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Abstract

Networked Control Systems (NCSs) often suffer frandom packet dropouts which deteriorate
overall system’s stability and performance. To harttie ill effects of random packet losses in
feedback control systems, closed over communicatigtwvork, a state feedback controller with
predictive gains has been designed. To achieveowepr performance, an optimization based
controller design framework has been proposedisighper with Linear Matrix Inequality (LMI)
constraints, to ensure guaranteed stability. Defierconflicting objective functions have been
optimized with Non-dominated Sorting Genetic Alglon-II (NSGA-Il). The methodology
proposed in this paper not only gives guaranteeded loop stability in the sense of Lyapunov,
even in the presence of random packet losses|dgaves an optimization trade-off between two
conflicting time domain control objectives.

Keywords. Multi-objective optimization; Networked Control Sgsn (NCS); Non-dominated
Sorting Genetic Algorithm-11 (NSGA-II); Networkedgdictive controller; Linear Matrix Inequality
(LMI)

1. Introduction

Networked control system is a distributed contsgstem wherein the information is
exchanged among the system’s components such ssrseactuators, controllers, etc. through a
shared real-time communication network. The NC&ltesn reduced wiring, makes maintenance
and analysis of system easier and increases fligxibif architecture, thus making the control
system to be cost effective. So now-a-days, NC8ssapngly recommended over conventional
point-to-point control systems. NCSs are widelylmaible in factory automation, robotics [1]-[2],
in safety critical applications and hazardous emments like space excursions, nuclear power
plants, motorized vehicles etc. But in NCSs, rang@oket drop-out is one of the major causes of
performance deterioration of the system and oftéghtnlead to system instability [3]-[4]. This
might happen, inspite of the nominal system betagle under ideal conditions. Thus, stabilization
of conventional state-feedback control loops amdstime in the presence of random packet-losses
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should be dealt in a different way.

In Mu et al. [5], the classical model predictive control (MP§€)heme has been used to
tackle the unknown network induced delay and padkagpouts. In that paper, thecedinghorizon
controller continuously performs an online optintiaa at every time instant to predict the
sequence of control signals based on received @agapredicted control signals are lumped in a
packet and transmitted to actuator at the plamt Sitie delay compensator logic at the actuator end
decides the appropriate control signal from theillabke predicted signal set that can be used to
compensate the time delay and packet losses. Hereantroller has to finish the computation
within a small fraction of sampling instant. Thigtiod thus imposes a hard time limit in real time
control. In contrast to the above methodology,gresent paper does not use the concept of online
optimization to tackle packet-losses in NCS. Rattereduce the online computation, static state-
feedback gains are used which would provide futumatrol signals if the present and subsequent
packet is dropped. The concept has been illustiat€net al. [6]. In the present predictive NCS
scheme, the estimated present and future congobls are lumped in a packet and transmitted
through the shared network. There is a buffer wisichies the packet before applying the control
signal to the plant. The buffer has a pre-prograchifogic which decides the control signal to be
applied at each sampling instant depending on iteeiqus packet history. When there is no packet
loss, only the first estimated control signal iplged to the plant at every sampling instant, aast r
of the control signals are discarded. But whenNIS suffers packet loss, some of these packets
containing the effective control signals also getfpgped. To compensate for these time instants, the
buffer applies estimated control signal from lasteived data packet to the plant, depending upon
the receiving instant of the packets. The propgsedictive state feedback controller design should
not be confused with the well-known MPC algorithiis MPC, an iterative method is employed
which performs a finite horizon optimization of tipgant model at each time step. A numerical
optimization algorithm minimizes a user defined tcoihcost at each time step and predicts the next
N control signals that must be supplied for theropt operation of the plant. Only the first control
signal from this set of predictive control signslghen used to update the plant state and theewhol
process is again repeated at subsequent time Stepse algorithms work well for nonlinear, time
delayed or other complicated process control pldntthe present case, the general philosophy of
predictive control is used to compensate the antyitpacket loss in the network. The packet loss is
a stochastic phenomenon and the designer has aalmeit the sequence in which the packet drops
would occur, although he knows the number of swgiecespacket drops that can occur in a given
network loading scenario. So a generalized formanabeeds to be done in which the controller
gives guaranteed stability and good performancesyective of arbitrary order of packet drops.
The term “predictive” refers to a-priori determiizatt of future control actions with an anticipation
of stochastic packet loss in the shared commupicatiedium. The control policy can be visualized
as a set of linear state feedback controllers naligh for each case of the different packet drop
scenarios. The control action from each of the rotlet is calculated and encoded in a packet and
sent over the network. Depending on the arrivahef packets and the drop outs, the logic at the
buffer decides which control action to give to #wuator. This buffer logic mechanism along with
the set of parallel linear controllers is what pemris the predictive strategy. The advantage of this
method over the other MPC methods is that ther@iseed of a finite horizon optimization (and
hence increased computational cost) at each tiepesstice the control design method is offline and
the prediction occurs by the synergistic logic aniraction between the multiple set of linear
controller and the buffer logic. Also this can bgplemented by simple state feedback controllers as
opposed to more complex MPC paradigms.

The Asynchronous Dynamical System (ADS) is anoipgroach of modeling the NCS with
packet loss, which is used in Zhaegal. [4]. But ADS formulations involve Bilinear Matrix
Inequality (BMI) constraints and there is no staddsolution technique for BMIs constraints in
polynomial time. In most cases the BMI problems sokved using random search techniques. For
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this reason, the ADS approach has not been coesiderthe present work. In this paper, the NCS
is modeled as a set of switched Linear Time Invari@Tl) systems with arbitrary switching
between them caused by random data loss. This mischaavoids the problems in ADSs. In
switched system scheme, the equations are forndulaging linear matrix inequality (LMI)
constraints which can be solved using standardheffishelf LMI solvers to ensure Lyapunov
stability for the system, even in the presence aufkpt-losses. In the present approach, the LMI
based stability criteria is solved as a sub-prohlemach iteration and the controller design isedon
by global optimization technique using Multi-Objeet Genetic Algorithm (MOGA) [7].

In Xiong and Lam [8], the switched system methodglts used for stabilization of NCSs
but the performance criteria are not consideretthéndesign problem. But for industrial uses such
as networked process control applications, theityuad control is also a major consideration and
not mere stabilization. With the present formulatiguaranteed Lyapunov stability and optimum
time domain performance both can be achieved inNiG@$he presence of random packet losses.
However, in a practical NCS, often conflicting atijees are encountered which needs to be
optimized to get a trade-off between them. Conttady objectives imply that if the performance
of one objective is improved, performance of otbigjective gets degraded and it is not possible to
minimize both the objectives simultaneously.

