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Abstract—The applicability of fractional order (FO) automatic 

generation control (AGC) for power system frequency oscillation 
damping is investigated in this paper, employing distributed 
energy generation. The hybrid power system employs various 
autonomous generation systems like wind turbine, solar 
photovoltaic, diesel engine, fuel-cell and aqua electrolyzer along 
with other energy storage devices like the battery and flywheel. 
The controller is placed in a remote location while receiving and 
sending signals over an unreliable communication network with 
stochastic delay. The controller parameters are tuned using 
robust optimization techniques employing different variants of 
Particle Swarm Optimization (PSO) and are compared with the 
corresponding optimal solutions. An archival based strategy is 
used for reducing the number of function evaluations for the 
robust optimization methods. The solutions obtained through the 
robust optimization are able to handle higher variation in the 
controller gains and orders without significant decrease in the 
system performance. This is desirable from the FO controller 
implementation point of view, as the design is able to 
accommodate variations in the system parameter which may 
result due to the approximation of FO operators, using different 
realization methods and order of accuracy. Also a comparison is 
made between the FO and the integer order (IO) controllers to 
highlight the merits and demerits of each scheme. 
 

Index Terms—distributed energy system; fractional order PID 
controller; robust optimization; automatic generation control 

I. INTRODUCTION 

UE to the deregulation in the energy markets, the 
environmental emission concerns and the rising costs of 

electricity transmission and distribution, there is  an increasing 
trend of shifting from centralized power generation and 
distribution to a more decentralized mode [1].  This has given 
rise to distributed energy resources (DERs) with integration of 
renewable energy technologies like wind and solar, along with 
energy storage devices like flywheels, batteries etc. and 
combined heat and power generation technologies [1]. Control 
and communication play an important role in the efficient 
operation of these distributed power systems [2]. To 
effectively meet the challenges of control in DERs, the paper 
looks at a novel controller design strategy for a hybrid power 
system [3], where the sensor measurements and the control 
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signals are sent over an unreliable communication network 
introducing random time delays in the control loop [4]. 

Fractional calculus [5] is a 300 year old mathematical 
concept. However, in the last decade, it has found applications 
in control systems and is gaining increasing interest from the 
research community in other domains as well. Fractional 
calculus has also found recent applications in computational 
intelligence based control system design [6] with random time 
delays e.g. in process control [7], nuclear reactor control [8] 
etc. among others. Inspired by the successful applications in 
these domains, the present paper investigates the applicability 
of fractional order intelligent control for hybrid power system 
or distributed energy generation. Other control approaches of 
similar kind of system design include the standard PID 
controller [9], robust H∞ controller [10] etc.  

The stochastic nature of the demand load and the renewable 
generation terms i.e. solar and wind energies introduces 
fluctuations in the system frequency [11-12]. The controller in 
the hybrid power system tries to minimize the aberrations in 
the system frequency so that the power quality is maintained. 
This leads to the concept of AGC for grid frequency 
oscillation damping in the context of distributed energy 
generation [13]. This is done by sending an appropriate 
control signal to the energy storage systems to absorb (release) 
the surplus (deficit) power from (to) the grid. The controllers 
are generally tuned in an output optimal fashion by 
minimizing some error criterion [9]. However, these obtained 
values of controller parameters may not be robust to the slight 
variability during actual hardware implementation. This is 
more relevant for fractional order controllers, since they are 
realized in hardware using band limited approximations of 
higher order transfer functions using different techniques like 
Carlson, Matsuda, Continued Fraction Expansions (CFE) etc. 
[5, 6, 14]. Under such circumstances, the optimal response as 
obtained in the time domain simulations would vary 
significantly. Therefore a robust optimization based controller 
parameter tuning scheme is proposed in the present paper to 
overcome this issue and facilitate practical implementation. 
The controllers tuned with the robust algorithms show slight 
variations in time domain performance, as opposed to the 
drastic deterioration of performance with the optimally tuned 
controllers, when the controller parameters are perturbed. In 
the present work, different variants of PSO are used for robust 
optimization. PSO has been used in other smart grid 
applications like demand response and resource scheduling 
[15], sizing of distributed generation and storage capacity 
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[16], wind power control [17], bi-directional energy trading 
[18] etc. The present paper introduces a FOPID based 
centralized AGC scheme for grid frequency oscillation 
damping in a DER system. We use the PSO based robust 
optimization technique for tuning the controller and report the 
achievable parametric robustness of the hybrid power system.  

II. DESCRIPTION OF THE DISTRIBUTED ENERGY SYSTEM 

The schematic representation of the hybrid power system 
using different energy generation/storage is illustrated in Fig. 
1 with its various components described in Table I. 

A. Models of Different Generation Subsystems 
TABLE I 

NOMINAL PARAMETERS OF THE COMPONENTS OF HYBRID POWER SYSTEM 

Component Gain (K) Time constant (T) 

Wind turbine generator (WTG) KWTG = 1 TWTG = 1.5 

Aqua Electrolyzer (AE) KAE = 0.002 TAE = 0.5 

Fuel Cell (FC) KFC = 0.01 TFC = 4 

Flywheel energy storage system (FESS) KFESS = -0.01 TFESS = 0.1 

Battery energy storage system (BESS) KBESS = -0.003 TBESS = 0.1 

Diesel engine generator (DEG) KDEG = 0.003 TDEG = 2 

Solar Photovoltaic (PV) KPV = 1 TPV = 1.8 

 
For small signal analysis, the dynamics of the WTG, PV, FC 

and DEG can be modeled by first order transfer functions (1)-
(4) with the associated gain and time constants given in Table 
I [9, 19], where k represents the number of units. These 
transfer functions represent the electrical power produced 
(PWTG, PPV) from the renewable energy sources like wind 
power (Pw), solar irradiation (Φ) etc. In this study, a 
centralized controller has been used for the hybrid energy 
system (Fig. 1) as opposed to multiple decentralized 
controllers [9] for each individual sub-systems like the battery, 
flywheel and diesel. This helps in easier maintenance, reduced 
wiring and also makes the design problem tractable by 
reducing the number of controller parameters. However, there 
would obviously be some deterioration in the performance, as 
the same control signal is being used for all the sub-systems. 
Nevertheless, here we show that the centralized controller 
results in acceptable time domain performance. Different rate 
limiters in each subsystem have been provided so that the 
control signal is appropriately modified with respect to the 
individual electromechanical characteristics of the 
storage/generating devices. 

