deficiency in three individuals with HNF1B-associated renal disease 
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Individuals with low faecal elastase-1 levels have radiological evidence of 

pancreatic hypoplasia 

6/29 participants underwent pancreatic imaging with either CT or MRI. 4/6 had 

abnormalities detected: one was reported to show diffuse pancreatic atrophy with 

calcification of the head and body plus common bile duct dilatation, whereas the other 

three demonstrated absence or atrophy of the body and tail of the pancreas only. All four 

patients had been diagnosed with diabetes and faecal elastase-1 measurements ranged 

from 31-280 mcg/g stool. 2/6 individuals had scans reported within normal limits. One of 

these patients was a 20 year old male without evidence of diabetes and a normal faecal 

elastase-1 result of 432 mcg/g stool. The other patient was a 65 year old female who had 

been diagnosed with new-onset diabetes after transplantation at the age of 62 years and 

had a faecal elastase-1 result >500 mcg/g stool. 

 

Low faecal elastase-1 concentrations are seen in HNF1B-associated disease both 

with and without diabetes 

Faecal elastase-1 measurements were compared in individuals with HNF1B-associated 

disease according to diabetes status. Faecal elastase-1 levels were low in 7/15 (47%) 

HNF1B patients without diabetes compared to 11/14 (79%) of those with diabetes, P=0.1 

(Figure 4.4A). However, only 1/15 (7%) of those without diabetes had a faecal elastase-1 

measurement <200 mcg/g stool compared to 7/14 (50%) of those with diabetes, P=0.01 

(Figure 4.4B). There was only a weak association between increasing duration of diabetes 

and lower faecal elastase-1 concentrations with Spearman’s ρ -0.3, P=0.4 (Figure 4.5). 
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Figure 4.4  Bar charts showing percentage of individuals with HNF1B-associated disease according to diabetes status 

with faecal elastase-1 (FE-1) measurements (A) either below or above the 2.5th percentile of a healthy control cohort 
and (B) <100 mcg/g stool (suggestive of severe pancreatic exocrine insufficiency), 100-200 mcg/g stool (moderate to 
mild insufficiency), 200-500 and >500 mcg/g stool. 

 

 

 

Figure 4.5  Scatter plot of duration of diabetes versus faecal elastase-1 (FE-1) concentration in a cohort of patients with 
HNF1B-associated disease and diabetes (n=14). 

A value of 501 mcg/g stool was assigned to the two individuals with a faecal elastase-1 result of >500 mcg/g stool, 

although the actual value may have been higher than this. 
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Table 4.2  Characteristics of individuals with HNF1B-associated disease according to diabetes status 

The two groups were different with respect to many clinical characteristics (Table 4.2). The 

median age of the cohort without diabetes was 14 years (IQR 9-19) compared to 43 years 

(IQR 33-55) in the group with diabetes, P=0.0004. In those patients with more severe 

pancreatic disease, endogenous insulin secretion assessed by UCPCR was lower than in 

those without diabetes (median UCPCR 1.1 nmol/mmol [IQR 0.6-1.5] compared to 2.1 

[1.4-5.6], respectively; P=0.04). 

 

DISCUSSION 

 

We have demonstrated that faecal elastase-1 deficiency is common in HNF1B-associated 

renal disease and exocrine pancreatic dysfunction may be more symptomatic than 

previously published. This has important implications for the screening and treatment of 

these patients. 3/8 individuals in this study with a faecal elastase-1 measurement <200 

mcg/g stool had abdominal pain, loose stools and weight loss. The first series of patients 

described in 2004 reported faecal elastase <200 mcg/g in 6/7 asymptomatic individuals 
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with diabetes secondary to HNF1B gene mutation.[9] The only published report of 

symptomatic pancreatic insufficiency in HNF1B-associated disease involved the 

identification of diabetes and a small pancreas on imaging in an individual aged 5 years; 

pancreatic enzyme replacement therapy became necessary from the age of 16 years and 

lead to a normalisation of body mass index.[85] There was a significant delay in attributing 

symptoms to pancreatic insufficiency in the three cases identified in this paper and one of 

the patients even underwent a colonoscopy before the correct diagnosis was made. All 

showed symptomatic improvement with weight gain once treatment with pancreatic 

enzyme replacement therapy was commenced. This highlights how difficult it can be to 

diagnose pancreatic insufficiency and how prompt treatment benefits patients. Clinicians 

should have a low threshold for arranging pancreatic function testing for individuals with 

known HNF1B-associated disease, even when subtle symptoms such as mild abdominal 

discomfort and bloating are present. 

 

This is the largest series of faecal elastase-1 measurements in individuals with HNF1B-

associated renal disease recruited irrespective of diabetes status; previous reports of 

faecal elastase deficiency in association with an HNF1B mutation or deletion have usually 

been from smaller series of patients with diabetes or prediabetes.[9, 10, 23, 80] Tjora et al. 

included one patient with an HNF1B mutation and normal glucose tolerance in their study 

of exocrine pancreatic function using direct testing; this individual was 38 years old with 

normal pancreas anatomy on imaging and a faecal elastase-1 measurement of 312 mcg/g 

stool.[80] An earlier study from the same group recruited an affected 6 year old girl with no 

pancreatic body and tail identified on imaging and a faecal elastase-1 concentration of 131 

mcg/g stool; she had developed impaired glucose tolerance when studied again at the age 

of 8 years.[10, 80] We included 15 HNF1B patients without diabetes in this study; 7/15 

(47%) had a low faecal elastase-1 measurement but only 1/15 (7%) had a measurement 

<200 mcg/g stool. We would hypothesise that pancreatic insufficiency and diabetes in 

HNF1B-associated disease are associated as they are secondary to reduced exocrine and 

endocrine cells as a result of pancreatic hypoplasia. However, caution must be applied 

when interpreting the results between the HNF1B cohorts with and without diabetes as any 

differences may reflect the discrepancy in age between the two groups. It would be very 
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interesting in future work to follow a cohort of paediatric patients with HNF1B mutations 

and deletions over time using serial indirect pancreatic function testing and imaging to see 

if these non-invasive tests can be used to predict who will develop diabetes and exocrine 

insufficiency and at what age. 

 

Several limitations were associated with this work. The cohort of healthy controls used to 

define the lower limit of the normal range for faecal elastase-1 were older; the median age 

was 61.7 years (IQR 52.8-66.3) compared to 24.5 years (IQR 14-44) in the individuals with 

HNF1B-associated renal disease. However, faecal elastase concentrations decline with 

age so defining a cut-off for faecal elastase-1 using the 2.5th percentile of a younger 

control cohort may have yielded an even higher value than the 410 mcg/g stool used in 

this study.[121] The median faecal elastase-1 measurement of 1580 mcg/g stool (IQR 

1000-2000) in our local control cohort is higher than values reported for healthy controls in 

other studies.[121-123] This may reflect assay differences between laboratories but, as we 

have defined low faecal elastase-1 as measurements that fall below the 2.5th percentile of 

a local healthy control group, this make our results generalisable. Furthermore, we found 

that our local cut-off of 410 mcg/g stool correlated with the presence or absence of 

pancreatic hypoplasia on radiological imaging. Finally, our small sample size of n=29 

individuals with HNF1B-associated disease means we may have been underpowered to 

make definitive comments on the comparison of patients with and without diabetes. Trends 

seem to suggest that low faecal elastase-1 levels are more common when diabetes is 

present and that there may be an association between increasing duration of diabetes and 

lower faecal elastase-1 concentrations; however, these findings need further exploration. 

 

There is no consensus as to when HNF1B genetic testing should be performed. Two tools 

have been developed in recent years to help select individuals who would benefit from 

screening: (i) the HNF1B score designed by Faguer et al. and (ii) adapted criteria for 

HNF1B analysis proposed by Raaijmakers and colleagues.[92, 124] The HNF1B score 

assigns a value of 4 points if pancreatic exocrine insufficiency is present; a cut-off score of 

8 is suggested for consideration of HNF1B gene analysis. However, faecal elastase was 
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not systematically assessed in either of these studies. It is cheap and easy to measure, 

requiring only a single spot stool sample. Given that low faecal elastase-1 concentrations 

were seen in 18/29 (62%) patients with HNF1B-associated renal disease in this study, it 

would be interesting to test the role of faecal elastase-1 as a biomarker for HNF1B-

associated disease in a large cohort of individuals with congenital anomalies of kidneys 

and urinary tract. In the interim, we suggest that the finding of a low faecal elastase 

measurement in individuals with developmental kidney disease of uncertain cause should 

prompt referral for HNF1B genetic testing. 