In Panet al. [6], Particle Swarm Optimization (PSO) has beeeduso maximize the
stabilizing region of the predictive networked agofier. From their simulations it is clear that the
stabilizing region is patchy and discontinuous aadsequently cannot be visualized as a standard
continuous nonlinear objective function. Some @& tontinuous nonlinear objective functions can
also be solved using standard LMI with special gfammation techniques like the Schur
complement, change of variables etc [9]. On themtand evolutionary and swarm optimization
algorithms have been found to be expedient in aping functions which are discontinuous, noisy
or dynamically varying which often occur in stardiaontrol engineering problems [10]. Hence in
the present approach, the controller design proleattempted through population based multi-
objective evolutionary optimization techniques. LMilased techniques are preferred over
evolutionary approaches, in cases where the proldemonvex, since they can be solved in
polynomial time and have the feature of guarantsat/ergence. However in the present case, the
objective functions are non-convex due to theicaintinuous nature. To further explain this point,
a reference can be made to the stability regidherstate feedback controller parameter space as in
Panet al. [6] which is clearly a discontinuous function. Assubset of this problem, the present
paper seeks the optimum performance inside théestapions only. Hence the region, in which the
multiobjective optimization searches needs to bd#ined, is also discontinuous in nature in order
to achieve optimum time domain performance. Thiduis to the fact that only stabilizing controller
gains can produce finite integral performance ina@esociated with them where the multi-objective
search is to be carried out. Thus, even thoughetl@utionary techniques have the issues of
consistency and guaranteed convergence, thesels®re resorted to and LMI techniques have
been used as a sub-problem in the present scenario.

Multiobjective optimization also can be done usirigl [11]-[12]. However, the functions
need to be convex for this type of optimization evhis not valid for the present networked
predictive controller design scenario. So MOGA basn used for simultaneous minimization of
multiple contradictory objectives for this non-cemy discontinuous objective function. In this
paper, the multi-objective NSGA-Il is used to fiodt the Pareto optimal solutions for the controller
parameters as a trade-off between different coictiagt performance objectives [13]-[20]. MOGA
provides a powerful population-based search anex&bfe optimal control system can be designed
with the user’s choice of putting weights of thadgectives [16]-[20]. It is used to optimize the
objective functions, represented by few time don@@nformance indices for those gains which
satisfy the LMiIs for state-feedback control witlcket-losses.
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The rest of the paper is organised as followsebtisn 2 the NCS is analysed as a switched
system and the LMI formulation for the predictivantroller is outlined. The NSGA Il algorithm is
also introduced and various contradictory objectivections are discussed. An illustrative example
is given in section 3, along with credible simudatiresults to demonstrate the proposed
methodology. The paper ends in section 4 with trelusions followed by the references.

Notations:

Throughout this papeiR" and R"*™ denote then dimensional Euclidean space and the set
of all nxm real matrices respectivelﬂe” refers to the Euclidean norm for vectors and iedu2-

norm for matrices.| and @ are the identity and null matrix respectively widppropriate

dimensions.Z" is the set of positive integers. The superscript’ ‘indicates matrix transpose
operation.

2. Theoretical formulation

2.1 LMI formulation for the state feedback NCS with predictive gains considering drop in both
the forward and the feedback channels

The model of the plant concerned in this papehaw in the Fig. 1. The discrete time state
space model of the process is represented as:

x(k +1) = Fx(k) + Gu(k) (2)
where, kZ, is the time stepx k( JR" is the system state andk (JR™ is the control input;
%, = X(0)OR" is the initial stateF andG are two system matrices of appropriate dimensions.
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Fig. 1. Schematic diagram of considered predidi@GsS.

Fig. 1 shows the schematic of the NCS with the ipte@ feedback controller and the
unreliable network having packet drops in the fodvand the feedback paths. The sensor is
assumed to be time driven. It samples the plafixedl multiples of the sampling time and sends
the data to the controller in the form of packdtsg with a time stamp. The controller is a full
state feedback controller and full state informataf the plant is assumed to be available. The
controller can be time-driven or event-driven. Butthe peak load situation of the network, a
number of packets can arrive within the same sangpiistant for the event driven case, which is
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undesirable for safety critical applications. Fbistreason, in the present paper the controller is
chosen as time-driven. The controller encapsuldtespresent and next predicted control signals
into a data packet and sends it over the netwdrk.cbntrol signal is given by

u=K,x (2)
where, K, is the feedback gain to be designed andl,2,...M }.

The buffer situated on the plant side has a letgment in it. It receives the control packet
and applies the proper control signal to the aotubised on the arrival history of packets. The
logic of the buffer is explained in Definition 1h& time lines of the system sensor, the controller
and the actuator are assumed to be synchronizédanskew to take care of the inherent delays.
Thus if 7, be the time skew between the sensor and the dlentrobe the time skew between the

controller and the actuator, then the followingassumed to holdT, >7, +7,, where Tis the

sampling time of the system. Thus a packet witaréiqular time step is considered to be dropped if
it does not reach the actuator in the same time #tey out of order packet is discarded by the

buffer and considered to be dropped. Bet{i, i,,...} 0 Z" indicate the sequence of time points of

the effective packets which are transmitted sudalgsrom the sensor to the actuator buffer (Fig.
2). Based on above notations, packet loss prosetefined as

f(lm) ::{im+l_im| ImDS (3)

which means from_ to i maximumé (i) —1 number of packets can be dropped consecutively.

m+1?

Also let, M, =max {{(i,)}. Hence,£(i,,) can take values in the finite get={1,2,...,.M,, }.

" ldrop
The packet loss process is assumed to take ran@duesvirg/ . At every sampling instant, the
controller sends packets encapsulated with presahfuture control signal. The control signal can

be represented ag, = K x(i,) whereK =[K, K ,--- K1, pD{1,2,3,..}. denotes the sample time
of effective packets andy D{1,2,3...Mdmp} represents the index numbers of the nékf,
samples of control signals from the present sargpfistant.
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Fig. 2. lllustration of packet drops in the predietNCS scheme.

As for example, consider a case where, maximumadwitsecutive packets can be dropped
i.e. My, =3, The situation of packet drops in NCS can be asvahin Fig.2. It means thaf'12"

4" 6" 9" sensor packets are effective packets used toatdhé plant. Whereas th&' 35", 7" and
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8" sensor packets are considered as dropped andtbayot used. At ever)}hk(k =12,3;--,9)
sampling instant the control input used to contrdghe plant is given by
{Upy Uy Uy Uy U U o U U U Jrespectively.

