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interactions between the manipulated variablescamdrolled

Abstract—Decentralized PID controllers have been designed variables. The most effective pairing can be ackdeif a

in this paper for simultaneous tracking of individua process
variables in multivariable systems under step refenece input.
The controller design framework takes into account the
minimization of a weighted sum of Integral of Time multplied
Squared Error (ITSE) and Integral of Squared Controller
Output (ISCO) so as to balance the overall trackingerrors for
the process variables and required variation in thecorresponding
manipulated variables. Decentralized PID gains areuned using
three popular Evolutionary Algorithms (EAs) viz. Geretic
Algorithm (GA), Evolutionary Strategy (ES) and Cultural
Algorithm (CA). Credible simulation comparisons have been
reported for four benchmark 2x2 multivariable processes.

Index Terms-Cultural Algorithm; Evolutionary Strategy;
Genetic Algorithm; multivariable process control; PID controller

I. INTRODUCTION

N most of the industrial process control systenesiegally

few manipulated variables are adjusted to contnolimber

of controlled variables. Such control systems arewn as
multi-variable processes and more commonly termsd
multiple-input multiple-output (MIMO) systems [1]In
multivariable process control, unlike single-inpugingle-
output (SISO) systems, change of any single maaigdl
variables affects more than one controlled variafiléng rise
to the loop interaction [2]. The simplest MIMO pesses
which are often referred in multivariable procesmtool
literatures consist of two inputs and two outpusrQ) [3].
Conventional method of designing PID type contrslléor

manipulated variable is used to monitor a contdbltariable
with which its measure of interaction is highestefprably,
close to unity. This allows pairing of a single totled
variable with a single manipulated variable viaedback
controller for two such loops of TITO process aig. 1.

Thus in decentralized PID control of 2x2 MIMO syste
the control system consists of two such contrall&sch of
them takes care of a single loop only and the actésn
between the two loops is greatly reduced unlike the
centralized PID control where similar 2x2 controkgructure
is assumed to stabilize a TITO process [4]-[5]. doer, the
decentralized controller design can be easily adplf the
loops do not heavily interact with each other itbe
corresponding RGA should have dominating principal
diagonal. If the loop interaction changes the pssogains of
the individual loops considerably, then well-tunashtroller
for the individual loops fail to keep the contralleariables at
their respective set-points. In such cases, paidfgany
manipulated variable with any controlled variabésults in
poor controller performance. One method to overcdhig
problem, as attempted in this paper, is to tuné lioeé loops
simultaneously instead of tuning decoupled loopisvidually.
This is because in the later case when one lobpiigy tuned,
the controlled variable of the other loop is naeiced. Thus it
is likely to deviate from the set-point in caselafge loop
interaction.

One of the conventional methods of tuning SISO rbnt
loops in frequency domain is user-specified gaid phase-

such MIMO processes require correct pairing of onwsargin (GPM) methods. However, in case of MIMO ey,
manipulated variable to one controlled variableatvoid poor the number of control loops is two or more, resgjtin a
controller performance and reduced stability magiwhich number of pairs of gain-margins and phase-margmsone
can be achieved by means of Relative Gain Array (RGpgir for each loop, calculated by opening that\itiial loop
approach. Other improved measures of loop intemacti only. Thus, the presence of multiple loops makésiitossible
necessary and sufficient conditions for pairing,ntoal to correctly assign a particular gain-margin andsghmargin
structure selection etc. have been thoroughly vesdein [2], to a MIMO system and hence tuning of MIMO systems
though the RGA based loop interaction analysis stflequency domain becomes very difficult. Huaegal. [6]
dominates the process control industries. Onlydstestate have proposed a methodology to decompose MIMO peese
information about the process gain matrix is reegiito as several effective open loop processes and dpjpieeGPM
develop a RGA, which provides a measure of procesethod for those individual loops. This method nbayused
to monitor the speed of response for each loophefMIMO
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MIMO processes, as attempted in this paper wad fionclusion as Section V, followed by the references
introduced by Zhuang and Atherton [3] whereas thesgnt
paper improves this technique by taking both looprendex
(ITSE) and required controller effort (ISCO) simukmusly
into consideration. In case of optimal tuning odbRlontrollers
to handle MIMO systems, if each of the controllediables is A. Proposed Approach of PID Controller Tuning for
enforced to track a set-point using some optimizati  Multivariable Processes