 

Conclusions 

In summary, faecal elastase-1 deficiency is an important feature of HNF1B-associated 

renal disease even when diabetes is not present. Faecal elastase-1 should be measured 

in all individuals with an HNF1B mutation or deletion complaining of abdominal pain, loose 

stools or unintentional weight loss. The role of faecal elastase-1 as a biomarker for 

HNF1B-associated disease requires further investigation. 
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CHAPTER 5 
 

Serum and urine electrolytes as 
biomarkers for HNF1B-associated renal 

disease 
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INTRODUCTION 

 

Hepatocyte nuclear factor 1β (HNF1B) is a transcription factor with important roles in the 

development of the kidney, pancreas, liver and genital tract.[117] Heterozygous mutations 

and deletions of the HNF1B gene are the most common known monogenic cause of 

developmental kidney disease.[1-3] Despite this single genetic aetiology, the phenotype of 

HNF1B-associated renal disease is very variable (Box 5.1). Electrolyte abnormalities, 

including hypomagnesemia, are also frequently seen.[13] HNF1B-associated disease is a 

multisystem disorder and extra-renal phenotypic features include young-onset diabetes 

mellitus, pancreatic hypoplasia, abnormal liver function tests and genital tract 

malformations.[5, 7, 9-12] Genetic changes comprise either HNF1B intragenic mutations 

(one-half of patients) or an approximate 1.3 Mb deletion at chromosome 17q12, which 

includes the entire HNF1B gene.[20, 27] Both may arise spontaneously, which means 

there is often no family history of renal disease or diabetes.[18, 19, 26] In view of the 

clinical heterogeneity of the condition and frequent absence of a family history, diagnosis 

can be challenging and it is likely that many cases remain undetected. 

 

 

Box 5.1  The variable phenotype of HNF1B-associated renal disease 

 

Hypomagnesaemia is a common feature of HNF1B-associated disease. Since the 

association was first described in 2009, several studies have systematically assessed 

serum magnesium levels in individuals with HNF1B mutations and deletions: the 
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prevalence of hypomagnesaemia ranges from 8-44% in children and 50-63% in adults.[13, 

22, 124, 125] This is accompanied by renal magnesium wasting; hypocalciuria is also 

frequently reported. HNF1B, along with its dimerisation cofactor pterin-4 alpha-

carbinolamine dehydratase 1 (PCBD1), regulates the transcription of FXYD2.[13, 126] This 

gene encodes the γ subunit of the Na+/K+–ATPase, which sets up a voltage gradient to 

allow magnesium reabsorption in the distal convoluted tubule via transient receptor 

potential melastatin type 6 (TRPM6) channels.[127] Homozygous mutations in PCBD1 

also result in hypomagnesaemia and hypermagnesuria; heterozygous mutations in FXYD2 

cause an autosomal dominant renal hypomagnesaemia with hypocalciuria.[66, 128] 

 

There is no consensus as to when HNF1B genetic testing should be carried out. Two tools 

have been developed in recent years to help select patients who would benefit from 

screening. The HNF1B score, designed by Faguer and colleagues, assigns a value of 2 

points if a low serum magnesium (<0.7 mmol/L) is found; a cut-off score of 8 is suggested 

for consideration of HNF1B gene analysis.[92] In adapted criteria for HNF1B analysis 

proposed by Raaijmakers et al., associated hypomagnesaemia in individuals with 

congenital anomalies of kidneys and urinary tract (CAKUT) increased the likelihood of 

finding a mutation by a factor of 4.2.[124] Magnesium is cheap and easy to measure so 

would make an attractive biomarker for HNF1B-associated disease; however, serum 

magnesium levels are within the normal reference range in approximately 50% of cases. 

Hypermagnesuria seems to be a consistent finding, although renal magnesium excretion is 

usually only reported in the context of hypomagnesaemia.[13, 22] It is unknown if renal 

magnesium wasting is also seen in patients with HNF1B mutations and deletions even 

when serum magnesium measurements fall within the normal reference range. In this pilot 

study, our aims were to measure both serum and urine magnesium and calcium levels in 

individuals with an HNF1B gene mutation/deletion and compare to a cohort of patients 

followed up in a general nephrology clinic in order to assess their potential as biomarkers 

for HNF1B-associated disease. 
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METHODS 

 

Recruitment and genetic analysis 

Participants with HNF1B-associated disease were recruited from January 31, 2013 to 

October 10, 2015 from three sites in the United Kingdom (adult renal and diabetes units at 

the Royal Devon and Exeter Hospital; paediatric renal units at Great Ormond Street 

Hospital for Children and Evelina London Children’s Hospital), as previously 

described.[118] Inclusion criteria included the presence of either an HNF1B intragenic 

mutation or whole-gene deletion on genetic testing performed due to underlying renal 

abnormalities or diabetes, current age ≥4 years and estimated glomerular filtration rate 

(eGFR) ≥30 mL/min/1.73m2. All eligible patients were invited to participate. Informed 

written consent was obtained from all adult participants and parents of child participants, 

with assent from those aged <16 years. The study was conducted in agreement with the 

Declaration of Helsinki principles and approved by a regional ethics committee (National 

Research Ethics Service Committee South West—Frenchay). A total of 21 patients from 

15 unrelated families with HNF1B-associated disease agreed to participate. Mutation 

screening was performed by sequencing of coding exons and exon-intron boundaries 

together with gene dosage assessment by multiplex ligation-dependent probe amplification 

(MLPA) as previously described.[20, 26] 

 

Control data from 24 individuals matched for age, sex and renal function was obtained 

from May 7th, 2014 to January 21st, 2016 from general nephrology clinics at the Royal 

Devon and Exeter Hospital. Inclusion criteria included current age ≥4 years and eGFR ≥30 

mL/min/1.73m2. 

 

Clinical evaluation 

Relevant medical details were documented using a standardised assessment of medical 

records and participant/parent interview. Imaging results from ultrasonography, computed 

tomography or magnetic resonance imaging were reviewed to look for kidney 

abnormalities. GFR was estimated using the (i) Schwartz-Haycock formula in children, 

optimized for children with renal malformations assessed in each individual paediatric 
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renal unit where possible, and (ii) simplified Modification of Diet in Renal Disease formula 

in adults.[105, 106] Magnesium, calcium and creatinine were measured in serum and spot 

urine samples. Hypomagnesaemia was defined as serum magnesium <0.7 mmol/L. Renal 

magnesium and calcium fractional excretions were assessed as follows: (urine [electrolyte] 

x serum [creatinine])/(serum [electrolyte] x urine [creatinine]) x 100. Hypermagnesuria was 

defined as a fractional excretion of magnesium (FEMg) >4% and hypocalciuria as a 

fractional excretion of calcium (FECa) <1%. Diabetes was diagnosed either according to 

World Health Organization guidelines or on the basis of established treatment with oral 

hypoglycaemic agents/insulin. 

 

Statistical analysis 

Qualitative variables were described with percentages and quantitative variables with 

median and interquartile range (IQR). Differences between groups were assessed using 

the Fisher exact test for categorical variables and the Mann-Whitney U test for continuous 

variables. Discrimination between patients with and without HNF1B-associated renal 

disease was assessed by determining the area under the curve (AUC) of the receiver-

operating characteristic (ROC) curve. Correlations were tested by Spearman’s ρ. A P-

value of <0.05 was considered to be statistically significant. All analyses were carried out 

using StataSE (version 14, StataCorp, College Station, TX) and GraphPad statistical 

software (GraphPad Software, La Jolla, CA). 

 

RESULTS 

 

Age, sex and renal function are similar between HNF1B and clinic cohorts 

Age and sex were similar in both individuals with HNF1B-associated disease and those 

under follow up in a general nephrology clinic (Table 5.1). Renal function tended to be 

better in the clinic patients with a median eGFR of 84 ml/min/1.73m2 (IQR 54-95), 

compared to 53.5 (IQR 42.5-83) in the HNF1B cohort, but this did not reach statistical 

significance (P=0.2). The majority of patients (90%) with an HNF1B mutation/deletion had 

a renal diagnosis of either cysts or cystic dysplasia whereas there were a range of 
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diagnoses in the clinic cohort. Diabetes was present in 10/21 (48%) individuals with 

HNF1B-associated disease but only 2/24 (8%) clinic patients, P=0.006. 

 

 

Table 5.1  Characteristics of study participants 

 

One third of patients with HNF1B-associated disease have serum magnesium levels 

within the normal reference range 

The median magnesium concentration was 0.66 mmol/L (IQR 0.56-0.7) in the HNF1B 

cohort compared to 0.87 (IQR 0.82-0.91) in the clinic cohort, P<0.0001 (Figure 5.1A). 