Definition 1 [6]: The buffer logic which decides the control signalto the actuator at each
sampling instank, is defined asi(k) =¢,_,.,(p) where p=k-i_+1. Here,¢ denotes the buffer,
the subscriptk—p+1 denotes the time index the buffer was last upddigdan effective

packeto denotes the array index of the buffer from whiclk tontrol signal is applied to the

actuator. The plant (1) at each instant is updatethe control values in the buffer depending on
£(i,,) - Thus at any given instant the plant can be ctatrdy a packet indew [1 7 in the buffer.

Buffer states corresponding to the effective ptekes in Fig. 2, are shown in Table 1, The
buffer is a memory device which will register maxim three data at every sampling instant in an
array forM,,,, =3. The data of first column is used to update trentpht every instant which is
shown in the column “Present” in Table 1. Statuseft predicted data is shown in column§ “1
Predicted Sample” and "2Predicted Sample” respectively. At sampling instdnand 2, the buffer
is updated with the data of two consecutive sudalggransmitted packets containing control
signals {u,, u,, u,} and {u,, u,, u,} respectively. When the buffer sends the currentrobn
signals such as,, and u,, for the instants 1 and 2 respectively, other airdignals followed by

those signals, predicted to compensate for nexants, are shifted left by one. At instant 3, the
packet containing current control signal from colr fails to reach the buffer. So the predicted
data u,, which is already transmitted to the buffer with fhrevious packet is used to update the

plant andu,, is shifted left. At next instant, the packet issglost. Henceu,, is sent to the plant.
At instant 4, the packet successfully reaches édbtiffer and update it with the control signal data
{u,, u,, u,} . In this way the buffer is being updated for nevstants also.

Table 1
Buffer states corresponding to packet arrival m. Bi
Sampling Instant Present 'Predicted Sample "2Predicted Sample
U1 U12 Uiz

2 b1 Uz2 Uz3
3 b2 Uz3 -
4 Us1 Ua2 Us3
5 Us2 Us3 -
6 Us1 U2 Us3
7 Us2 Us3 )
8 Us3 - -
9 Up1 Uo2 Uo3

2.2 Discrete time switched system stability of NCS using predictive controller
This switched system approach essentially incotpsrahe idea of the lifted sampling
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period. Consider that every alternate packet ofciiatrol loop is dropped. This is equivalent to
sampling it at twice the sampling time. For two secutive packet drops the equivalence is with
thrice the sampling time. In other words, the sangplimeline is “lifted” to a new timeline which is
some integer multiple of the base sampling rat¢hénpresent analysis the NCS is modelled in such
a manner that the packet drop process is modeBedwdtching between these different lifted
timelines. In the NCS modelling scenario the switghbetween the finite number of states is
arbitrary and hence there is no control over th@eorof the switching. Hence this is not a
stabilization problem where a switching schedulen d¢ee designed to stabilize the system.
Asymptotic stability of the overall system mustduearanteed in the presence of arbitrary switching
between the sub-systems.

Let us consider the augmented state vé’dﬂo):[x(k) X(k=1)..xk-M +1)]T. The

NCS with the state feedback predictive controlleas be cast in the form of a discrete time
switched system given by:

Mk+1) :cDJ(k)r(k) (4)

drop

where, (k) is a piecewise constant function, known as a swddignal, which takes values in the
finite setA:={L,2,...Myo}. P, OR™ = ™= s of the generalized form:

Enxn H
nxn(Mgqp—1)
(Da(k) = { (5)

n(m drop —1xn(M drop -1) % M drop =1xn

F+GK, for o(k)=1
F o O0(K)O{2: My

3

where, F :{

H(LoK)) =K,y Do®)D{ 2+ My}, and H(LL) =g, Ot 2 oK)

7 drop

Theorem 1 [6]: The NCS defined by the switched system (4) is gdgtically stable for the
arbitrary packet loss proce§s, ), if fori,jOA, there exists positive definite

matricesP, andP satisfying the following set of LMls.
cDiTchDi_F?<O (6)
where®, is of the form (5) with specified controller gaiis 1 OA.

Proof: For the switched system (4) let us define multgpl@dratic Lyapunov functions of the form
(7), for each switched state.

V(K) =" (K)P, o (K) (7)
where, P, ,,are symmetric positive definite matricés k [\ .

Let the value of (k) at thek™ and (k +1)" time instant bei and j respectively, wherigj OA .
The difference of the Lyapunov function betweentthe instants of time is given by:

AV (K) =V (k +1)-V (k)
:FT(k+1)PjF(k+1)—I‘T(k)RF(k) (8)
=" (k) (PP, -R)r (k)



For anyl (k) #0, AV (k) <0 if (6) holds.
Thus, Ikim V(k) =00k0OZ, . Hence the system (4) is asymptotically stable.

Therefore, the linear equations (6) are solvabtaatrices®, are stable i.e. all eigen-values ®f
should have negative real part. In other word, @aeehto show that the LMIs are feasible for some
value of R >0 and P, >0.

2.3 MOGA based controller design with optimized performance and guaranteed stability

Multi Objective Genetic Algorithm (MOGA) is a pojation based optimization algorithm
based on Darwinian principle of survival of thed#t. This algorithm transforms a set of solution
variables into population of solutions dependingrupdividual fithess value through reproduction.
Reproduction implies that solution vectors withheg fithess values can produce more replicas of
themselves in the next generation. Usually a pai@mealled the elite count is used which
represents the number of fittest solution vectbeg will definitely go to the next generation. But
increasing the elite count may result in dominatdrihe fitter individuals obtained earlier in the
simulation process and as such will result in leffiective solutions. Hence this parameter is
generally a small fraction of the total populatisize. After the selection of the fittest solutions,
different operations like crossover and mutatioketplace among them to produce better and
effective solutions in each generation. In crossowdormation is exchanged between a pair of
solution vectors so that good solutions can fretjyaarrive in the next generation. It makes the
search process to converge towards overall bestiGaos with similar characteristics. In mutation
any randomly selected portion of solution vectoraitered, introducing diversity to similar
solutions. It helps to avoid local minima and imiéis to search the unexplored regions of Pareto-
front to find new non-dominated set of solutiongahdomly changes the information of individual
solution.