technique, while ignoring the variation in the atkentrolled  The controller for each loop has been consideretie®ID
variables, it becomes almost impossible to trackhbihe type in parallel structure since PID controllerd sibminates
controlled variables to desired set-points with thmed process industries due to their simplicity, robastand ease
controller parameters. In this paper, multivariab®D of jmplementation. The PID controller ~parameters

controllers are designed by simultaneous optimaihg of all {K K K }for each loop of the multi-variable process is
. - p? it d
the control loops for 2x2 multivariable benchmarkgesses

with high loop interaction viz. Wood and Berry (WB)nante tuned in an optimal fashion so as to keep eachhef t

Il. TIME-DOMAIN OPTIMUM PID CONTROLLERDESIGN FOR
MIMO PROCESSES

and Luyben (VL), Wardle and Wood (WW), and Oguneaikcontrolled variables at their set-points, irrespwectof any

and Ray (OR) [6]. Optimum tuning is attempted usinigeé
well known evolutionary algorithms viz. Genetic Alkithm
(GA), Evolutionary Strategy (ES) and Cultural Algbrm
(CA) for simultaneous tracking of all the controlledriables
around desired set-points, implemented as unit itEggence
inputs.
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Figure 1. Schematic of the decentralized PID control structore
benchmark TITO processes.
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Similar computational intelligent and optimizatidased
attempts have been made in few contemporary litegatfor
the tuning of multi-loop PID controllers e.g. Chaetgal. [7]
proposed an on-line scheme for PID controller dedigr
multivariable processes, using auto-tuning neusmploying
hyperbolic tangent activation function. Iruthayaraj and
Baskar [8] and Chang [9] used evolutionary algorithremsl
multi-crossover genetic algorithm to minimize thaemsned
integrated absolute error (IAE) for each loop whilaing the
PID controller parameters. Rajabioen al. [10] designed a
decentralized PID controller by minimizing total EAfor all
loops using colonial competitive algorithm. Hen al. [11]
tuned PID controller based on a closed loop partsskarm
optimizer (PSO) algorithm. Zha@t al. [12] minimized
integral square error (ISE) employing tlaestsbased PSO
for designing robust PID controller for MIMO systenThis
paper puts forward a new methodology of tuning MIM
control loops taking set-point tracking and conéwoleffort
both into consideration and comparison is made éetvhree
different EA based decentralized PID controlleritign

Rest of the paper is organized as follows. Sectibn
describes the basics of time domain tuning of Pibtllers
to handle MIMO processes. Brief description of thEegs,
used for controller tuning is presented in Sectibh
Comparison of control performances for the benchnf&rio
processes are outlined in Section IV. The papes @ith the

change in set-points of other controlled variables many
process control applications, large variations @nipulated
variables are not allowed to keep the physicalirstcd the
final control element within limits. The controltan is hence
limited to minimize the deviations of manipulatedriables.
Evolutionary algorithms are used to minimize thgeotive
function which takes into account both the deviat@f the
controller output and that of the controlled valéglgiven by:

J:T[wltttez(m w O (9] dt 1)

The first term in the above expression correspdodthe
ITSE which minimizes the overshoot and settling etim
whereas the second term denotes the ISCO. The tightse
{le Wz} balances the impact of control loop error (osddiat

and/or sluggishness) and control signal (largeuatot size
and chance of integral wind-up) and both have mb@sen to
be unity in the present simulation study, indicgtisame
penalty for large magnitude ITSE and ISCO. Evoluign
Algorithms (EA) have now been employed to obtaitiropm
PID controller parameters within the range of
{Kp,Ki,Kd}D[-e;,e] to minimize the objective function

(2). In the proposed approach the transfer functiatrix of
any process need not necessarily be a square amgeron
that must be met if de-couplers are to be useddatrolling
the multivariable process. However, since moshefdiassical
test-bench problems have 2x2 transfer function ioesty the
simulation study has been limited to 2x2 multi-ahte
processes only in this paper. The same principiebeaused to
tune higher dimensional MIMO processes. Howeversloh
cases the time required for such an optimizatioth warge
number of decision variables, representing the robtiat
parameters will also increase. Since the proposelti-toop
controller tuning methodology is offline, thus coutgtional
complexity and required time for the EA to convergaot a

%ajor concern.