    1 , 1,2,3
kWTG WTG WTG WTG WG s K sT P P k       (1) 

    1PV PV PV PVG s K T s P      (2) 

    1 , 1, 2
k kFC FC FC FC AEG s K sT P P k       (3) 

     1DEG DEG DEG DEGG s K sT P u      (4) 

B. Model of Aqua Electrolyzer 

The aqua-electrolyzer produces hydrogen for the fuel cell 
by using a part of the power generated from the renewable 
sources like wind and/or solar. The dynamics of the AE can be 

represented by the transfer function (5) [19] and it uses 
 1 nK fraction of the total power of WTG and PV to 

produce hydrogen which is again used by two FCs to produce 
power as an additional source to the grid.  

      1 1AE AE AE AE WTG PV nG s K sT P P P K         (5) 

where,    , 0.6n t WTG PV nK P P P K   .  

 
Fig. 1 Schematic of the hybrid power system used in this study.  

C. Models of Different Energy Storage Systems 

In the hybrid energy system of Fig. 1, the FESS and the 
BESS are connected in the feedback loop and are actuated by 
the signal from the FOPID or PIλDμ controller. These absorb 
or release energy from or to the grid if there is a surplus or 
deficit amount of power respectively. Their corresponding 
dynamical models can be represented by (6)-(7) [19]. 

     1FESS FESS FESS FESSG s K sT P u      (6) 

     1BESS BESS BESS BESSG s K sT P u      (7) 

Here, the incremental control action of the FOPID controller is 

represented as     CAu t u t     , τCA ~ U(0.05, 0.15) [7] 

that actuates the energy storage/generation devices. The 
controller output u gets corrupted by the stochastic network 
delay ( CA ) for the transmission of the signal from the 

controller to actuator. Also, the models of the grid frequency 
dependent energy storage/generating elements are considered 
to have rate constraint nonlinearities as 

0.9FESSP  , 0.2BESSP  , 0.01DEGP   respectively (Fig. 1), 

such that all the three components operate in the nonlinear 
zone for a wide range of controller values. The rate constraint 
nonlinearities take care of the various electromechanical 
constraints that these devices exhibit. However, the overall 
system dynamics is dictated by the relative values of the gains 
and time constants of the different components. For example, 
the DEG has a larger time constant as compared to the FESS. 
Therefore, as soon as a control signal is applied, the FESS will 
respond more quickly and the DEG would take more time to 
respond. Therefore, the overall system dynamics would be 
governed by a combination of these fast and slow dynamics. 
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D. Power System Model Using Grid Frequency Deviation 

The power system model can be represented as (8) which 
describes the dynamics of power deficit/surplus (ΔPe) to the 
grid frequency oscillation (Δf). 

      1sys e L SG s f P f P P D Ms         (8) 

where, M and D are the equivalent inertia constant and 
damping constant of the hybrid power/energy system [3] and 
their typical values are considered as 0.4 and 0.03 respectively 
for the present simulation study. 

E. Wind Speed Model 

The wind speed model should be able to capture the spatial 
dependencies of wind flow like base fluctuation and small 
stochastic components etc. To achieve this objective, the two 
component wind model [19] is chosen as represented by (9). 

 W WB WNV V V   (9) 

where, ,WB WNV V are the base wind component and noise wind 

component respectively. The base wind component is the 
constant component which is always present during the 
operation of the wind turbine and has been considered as (10). 

      7.5 3 200 10.5 250WB BV K H t H t H t       (10) 

where, BK  is a constant (within a constant speed operation 

regime) and  H t represents the Heaviside step function.  

The noise component of the wind is expressed as (11). 

         2

1

2 cos
N

WN V i i i
i

V S t    


       (11) 

where,  1 2i i    , φi ~ U(0, 2π),   is the frequency 

step to compute spectral density, 2 200  is variance of the 

noise component and the spectral density function  V iS   is 

given by (12). 

     
4 322 22 1V i N i iS K F F          

      (12) 

Here, 0.004NK  is the surface drag coefficient, 2000F  is 

the turbulence scale and 7.5  is the mean wind speed at 

reference height. Here, 50N  and 0.5  rad/s are taken to 

achieve an effective modeling accuracy. 

F. Characteristics of Wind Turbine Model Output 

   The non-dimensional curves of the power coefficient pC  

expressed as a function of tip speed ratio  (14) and blade 

pitch angle 0.1745  is used to characterize the wind turbine 

and is expressed as (13) [19].  

     
3

0.44 0.0167 sin 0.0184 3
15 0.3pC
 

  


 
     

  (13) 

Here,  refers to the ratio of the speed at the blade tip of the 

wind turbine to the wind speed and is expressed as (14).  

 blade blade WR V    (14) 

where, 23.5mbladeR  is the radius of the wind turbine blades 

and 3.14 rad/sblade  is the rotational speed of the blades.  

The output mechanical power of the wind turbine is given by

           31 2W r p WP A C V               (15) 

where, 31.25 kg/m  refers to the air density and 
21735 mrA  is the swept area of the blades. 

G. Characteristics of PV Output Power and Demand Power 

The power output of the photovoltaic system can be 
represented by (16) as also done in [19]. 

                1 0.005 25PV aP S T                   (16) 

where, 10%  is the conversion efficiency of the PV cells, 
24084 mS  is the measured area of the PV array, (17) in 

kW/m2 is the solar radiation on the surface of the PV cells and 
o25 CaT   is the ambient temperature. 