The multiobjective optimization problems can bé&/ed by transforming the objectives into
single objective by assigning weights to individuatbjectives and any of single objective
optimization algorithms can be applied to solve ghgblem. However in this case the solution will
depend upon the specific choice of the weights. Gwones appropriate choice of these weights can
be very difficult to guess for the designer. Eveanaall change in the weights can produce very
different solutions. On the other hand MOGA, bemgopulation based search algorithm, can
simultaneously search different regions of the tsmhuspace. This property is helpful to find the
different set of solutions for discontinuous or remmvex problem of switched systems. MOGA can
search a set of solutions keeping one objectiveeluadceptable level without being dominated by
other objectives. Thus simultaneous optimizatiomaodftiple objectives can be achieved. For these
numerous advantages, MOGA is chosen for the opditioiz of conflicting objectives in the present
design procedure.

In this paper, NSGA-Il algorithm is used for mwdbjective optimization [21]. The
crossover and mutation operations are similar wsehin single objective genetic algorithm
excluding the selection procedure. Before the seleds performed, the non-dominated solution of
the population is given a high dummy fitness vallieen these solutions are ignored temporarily
and a new non-dominated set of solutions are forfrad rest of the population and is assigned
with lesser fitness value. This process continugd all the solutions are assigned with a fithess
value. After that all solutions are reproduced adicmy to individual fithess value. As the
individuals in the first front have highest fithessue, they produce more replicas than others Thi
makes them to converge faster on the non-dominapete. A generalized multi-objective
optimization framework can be defined as follows:
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Minimize F'(x) = (f,(x), f,(x),...,f. (x))such thatx0Q 9)

where Q is the decision spac&" is the objective space, an# Q':» R™ consists ofm real
valued objective functions.

Letv={v,...,v.} ,w={w,...,w }OR™ be two vectors. Herejs said to dominateif
v, <w Oi0fL,2,...m} and v #w. A point X 0Q is called Pareto optimal i x| xJQ such that
F'(x) dominates '(X') . The set of all Pareto optimal points, denotedPByis called the Pareto set.

The set of all Pareto objective vectd®s, ={F'(XY OR", xOPS , is called the Pareto Front. This

implies that no other feasible objective vectorsexiwhich can improve one objective function
without simultaneous worsening of some other objedunction.

Multi-objective Evolutionary Algorithms (MOEAS) wbih use non-dominated sorting and
sharing have higher computational complexity, usesion-elitist approach and requires the
specification of a sharing parameter. The non-dateith sorting genetic algorithm (NSGA-II),
removes these problems and is able to find a bgtterad of solutions and better convergence near
the actual Pareto optimal front [21]. The pseuddecfor the NSGA-II is as shown below [21]-
[22].

NSGA Il Algorithm
Step 1: generate populatiog Y randomly
Step 2:sety=(F, F, ' )= non-dominated-{of)
Step 3: foralk, O Y
crowding-distance-assignm{éht)
Step 4: set t=0
while ( not completeH

generate child populat@n  fr¥m

sk =Y, UQ

s€t =(F, F, ')= non-dominated-§BY)
setY =¢

i=1
whiIe}Y

t+1

+|F |&N
crowding-distance-gssihen(F, )
=Y OF
i=i+1

end

soft ' on crowding distances

setY =Y, OF [ N ‘Ymﬂ
sdt=t+ 1
end

returnk '




The NSGA 1l algorithm convertd different objectives into one fithess measure by
composing distinct fronts which are sorted basetherprinciple of non-domination. In the process
of fitness assignment, the solution set not doremhdly any other solutions in the population is
designated as the first frorff,' and the solutions are given the highest fitnedsievaThese

solutions are then excluded and the second nonréaed front from the remaining populatiéy'

is created and ascribed the second highest fitiéss.method is iterated until all the solutions ar
assigned a fitness value. Crowding distances aadimalized distances between a solution vector
and its closest neighbouring solution vectors ioheaf the fronts. All the constituent elements of
the front are assigned crowding distances to e laded for niching. The selection is achieved in
tournaments of size 2 according to the followingido

a) If the solution vector lies on a lower front thasm opponent, then it is selected.

b) If both the solution vectors are on the same frémén the solution with the highest
crowding distance wins. This is done to retaingbkition vectors in those regions of the
front which are scarcely populated.

3. Formulation and ssimulation of the conflicting objective functions

Different methods of controller design are desaibew by optimizing two different set of
objective functions simultaneously. As shown in légal. [6], time domain performance decreases
with increase in stability region for the predietigontrol. In control engineering, along with good
relative stability there are also several otherfqrarance requirements which should be met in
order to design a controller. These can be smedidst state error, good transient response likel smal
peak time, rise time, small overshoot, and robisstiroé parameters. All the performance parameters
are inter-related to each other and if one paramet@ptimized, other parameters will also change
automatically. So there is a requirement of optingzmore than one parameter simultaneously,
rather than one parameter at a time. Hence to \&lines, three design techniques are introduced,
each consisting of two contradictory objective fimes which are traded-off to achieve better
performance.

3.1. First design trade-off for controller tuning
The first controller design comprises of two caztftig cost functions given by (10) and (11)

n =]

J; = (KT (k)| (10)

1=1 k=0

n

andJ, => > u?(k) (11)
I=1 k=0

where n denotes the number of state variables of the sysie(k) is the I state atk™ time

instant for the system given by equation (1).

The performance indeX), ensures fast transient response or fast settlinthefsystem’s states.

Here, time multiplication term with the state vat&aminimizes the oscillation of the state as time
increases and absolute value of state variablenmzes the percentage overshoot of the respective
states. But on the other hand control signal isalgjimportant for achieving this specific task.er'h
required control signal should not be allowed twréase indefinitely as it can lead to saturation of
the actuator. In order to prevent saturation ofatiator and also to reduce the size of the amtuat
squared control signd} is taken as another cost function. Squared valufeicontrol signal is
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taken to put extra penalty on the higher valuesiddeéby balancing the cost functiahsandJ,we
can reduce oscillations of the state variable, cedts peak overshoot, settling time while using th
minimum possible control signal, due to the muljextive optimization based design framework
of the problem. During the simulations, the cloakput is discretized and multiplied with each
state at every sampling instant. These results agidied to obtain the numerical values of
objectiveJ, andJ,, in each iteration of the MOGA.

3.2. Second design trade-off for controller tuning

Another objective function], is given by (12) which enforces a smooth variatwdrthe

state trajectories, even in the presence of pigdigains to compensate for the dropped data
packets.