14/21 (67%) patients with HNF1B mutations/deletions had hypomagnesaemia compared 

to 2/24 (8%) clinic patients, P<0.0001 (Figure 5.1B). The ROC curve for serum 

magnesium, with HNF1B-associated renal disease status as the dependent variable, is 

shown in figure 5.1C; AUC=0.95 (95% confidence interval [CI] 0.90-1). A cut-off for serum 

magnesium of 0.75 mmol/L was 100% sensitive and 87.5% specific for patients with 

HNF1B-associated disease. 
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Figure 5.1A  Box plots showing serum magnesium levels in both patients under follow up in a general nephrology clinic 

and individuals with HNF1B-associated renal disease. 
The area between the dashed red lines represents the normal reference range for serum magnesium (0.7-1 mmol/L). 

 

 

Figure 5.1B  Stacked bar charts showing the percentage of patients with hypomagnesaemia in both clinic and HNF1B 

cohorts. 
Abbreviations: HNF1B, hepatocyte nuclear factor 1B; Mg, magnesium. 



99 
 

 

Figure 5.1C  ROC curve for serum magnesium, with HNF1B-associated renal disease status as the dependent variable. 

Abbreviations: ROC, receiver-operating characteristic. 

 

All individuals with HNF1B-associated disease have FEMg >4% 

The median FEMg was 9.1% (IQR 6.5-13.5) in the HNF1B cohort compared to 2.6% (IQR 

2.1-4.8) in the clinic cohort, P<0.0001 (Figure 5.2A). All patients with HNF1B 

mutations/deletions (n=21) had hypermagnesuria with FEMg >4% compared to only 8/24 

(33%) clinic patients, P<0.0001 (Figure 5.2B). The ROC curve for FEMg, with HNF1B-

associated renal disease status as the dependent variable, is shown in figure 5.2C; 

AUC=0.92 (95% CI 0.84-1). A cut-off for FEMg of 4.1% was 100% sensitive and 71% 

specific for patients with HNF1B-associated disease. 

 

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

S
e

n
s
it
iv

it
y

0.00 0.25 0.50 0.75 1.00
1 - Specificity

Area under ROC curve = 0.95



100 
 

 

Figure 5.2A  Box plots showing FEMg in both patients under follow up in a general nephrology clinic and individuals with 

HNF1B-associated renal disease. 
The area above the red dashed line represents hypermagnesuria. 

 

 

Figure 5.2B  Stacked bar charts showing the percentage of patients with hypermagnesuria in both clinic and HNF1B 

cohorts. 
Abbreviations: FEMg, fractional excretion of magnesium; HNF1B, hepatocyte nuclear factor 1B. 
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Figure 5.2C  ROC curve for FEMg, with HNF1B-associated renal disease status as the dependent variable. 

Abbreviations: ROC, receiver-operating characteristic. 

 

Serum calcium levels are similar between HNF1B and clinic cohorts 

The median calcium concentration was 2.33 mmol/L (IQR 2.24-2.38) in the HNF1B cohort 

compared to 2.31 (IQR 2.27-2.36) in the clinic cohort, P=0.8 (Figure 5.3A). The ROC curve 

for serum calcium, with HNF1B-associated renal disease status as the dependent variable, 

is shown in figure 5.3B; AUC=0.48 (95% CI 0.30-0.66). 
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Figure 5.3A  Box plots showing serum calcium levels in both patients under follow up in a general nephrology clinic and 

individuals with HNF1B-associated renal disease. 
The area between the dashed red lines represents the normal adult reference range for serum calcium (2.05-2.55 

mmol/L); the paediatric reference range for serum calcium is 2.2-2.7 mmol/L. 

 

 

Figure 5.3B  ROC curve for serum calcium, with HNF1B-associated renal disease status as the dependent variable. 

Abbreviations: ROC, receiver-operating characteristic. 
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Three quarters of patients with HNF1B-associated disease also have hypocalciuria 

Median FECa was 0.5% (IQR 0.3-1.0) in individuals with an HNF1B mutation/deletion 

compared to 1.4% (IQR 0.3-1.8) in clinic patients, although this was not statistically 

significant with P=0.2 (Figure 5.4A). However, 15/20 (75%) of those with HNF1B-

associated disease had hypocalciuria with FECa <1% compared to only 8/22 (36%) clinic 

patients, P=0.02 (Figure 5.4B). The ROC curve for FECa, with HNF1B-associated renal 

disease status as the dependent variable, is shown in figure 5.4C; AUC=0.63 (95% CI 

0.44-0.81). A cut-off for FECa of 1.29% was 85% sensitive and 55% specific for patients 

with HNF1B-associated disease. 

 

 

Figure 5.4A  Box plots showing FECa in both patients under follow up in a general nephrology clinic and individuals with 

HNF1B-associated renal disease. 
The area below the red dashed line represents hypocalciuria. 
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Figure 5.4B  Stacked bar charts showing the percentage of patients with hypocalciuria in both clinic and HNF1B cohorts. 

Abbreviations: FECa, fractional excretion of calcium; HNF1B, hepatocyte nuclear factor 1B. 

 

 

Figure 5.4C  ROC curve for FECa, with HNF1B-associated renal disease status as the dependent variable. 

Abbreviations: ROC, receiver-operating characteristic. 
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62] vs. 83 [IQR 53.5-95] in those with a deletion, P=0.03) and serum magnesium was 

higher (median magnesium level 0.70 mmol/L [IQR 0.67-0.74] vs. 0.56 [IQR 0.53-0.6 in the 

deletion group, P=0.01]. There were no significant differences in FEMg, serum calcium 

and FECa between mutation and deletion groups. 

 

Hypomagnesaemia and hypermagnesuria are more marked in patients with HNF1B-

associated disease when diabetes is also present 

Median serum magnesium concentrations were lower and FEMg higher in individuals with 

an HNF1B mutation/deletion when diabetes was also present (Table 5.2). However, this 

group were older and renal function tended to be worse (median eGFR 43 ml/min/1.73 m2 

[IQR 39-71] compared to 62 [IQR 50-95] in those without diabetes; P=0.07). Simple 

correlation analysis showed moderate associations between (i) age and both serum 

magnesium and FEMg in patients with HNF1B-associated disease and (ii) eGFR and 

FEMg in all patients (Figure 5.5). 
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Table 5.2  Comparison of individuals with HNF1B-associated disease depending on diabetes status 

 

Figure 5.5  Scatter plots for A&B) age and serum magnesium level, C&D) age and fractional excretion of magnesium, 

E&F) eGFR and serum magnesium level and G&H) eGFR and fractional excretion of magnesium. 
Spearman’s ρ was classified as follows: <4, weak association; 0.4-0.7, moderate association; ≥0.7, strong association. 

Abbreviations: eGFR, estimated glomerular filtration rate. 

 

A) Clinic cohort (Spearman’s ρ  -0.1) B) HNF1B cohort (Spearman’s ρ  -0.6)

C) Clinic cohort (Spearman’s ρ  0.3) D) HNF1B cohort (Spearman’s ρ  0.6)

E) Clinic cohort (Spearman’s ρ  -0.3) F) HNF1B cohort (Spearman’s ρ  0.1)

G) Clinic cohort (Spearman’s ρ  -0.7) H) HNF1B cohort (Spearman’s ρ  -0.4)
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DISCUSSION 

 

The results of this pilot study show that using a cut-off for serum magnesium of ≤0.75 

mmol/L was 100% sensitive and 87.5% specific for the presence of an HNF1B 

mutation/deletion, even though one third of patients with HNF1B-associated disease had a 

serum magnesium level within the normal reference range. All individuals in the HNF1B 

cohort had hypermagnesuria with FEMg >4% and a cut-off of ≥4.1% was 100% sensitive 

and 71% specific. 

 

The high sensitivity we found when using serum magnesium and/or FEMg as diagnostic 

criteria for HNF1B-associated renal disease in this cohort makes them useful rule-out 

tests. HNF1B genetic testing is expensive; the current National Health Service cost for 

HNF1B sequencing and dosage analysis by MLPA in the United Kingdom is £350. Our 

results suggest serum magnesium and FEMg could be highly sensitive biomarkers for 

HNF1B-associated renal disease, which are both cheap (approximately £0.52) and easy to 

measure. If these results are confirmed in a larger study of individuals with CAKUT, they 

should be implemented as screening tests in routine clinical care. In the interim we 

suggest that serum magnesium measurements ≤0.75 mmol/L and FEMg ≥4.1% should 

lead to referral for HNF1B genetic testing in individuals with developmental kidney disease 

of uncertain cause, even if serum magnesium levels are within the normal reference 

range. 