     
       

0.5 0.3 25 0.3 75

0.3 150 , 0.1,0 1~ .n n

H t H t H t

H t t t U

     

    
    (17)

Fig. 2 depicts one realization of the stochastic generation 
components ( PVP , WTGP ) along with the stochastic variations 

in the load demand LP (18) and the net power generated by the 

renewable sources to the grid ( tP ). 

       
   
0.4 50 0.1 100 0.2 175

0.2 225 , 0.05,0.05~

L

L L

P H t H t H t H t

H t N N U

      

    (18) 
In all the three cases, there are sudden fluctuations in the 
power levels with stochastic aberrations throughout in WTGP , 

PVP and LP  which is representative of a realistic scenario.  

 
Fig. 2 A single realization of the renewable generations and demand powers 
which are independent of the controller structure. 

H. Control Over Unreliable Communication Network 

Since the different energy resources are located at different 
places, they are assumed to communicate via a shared 
communication medium [20, 21]. The use of a shared medium 
introduces random delays in the control loop between the grid 
frequency sensor to the controller ( SC ) and the controller to 

the actuator ( CA ) [22]. A small amount of random delay can 
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induce instability while the control loop can be stable with a 
larger amount of lumped static delay [6, 7]. Therefore these 
stochastic delays must be considered in the optimization based 
controller design procedure itself [8]. In the present 
simulation, SC and CA are assumed to be randomly drawn 

from a uniform distribution within a range of  0.05,0.15 . The 

incremental control signal before and after the network are 

represented as u and u . The whole hybrid power system 
model in Fig. 2 thus can be viewed as a higher order stochastic 
delay differential equation due to stochastic forcing and 
stochastic delay terms and is numerically integrated with the 
3rd order accurate Bogacki-Shampine formula over a total time 
window of 300 sec with a fixed step-size of 0.01 sec. 

III. BASICS OF FRACTIONAL ORDER CONTROLLER 

Fractional calculus is an extension of the nth order 

successive differ-integration of a function  f t having the 

order as any real value n  . For control system studies, the 
non-integer order integro-differential operator is defined as 
Caputo derivative (19) among three main definitions of 
fractional calculus which under zero initial condition in 
Laplace transform produce FO transfer functions [5].  
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                 (19) 

The transfer function representation of a FOPID controller 
is given in (20). 

    p i dC s K K s K s     (20) 

 This typical controller structure has five independent 
tuning knobs i.e. the three controller gains , ,p i dK K K and 

two FO integro-differential operators ,  . 

For 1  and 1  the controller structure (20) reduces to the 

classical PID controller in parallel structure [14, 6]. 
Various continuous and discrete time rational 

approximation methods can be adopted to implement the FO 
operators. In this paper, each guess value of the FO differ-

integrals ,  within the optimization process is continuously 

rationalized with the Oustaloup’s 5th order rational 
approximation (ORA) [14] within the chosen frequency range 
of  2 210 ,10  rad/sec. Due to the fact that FO differ-

integrals represent infinite dimensional linear filters, their 
band-limited realizations are necessary for implementation. 
Here, each FO element has been rationalized using ORA given 
by the equations (21) and (22). If it be assumed that the 
expected fitting range or frequency range of controller 

operation is  ,b h  , then the higher order filter which 

approximates the FO element s can be written as (21). 

 ( )
N

k
f

k N k

s
G s s K

s
 




 

  (21) 

The poles, zeros and gain of the filter can be evaluated as (22). 

   
0.5(1 ) 0.5(1 )

2 1 2 1, ,
k n k n

n n
k b h b k b h b hK

 
        

     
    (22) 

In equations (21)-(22),  is the order of the differ-integration 

and  2 1n is the order of the realized analog filter. The 

controller operates on the randomly delayed grid frequency 
deviation signal to produce the control action (23). 

       , 0.05,0.15~p i d SC SCu t K K D K D f t        (23) 

IV. OPTIMIZATION ALGORITHMS AND CONTROL OBJECTIVES 

A. The Concept of Robust Optimization 

The difference between a robust and an optimal solution is 
illustrated in Fig. 3. The optimum point has the lowest value 
of the objective function. However, if the input design variable 
has a certain variance, indicated by the first probability 
distribution curve on the abscissa, then there is a 
corresponding large deviation in the objective function value, 
indicated by the probability distribution curve on the ordinate. 
In case of the robust solution, the same variance in the input 
variable produces a smaller variance in the objective function 
value. Hence the latter solution is less sensitive to variation in 
system parameters and is consequently a robust solution. The 
robust solution has a higher value of objective function than 
the optimal solution, but the worst case scenario for the robust 
solution is much less severe than that of the corresponding 
optimum solution [23]. 

There are various methods of assessing the robustness of 

solutions ( x


) for the objective function  J x


. The expected 

fitness measure is used in this paper and is given by (24).  

      exp .J x J x pdf d  




 
    

 (24) 

where,


is the input variable fluctuations,  pdf 


is the 

probability distribution function of the occurrence of 


over 

the whole input variable space  ,
N  , and N is the problem 

dimension i.e. the number of decision variables. 
 

 
Fig. 3 Schematic showing the difference between an optimum solution and a 
robust solution. 

B. Objective Function for Optimization Based Control 

For effective functioning of the hybrid power system, the 
controller gains and FO integro-differential orders need to be 
tuned. For the controller design problem, the objective 
function in (25) is considered. It consists of the integrals of 
two weighted terms, which try to minimize the frequency 
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deviation in the hybrid power system ( f ), as well as the 

incremental control signal ( u ) [7-8, 24]. 

      max 2 2

0
1

T

nJ w f w K u dt        (25) 

where, w dictates the relative importance of the two objectives 
(i.e. Integral of Squared Error – ISE and Integral of Squared 
Deviation of Control Output – ISDCO) and 0.5w  is 
considered to give equal weightage on both the parts of the 

control objective. 510nK  is the normalizing constant to scale 

ISE and ISDCO in an uniform scale and max 300 sT  . 