Jszgggllx(k)—fﬂ(k)ll (12)

% = smooth(x )

Here, function “smooth” reduces the small localilkestons in the time series of state variables)(

using a moving average (MA) filter within each ftioo evaluation of MOGA. Due to the
introduction of predictive gains so as to maximgabilizing region in Pamt al. [6] for packet
drops in NCSs, such oscillations occurs in theestariables and smoothing of the state excursions
becomes a necessity. The smoothing results aredsiorx, and its difference with the original state
vector can be considered as the error and its deahi distance as the error index which needs to be
minimized. The moving average filter smoothes theetseries of the state variables by replacing
each data point with the average of the neighbguieta points defined within a given span. The
span used for the moving average filter consisteafsecutive 5 samples. At every sampling
instant, the value of each state is stored in dbufThen those values are passed through the

‘smooth’ function of MATLAB to obtain local oscilteon free data se¢. The 2-norm of difference

between original data and smoothed data of alestats been considered as the third objective
functionJ,. Panet al. [6] have shown that state feedback controller ittdictive gains with high

robust stability yields jittery nature of the statecursions. So the objective functibns chosen to
minimize jittery effect of the states which is rdgsirable for many practical control applications.

But in order to reduce the jittery effect, much maontrol signal will be needed, which may again
saturate the actuator. So, integral squared cosigobl J, in discrete form has again been taken as

the other objective function to study the secorglgletrade-off.

3.3. Third design trade-off for controller tuning

It is known that if there is an attempt to make $kéling time short, as its consequence the
peak value of the state vector increases and \acgav For small settling time, the state feedback
controller gains should be increased and conselyuttiet controller output also increases. But this
will lead to increase in overshoot of the statdaldes. Hence here these two conflicting features
have been used in the multi-objective optimizatiommework to design the predictive state
feedback controllers as also studied in [23] fogk objective optimization. Here the performance
indicesJ, (13) andJ, (14) impose penalties on high peak value and s&ttling time respectively.
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3=

1=1

(13)

0

X

where x° is the initial value ofl" state vector. Peak value of" state vector is denoted

byM .. (X) . Since, in many practical applications initial walof the state variablex) may be

different, therefore they are normalized in (13Yhwespect tato ensure that overshoots are

considered in the same normalized scale in thenigdtion process. It is to be noted that in the
evaluation of objective function (13), zero initethtes have to be replaced with small initial galu
for to avoid division by zero.

J5 =2 ST, (14)
=1
where ST, is the settling time of" state vector.

In the simulation of performance index (14), theabte values of a state are stored in a buffer at
every sampling time. If maximum value of last 1secutive samples becomes less than a certain
tolerance (taken as +£0.02 or 2% criterion in thase), it is confirmed that the respective state
response reaches inside the tolerance band ahalsvilue and that instant can be consideredes th
settling time (ST).

Here controller gains are randomly generated uM@Q{GA so as to study design trade-off
between above control objectives. Within the malijective optimization process, it is first
checked using the LMI Toolbox “YALMIP” [24] whetheéhe randomly generated controller gains
satisfy the LMIs as given in equation (6) derivedni Lyapunov stability criteria. In case the
stability criteria is not satisfied, a high valueabjective function is assigned which automatigall
makes the solution inferior and the algorithm stedf from these regions of the search space in the
consequent generations. The objective functiongioresd above are stochastic in nature because it
is not possible to predict at which time instard fracket losses occur. Hence both the objective
functions in multi-objective optimization for eveset of controller design have been simulated
multiple times using same set of solution vectom({roller gains) and average values of objective
functions are obtained. In the simulation, a rand@mable is used to decide whether the packet
will be dropped or not. The random variable geresratandom value between 0 and 1. If the
generated value is less than 0.8, the packet isidered as drop. Otherwise the packet is taken as
effective packet.

Similar LMI formulation for networked process caritapplication can be found in recent literature
e.g. using dynamic matrix control [25], observesdmH _ control [26] for nonlinear systems,

receding horizonH_ control [27], robust fault detection filter [28]jstkibuted model predictive

control [29], guaranteed cost MIMO control [30],een-triggered control [31] etc. The proposed
methodology searches for Pareto optimal solutiendntroller gains with different time domain
control objectives with the LMI criterion serving an inherent checking condition for guaranteed
stability. The flowchart of a systematic closeddatetworked controller design has been shown in
Fig. 3.
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Fig. 3. Flowchart for the proposed controller dadigchnique.

4. [llustrative smulation examples
4.1. DC motor plant

Let us consider, an NCS with a continuous time @tomplant (15) as in [32]-[34] with the
state variables considered as the angular positidnangular velocity. The dc motor parameters are
detailed in [34]. The continuous time plant is ahé with a pole very close to the origin and the
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other pole being non-dominating is far away from itinaginary axis of the complex s-plane.

v | 0 1 0
x(t)—[1 _217'4}x(t)+{1669;u(t) (15)

By taking sampling period as 0.05s, we can getréisctime plant of the structure (1) having the
system matrices given by (16)
_[1.0002 0.0047 _{0.3487}

= (16)
0.0046 0 7.6807

Initial values of the state variables are choseq a3 -2]' .M., =3is assumed to illustrate the

drop
proposed design technique. Ms,,, =3, the augmented state maifigk) =[x(k) x(k —1) x(k - 2)]'
Is introduced into NCS. Then according to equafirthe closed loop NCS can be expressed as

Mk+1) :CDa(k)F(k) for o(k)O {1,2,3} a7
F+CK, ¢ ¢ F GK, ¢ F @ GK,
where,®, = [ @ @, dP,=1 ¢ @landd, =1 ¢ @
@ I @ @ | @ @ | @

For the NSGA-II simulations the population sizesét as 90, cross-over fraction is chosen as to be
0.8 and Pareto-front population factor as 0.35.ad#dan fraction is considered as to be 0.2. The
algorithm is run up to a maximum 200 number of gatiens. The Pareto-front obtained after
multi-objective optimization of), and J, is shown in Fig. 4.

From the Pareto-front of Fig. 4, two extreme solusi (solution A and G) and one solution
in between (solution B which is the median solution) have been choserdémonstrating their
time domain characteristics. The correspondingrotiat gains are given in Table 2. As the state
feedback control loop behaves like a switched syste presence of packet losses, positive state
feedback can also stabilize the plant. Hence gasassumed in equation (2), can also be positive.