 

This is the largest series of patients with HNF1B-associated disease where renal 

magnesium wasting has been reported and confirms that hypermagnesuria seems to be a 

universal finding. Adalat et al. described eight children in their HNF1B cohort with 

hypomagnesaemia and hypermagnesuria; FEMg ranged from 4.5-14.3% with a median 

value of 6.5%.[13] FEMg ranged from 4-22% in seven adults with an HNF1B 

mutation/deletion in a study by Faguer and colleagues; 2/7 had a serum magnesium level 

>0.75 mmol/L.[22] Hypomagnesemia was also common in the HNF1B cohort of our series; 
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14/21 (67%) individuals had a serum magnesium concentration <0.7 mmol/L, which 

confirms the findings of previous work.[13, 22, 124] 

 

Several limitations were associated with this study. Firstly, our control cohort included 

patients followed up in a general nephrology clinic where the prevalence of HNF1B-

associated disease is expected to be very low. It will be important to assess serum 

magnesium, FEMg and FECa as diagnostic criteria for HNF1B disease in a cohort of 

individuals with CAKUT. Secondly, only 6/21 (29%) HNF1B patients in this study were 

children and the youngest participant was 8 years old; it is unknown if these results are 

translatable to a younger cohort. This will be important to ascertain as HNF1B genetic 

testing is often indicated in early life if developmental kidney disease is identified during 

prenatal ultrasonography. Unpublished observations presented by Shazia Adalat and 

colleagues at the British Renal Society and Renal Association conference in 2014 suggest 

that biochemical abnormalities during early childhood are an unreliable indicator for 

HNF1B testing. Simple correlation analysis in our pilot study showed that serum 

magnesium levels tended to decrease with age in the HNF1B cohort, whilst FEMg 

increased with age. Finally, in order to make the cohorts in this study as representative of 

routine clinical practice as possible we analysed data from all individuals even if they were 

prescribed medications that could alter serum or urine magnesium measurements or 

where blood and urine samples were not taken on the same day. The latter mainly applied 

to paediatric patients where samples were not as easy to obtain; Appendix C shows the 

stability of serum magnesium levels over time to support the use of these samples. We 

repeated the analyses after excluding these individuals to confirm that the main results 

remain very similar (Appendix C). 

 

Hypocalciuria was also a frequent finding in those with an HNF1B mutation/deletion; 15/20 

(75%) had a FECa <1%, although the median FECa of 0.5% (IQR 0.3-1.0) was not 

significantly lower than the clinic cohort at 1.4% (IQR 0.3-1.8). There is limited data on 

renal calcium excretion in HNF1B-associated disease. Faguer and colleagues reported 

FECa in eight adults with HNF1B nephropathy: results ranged from 0.2-4% and 4/8 (50%) 
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had hypocalciuria.[22] Unpublished observations presented by Adalat et al. at the British 

Renal Society and Renal Association conference in 2014 showed that hypocalciuria was 

present in 14 children with HNF1B mutation where data was available on urinary calcium 

excretion and FECa was calculated to be <0.5% in all of these patients. Thus it seems that 

hypocalciuria becomes less common in older individuals with HNF1B-associated disease. 

Previous work has demonstrated an increase in daily urine calcium output in the first two 

decades of life in 336 healthy subjects aged 3-89 years, which may explain this 

finding.[129] 

 

Median serum magnesium levels were lower and FEMg higher in individuals with an 

HNF1B mutation/deletion who also had diabetes. Hypomagnesaemia is often seen in 

patients with type 2 diabetes.[130] Osmotic diuresis and inappropriate magnesuria seems 

to be the most important underlying mechanism but the causes are likely to be 

multifactorial and include poor dietary intake, altered insulin metabolism, glomerular 

hyperfiltration, diuretic administration and recurrent metabolic acidosis.[131] We also found 

that increasing age was moderately associated with lower serum magnesium 

measurements and higher FEMg in the HNF1B cohort; declining eGFR was moderately 

associated with higher FEMg in both clinic and HNF1B cohorts. Therefore, the finding of 

worse magnesium biochemistry in patients with both HNF1B-associated disease and 

diabetes may be related instead to the older age and tendency to a lower eGFR seen in 

this group rather the presence of diabetes. 

 

CONCLUSIONS 

 

In summary, this pilot study suggests serum magnesium and FEMg are highly sensitive 

biomarkers for HNF1B-associated renal disease; hypermagnesuria was seen in all 

patients with an HNF1B mutation/deletion even if serum magnesium measurements were 

within the normal reference range. If these results are confirmed in a larger study of 
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patients with CAKUT, they could be implemented as cheap screening tests for HNF1B 

genetic testing in routine clinical care. 
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CHAPTER 6 
 

Discussion 

This thesis addresses several of the issues surrounding the recognition of HNF1B-

associated disease, including assessing the clinical utility of an existing HNF1B scoring 

system and examining the neurodevelopmental phenotype of patients with either an 

HNF1B intragenic mutation or 17q12 deletion. Measurements of serum and urine 

magnesium and calcium levels, plus faecal elastase-1, are proposed as potential 

biomarkers; two pilot studies assessing these in HNF1B-associated disease are 

presented. 

 

This chapter provides an overview of the main findings of the thesis, the impact of the 

results, limitations of the work and potential areas for future research. 
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CHAPTER 2: ASSESSMENT OF THE HNF1B SCORE AS A TOOL TO SELECT 

PATIENTS FOR HNF1B GENETIC TESTING 

 

Summary and impact of findings 

This chapter tests the clinical utility of the HNF1B score, developed by Faguer and 

colleagues in 2014 to help select appropriate patients for genetic testing, in a large number 

of referrals for HNF1B gene analysis to the UK diagnostic testing service for the HNF1B 

gene. An HNF1B score was assigned for 686 UK referrals for HNF1B genetic testing using 

clinical information available at the time of referral. Performance of the score was 

evaluated by receiver-operating characteristic (ROC) curve analysis. The relative 

discriminatory ability of different clinical features for making a genetic diagnosis of HNF1B-

associated disease were estimated in the UK dataset alone and pooled with French 

data.[92] 

 

The HNF1B score discriminated between patients with and without a mutation or deletion 

reasonably well with an area under the curve (AUC) of 0.72 (95% confidence interval [CI] 

0.67-0.76). Applying the suggested cut-off score of ≥8 gave a negative predictive value of 

85%. Although this suggests that this clinical scoring system may be a useful screening 

tool to select individuals for HNF1B gene analysis, it cannot be reliably used to exclude 

individuals with a lower score from genetic testing. 

 

In a pooled analysis using data from UK and French cohorts, antenatal renal 

abnormalities, renal hyperechogenicity and cysts were discriminatory in children, whereas 

renal hypoplasia and cysts were discriminatory in adults. Pancreatic abnormalities were 

discriminatory in both whereas other extra-renal characteristics, including genital tract 

malformations, liver test abnormalities and hypomagnesaemia, only had a large effect size 

in adults. In terms of clinical practice, determining the presence of renal structural and 

pancreatic abnormalities alone is likely to be sufficient in order to decide whether a child 

should be referred for HNF1B genetic testing, whereas in adults the assessment of extra-

renal features is also useful. 



113 
 

Limitations 

One of the main limitations of this work was that the HNF1B score was calculated 

retrospectively using clinical details available at the time of referral; not all clinical features 

were systematically assessed. We also included data from all referrals for HNF1B genetic 

testing to our centre from 1998 to 2012 but some of the clinical features, such as 

hypomagnesaemia, have only been recognised as being part of the phenotype later on in 

this time period. In both UK and French datasets, patients underwent genetic testing 

based on referrer suspicion of HNF1B-associated disease and the majority had a 

congenital anomaly of the kidneys or urinary tract (CAKUT). This results in a selection bias 

that limits the applicability of the study findings but is in keeping with the literature to date, 

where the majority of cohorts with HNF1B-associated disease that have been described 

were pre-selected for particular kidney abnormalities (see Table 1.1 in Chapter 1: 

Introduction for overview of these study cohorts). 

 

Future research 

Validation of the HNF1B score in a prospective cohort is required. Since publication of this 

scoring system in 2014, further criteria for HNF1B gene analysis in patients with CAKUT 

have also been published by Raaijmakers et al.[124] They propose restricting HNF1B 

genetic testing to only those patients with bilateral major renal anomalies and in particular, 

renal cysts of unknown origin in combination with hypomagnesaemia; major renal 

anomalies were defined as foetal bilateral hyperechogenic kidneys, multicystic dysplastic 

kidney, renal agenesis, hypoplastic or dysplastic kidneys and cysts of uncertain origin. In 

order to collect prospective data, all new referrals for HNF1B genetic testing to Exeter 

Molecular Genetics Laboratory (approximately 100-120 referrals/year) would include 

completion of a request form that records information on all the clinical features seen in 

HNF1B-associated disease. This would then allow the clinical utility of both Faguer’s 

HNF1B score and Raaijmaker’s criteria for HNF1B analysis to be compared and a more 

refined model to be developed. 
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CHAPTER 3: 17Q12 MICRODELETIONS BUT NOT INTRAGENIC HNF1B MUTATIONS 

ARE ASSOCIATED WITH A NEURODEVELOPMENTAL PHENOTYPE 

 

Summary and impact of findings 

This chapter systematically compares the neurodevelopmental phenotype of patients with 

either an HNF1B intragenic mutation or 17q12 deletion. Both children and adults with 

HNF1B-associated disease were recruited from four sites in the UK and underwent brief 

behavioural screening using the Strengths and Difficulties Questionnaire (SDQ) plus 

assessment of autistic traits, cognitive ability and dysmorphic features. 