B. Multi-loop Test-bench Processes

In order to test the effectiveness of the propotedng
rhethodology, four different 2x2 multi-variable pesses,
normally encountered in process control applicationave
been considered as a test-bench [6]. The transfectibn
matrices for Wood and Berry, Vinante and Luyben, tér
and Wood, Ogunnaike and Ray MIMO processes are giyen
equations (2)-(5) respectively:
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As previously mentioned, proper pairing of manipeda
variable with the controlled variable is requiredrhinimize
the effect of loop interaction as much as possible the
design of decentralized controllers for multivatéaprocesses.
The common criterion, used to obtain the knowledde
correct pairing is the relative gain array or RGArided from

closed. It is also seen that while one of the iittligl loops
involves a positive process gain, some other lagpregative
process gain. Also, some loops exhibit a leadirtgreawhile
rest of the loops may have lagging characteristiosstabilize
a MIMO process, where co-existence and combinaif@uch
different dynamical behaviors are inevitable, itngportant to
avoid local minima while searching for optimum awotier
parameters. To resolve this problem evolutionagothms
are used in this study, since they are derivatiee fglobal
optimizers, capable of avoiding local minima. Wevéa

developed in-house MATLAB codes to implement Genetic

Algorithm, Evolutionary Strategies and Cultural Atgbm as
three representative cases of evolutionary algostfiL3].

A. Genetic Algorithm

Genetic Algorithm is a stochastic optimization teicjue
based on Darwin’s theory of natural selection. 1A, Gn
initial set of probable solutions, viewed as a padl
chromosomes, is evolved over successive generatising
the processes of selection, crossover and mutdtcaryive at
an optimum. A fitness function is defined which maas the
closeness of a chromosome to the required optiniiraach
generation the ‘fitness’ of each individual chromo® in the
population is measured and a set of most fit chemmes is
selected, based on some well-defined criteria. ©higrmed
as selection. The selected chromosomes are thatedras

the dc gairq;p (o) of the steady state process transfer matrparents for the reproduction of the next generatfofraction

as:

RGA= G, (0)0 (G, (0)™) (6)

of the parents undergo crossover, where genetarnretion
between two chromosomes is blended. The remainaugidn
undergoes random mutation. The crossover

where, O denotes the element-by-element multiplication afaversal of the search space for optimum solutitvhstation

the matrices. The RGA for the above four test-bgrokcesses

are:
RGA.. :[ 2.0094 - 1.0094]
-1.0094 2.009 @)
RGA, :[ 1.6254 - O.GZSj
71 -0.6254  1.625 ®)
RGA,, :[ 2.6875 - 1.6871
-1.6875 2.687 ©)
RGA, :{0.7087 0.2911
R710.2913 0.708 (10)

It is observed from the RGA values of the test-benidrO
processes that the processes suffer from highifdepactions.
Hence designing decentralized controllers by pagirafi any
manipulated variable with any controlled variabié not lead
to a satisfactory performance. In this paper, wdized
simultaneous tuning of both the PID controllersaatme for
considering the effect of loop interactions in thaing phase
while minimizing the objective function (1) for albops,
instead of tuning one controller as in a SISO loop.

I1l. BRIEFDESCRIPTION OF THEOPTIMIZATION ALGORITHMS
USED IN THEPRESENTCONTROLLER TUNING PROBLEM

In MIMO processes, it is often observed that oneplds
stable while the other one is unstable when akothops in
the system except the concerned one are openectvdoyvthe
MIMO system as a whole may be stable when alldbops are

is used to prevent pre-mature convergence anditrgppto

local minima/maxima. In this way, a new generatiisn
formed, and the process is repeated. In certairnv&hants, a
small set of best fit individuals is directly pubto the
population of the next generation. This is termktise. Real

GA, where each chromosome is represented as ar\éaal

values, poses as a very viable variant of GA amspéifically

suited for solving optimization problems employitgrge

continuous search spaces and has been used inrebenp
multivariable PID controller tuning problem.