Table 2:
Multi-objective optimization results amongst thgemlbive functions for the dc motor plant

Design

Objective functions State feedback controller gains

trade-off

amongst

objective | Solution

functions points Jq Jo Js Js Js K11 K1 Ko Ky, Kap K
A 5.393 0.090 - - - -0.155 0.003 -0.047 0.036 -0.1520.040

Jyand J B, 33.123 | 0.028 - - - -0.04Q 0.021 -0.035 0.010 $.06 -0.042
C, 62.284 | 0.019 - - - -0.026 0.013 -0.038  -0.0p1 48.0 -0.045
A, - 0.056 | 2.000 - - -0.104 -0.015 -0.100 -0.012 16.1 -0.039

Jand J B, - 0.040 | 2.076 - - -0.073 -0.009 -0.0797 -0.021 8@.0 -0.049
C, - 0.032 | 2.524 - - -0.058§ -0.00y -0.058 -0.085 80.0 -0.048
Az - - - 2.000 | 13.950 -0.091 -0.009  -0.074 0.022 20.1 -0.051

Jyand 4 B - - - 2.406 | 9.350| -0.11§ 0.024 -0.054 0.075 -0.1350.012
Cs - - - 3.268 | 7.050| -0.178 0.024 -0.069 0.075 -0.1260.012

14



After getting the Pareto solutions, the simulatitiasve been run for those set of optimal
controller gains corresponding tq B; and G. As the system is stochastic, the values of oljest
will not be exactly same as the values which atainobd from the Pareto-front. So the simulation is
run for several times and only those time respises are shown for which values of objectives
become most near to the obtained Pareto solutioa.time evolution of the state variables and the
associated control signals have been depictedgn3-6 for the three chosen solutions given in
Table 2. It is clear from Fig. 5 that the statestfe solution A settles faster than others, whereas
states for gtake more time to settle down to the final valBe.in case of A more control action is
needed to settle down the states in much shonter. tOn the other hand, to settle the states within
greater time, control action needed is less fantsm G as shown in Fig. 6. These situations justify
the design trade-off between the two chosen pedoo® criteria.

Pareto front for the first plant with the conflicting objectives J1 and J2
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Fig. 4. Pareto optimal front for the conflictingjettive functions Jand J

15



Time evolution of states for the solutions Al’ Bl and Cl with conflicting objectives Jl and J2
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Fig. 5. Time evolution of states for solutiong B, and G with the conflicting objectives;and J

Control signals for the solutions anl, Bl and Cl with conflicting objectives ‘]1 and ‘]z
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Fig. 6. Plot of control signals for the solutiong B, and G.
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Similarly, the Pareto-front for the objective fuiocts 3 and J has been shown in Fig. 7.
Similar to the previous case, two extreme solut@md one intermediate solution is taken and their
controller values and time domain performancessa@vn in Table 2 and Fig. 8-9 respectively.
From Fig. 8 and 9 it is clear that making stategitton smooth, lead to oscillatory control signals
because the control signal changes rapidly so ttatstates can track a smooth curve. But
smoothing of states cause them to take a long tonsettle down as the settling time is not

penalized in the designing technique.

Pareto front for the first plant with the conflicting objectives T, and J,

27
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Fig. 7. Pareto optimal front for the conflictingjettive functions sJand J
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Time evolution of states for the solutions Az’ Bz and Cz with conflicting objectives JS and ']z
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Fig. 8. Time evolution of states for solutiong B, and G with the conflicting objectivess&nd J

Control signals for the solutions Az' Bz and Cz with conflicting objectives J3 and J2
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Fig. 9. Plot of control signals for the solutiong B, and G
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Now for the third type of design technique (as d&sed in Section 3.3) the Pareto plot
obtained after optimization is shown in Fig. 10 émeke solution points A Bz and G are taken for
further investigation.

FPareto front for the first plant with the conflicting objectives J4 and J3
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Fig. 10. Pareto optimal front for the conflictingjective functions sJand g
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Time evolution of states for the solutions A], B3 and Cs with conflicting objectives .I4 and .I5
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Fig. 11. Time evolution of states for solutiong Bz and G with the conflicting objectives;&and g

Control signals for the solutions qus, B3 and C] with conflicting objectives J4 and J5
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Fig. 12. Plot of control signals for the solutighg Bs and G
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Figs. 11 and 12 show the time response and theat@ngnal of the representative solutions
respectively. It is evident from the Table 2 andgloaFig. 11 that response fog & quicker than
others and response of fakes longest time to settle. But states fgra@ain a higher peak value
than the states forsAFig. 12 shows that more control signal is neddes; than for A. Hence it
is proved from the graphs that for quicker respomgershoot increases, for which more control
signal is needed to settle down in a short timenddeovershoot and settling time are two
conflicting objectives that need to be traded-offdn optimal controller design.

4.2. Double Integrator plant

The unstable system, considered next has two poldee origin of complex s-plane which
represents a double integrator process [35].

%(t) = [g (1)} x(t) {ﬂu(t) (18)

By taking sampling period as 0.01s, we can getéeiisdime plant having the system matrices given
by (19)

1 0.01 0.0001
F = , G= (19)
0O 1 0.01

Multi-objective optimization for the predictive cwvaller design with different objective functions
yields controller parameters given in Table 3 whibasidering the same initial condition as before.

Table 3:
Multi-objective optimization results amongst thgemtive functions for the double integrator plant
Design Objective functions State feedback controller gains
trade-off .
Solution
amongst int
objective | POMS Ja J2 J3 Ja Js Ku K Ko Kz Kal Ka
functions
Ay 4716 | 5.623 - - - -1.534  -1.650 -1.179 -2.644 934 -2.730
Jand J B, 6.525 | 1.251 - - - -0.994 -1670 -0.658 -1.2J9 74.3 -2.164
C 20.022 | 1.094 - - - -0.253 -0.74L -0.439 -0.9Y0 130.| -0.719
A, 8.816 | 1.939 - - -2.660 -1.598 -0.814 -1.283 024 -1.476
Jand J B, 2510 | 1.946 - - -1.6794  -1.624 0917 -1.480 405 -1.721
C, 1.076 | 1.954 - - -0.309 -0.686 -0.417 -0.962 60.1 -0.627
As - - 2.000 | 5.900| -0.949 -1.425 -0598 -0.867 00.7 -1.366
Jrand Bs - - 2.024 | 5280 -1.084 -1.644 -0.335 -1.301 43.3 -1.723
Cs - - 2.176 | 4570| -1.784 -1276 -1.127 -2.745 183 -2.731