The objective function (25) is formulated in such a way that 
along with the frequency oscillation ( f ), the incremental 

control signals going to different actuators are also minimum. 
This helps to limit the requirement of increased capacity for 
the battery, reduces flywheel jerk and diesel consumption, 
making the overall hybrid power system more cost-effective. 

Also, due to the noisy nature of the frequency deviation 
signal, the control signal gets amplified with the derivative 
action of the PID/FOPID and even more due to the difference 
operator (Δu) of the control signal. Therefore, there is a need 
of a scale factor to bring the amplitude of the ISE and ISDCO 
to a comparable platform and then only appropriate weights 
could be assigned by a designer. An equal weightage is given 
in the present case, as also reported in [7-8, 24]. In most of the 
controller design problems, it is difficult to decide the weighs 
a priori and a multi-objective optimization formalism should 
be used to obtain the Pareto optimal trade-offs for different 
weights as shown in [25]. The designer can then choose the 
suitable weighting according to his requirements. 
Nevertheless, the proposed methodology is still valid if the 
weightings in the objective function is changed and our 
simulations show one of such possible alternatives. 

C. Implementation Issues of Fractional Order Controller and 
Need for Robust Optimization 

Depending on the different methods of realization i.e. 
analog (like Crone, Carlson, Matsuda, CFE with high and low 
frequency approximations etc.) and digital (Tustin, Simpson, 
backward difference, impulse response etc.) methods of a FO 
element, the time/frequency domain characteristics of the filter 
may be different [14]. Fig. 4 shows the phase response of the 

band limited realization of1 s in the frequency range of 
2 210 10   Hz. The corresponding time domain impulse 

responses are shown in Fig. 5. It can be seen that there exists 
significant differences in the time domain response among the 
different realizations and also among different approximation 
orders of the same realization. From the application point of 
view, one can opt for any one of these realization techniques 
and the filter order to implement a single FO operator without 
paying much attention to the resulting frequency and time 
domain discrepancies of the approximation. Therefore, the 
design of the controller parameters themselves should be 
robust enough to tolerate these imprecisions during the actual 
hardware implementation, while still ensuring satisfactory 
time domain performance. In addition, the components of the 
hybrid energy system are generally modelled as low-pass first 
order transfer functions, considering small signal stability 

analysis [19], whereas in reality they may show more complex 
nonlinear behavior which can be considered as a linear model 
with uncertain parameters. The concept of robust optimization 
in the present problem is introduced to handle both system 
nonlinearities and FO controller implementation issues.  

 
Fig. 4 Phase responses of different band-limited realizations of FO element 
1 s with different methods and order of approximation. 

 
Fig. 5 Impulse responses of FO element 1 s with different methods/orders. 

D. Canonical PSO (CPSO) Optimizer and Its Variants 

The CPSO algorithm tries to optimize an objective function 

 J x


with respect to the design variable nx as in (26). 

  
nx

minimize J x



 (26) 

where, the objective function : nf  and the n- 

dimensional search space nG is pre-specified by the user. 
The PSO algorithm consists of a swarm of particles 

 1, 2,...,i px i n  with the maximum number of particles 

pn  specified by the user. The particles ix search for an optimal 

solution nx of (26). The position of the thi particle is 

denoted by  ,1 ,2 ,: , ,...,
T n

i i i i nx x x x  and the velocity is 

denoted by  ,1 ,2 ,: , ,...,
T n

i i i i nv v v v  , where  1, 2,..., pi n . 

The position and velocity of the thi  particle, n
ix  is updated 

in each iteration, based on equations (27)-(28) for 
k Z which indicates the iteration number. 

 1 1k k k
i i ix x v    (27) 
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   1 , ,
1 1, 2 2,

k k k best k k k best k k
i i i i i i nbr iv v x x x x             (28) 

where,  is the constriction coefficient, 1 is the cognitive 

learning rate and 2 is the social learning rate and are specified 

by the user and   1, 2, ~, 0,1k k
i i U  are random 

variables. ,best k
ix in (28) refers to the previously obtained best 

position of the thi particle and ,best k
nbrx denotes the best position of 

the particle neighbors at the current iteration k as in (29). 

  , : arg min ( ), 0
j

i

best k j
i i

x
x J x j k    (29) 

,best k
nbrx is dependent on the topology of the swarm and for a 

fully connected topology it can be expressed as (30). 
  , : arg min ( ),

k
i

best k k
nbr i

x
x J x i   (30) 

Another variant of the PSO, known as the Fully Informed 
Particle Swarm (FIPS) is almost identical to the CPSO, but 
differs only in the velocity update equation.  

    1
1 1, ,

1

1
i

k k k k k
i i i i nbr m i

m

v v x x  






 
    

 
  (31) 

where, i is the number of neighbors of particle i and ,
k
nbr mx is 

the thm neighbor of particle i . In (31) all the solutions are 
taken into account instead of just the best neighbor.  

A second variant of the CPSO algorithm is the Charged 
CPSO (CCPSO) algorithm differs in the velocity update 
equation and is given by (32).    

   1 , ,
1 1, 2 2,

k k k best k k k best k k k
i i i i i i nbr i iv v x x x x              (32) 

where, is the acceleration/repelling coefficient. This helps in 
maintaining the diversity of the population and avoids 

premature convergence. The value of k
i  is calculated as 

 
1,

pn
k k
i il

l i l

 
 

   (33) 

where, k
il  is the repulsion force between particle i  and 

particle l  at iteration k  and is calculated as (34). 

 

 
 

3

32

,

,

0,

k k k k k k
il i l i l c i l p

k k k k k k k
il il i l c i l c i l

k k
p i l

Q x x x x R x x R

Q x x R x x R x x

R x x



     

    


 


 (34) 

where, ilQ is the charge value between particle i  and l , cR is 

the core radius and pR is the perception limit of each particle. 