B. Evolutionary Strategies

Among several variants of ES, self-adapting ESsisduin
this study. Evolutionary strategy begins with aitiah set of
population consisting of real valued vectors termasl
individuals, each one representing the geneticaaharistics
of the decision vector to be optimized. Evolutidrthe initial
population formed by randomly generated individuakled
parents, consists of evolving of the genetic cHherastics
controlled by the strategy parameteg \ which is also
evolved dynamically, depending upon the performance
Strategy parameter of each individual is set tooemroon
value of 0.5 initially. Multi-membered ES, denotduy
(u/p+A)is used for optimization. For the purpose of

determining the optimized value of the decision teec
number of parents ) and number of off-springs A()

generated in one generation are fixed to 30. lh ganeration

two parents p = 2) were selected at random and recombined

by a randomized real-valued crossover operatoeteigate an

represents



offspring. Evolution of strategy parameter is ddokowing
the modified 1/5th update rule, reported in Greemdvand

or crossover violates the normative knowledgesitfdrced
back into the search space dictated by the normativ

Zhu [14] according to which,gis updated after every knowledge.

n = 9 trials depending on the number of successful manati
Mutation of each offspring is then done by addihg zero-
mean Gaussian variable with standard deviatiam).(
Selection to form the new population is done byadiag the
best (/) individuals out of the pool of the totalu(+ A )

individuals comprising of all the parents and offsgs
depending upon their fithess value. This whole esscis
repeated until the required value of fitness isiea or the
maximum number of generations is exceeded.

C. Cultural Algorithm

IV. SIMULATION AND RESULTS

The above discussed three EAs have now been applied
tune decentralized PID controller parameters (Ejgor each
of the test-bench TITO processes (2)-(5). The settp
tracking performance and required variation in mpatsited
variables of each loop have been shown in Fig. 2-9
respectively. Table I-1l reports the best found impim
controller parameters for the two loops of eachOIjrocess
using GA, ES and CA. It can be easily inferred friigures
presented that all the three algorithms viz. GA, &6l CA

Cultural Algorithm has been developed by modelingv hoperforms satisfactorily in simultaneous tuning oftbthe PID

human cultures work. Culture is viewed as a vehice
storing relevant information gathered since thetsth the
culture, and is available to all the subsequeneg#ions of
the society. This information can be useful for gemerations
to guide their problem solving activities, at theme time
being dynamically modified by new information gatx by
each new generation. The CA is modeled using twarsép
information spaces, viz. the population space dred elief

space. The population space contains the set aofilpes

solutions to the problem available in the presestegation.
The belief space models the actual cultural aspécttores
information related to the problem solution thats Haeen
found till the present generation and in turn iaflaes the
evolution of the population space in subsequen¢ggions.

Communication between the two spaces is handled by

protocol consisting of two functions: an acceptahegction,
which selects the set of individuals that will irdhce the
belief space and an influence function which infices the
creation of the next generation. In addition tledidl space
requires an update function which is basically oesible for
updating the belief space when required. The bslpefce is

composed of a few knowledge sources viz. normati

knowledge, topographical knowledge, situational idealge
and history knowledge. In the present case, a ti@miaf the
CA has been used, where the evolutionary aspedridiéd
by a Genetic Algorithm [15]. In this Genetic Algthmin based
Cultural Algorithm (GACA), the acceptance functiorcepts
the best 25% of the population using stochastidoumi
sampling, to be responsible for updating the betipéce.

Belief space is composed of normative and situatior 0

components. The normative knowledge component

composed of the upper and lower bounds of eachhef -

variables among the individuals accepted. The titoal
knowledge is a set of the best or elite individualisthe end
of each generation the normative knowledge is wguiatith
the bounds of the accepted individuals and theatsitoal
component is updated if necessary. Mutation in Gemetic
Algorithm part is influenced by the belief spac@éeTdirection
of mutation is determined by the position of cutriewlividual
with respect to individual present in the situatibknowledge
space. Mutation is directed towards the best iddiai. Also,
mutation range i.e. the maximum range through whiuh
individual can be mutated, is determined by thethviof the
normative knowledge component for each of the éem of
an individual solution. Finally, if an individuaftar mutation

controllers for the multivariable processes wittghthiloop
interaction. From the results presented in Tablé I$ evident
that though performance of all the three algorittares almost
same, CA outperforms the other two by some margailithe
cases.
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Figure 2. Variation in process variables for WB MIMO process.
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Figure 3. Variation in manipulated variables for WB MIMO process.