Fig. 13 shows the Pareto front for the trade-offMeen the two objectives and J for the
double integrator plant. Fig. 14 and 15 shows ithe evolution of the states and the control signals
respectively for the three representative solut@assabelled on the Pareto front. Similar to the dc
motor plant in the previous case, the solutignh&s the fastest settling time but requires a much
larger control signal. Solution;®as the longest settling time among the thredisokibut requires
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much lower value of the control signal. The keyedi#nce between this example and the previous
one of the dc motor is that there are a lot of llzgmns in the control signal. This is due to the
nature of the double integrator plant which is nemély unstable. Similar example of unstable
system stabilization with fractional order and geeorder PID type controllers over network as in
Panet al. [36] have shown that the control signal may byt even though the time response
curves are smooth. This is due the fact that timrolber produces additional control signals after
the packet drop occurs and to compensate for thésimg measurement or control values the
manipulated variable is perturbed violently. THiepomenon is intrinsically different from that due
to measurement noise and cannot be removed by cbowal derivative filtering or similar
techniques. It can be seen that for solutierakhough there is an improvement in the settlinget
there are much larger oscillations in the contrghal. So, if this is a mechanical system, theis it
not really advisable to go with solution As large frequent variations in control signal ldaesult

in dithering of the actuator which is undesirable.

Pareto front for the second plant with the conflicting objectives J1 and J2
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Fig. 13. Pareto optimal front for the conflictingjective functions Jand J

22



Time evolution of states for the solutions Al’ B1 and Cl with conflicting objectives J1 and J2
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Fig. 14. Time evolution of states for solutiong B; and G with the conflicting objectives; and J

Control signals for the solutions of Al, B1 and Cl with conflicting objectives J1 and J2
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Fig. 16 shows the Pareto front for the trade-otiMeen J and d with three representative
solutions labelled on the front. Figs. 17 and 18wshhe time response and the control signals of
these representative solutions respectively. Frgn1B, it is found that the control signal fos &
the highest with very high oscillations in the sijas compared to solutions Bnd G. This infact
is also corroborated by the position of én the Pareto front in Fig. 16. The state tramsgiof all
the solutions are mostly smooth in Fig. 17 and rtheute differences is almost negligible at a
glance. This is also due to the fact that the rasfgeaxis (objective 3) in Fig. 16 is much smaller
than the range of the y-axis (objectiye However as a consequence of the larger contggoakin
A,, the solution has automatically been the fastesettle. But since there is no constraint on the
peak overshoot, the same solution has the maxinaak pvershoot as compared to the other ones.

Fareto front for the second plant with the conflicting objective functions J3 and J2
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Time evolution of states for the solutions Az’ B2 and C2 with conflicting objectives J3 and J2
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Fig. 17. Time evolution of states for solutiong B, and G with the conflicting objectivessand J

Control signals for the solutions Az’ Bz and C2 with conflicting objectives ‘]3 and .I2
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Fig. 19 shows the Pareto trade-off for the two baiirfig objective functions sJJand g for
the double integrator plant. Figs. 20 and 21 shiosvplots of the time response and the control
signal respectively of the representative solutiassabelled on the Pareto front. As observed from
Fig. 20, the peak overshoot is higher for soluttaras compared toAbut the settling time of {s
faster than that of A Since the x-axis (objectivg)Jof the Pareto front in Fig. 19 has a very small
range, hence the difference in the settling timtheftwo solutions €and A are very small. Now a
higher peak overshoot or faster settling time iegla higher control signal. This can be verified
from Fig. 21 where the control signal of solutiofi€the highest.
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Fig. 19. Pareto optimal front for the conflictingjective functions Jand 4
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Time evolution of states for the solutions A], B3 and C3 with conflicting objectives J4 and J5
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Fig. 20. Time evolution of states for solutiong B; and G with the conflicting objectives;dand g

Control signals for the solutions an], B3 and C3 with conflicting objectives J4 and J5
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4.3. Inverted pendulum plant

The continuous time plant, considered here hasstatde pole and one unstable pole from
which are at equal distance from the origin. It hasn shown in [37] that such a simplified model
represents an inverted pendulum process.

0 1 0
X(t) = [1 o} X(t) +uu(t) (20)

By choosing the sampling time as 0.05s, we cardigetete time plant having the system matrices
given by (21)

_[1.0013 0.05; _[0.0013}

= (21)
0.05 1.001 0.05

For the above system, multi-objective optimizatiith LMI criteria yields stabilizing Pareto
optimal gains as reported in Table 4 while takimffecent objective functions for simulation. Fig.
22 shows the Pareto front for the inverted penduiointhe two contradictory objectives dnd J.
Fig. 23 and 24 show the state responses and thieocamgnal respectively for the inverted
pendulum for the three representative cases afiddba the Pareto front. Similar results can be
observed as in the previous two cases with solWtiohaving the fastest settling time and solution
C; having the slowest. Solutiom Bas a settling time in between the two extremegeXhis is an
unstable plant, the control signal for Aas significantly more oscillations than soluti@isand G.
But nevertheless, these oscillations are much |akagar that in the double integrator case.

Table 4:

Multi-objective optimization results amongst thejeative functions for the inverted pendulum
plant

Design Objective functions State feedback controller gains
trade-off .
Solution
amongst ints
objective | P° J1 J2 J3 Ja Js Ku K12 K2z K2 Kz Kap
functions
Aq 5579 | 3.597 - - - -2.486 -2.322 -2.068 -1.047 -1.84-1.878
Jyand J B1 6.389 | 2.354 - - - 2370 2229 -1.468 -1.028 -2.92 -1.843
C 8.942 | 2.002 - - - -2.010 -2.048 -1.288 -1.052 -1.79 -1.804
Az - 26.993| 1.938 - - -3.119  -1.015 -1.914 -0.8Y2 49.7 -1.198
Jand J B2 - 5676 | 1.964 - - -2.644  -1.746 -1.927 -1.280 -2.20 -1.686
G, - 2.002 | 2.000 - - -1.976 -2.021 -1.911 -1.945 -8.92-1.971
Az - - - 2.000 | 6.300| -2.982 -1571 -2511 -2.130 -9.85 -3.151
Jyand 4 Bs - - - 2.028 | 6.050| -2.906§ -1.569 -2.492 -2.142 -3.88 -3.161
Cs - - - 2251 | 5650/ -3.00§ -1.574 -2.552 -2.176 -1.86 -3.158
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Pareto front for the third plant with the conflicting objectives J1 and J2
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Amplitude

Control signals for the solutions of Al, B1 and Cl with conflicting objectives .I1 and J2
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Fig. 24. Plot of control signals for the solutighg B; and G.