 

Use of the parent-reported SDQ in children demonstrated more behavioural difficulties in 

the deletion group with a median total difficulties score of 15.5 (interquartile range [IQR] 

10-20) compared with 7 in the mutation group (IQR 3.5-7.5), P=0.048. Parental scores for 

the impact of these difficulties on the child’s life were similarly high in the deletion group. 

Eight of 20 participants (40%) with a deletion had a clinical diagnosis of either an autism 

spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD) and/or learning 

difficulties requiring a Statement of Special Educational Needs or current attendance at a 

special school compared with 0 of 18 with a mutation, P=0.004. The 17q12 deletion was 

associated with more autistic traits but the median IQ composite was similar in both 

mutation and deletion groups (97 [IQR 83-104] versus 91 [IQR 76-107] respectively; 

P=0.6). Two independent clinical geneticists were able to predict the presence of a 

deletion with a sensitivity of 83% and specificity of 79% when assessing facial dysmorphic 

features as a whole. Taken together, these results demonstrate that a neurodevelopmental 

phenotype is only seen in individuals with a 17q12 deletion and support the hypothesis 

that it is not simply haploinsufficiency of the HNF1B gene that is responsible for this clinical 

feature. These findings should allow more tailored counselling of patients with HNF1B-

associated renal disease and their families plus ensure worrying symptoms are promptly 

investigated and referred for appropriate psychiatric assessment. 
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Limitations 

Our study cohort of n=38 represented only 45% of eligible patients with HNF1B-associated 

renal disease or diabetes over the four recruitment sites due to either inability to contact 

individuals or patients declining to participate. Other ethnic groups besides White British 

are also likely to be underrepresented as only 43% of non-participants were White British 

compared to 97% of participants; however, there was a lot of missing ethnicity data for 

non-participants so this difference may not be so marked. Therefore, the exact prevalence 

and spectrum of neurodevelopmental disorders in HNF1B-associated renal disease and 

diabetes remains unknown. Diagnostic tests for ASD and ADHD were not used in this 

study so less severe disease may have been missed in both mutation and deletion groups. 

Genetic screening for other known causes of neurodevelopmental disease (e.g. Fragile X, 

other copy-number variants [CNVs]) was also not undertaken. 

 

Future research 

It would be interesting in further studies to perform more comprehensive neurocognitive 

assessment but this is logistically challenging in a rare genetic condition such as HNF1B-

associated disease where individuals are geographically diverse. One way of addressing 

this would be to use the Development and Well-Being Assessment (DAWBA), which is a 

package of questionnaires, interviews and rating techniques designed to generate ICD-10 

and DSM-IV psychiatric diagnoses in 5-17 year olds.[132] Information is collected via an 

interview with parents and 11-17 year olds themselves, as well as a questionnaire 

completed by teachers; one particular advantage is that the DAWBA interviews can be 

administered by computers to participants in their own home. Information from the different 

informants is drawn together by a computer program that predicts the likely diagnosis. 

Experienced clinical raters can then review all the data and decide whether to accept or 

overturn the computer-generated diagnosis. 

 

It is unclear why only some individuals with a 17q12 deletion develop a 

neurodevelopmental phenotype whilst others do not. It will be important in future work to 

screen these patients for other genetic causes of neurodevelopmental disease, in 

particular the presence of other CNVs. Girirajan and colleagues used array comparative 
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genomic hybridisation to analyse the genomes of 2,312 children known to carry a CNV 

associated with intellectual disability and congenital abnormalities and found 10.1%, 

including cases with 17q12 deletion, carried a second large CNV in addition to the primary 

genetic lesion.[133] Interestingly, a recent study describing intellectual disability in 

individuals with HNF1B-associated diabetes excluded other large genomic deletions in all 

tested patients using single nucleotide polymorphism array analyses.[134] 
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CHAPTER 4: EXOCRINE PANCREATIC DYSFUNCTION IS COMMON IN HNF1B-

ASSOCIATED RENAL DISEASE AND CAN BE SYMPTOMATIC 

 

Summary and impact of findings 

Faecal elastase-1 levels have only been reported in a small number of individuals with 

HNF1B-associated disease, the majority of which have diabetes. In this chapter, we 

measured faecal elastase-1 in patients with HNF1B-associated disease regardless of 

diabetes status and assessed the degree of symptoms associated with pancreatic 

exocrine deficiency. Faecal elastase-1 was measured by enzyme-linked immunosorbent 

assay on a single spot stool sample in 29 patients with a known HNF1B mutation or 

deletion. We defined a low faecal elastase-1 concentration based on the 2.5th percentile of 

99 healthy control individuals without diabetes (410 mcg/g stool). Symptoms related to 

pancreatic exocrine dysfunction (abdominal pain, loose stools and unintentional weight 

loss) were assessed by direct questioning and a subset of the HNF1B cohort (n=6) 

underwent pancreatic imaging with either computerised tomography or magnetic 

resonance imaging scanning. 

 

Faecal elastase-1 was below the 2.5th percentile of the control cohort in 18/29 (62%) 

patients with HNF1B-associated renal disease. All individuals with a low faecal elastase-1 

level who underwent imaging (n=4) had radiological evidence of hypoplasia of the body 

and tail of the pancreas. 8/29 (28%) had a faecal elastase-1 measurement suggestive of 

exocrine pancreatic insufficiency at <200 mcg/g stool; of these, three suffered with 

abdominal pain, loose stools and/or unintentional weight loss. All three experienced 

symptomatic improvement and weight gain after commencing pancreatic enzyme 

replacement therapy. Faecal elastase-1 was low in 7/15 (47%) HNF1B patients without 

diabetes compared to 11/14 (79%) of those with diabetes, P=0.1. Therefore, faecal 

elastase-1 deficiency is a common feature of HNF1B-associated renal disease even when 

diabetes is not present and pancreatic exocrine deficiency may be more symptomatic than 

previously suggested. Faecal elastase-1 should be measured in all patients with known 

HNF1B-associated disease complaining of chronic abdominal pain, loose stools or 

unintentional weight loss. The discovery of a low faecal elastase-1 concentration in 
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individuals with developmental kidney disease of uncertain cause should prompt referral 

for HNF1B genetic testing. 

 

Limitations 

The small sample size of n=29 individuals with HNF1B-associated disease means we may 

have been underpowered to make definitive comments on the comparison of patients with 

and without diabetes. Trends seem to suggest that low faecal elastase-1 levels are more 

common when diabetes is present and that there may be an association between 

increasing duration of diabetes and lower faecal elastase-1 concentrations; however, 

these findings need further exploration. The cohort of healthy controls used to define the 

lower limit of the normal range for faecal elastase-1 were older; the median age was 61.7 

years (IQR 52.8-66.3) compared to 24.5 years (IQR 14-44) in the individuals with HNF1B-

associated renal disease. However, faecal elastase concentrations decline with age so 

defining a cut-off for faecal elastase-1 using the 2.5th percentile of a younger control 

cohort may have yielded an even higher value than the 410 mcg/g stool used in this 

study.[121] The median faecal elastase-1 measurement of 1580 mcg/g stool (IQR 1000-

2000) in our local control cohort is higher than values reported for healthy controls in other 

studies.[121-123] This may reflect assay differences between laboratories but, as we have 

defined low faecal elastase-1 as measurements that fall below the 2.5th percentile of a 

local healthy control group, this make our results generalisable. Furthermore, we found 

that our local cut-off of 410 mcg/g stool correlated with the presence or absence of 

pancreatic hypoplasia on radiological imaging. 

 

Future research 

It would be interesting in future work to follow a cohort of paediatric patients with HNF1B 

mutations and deletions over time using serial indirect pancreatic function testing and 

imaging to see if these non-invasive tests can be used to predict who will develop diabetes 

and exocrine insufficiency and at what age. It would also be useful to test the role of faecal 

elastase-1 as a biomarker for HNF1B-associated disease in a large cohort of individuals 

with CAKUT; it is cheap compared to genetic testing and easy to measure, requiring only a 

single spot stool sample. 