The termination criterion for the PSO variants are set as the 
user specified maximum number effective fitness function 
evaluations (=2500). The population is taken as 30 and the 
values of 1 and 2 are chosen as 2.8 and 1.3 respectively for all 

the variants. A ring topology is adopted for the CPSO 
algorithm as it ensures higher diversity and helps to find better 
global minima. For CCPSO, 1, 1, 2 max( )il c pQ R R     , 

where   is the perturbation of the controller gains and orders. 

E. Archive Strategy in PSO Variants for Robust Optimization 

The expected value of the robust objective function in (24), 
can be approximated by sampling the perturbed objective 
function multiple times and taking the mean of the result. This 
can be expressed as (35) and is known as the multi-evaluation 
model [26].  

    exp
1

1ˆ
n

i
i

J x f x
n




 
  

 (35) 

where,  ~i pdf 
 

and n is the number of function 

evaluations. It is evident that increasing n  would result in a 
better approximation but would be more computationally 
expensive. To decrease the number of function calls to the 
original objective function, an archive is created [27, 28] 

which can store the points x


and the corresponding fitness 

values  J x


. Samples are added to the archive based on a 

selection algorithm [27, 28]. For reading the samples from the 
archive a Latin Hypercube sampling scheme is created and the 
corresponding closest representative points in the archive are 
calculated. If the representative archive point is also closest to 
the candidate sampling point, it is added to the set S, 
otherwise, it is added to a resampling candidate point set X . 
The set of points S can be used for robust fitness evaluation 
without calling the computationally expensive objective 
function, while those in X need to be resampled and added to 
the archive. The effective fitness function is calculated by 
using the points from both S and X using (36). 

      exp
ˆ 1

x X S

J x S X f x
 

  
 

 (36) 

More accurate approximation can be obtained by utilizing all 
the available and usable values in the archive uA and (36) can 

be modified to (37) [29]. 

        
u u

eff
x X S A x X S A

J x w x f x w x
      

 
      

 
  

   
 (37) 

where, uA are all the archive points from the area of  interest 

and    ~w x pdf 


. If the uncertainty in the input parameters 

is a uniform distribution (as in the present case), then the 
weighting function can be expressed as 

   1, ,

0,

if x x x
w x

otherwise

         


    


 (38) 

and the corresponding effective fitness function in (37) 
reduces to (39). 

    1

u

eff
x X S Au

J x f x
X S A   


  

 
 (39) 

An archive cleanup procedure, as outlined in [28] is also 
used and the maximum number of elements in the archive is 
limited to 5000. The number of samples for effective fitness 
approximation is taken as 10. 
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V. RESULTS AND DISCUSSIONS 

A. Controller Design for Distributed Energy Resources 

The optimal and robust PSO based optimization algorithms 
[28, 30] as discussed in Section IV are employed to optimize 
the distributed power/energy system as described in Section II. 
For robust tuning, the perturbation of the controller gains and 
orders from their nominal values are considered 
as    , , , , 10,10, 0.15,0.2, 0.2p i dK K K    (in both positive 

and negative directions). The optimal PID/FOPID controllers 
are tuned using the CPSO algorithm and the robust 
PID/FOPID controllers are tuned with the three variants of the 
PSO algorithm, viz. CPSO, CCPSO and FIPS. The 
corresponding results are reported in Table II. These results 
are the best solutions taken from 10 independent runs of each 
algorithm. From the values of minJ , it can be observed that the 

optimal FOPID is the best controller structure followed by the 
optimal PID controller. The robust controllers (both FOPID 
and PID) have higher values of minJ than the optimal 

controllers. This is in-line with our intuitive understanding, 
since the minJ  for the robust cases is the expected value over a 

range of controller gains and orders around the nominal value.  
For the robust designs, the CCPSO gives the best controller 
for the FOPID structure and the CPSO gives the best 
controller for the PID structure.  

 
TABLE II 

PSO BASED TUNING OF PID AND FOPID CONTROLLERS 

Controller Algorithm 
Controller parameters 

Jmin Kp Ki Kd λ µ 

Optimal 
FOPID 

CPSO 2.17 24.181 41.567 6.863 0.675 0.008 

Optimal 
PID 

CPSO 2.39 42.599 27.536 0.002 - - 

Robust 
FOPID 

CPSO 3.33 42.468 16.565 1.072 1.024 0.316 

CCPSO 2.96 53.795 24.054 0.364 0.799 0.378 

FIPS 8.84 25.413 14.936 7.948 0.953 0.211 

Robust 
PID 

CPSO 3.73 41.726 29.731 0.165 - - 

CCPSO 4.17 43.973 29.363 0.213 - - 

FIPS 5.95 24.436 16.207 0.255 - - 

 

 
Fig. 6 Convergence characteristics of the PSO algorithm for PID/FOPID. 

 
Fig. 7 Evolution of the PID/FOPID controller parameters or tuning knobs. 
 

 
Fig. 8 Box and whisker plots for the Jmin for 10 runs of the PSO algorithms. 

 
The convergence characteristics of the best found solutions 

for the four cases (optimal PID/FOPID and robust 
PID/FOPID) are reported in Fig. 6 and the corresponding 
evolution of the controller gains and orders are reported in Fig. 
7. Both the values of minJ and the controller parameters become 

almost constant towards the end of 2500 effective fitness 
function evaluations, indicating that the algorithms have 
converged to their respective minima. 

Fig. 8 shows the statistical dispersion of the values of minJ  

obtained from 10 independent runs of each algorithm. It can 
be seen that the algorithms converge to nearly the same value 
of minJ for the optimal designs unlike those of the robust 

designs. Among the robust designs the variability in the 
FOPID controller is much higher than the PID controller. This 
can be attributed to the fact that higher degrees of freedom in 
the FOPID controller make many feasible solutions and 
therefore introduce multiple local minima in the objective 
function. The CPSO and the CCPSO algorithm work well for 
all the cases, while the FIPS does not give good solutions. 