Fig. 25 shows the Pareto front for the two contraty objectives zJand d for the inverted
pendulum plant with three representative solutiabglled. Figs. 26 and 27 show the time response
plots of these solutions for these representatges. Similar results are seen as in the prewans t
plants (the dc motor and the double integratorg Fitrease in control signal for, Automatically
makes it the fastest to settle and gives higherst®t than the others. The oscillations in the
control signal for the inverted pendulum are lésmtthat of the double integrator plant.
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Pareto front for the third plant with the conflicting objective functions J3 and J2
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Control signals for the solutions Ag, B2 and C2 with conflicting objectives .I] and J2
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Fig. 28 shows the Pareto front with representasigkitions for the conflicting objective
functions J and d for the inverted pendulum plant. Figs. 29 and l3@sthe time domain evolution
of the states and the control signals respectiiely the representative solutions. Similar
characteristics of the solutions can be seen dBemprevious two cases of the dc motor and the
double integrator plant. The control signals atery for all the obtained solutions in this case.
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Pareto front for the solutions ':'fAy Bs and Cs with conflicting objectives .I4 and J5
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Time evolution of states for the solutions A], B] and C3 with conflicting objectives J4 and Js

3 T T T T T I
A : ——--x, for solution A
==, for solution B,
==X, for solution C3
x, for solution A,
%y for selution E%3 H
%X, for solution C3
@
® _
£
g
i I I
4 a 5 7

Time (sec)

Fig. 29. Time evolution of states for solutiong B; and G with the conflicting objectives;and §
33



Control signals for the solutions quj, B3 and C3 with conflicting objectives ‘I4 and J5
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4.4. Few discussions on the proposed networked predictive controller design scheme

In Li et al. [23] system’s control performance is improved bgtimizing the control
parameters using Estimation of Distribution Algont (EDA) which is a single objective
optimization technique. Single objective optimipationly finds best solution i.e. maximum or
minimum value of a single objective. It does notega set of solutions as a trade-off between
different contradictory objectives. But in the prasstudy, a new controller design philosophy for
NCS applications has been proposed using multietibge genetic algorithm, similar to that studied
in [38], [39]. Due to the discontinuous nature lo¢ objective functions, in the presence of random
packet losses, it is not possible to frame it assital convex optimization problem which again
justifies the motivation of applying population bdsglobal optimization techniques [10]. The
proposed predictive controller structure as in Baal. [6] not only ensures high degree of robust
stability of the NCS but also it gives optimum tidemain performance which is enforced in the
present work with a MOGA based approach. Otherwtariary and swarm based algorithms could
also have been employed for the present contrdiésign problem similar to that done using
particle swarm optimization [40] or genetic programg [41]. But for simplicity we restricted our
study to multi-objective genetic algorithm only.

The scheme proposed in Patral. [6] is mainly for safety critical applications. base of
real time safety critical application User Datagmrotocol (UDP) is used whose transmission error
checking capability is very poor. But this has thdditional advantage that there are no
retransmissions, unlike that of Transmission CdrRRrotocol (TCP). This is especially important in
real time control applications where the data nansve within hard time limits and the integrity of
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the data is less important. Also the controllechesen as time-driven rather than event-driven [4]
as in Paret al. [6]. As in the time-triggered concept the totasteyn is synchronized with a single
clock, network load will be reduced drastically. idover time window of every system is
predefined so that every subsystem can be develodegdendently. In this scheme also the delayed
packets are considered as dropped to reduce coitypdexhe LMI formulation.

Inspite of the advantages, the proposed schemfeWwashortcomings. It can be seen that for
a system withn state variables anil number of consecutive packet drops, the numbsolotion
variables (predictive controller gains) that arebi® determined igM +1)n. Thus the solution

technique suffers from the curse of dimensionaBiyt for high dimensional systems where most of
the state variables cannot be measured onlineduced order model can be obtained and then an
observer can be designed based on the reducedrmodiei. This would reduce the number of state
variables and consequently reduce the number diginee controller gains. Generally in adaptive
control where the system matrices are time vargimg)to tackle these problems the controller gains
needs to be time varying, online system identificand optimization is used. Whereas in our case
the nominal system matrix is fixed and the congroflains are not time varying. But the augmented
system with different packet drop situations dendifeerent matrices which has been stabilized
using a LMI based approach and then optimized ttaiobthe design trade-off. Since the
optimization problem is offline there does not €@y hard limits on the timeline as in the case of
real time online optimization [10]. Hence compudatl complexity and guaranteed convergence
are not of major concern for this particular problen networked predictive controller design.

It is often questioned whether such an algorithm ba implemented online or not. The
proposed controller design technique is off-line.réal time applications, there is a hard time
constraint and the computation must finish withidraction of the sampling time for effective
operation. Since the ‘predictive’ term here refewsthe philosophy of applying proper control
signals depending on the state of packet dropcit gme step, it is a different paradigm from the
traditional notions of predictive control (like MP.QGJnlike MPC, this proposed methodology does
not need to perform a finite horizon optimizationeach time step and hence takes much less
computational resources. Thus it is more suitatnle@dal time implementation.

5. Conclusions

The main focus of this paper is to propose a desigthodology based on multi-objective
optimization by NSGA-II which gives a set of Paraiptimal solutions to optimize different
contradictory time domain performance objectivess do0NCS with packet drop-outs. Simulation
results show the validity of the proposed approdtie multi-objective framework gives additional
choices to the designer to choose the controlleording to the specific requirements of the
system’s performance. Also chosen gains give gteednstability in the sense of Lyapunov since
the LMI constraints are also solved as a sub-proldéthe multi-objective optimization algorithm.
Future works can be directed towards extendingptiedictive gain scheme in the event triggered
systems to stabilize networked systems under randgimork induced delays [42], [43] along with
packet drops.

In the proposed scheme we restricted the theotaimalysis for linear systems only or
linearized state space models for nonlinear systa@mend an operating point. An optimization
framework is then proposed to study design trafie-bétween different time domain control
objectives. The linearity of the process is assutheaughout the paper. As a sub-problem of the
multi-objective optimization, the LMI formulationsiintroduced which guarantees Lyapunov
stability inspite of arbitrary packet losses. Thetimal extension of the stability proofs for nomlar
systems with the adopted predictive state feedbmgkto compensate for random packet losses is
thus left as the scope for future research.
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