119 
 

CHAPTER 5: SERUM AND URINE ELECTROLYTES AS BIOMARKERS FOR HNF1B-

ASSOCIATED RENAL DISEASE 

 

Summary and impact of findings 

This chapter assesses the potential of serum and urine magnesium and calcium levels as 

biomarkers for HNF1B-associated disease. Magnesium, calcium and creatinine were 

measured in serum and spot urine samples in 21 individuals with an HNF1B molecular 

abnormality and 24 patients from a general nephrology clinic. Renal magnesium and 

calcium fractional excretions were assessed as follows: (urine [electrolyte] x serum 

[creatinine])/(serum [electrolyte] x urine [creatinine]) x 100. 

 

Compared to the clinic cohort, individuals with an HNF1B mutation or deletion had a 

significantly lower serum magnesium level and higher fractional excretion of magnesium 

(FEMg). There was also a tendency towards a lower fractional excretion of calcium 

(FECa). The independent ROC curves for serum magnesium and FEMg, with HNF1B-

associated renal disease status as the dependent variable, resulted in an AUC of 0.95 and 

0.92, respectively. 

 

This pilot work suggests serum magnesium and FEMg could be highly sensitive 

biomarkers for HNF1B-associated renal disease. If these results are confirmed in a larger 

study of patients with CAKUT, they could be implemented as very cheap (approximately 

£0.52) screening tests for HNF1B genetic testing in routine clinical care. In the interim we 

suggest that serum magnesium measurements ≤0.75 mmol/L and FEMg ≥4.1% should 

lead to referral for HNF1B genetic testing in individuals with developmental kidney disease 

of uncertain cause, even if serum magnesium levels are within the normal reference 

range. 

 

Limitations 

The main limitation of this pilot work was the use of patients followed up in a general 

nephrology clinic as the control cohort, where the prevalence of HNF1B-associated 
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disease is likely to be very low. Only small numbers of participants were included in each 

cohort and there was a tendency towards worse renal function in those with an HNF1B 

molecular abnormality. Therefore, it will be important to assess the role of serum 

magnesium, FEMg and FECa as biomarkers for HNF1B-associated disease in a larger 

cohort of individuals with CAKUT and better matching of renal function. We included data 

from all individuals, even if blood and urine samples were not taken on the same day or 

they had been prescribed medications that had the potential to alter serum or urine 

electrolyte measurements. Although this has the advantage of making the cohorts more 

representative of routine clinical practice, it may also introduce bias so we repeated the 

analyses after excluding these individuals to confirm that the main results remain very 

similar. 

 

It is unknown if these results are translatable to a younger cohort as only 6/21 (29%) 

HNF1B patients in this study were children and the youngest participant was 8 years old. 

This will be important to ascertain as HNF1B genetic testing is often indicated in early life if 

developmental kidney disease is identified during prenatal ultrasonography. Unpublished 

observations presented by Shazia Adalat and colleagues at the British Renal Society and 

Renal Association conference in 2014 suggest that biochemical abnormalities during early 

childhood are an unreliable indicator for HNF1B testing. Simple correlation analysis in our 

pilot study supports this; serum magnesium levels tended to decrease with age in the 

HNF1B cohort, whilst FEMg increased with age. It will be interesting to see if serum and 

urine electrolytes remain discriminatory for HNF1B-associated disease in a younger age 

group; if so, different cut-offs may need to be defined. 

 

Future research 

Firstly, it would be interesting to expand on the current pilot study by recruiting a larger 

number of individuals with HNF1B-associated disease and comparing serum and urine 

electrolyte measurements to a control cohort of patients with CAKUT who are matched for 

age, sex and renal function. We are also planning a prospective cohort study to be offered 

to individuals attending paediatric nephrology clinics in Turkey (Figure 6.1). We will have a 
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target n of ≥100 participants and would expect to find an HNF1B molecular abnormality in 

approximately 10% of the cohort.[124] 

 

 

Figure 6.1 Flow chart outlining proposed study 

 

Eligible patients will be identified via routine clinical practice. Inclusion criteria will include 

one or more of the following: (i) isolated foetal bilateral hyperechogenic kidneys of normal 

or slightly increased size on previous antenatal scans; (ii) renal cysts of uncertain cause 

(including multicystic and dysplastic kidney and cystic dysplasia); (iii) renal dysplasia; (iv) 

renal hypoplasia; (v) single kidney; (vi) horseshoe kidney; (vii) duplex kidney and (viii) 

isolated hydronephrosis and hydroureter. Patients will be excluded if they have renal cysts 

thought to be secondary to PKD1/PKD2/PKHD1 mutations and/or are on renal 

replacement therapy. Informed written consent for genetic testing will be required from 

parents of child participants, preferably with assent from those aged <16 years. All 

participants will have measurement of creatinine, magnesium, calcium and potassium in 
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paired serum and spot urine samples; this will be performed by the recruiting clinician in 

their local hospital. Routine demographic and clinical data, including previous renal 

imaging results, will be entered onto a standardised data collection form. Participants will 

then be asked to provide a one-off saliva sample; this will be stored at room temperature 

and shipped to the UK together with the data collection form. All participants will undergo 

HNF1B genetic testing using DNA extracted from the saliva. The results of the genetic test 

will be reported back to the recruiting clinician. Serum and urine electrolyte measurements 

will then be compared between participants with newly identified HNF1B-associated 

disease and those with a negative genetic test result. 
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OVERALL CONCLUSIONS 

 

The aim of this thesis was to explore some of the issues surrounding disease recognition 

in individuals with heterozygous mutations and deletions of the HNF1B gene. In brief, this 

work has examined the neurodevelopmental phenotype seen with HNF1B molecular 

abnormalities, tested the clinical utility of an HNF1B scoring system and assessed 

potential biomarkers for HNF1B-associated disease. The data presented in this thesis has 

been presented at national and European meetings and published in several medical 

journals. 

 

We have shown that neurodevelopmental disorders, such as ASD and ADHD, are only 

seen in individuals with HNF1B-associated disease secondary to 17q12 deletion. It is 

important that nephrologists and diabetologists are aware of this association so they can 

counsel patients and their families appropriately and ensure that any behavioural problems 

are identified and referred for further investigation promptly. Despite the first work linking 

the 17q12 deletion with autism being published in 2010, very few of the families I met 

during the course of this study were aware of the association.[135] Parents with an 

affected child often experienced a lot of guilt surrounding their child’s behavioural 

problems and found a sense of relief in learning that they may be related to their 

underlying genetic condition. 

 

In our description of the neurodevelopmental phenotype of 38 patients with HNF1B-

associated renal disease, we commented that the median estimated glomerular filtration 

rate (eGFR) was significantly higher in those with a 17q12 deletion compared to those with 

an HNF1B intragenic mutation. The mutation and deletion groups in this series were 

similarly matched in terms of age and 17/18 intragenic mutations described were 

truncating. This finding has now been confirmed in the largest series to date of individuals 

with HNF1B-associated disease; Dubois-Laforgue and colleagues have recently described 

the phenotype, long-term follow-up and genotype/phenotype correlations in 201 adults with 

HNF1B molecular abnormalities.[136] They report that patients with an HNF1B mutation 
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have a worse renal prognosis than those with a 17q12 deletion as they had a higher 

frequency of chronic kidney disease stages 3-4/end-stage renal disease and a lower 

eGFR at follow-up. Haploinsufficiency is accepted as the underlying disease mechanism in 

HNF1B-associated disease so it is unclear why there should be a difference in renal 

function between individuals with an HNF1B mutation and those with a 17q12 deletion.[27] 

One hypothesis already suggested by Dubois-Laforgue et al. is that some intragenic 

HNF1B mutations may exert a dominant-negative effect that results in a more severe 

phenotype. Although truncating mutations anywhere other than the terminal exon usually 

cause transcript degradation via the nonsense-mediated decay (NMD) pathway,[137] 

previous work has shown that HNF1B mutations have a varying degree of susceptibility to 

NMD and this could fit with a potential dominant-negative effect.[35] Another hypothesis 

involves the protective effect of one of the other genes lost in the 17q12 deletion. Further 

functional studies to explore some of these ideas will be important and may help to explain 

the phenotypic diversity that has remained unexplained in HNF1B-associated disease 

since the condition was first described. 