Also, traditional robust optimization techniques use some 
variants of convex optimization like linear matrix inequalities 
(LMIs), semi-definite programming etc. These have the 
advantage of guaranteed convergence to the global optima, but 
the objective function has to be convex in nature. However, in 
the present work the models contain significant nonlinearity 
(in the form of generation rate constraints) along with 
stochastic network induced delays which make the problem 
non-convex. These realistic effects make the optimization 
intractable using the traditional convex optimization 
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techniques. So we resorted to a PSO based method which 
solves the optimization based control problem. But since the 
problem is inherently stochastic in nature, it does not give 
guaranteed convergence to the global optima. The PSO 
algorithm was therefore run multiple times and the box plots 
for the final optimal solutions are shown in Fig. 8. 

Fig. 9 shows the frequency deviation and control signal for 
the best optimal and robust designs of the FOPID and PID 
controller. Even though the optimal controllers are slightly 
better under nominal conditions, the robust controllers have 
good performance as well. Fig. 10 shows the individual 
powers, of the different components of the hybrid power 
system, for these solutions where it can be seen that there is 
not much appreciable difference between the optimal and the 
robust solutions. However unlike the robust solutions, the 
optimal solutions are not as good as at maintaining good 
performance in the presence of controller parameter 
uncertainties.  

 
Fig. 9 Performance of the optimal/robust PID and FOPID controllers. 

 
Fig. 10 Powers of the various components of the hybrid power system. 

B. Complexity of Robust Optimization Algorithms  

The archive mechanism was implemented in the PSO 
algorithms to reduce the number of calls to the original 
function. Fig. 11 shows the evolution of the archive for the 
best obtained robust solution of the FOPID and PID controller. 
The number of elements in the archive does not exceed the 
maximum of 5000 as set during the initialization.   

Fig. 12 shows a comparison of the effective fitness function 
evaluations (as given in (36)) for the robust PSO algorithms 
which reflects the large reduction in computational expense. 
During run-time, many of the solutions are evaluated by 
interpolating from the archive, so the actual fitness function 
evaluations (which require calls to the original 
computationally expensive objective function) are smaller for 
all the algorithms which implement the archive strategy. For 

the archive based robust algorithms, the number of actual 
function evaluations are less than 22% (as compared to the 
algorithms without the archive strategy) for the FOPID 
controller and less than 9% for the PID controller. This 
represents a huge saving in the computational budget for such 
robust optimization algorithms. It can also be observed that 
the FIPS has the least number of actual fitness function 
evaluations and is therefore much faster than the other two 
variants (CPSO and CCPSO). However, this also comes at the 
cost of lower performance as can be observed in Fig. 8, 
showing the box plots. 

 
Fig. 11 Evolution of the archive size for the best obtained robust solution. 

 
Fig. 12 Comparison of fitness function evaluations for the archive based 
robust PSO algorithms (corresponding to the best found solutions). 
 

The simulations were run on a 64 bit Windows desktop with 
16 GB memory and an Intel I7, 3.4 GHz processor. One 
function call takes ~0.5 min to run. Therefore the effective 
fitness function calculation according to eqn. (39) is 0.5×10=5 
mins. All the algorithms were run for 2500 effective fitness 
function evaluations. Therefore the total time for each robust 
optimization without any archive strategy is 2500×5=12500 
mins i.e. ~8.68 days. The archive strategy helps in obtaining 
the solutions using 22% (i.e. 1.9 days) of the expensive 
function evaluation (as compared to the previous case without 
the archive strategy) for FOPID and 9% of the expensive 
function evaluation (i.e. 0.78 days) for the PID controller. 

C. Performance Assessment under Perturbed Condition 

To illustrate the effectiveness of robust optimization based 
controller design [23], 100 Monte-Carlo runs are conducted on 
both the optimal and the robust solutions by randomly 
perturbing the nominal values of the controller gains and 
orders. The ranges of perturbation are taken as 

   , , , , 10,10, 0.15,0.2, 0.2p i dK K K    (in both positive 
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and the negative directions). The controller parameters are 
selected in this range using a uniform distribution and a 
Gaussian distribution and the statistical measures of J  (25) are 
reported in Table III. If the solutions become unstable or are 
infeasible (negative gain and order), a high value of 410J  is 
assigned to those solutions. It can be observed, that with the 
perturbed controller parameters, the optimal controllers 
frequently become unstable/infeasible whereas, the robust 
designs are able to maintain acceptable performance near their 
nominal designs. Also the FOPID controller gives a better 
robust design than the PID controller as indicated by the 
expected value (mean) of the objective function J in (25).  

The present design focusses on maintaining acceptable 
performance when the controller parameters were perturbed.  
However, it is also important to assess whether the design can 
also handle uncertainty in the power system parameters. In 
Fig. 13 and Fig. 14, the grid frequency deviations have been 
shown for increase and decrease in the power system 
parameter M. Similar effects for perturbing other parameters 
(D, KDEG, TDEG, KFESS, TFESS = TBESS, KBESS, τSC = τCA) have 
been reported in the supplementary material. The change in 
controller performance (J) have also been reported in Table IV 
using the notation of % change = (J – Jnominal)×100/Jnominal, 
where the perturbed cost function is compared and normalized 
against that with the nominal system parameters. Here, a 
positive % change indicates deterioration and a negative 
change indicate improvement in control performance due to 
system parameter perturbation. From Fig. 13-14 it is evident 
that the FOPID scores over the PID, especially in terms of 
maintaining lower peaks in Δf. This can be verified from 
Table IV, for decrease in M and increase in KFESS, τSC, τCA. 

 
TABLE III 

STATISTICS OF THE OBJECTIVE FUNCTION (J) FOR 100 MONTE-CARLO RUNS 

Controller 

J for Uniform distribution J for Gaussian distribution 

Mean 
Standard 
deviation 

Mean 
Standard 
deviation 

Optimal FOPID 5301.17 5014.88 4701.23 5014.97 

Optimal PID 4301.63 4974.28 5001.33 5023.85 

Robust FOPID 2.76 0.22 2.66 0.12 

Robust PID 3.50 0.57 3.32 0.31 

 

 
Fig. 13 Effect of increase in power system parameter M. 