It is to be noted that variation in the resultsaifx¢d from
five independent runs of each EAs is minimum for Game
of the obtained controller gains are negative whghkue to
the fact that the MIMO process has negative trarfafections
in some loops. The tuned response with the coetglusing
the proposed methodology, is somewhat process depen
From Fig. 2-3, it can be seen that the WB processslight
overshoot in tracking of process variables andllasoins in
manipulated variables. From Fig. 4-5 it is obsertegt the



VL process gives SlUggiSh OUtpUt in one |OOp anghsl , Variation nthe Process Varibl of irstLoop Yariaton n the Process Varble of Second Loop
overshoot in the other. For the WW process thdirsgtime is
very large and hence the control signal has néfededluring : :
the finite simulation time horizon (Fig. 6-7). Frdags. 8-9 it /

can be inferred that the OR process gives fast aat-p

tracking for both the loops.
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43 Eg 1 'k TABLE II. TUNED CONTROLLERPARAMETERS FOR THESECONDLOOP
s .y ® C e 07 Process Algorithm Koz Kiz Kaz
Figure 5. Variation in manipulated variables for VL MIMO process Wood GA -0.25612 | -0.01075 -0.52361
and ES -0.26353 -0.01248 -0.53572
Berry
CA -0.25855 -0.01177 -0.5521
TABLE I. TUNED CONTROLLERPARAMETERS FOR THEFIRST LOOP
Vinante GA 1.886448 | 0.154075 0.713463
Process | Algorithm Ker Ku Ko and ES 1.660539| 0.155043]  0.544667
. . . Luyb
Wood GA 0.252294| 0001602 0.252587 tyoen CA 1.648765| 0.16293 | 0.572449
Baer;?y ES 025363 | 0.001868  0.280028 Wardle GA -5.37666 | -0.05618 | 0.003258
cA 0273853 0.001801] 025349 and ES -5.58605 -0.05802 0.002066
-1. -0. -0. Wood
Vinante GA 1.20453 | -0.15561) -0.33433 o0 CA 554188 | -0.05698 | 0.002082
Lu?nbin ES "1.26164| -0.16466  -0.41223 ogunnaik GA 0.249743 | 0.148489|  0.043295
CA -121045 | -0.15963| -0.41414 e and ES 0.223773| 0.142789]  0.036895
R
Wardle GA 4.874161| 0047187 0.009791 &y CcA 0.25331 | 0.144433| 0.053634
and ES 5.067988 0.045413 0.009664
Wood
CA 4.917404 0.045597 0.010642
. GA 0.642728 0.287408 -0.02641
Ogunnaik
e and ES 0.584019 0.210688§ -0.03858
Ray CA 0.65208 0.241827, -0.01971
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Figure 9. Variation in process variables for OR MIMO process.

TABLE llII. CONSISTENCY OF THEEAS FORMULTI-LOOPPID
CONTROLLERDESIGN
Process Algorithm Jnin (Mean) Jnin (Standard deviation)
GA 14.99845738 0.081435328
Wood and ES 14.88321436 0.100647197
Berry
CA 14.72939843 0.031005916
GA 34.97645399 0.017734663
Vinante and ES 34.93504378 0.02309397
Luyben
CA 34.90486417 0.003799923
GA 22386.76045 27.45458538
Wardle and ES 22369.29554 3.637316428
Wood
CA 22363.25092 0.237556354
GA 2.18127584 0.001161726
Ogunnaike
and Ray ES 2.180784464 0.00223164
CA 2.178030194 0.001346768

V. CONCLUSION

Strategies and Cultural Algorithm for each of therfeest-
bench TITO processes. It is observed that for ezades,
though all algorithms lead to stable controllers, @As the
most effective amongst the three EAs. This is otdéle by the
standard deviation and mean of the cost functioasfirming
the effectiveness of CA. Simple GA is observed tohgemost
ineffective among the three EAs.
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