 

Rapid advances in the field of molecular genetics over the last five years have seen the 

widespread introduction of next generation sequencing and it is expected that the costs 

associated with genetic testing will subsequently fall. Therefore it may be possible to 

perform gene analysis for all individuals identified as having CAKUT in the near future 

using a specific “CAKUTome”, which screens for mutations using targeted gene 

sequencing in a high throughput manner. Although this should lead to a genetic diagnosis 

for more patients, it will also lead to an increase in the number of variants of unknown 

significance. Scoring systems, such as the HNF1B score, and biomarkers will have an 

important role to play in helping to determine the pathogenicity of novel mutations and this 

highlights the importance of ongoing research that focuses on improving the identification 

of HNF1B-associated disease. 
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HNF1B mutations and protein effects, as listed in the Human Gene Mutation 

Database (accessed on 25 March 2014)  

 

 



135 
 

 



136 
 

APPENDIX B 

  



137 
 

Droplet digital PCR methodology and results  

Droplet digital PCR was carried out on genomic DNA from participants with a known 

HNF1B whole-gene deletion (as determined by multiplex ligation-dependent probe 

amplification) to confirm the presence of a larger approximate 1.3 Mb deletion at 

chromosome 17q12; this was performed using the Bio-Rad QX200 system (Bio-Rad 

Laboratories, Hercules, CA) and following standard protocols. Four primer pairs were 

designed; two target genes (ZNHIT3 and HNF1B) within the usual minimally deleted 

region containing 15 genes and two are hypothesised to target genes (TAF15 and 

SOCS7) outside the deletion (Figure B.1). Primer sequences are shown in Table B.1. 

 

 

Figure B.1  Schematic of chromosome 17 adapted from the UCSC Genome Browser on Human Feb. 2009 
(GRCh37/hg19) Assembly (http://genome.ucsc.edu/). 

17q12 is highlighted by the red box and blown up below to show the different genes within the region. The 15 genes 

involved in the common 1.3 Mb deletion seen at 17q12 are highlighted by the green box. The orange bars underline the 

position of the four primer pairs used in this experiment. 

 

Gene Forward primer Reverse primer 

TAF15 (exon 6) TAGCCAAGGTGGAAGAGCAC TGATAGGACTGCTGGTTTTGAC 

ZNHIT3 (exon 3) TACCCCAGACACTTGCTTCC GTTTTCCACAGGCTTTACGG 

HNF1B (exon 2) TTTTGCATAGACCATAGGTAGCAC TCTGGGGGATGTTGTGTTG 

SOCS7 (exon 2) AATGCATATGTGTTCATTTCTCC TGTTTCCCAACAGGTCTCAG 

 

Table B.1  Primer sequences for droplet digital PCR 

 

http://genome.ucsc.edu/


138 
 

An assay mix containing 22 ng of genomic DNA, QX200 ddPCR EvaGreen supermix (Bio-

Rad Laboratories) and gene assay at a final concentration of 100 nM per primer in a 22 μL 

final volume was prepared. 20 μL of assay mix and 70 μL of ddPCR droplet oil (Bio-Rad 

Laboratories) were subjected to the automated QX200 Droplet Generator (Bio-Rad 

Laboratories) to generate ~20,000 water-in-oil droplets. 40 μL of the oil and sample droplet 

emulsions were then transferred into a 96 well plate and thermocycled in a standard 

thermocycler (Bio-Rad Laboratories) at 95°C for 10 minutes, 94°C for 30 seconds and 

57°C for 1 minute (repeated 39 times) and 98°C for 10 minutes. Sample fluorescence was 

measured by the QX200 Droplet Reader (Bio-Rad Laboratories) and absolute 

quantification of amplified DNA product was calculated by Poisson distribution using 

QuantaSoft software (Bio-Rad Laboratories). Copy number values for the assays were 

calculated as x/y, where “x” is the concentration of the target assay and “y” is the 

concentration of the reference assay using SOCS7; as all patients are predicted to have a 

heterozygous deletion of ~1.3 Mb at chromosome 17q12, we hypothesised that copy 

number values would be in the order of 0.5 for ZNHIT3 and HNF1B (both genes that lie 

within the commonly deleted region) and 1.0 for TAF15 and SOCS7 (both genes that lie 

outside the commonly deleted region). 

 

 

Figure B.2  Example of output using QuantaSoft software for patient 34. 
Copies of DNA per μL are shown for each of the five genes. Copy number value could then be calculated by dividing the 

concentration of the target assay by the concentration of the reference assay (SOCS7). 
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Droplet digital PCR was carried out on genomic DNA from 20/20 participants with a known 

HNF1B whole-gene deletion (Figure B.2 and Table B.2). Copy number values ranged from 

0.78-1.23 for TAF15, a gene that lies outside the region, whereas they were approximately 

50% lower at 0.38-0.61 for ZNHIT3 and 0.40-0.63 for HNF1B, both genes that are involved 

in the common 1.3 Mb deletion. These results suggest that all 20 patients with a HNF1B 

whole-gene deletion actually had a larger, approximate 1.3 Mb, deletion at chromosome 

17q12 as hypothesised. 

 

Patient study number Copy number value = concentration of target assay/concentration of reference assay using SOCS7 (95% confidence 
interval) 

TAF15 ZNHIT3 HNF1B SOCS7 

1 0.67* 
(0.65-0.69) 

0.38 
(0.37-0.40) 

0.40 
(0.39-0.42) 

1.00 
(0.97-1.03) 

3 1.04 
(1.01-1.07) 

0.52 
(0.50-0.54) 

- 
 

1.00 
(0.97-1.03) 

5 0.96 
(0.93-0.98) 

0.46 
(0.44-0.48) 

0.49 
(0.47-0.50) 

1.00 
(0.97-1.03) 

7 0.97 
(0.94-1.00) 

0.51 
(0.49-0.53) 

0.55 
(0.53-0.57) 

1.00 
(0.97-1.03) 

8 0.78 
(0.76-0.80) 

0.41 
(0.40-0.43) 

0.49 
(0.48-0.51) 

1.00 
(0.98-1.02) 

9 0.95 
(0.92-0.99) 

0.58 
(0.55-0.60) 

0.56 
(0.53-0.58) 

1.00 
(0.97-1.04) 

16 1.23 
(1.20-1.27) 

0.50 
(0.48-0.52) 

0.61 
(0.59-0.63) 

1.00 
(0.97-1.03) 

17 1.02 
(1.00-1.05) 

0.45 
(0.43-0.46) 

0.47 
(0.46-0.49) 

1.00 
(0.98-1.03) 

18 0.99 
(0.96-1.02) 

0.55 
(0.53-0.57) 

0.63 
(0.61-0.66) 

1.00 
(0.97-1.03) 

19 0.87 
(0.85-0.90) 

0.42 
(0.40-0.44) 

0.42 
(0.40-0.44) 

1.00 
(0.96-1.04) 

27 0.97 
(0.94-1.00) 

0.61 
(0.59-0.64) 

0.54 
(0.52-0.57) 

1.00 
(0.97-1.03) 

28 0.96 
(0.93-0.98) 

0.48 
(0.46-0.50) 

0.42 
(0.41-0.44) 

1.00 
(0.98-1.03) 

29 1.03 
(1.00-1.06) 

0.44 
(0.42-0.45) 

0.51 
(0.49-0.53) 

1.00 
(0.97-1.03) 

30 1.06 
(1.03-1.09) 

0.55 
(0.53-0.57) 

0.57 
(0.55-0.59) 

1.00 
(0.97-1.03) 

32 1.01 
(0.98-1.04) 

0.55 
(0.52-0.57) 

0.54 
(0.52-0.56) 

1.00 
(0.97-1.03) 

33 0.94 
(0.91-0.97) 

0.51 
(0.49-0.54) 

0.54 
(0.51-0.56) 

1.00 
(0.97-1.03) 

34 1.06 
(1.03-1.09) 

0.54 
(0.52-0.56) 

0.52 
(0.50-0.54) 

1.00 
(0.97-1.03) 

35 1.10 
(1.07-1.13) 

0.60 
(0.57-0.62) 

0.61 
(0.59-0.63) 

1.00 
(0.97-1.03) 

37 0.97 
(0.93-1.01) 

0.52 
(0.49-0.55) 

0.49 
(0.46-0.51) 

1.00 
(0.96-1.04) 

*Repeat droplet digital PCR gave a result of 0.97 (0.93-1.00); - denotes no assay result 

 

Table B.2  Copy number values confirmed by droplet digital PCR for each patient with a known HNF1B whole-gene 

deletion previously determined by multiplex ligation-dependent probe amplification 
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Strengths and Difficulties Questionnaire  

Version P 4-16 for completion by parents and version S 11-17 for self-completion. 
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Autism Spectrum Quotient 
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Stability of serum magnesium levels over time  

 

 

Figure C.1  Scatter plots for age and serum magnesium level in six individuals with HNF1B-associated renal disease. 

Abbreviations: IQR, interquartile range; Mg, magnesium. 