 
Fig. 14 Effect of decrease in power system parameter M. 

TABLE IV 
% CHANGE IN J (25) FOR SYSTEM PARAMETER PERTURBATION  

System 
parameter Perturbation 

% change in J 
Optimal 
FOPID 

Optimal 
PID 

Robust 
FOPID 

Robust 
PID 

M 

50% increase -31.628 -25.718 -37.341 -31.913 

50% decrease 132.354 417.819 35.368 614.078 

D 

500% increase -33.230 -31.282 -26.730 -34.453 

500% decrease 169.042 84.722 65.744 96.570 

KDEG 

500% increase -0.963 -2.226 -1.933 -2.673 

500% decrease 32.341 5.565 26.459 1.507 

TDEG 

500% increase 1.882 -2.109 0.941 -2.150 

500% decrease 46.794 3.218 36.400 -0.891 

KFESS 

70% increase -54.423 -10.649 -63.984 -0.417 

70% decrease 187.858 211.266 141.587 172.016 

TFESS = 
TBESS 

90% increase 17.442 11.855 8.967 10.844 

90% decrease -10.527 -7.133 -5.807 -10.666 

KBESS 

70% increase 2.136 -2.685 -1.977 -3.095 

70% decrease 17.652 21.726 11.305 13.353 

τSC = τCA 

50% increase 119.727 358.492 141.185 72.103 

50% decrease -39.861 -61.560 -50.684 -69.301 
 

 
Fig. 15 Grid frequency deviation with robust FOPID under controller 
parameter perturbation. 
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Fig. 16 Control signal with robust FOPID under controller parameter 
perturbation. 
 

TABLE V 
% CHANGE IN J (25) FOR CONTROLLER PARAMETER PERTURBATION 

Controller % increase % decrease 

Optimal FOPID -48.606 20.712 

Optimal PID 45.802 26.746 

Robust FOPID 18.191 20.088 

Robust PID 53.894 -6.616 

 
Next, the effect of variation in controller parameters, as 

summarized in Table III, is also shown graphically. Instead of 
random sampling from a distribution in the controller 
parameter space within the above mentioned range, the two 
extreme cases of maximum and minimum deviation of all the 
five FOPID tuning knobs (gains and orders) are considered 
here. The corresponding grid frequency deviation and control 
actions are depicted in Fig. 15 and Fig. 16 respectively for the 
robust FOPID. Similar results for the other three cases i.e. 
optimal/robust PID/FOPID are reported in the supplementary 
material. As evident, a decrease in the gains and integral order, 
make the system slower and takes more time to damp out the 
frequency oscillation. However, an improved performance is 
obtained by increasing the values of the PID/FOPID 
parameters. Although apparently it might seem that at the 
extreme ends i.e. at maximum and minimum values of the 
controller parameters the PID scores slightly better than the 
FOPID, but under random combination of the controller 
parameters, the PID controller often gives unstable/infeasible 
response as shown in the Monte Carlo runs in Table III. It is 
understandable from the fact that an increase in Kp, Kd and/or 
μ increases oscillation and noise while a decrease Ki and/or λ 
produces poor steady-state behavior [6]. Therefore, increasing 
all the five FOPID parameters in either positive or negative 
direction may improve or deteriorate the performance which is 
explored in Table V. It is evident from Table V that with 
FOPID, the performance deterioration is less than that with the 
PID controller. Also, the robustness issue has been primarily 
considered in the controller parameter space during the design 
optimization. But the translation or propagation of the 
uncertainty from the controller parameter space to the system 
parameter space is not straight-forward as explored in [31] due 
to the nonlinearity and high complexity of the system. Our 
analysis shows that even under such design, the grid frequency 

oscillation is within acceptable limit considering system 
parameter perturbations. 

D. Discussions and Summary of Results 

It is to be noted that in spite of having high system 
complexity like presence of the communication network in 
terms of stochastic delays before and after the controller along 
with large drift and smaller randomness in the renewable 
generations/load demand and rate-constraint nonlinearity in 
the energy storage elements, all the optimal controllers are 
successful in stabilizing the system. But the optimal solutions 
fail to perform in a similar manner under perturbed condition 
where the controller design with robust optimization score 
over the optimal design. It is also found that the FOPID 
outperforms the PID controller for both the optimal and the 
robust designs. The robust optimization based controller 
design is particularly important from the practical 
implementation of the FO elements in the FOPID, since they 
are realized using higher order analog/digital filters which 
have considerable variability in the frequency/time domain 
responses, depending on the approximation method and the 
order of realization. In spite of having several analytical 
stabilization results on simple linear networked control loops 
with stochastic delays [4], in the present context a simulation 
based design is adopted. This is because of the fact that due to 
the presence of stochastic forcing terms with sudden jumps 
(renewable generation, load fluctuation and random network 
induced delay) and the rate constraint nonlinearity in storage 
elements, such analytical fractional order controller design is 
difficult to achieve.  

Also, it is found that there is hardly any variation in the 
performance of the optimal and robust controllers when the 
system is operating under nominal conditions. This is good 
because often there is a trade-off between the optimal and 
robust designs for FO controllers [25] and the robust 
controllers do not give good performance under nominal 
operating conditions. The focus of the paper is to show that 
the robust optimization based designs work well over their 
optimal counterparts when the controller parameters are 
perturbed (since during actual implementation, the FO 
controllers can be realized using various realizations and 
hence the actual gain and orders might be different from the 
designed ones). This is shown in Table III where it can be 
observed that the robust controllers give satisfactory 
performance when the controller parameters are perturbed.  
On contrary, the optimal controllers frequently become 
unstable or infeasible under such parameter perturbation. The 
FO controllers have been implemented in hardware for 
process control applications [14] and are also known to work 
better than their integer order counterparts in grid frequency 
oscillation damping problems [32, 33]. To the best of our 
knowledge, the FOPID controllers have not yet been validated 
in real time hardware demonstrator for smart grids or hybrid 
power systems. There have been several recent breakthrough 
in the hardware realization of FO controller e.g. digital 
realization using fixed and floating point representation [34], 
analog realization for fixed order [35] and finally variable 
selectable order [36]. This paper shows a proof-of-concept 
design methodology which facilitates the hardware 
implementation by making the system performance almost 
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invariant to the type of realization used for the FO differ-
integral operators in the FOPID controller. Future work can be 
aimed at physical hardware realization for the controller and 
real time implementation of the same on a smart grid or hybrid 
power system test bed. 

In this paper, as an unreliable communication medium, we 
considered random time delays in the forward and feedback 
path. But there might be situations where a command is issued 
but never received by the device, which is known as packet 
dropout [7]. We have not modelled this phenomena in the 
present work, primarily because we expect the communication 
channel to be within a localized shared network and not over 
wide area networks or the internet where the packets travel 
through multiple routers and can be dropped due to buffer 
overflows. Nevertheless, the proposed robust optimization 
methodology is generic and would work even if we considered 
delays and packet dropouts together. Earlier investigations in 
[7] show that a FOPID controller, as also used here, is able to 
give better control performance over its integer order 
counterpart, in the presence of both stochastic network delays 
and packet dropouts. In the present study, a uniform 
distribution (i.e. a non-informative one) is considered for the 
stochastic delays, but actual measurements for the network 
delays can be done and a probability density function can be 
constructed for the same as shown in [8]. The proposed robust 
optimization methodology would work in both cases since it is 
generic in nature. It is also worthwhile to mention that recently 
there have been studies on controller design for distributed 
generation [37] and islanded microgrids [38] in a state space 
framework using H∞ theory and LMIs. These robust control 
theoretic approaches are only valid for a limited set of systems 
(mainly linear) with structured and unstructured uncertainties. 
The present robust simulation-optimization based control is 
intrinsically different from robust control theory and can 
handle nonlinear, stochastic systems with higher complexity. 
King et al. [39] recently proposed the use of machine learning 
techniques for algorithm selection in power system control, 
particularly in power flow management through active 
network management. A similar approach is adopted here as 
well, for algorithm selection in grid frequency control problem 
with distributed generation from a pool of four class of 
algorithms – optimal, robust, PID and FOPID controllers. 

Regarding the choice of robust optimization, the present 
study only focusses on PSO variants [30] since it is widely 
established as a viable global optimizer. Many new algorithms 
like gravitational search, bat algorithm, glowworm swarm etc. 
have recently been developed and found to give better 
performance on test bench functions and some real world 
optimization problems. However, the performance of the 
robust version of these optimization algorithms have not been 
investigated and different strategies to reduce the simulation 
runs e.g. the archive strategy [28] as used in the present work, 
have not yet been developed for these algorithms. The 
methodology presented in the paper would be valid with any 
robust optimization algorithm and different popular variants of 
PSO have been used in the present study to demonstrate 
plausible simulation results.  

VI. CONCLUSIONS 

The robust optimization based tuning algorithms (involving 
CPSO variants) are employed for FOPID controllers to handle 
a distributed energy generation system with rate constraint 
nonlinearity, over an unreliable communication network. The 
optimal designs give better performance than their robust 
counterparts for the nominal values of the controller 
parameters, but the performance severely degrades if the 
controller parameters are perturbed from their optimal values. 
The robust designs for both the PID/FOPID controllers are 
tested for uncertainties in the controller parameters as well as 
the power system parameters. Future work may be directed 
towards looking at analytical controller designs methods for 
such complex nonlinear and interconnected power systems. 

APPENDIX 

Additional analysis of robustness and high resolution enlarged 
images are available in the supplementary material. 
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Fig. 1 Schematic of the hybrid power system used in this study.  
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Fig. 2 A single realization of the renewable generations and demand powers which are independent of the controller 
structure. 

 
Fig. 3 Schematic showing the difference between an optimum solution and a robust solution. 
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Fig. 4 Phase responses of different band-limited realizations of FO element 1 s with different methods and order of 
approximation. 

 
Fig. 5 Impulse responses of FO element 1 s with different methods/orders. 
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Fig. 6 Convergence characteristics of the PSO algorithm for PID/FOPID. 
 

 
Fig. 7 Evolution of the PID/FOPID controller parameters or tuning knobs. 
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Fig. 8 Box and whisker plots for the Jmin for 10 runs of the PSO algorithms. 
 

 
Fig. 9 Performance of the optimal/robust PID and FOPID controllers. 
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Fig. 10 Powers of the various components of the hybrid power system. 
 

 
Fig. 11 Evolution of the archive size for the best obtained robust solution. 
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Fig. 12 Comparison of fitness function evaluations for the archive based robust PSO algorithms (corresponding to the 
best found solutions). 
 

 
Fig. 13 Effect of increase in power system parameter M. 
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Fig. 14 Effect of decrease in power system parameter M. 
 

 
Fig. 15 Grid frequency deviation with robust FOPID under controller parameter perturbation. 
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Fig. 16 Control signal with robust FOPID under controller parameter perturbation. 
 
Grid frequency oscillations for perturbation in other controller parameters similar to M (Fig. 13 and Fig. 14) like D, 
KDEG, TDEG, KFESS, TFESS = TBESS, KBESS, τSC = τCA are shown in Fig. 17 and Fig. 18 respectively.  
 

 
Fig. 17 Effect of increase in power system parameters. 
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Fig. 18 Effect of decrease in power system parameters. 
 
Similar to the case of robust FOPID (Fig. 15 and Fig. 16), the effect of parameter perturbation for all the four 
controller structures (optimal/robust, PID/FOPID) are shown in Fig. 19 and Fig. 20 respectively.  
 

 
Fig. 19 Grid frequency deviation under controller parameter perturbation. 



IEEE TRANSACTIONS ON SMART GRID 

 
Fig. 20 Control signal under controller parameter perturbation. 
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