 

Fractional excretion of electrolytes in the urine should be calculated using paired blood 

and urine samples. However, this is not always possible to achieve; patients are not 

always able to produce a urine sample at the same time as venepuncture and study 

participants, particularly children, often prefer previous results to be used rather than 
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undergo a further blood test. On reviewing previous laboratory results, we noticed that 

serum electrolyte concentrations were relatively stable over time; Figure C.1 shows serum 

magnesium measurements (taken in either general practice or out-patient departments) 

over time in six individuals with HNF1B-associated renal disease. Therefore, we decided 

to include results from non-paired blood and urine samples in our analysis where (i) 

samples were taken within 6 months of each other and (ii) previous serum measurements 

of electrolytes and creatinine, where available, were stable. 
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Reanalysis of data from chapter 5 after applying further exclusion criteria  

This section presents the results from reanalysis of the data in chapter 5 after applying the 

following additional exclusion criteria: (i) use of medications that could alter serum or urine 

electrolyte measurements e.g. magnesium supplementation, diuretics, calcineurin 

inhibitors (CNIs) and proton pump inhibitors (PPIs) and (ii) use of unpaired blood and urine 

samples. This led to the exclusion of eight patients from the clinic cohort (diuretics, n=3; 

CNIs, n=3; PPIs, n=2) and seven patients from the HNF1B cohort (unpaired blood and 

urine samples, n=5; PPIs, n=2). 

 

Age, sex and renal function are similar between HNF1B and clinic cohorts 

Age and sex were similar in both individuals with HNF1B-associated disease and those 

under follow up in a general nephrology clinic (Table C.1). Renal function tended to be 

better in the clinic patients with a median estimated glomerular filtration rate (eGFR) of 92 

ml/min/1.73m2 (interquartile range [IQR] 55-95), compared to 58 (IQR 44-71) in the 

HNF1B cohort, but this did not quite reach statistical significance (P=0.07). The majority of 

patients (93%) with an HNF1B mutation/deletion had a renal diagnosis of either cysts or 

cystic dysplasia whereas there were a range of diagnoses in the clinic cohort. Diabetes 

was present in 8/14 (57%) individuals with HNF1B-associated disease but only 1/16 (6%) 

clinic patients, P=0.004. 
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Table C.1  Characteristics of study participants 

 

5/14 (36%) patients with HNF1B-associated disease have serum magnesium levels 

within the normal reference range 

The median magnesium concentration was 0.68 mmol/L (IQR 0.54-0.7) in the HNF1B 

cohort compared to 0.88 (IQR 0.82-0.91) in the clinic cohort, P<0.0001 (Figure C.2A). 9/14 

(64%) patients with HNF1B mutations/deletions had hypomagnesaemia compared to 1/16 

(6%) clinic patients, P=0.001 (Figure C.2B). The receiver-operating characteristic (ROC) 

curve for serum magnesium, with HNF1B-associated renal disease status as the 

dependent variable, is shown in figure C.2C; area under the curve (AUC)=0.96 (95% 

confidence interval [CI] 0.90-1). A cut-off for serum magnesium of 0.75 mmol/L was 100% 

sensitive and 87.5% specific for patients with HNF1B-associated disease. 
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Figure C.2A  Box plots showing serum magnesium levels in both patients under follow up in a general nephrology clinic 

and individuals with HNF1B-associated renal disease. 
The area between the dashed red lines represents the normal reference range for serum magnesium (0.7-1 mmol/L). 

 

 

Figure C.2B  Stacked bar charts showing the percentage of patients with hypomagnesaemia in both clinic and HNF1B 

cohorts. 
Abbreviations: HNF1B, hepatocyte nuclear factor 1B; Mg, magnesium. 
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Figure C.2C  ROC curve for serum magnesium, with HNF1B-associated renal disease status as the dependent variable. 

Abbreviations: ROC, receiver-operating characteristic. 

 

All individuals with HNF1B-associated disease have fractional excretion of 

magnesium (FEMg) >4% 

The median FEMg was 10.6% (IQR 8.4-14.4) in the HNF1B cohort compared to 2.6% 

(IQR 2.0-3.9) in the clinic cohort, P<0.0001 (Figure C.3A). All patients with HNF1B 

mutations/deletions (n=14) had hypermagnesuria with FEMg >4% compared to only 4/16 

(25%) clinic patients, P<0.0001 (Figure C.3B). The ROC curve for FEMg, with HNF1B-

associated renal disease status as the dependent variable, is shown in figure C.3C; 

AUC=0.98 (95% CI 0.94-1). A cut-off for FEMg of 5.65% was 100% sensitive and 87.5% 

specific for patients with HNF1B-associated disease. 
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Figure C.3A  Box plots showing FEMg in both patients under follow up in a general nephrology clinic and individuals with 

HNF1B-associated renal disease. 
The area above the red dashed line represents hypermagnesuria. 

 

 

Figure C.3B  Stacked bar charts showing the percentage of patients with hypermagnesuria in both clinic and HNF1B 

cohorts. 
Abbreviations: FEMg, fractional excretion of magnesium; HNF1B, hepatocyte nuclear factor 1B. 
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Figure C.3C  ROC curve for FEMg, with HNF1B-associated renal disease status as the dependent variable. 

Abbreviations: ROC, receiver-operating characteristic. 

 

Serum calcium levels are similar between HNF1B and clinic cohorts 

The median calcium concentration was 2.29 mmol/L (IQR 2.24-2.37) in the HNF1B cohort 

compared to 2.28 (IQR 2.17-2.32) in the clinic cohort, P=0.4 (Figure C.4A). The ROC 

curve for serum calcium, with HNF1B-associated renal disease status as the dependent 

variable, is shown in figure C.4B; AUC=0.48 (95% CI 0.30-0.66). 
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Figure C.4A  Box plots showing serum calcium levels in both patients under follow up in a general nephrology clinic and 

individuals with HNF1B-associated renal disease. 
The area between the dashed red lines represents the normal adult reference range for serum calcium (2.05-2.55 

mmol/L); the paediatric reference range for serum calcium is 2.2-2.7 mmol/L. 

 

Figure C.4B  ROC curve for serum calcium, with HNF1B-associated renal disease status as the dependent variable. 

Abbreviations: ROC, receiver-operating characteristic. 
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9/13 (69%) patients with HNF1B-associated disease also have hypocalciuria 

Median fractional excretion of calcium (FECa) was 0.6% (IQR 0.4-1.3) in individuals with 

an HNF1B mutation/deletion compared to 1.4% (IQR 0.6-1.7) in clinic patients, although 

this was not statistically significant with P=0.3 (Figure C.5A). However, 9/13 (69%) of those 

with HNF1B-associated disease had hypocalciuria with FECa <1% compared to only 4/14 

(29%) clinic patients, P=0.06 (Figure C.5B). The ROC curve for FECa, with HNF1B-

associated renal disease status as the dependent variable, is shown in figure C.5C; 

AUC=0.61 (95% CI 0.37-0.85). 

 

 

Figure C.5A  Box plots showing FECa in both patients under follow up in a general nephrology clinic and individuals with 

HNF1B-associated renal disease. 
The area below the red dashed line represents hypocalciuria. 
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Figure C.5B  Stacked bar charts showing the percentage of patients with hypocalciuria in both clinic and HNF1B 

cohorts. 
Abbreviations: FECa, fractional excretion of calcium; HNF1B, hepatocyte nuclear factor 1B. 

 

 

Figure C.5C  ROC curve for FECa, with HNF1B-associated renal disease status as the dependent variable. 

Abbreviations: ROC, receiver-operating characteristic. 
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Hypermagnesuria is more marked in patients with HNF1B-associated disease when 

diabetes is also present 

Median FEMg was higher in individuals with an HNF1B mutation/deletion when diabetes 

was also present (Table C.2); there was also a tendency to a lower serum magnesium 

level. However, this group were older and renal function tended to be worse (median 

eGFR 47.5 ml/min/1.73 m2 [IQR 41-83] compared to 62 [IQR 56-71] in those without 

diabetes; P=0.3). Simple correlation analysis showed moderate associations between (i) 

age and serum magnesium in all patients, (ii) age and FEMg in patients with HNF1B-

associated disease and (ii) eGFR and FEMg in all patients (Figure C.6). 

 

 

Table C.2  Comparison of individuals with HNF1B-associated disease depending on diabetes status 
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Figure C.6  Scatter plots for A&B) age and serum magnesium level, C&D) age and fractional excretion of magnesium, 

E&F) eGFR and serum magnesium level and G&H) eGFR and fractional excretion of magnesium. 
Spearman’s ρ was classified as follows: <4, weak association; 0.4-0.7, moderate association; ≥0.7, strong association. 

Abbreviations: eGFR, estimated glomerular filtration rate. 

A) Clinic cohort (Spearman’s ρ  -0.5) B) HNF1B cohort (Spearman’s ρ  -0.5)

C) Clinic cohort (Spearman’s ρ  0.1) D) HNF1B cohort (Spearman’s ρ  0.6)

E) Clinic cohort (Spearman’s ρ  0.1) F) HNF1B cohort (Spearman’s ρ  -0.2)

G) Clinic cohort (Spearman’s ρ  -0.5) H) HNF1B cohort (Spearman’s ρ  -0.5)
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