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Abstract 

Networked Control Systems (NCSs) often suffer from random packet dropouts which deteriorate 
overall system’s stability and performance. To handle the ill effects of random packet losses in 
feedback control systems, closed over communication network, a state feedback controller with 
predictive gains has been designed. To achieve improved performance, an optimization based 
controller design framework has been proposed in this paper with Linear Matrix Inequality (LMI) 
constraints, to ensure guaranteed stability. Different conflicting objective functions have been 
optimized with Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The methodology 
proposed in this paper not only gives guaranteed closed loop stability in the sense of Lyapunov, 
even in the presence of random packet losses, but also gives an optimization trade-off between two 
conflicting time domain control objectives. 

 

Keywords: Multi-objective optimization; Networked Control System (NCS); Non-dominated 
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1. Introduction 

 Networked control system is a distributed control system wherein the information is 
exchanged among the system’s components such as sensors, actuators, controllers, etc. through a 
shared real-time communication network. The NCS results in reduced wiring, makes maintenance 
and analysis of system easier and increases flexibility of architecture, thus making the control 
system to be cost effective. So now-a-days, NCSs are strongly recommended over conventional 
point-to-point control systems. NCSs are widely applicable in factory automation, robotics [1]-[2], 
in safety critical applications and hazardous environments like space excursions, nuclear power 
plants, motorized vehicles etc. But in NCSs, random packet drop-out is one of the major causes of 
performance deterioration of the system and often might lead to system instability [3]-[4]. This 
might happen, inspite of the nominal system being stable under ideal conditions. Thus, stabilization 
of conventional state-feedback control loops and the same in the presence of random packet-losses 
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should be dealt in a different way. 

In Mu et al. [5], the classical model predictive control (MPC) scheme has been used to 
tackle the unknown network induced delay and packet dropouts. In that paper, the receding horizon 

controller continuously performs an online optimization at every time instant to predict the 
sequence of control signals based on received data. The predicted control signals are lumped in a 
packet and transmitted to actuator at the plant side. The delay compensator logic at the actuator end 
decides the appropriate control signal from the available predicted signal set that can be used to 
compensate the time delay and packet losses. Here the controller has to finish the computation 
within a small fraction of sampling instant. This method thus imposes a hard time limit in real time 
control. In contrast to the above methodology, the present paper does not use the concept of online 
optimization to tackle packet-losses in NCS. Rather, to reduce the online computation, static state-
feedback gains are used which would provide future control signals if the present and subsequent 
packet is dropped. The concept has been illustrated in Pan et al. [6]. In the present predictive NCS 
scheme, the estimated present and future control signals are lumped in a packet and transmitted 
through the shared network. There is a buffer which stores the packet before applying the control 
signal to the plant. The buffer has a pre-programmed logic which decides the control signal to be 
applied at each sampling instant depending on the previous packet history. When there is no packet 
loss, only the first estimated control signal is applied to the plant at every sampling instant, and rest 
of the control signals are discarded. But when the NCS suffers packet loss, some of these packets 
containing the effective control signals also get dropped. To compensate for these time instants, the 
buffer applies estimated control signal from last received data packet to the plant, depending upon 
the receiving instant of the packets. The proposed predictive state feedback controller design should 
not be confused with the well-known MPC algorithms. In MPC, an iterative method is employed 
which performs a finite horizon optimization of the plant model at each time step. A numerical 
optimization algorithm minimizes a user defined control cost at each time step and predicts the next 
N control signals that must be supplied for the optimal operation of the plant. Only the first control 
signal from this set of predictive control signals is then used to update the plant state and the whole 
process is again repeated at subsequent time steps. These algorithms work well for nonlinear, time 
delayed or other complicated process control plants. In the present case, the general philosophy of 
predictive control is used to compensate the arbitrary packet loss in the network. The packet loss is 
a stochastic phenomenon and the designer has no idea about the sequence in which the packet drops 
would occur, although he knows the number of successive packet drops that can occur in a given 
network loading scenario. So a generalized formulation needs to be done in which the controller 
gives guaranteed stability and good performance, irrespective of arbitrary order of packet drops.  
The term “predictive” refers to a-priori determination of future control actions with an anticipation 
of stochastic packet loss in the shared communication medium. The control policy can be visualized 
as a set of linear state feedback controllers in parallel for each case of the different packet drop 
scenarios. The control action from each of the controller is calculated and encoded in a packet and 
sent over the network. Depending on the arrival of the packets and the drop outs, the logic at the 
buffer decides which control action to give to the actuator. This buffer logic mechanism along with 
the set of parallel linear controllers is what performs the predictive strategy. The advantage of this 
method over the other MPC methods is that there is no need of a finite horizon optimization (and 
hence increased computational cost) at each time step since the control design method is offline and 
the prediction occurs by the synergistic logic and interaction between the multiple set of linear 
controller and the buffer logic. Also this can be implemented by simple state feedback controllers as 
opposed to more complex MPC paradigms. 

The Asynchronous Dynamical System (ADS) is another approach of modeling the NCS with 
packet loss, which is used in Zhang et al. [4]. But ADS formulations involve Bilinear Matrix 
Inequality (BMI) constraints and there is no standard solution technique for BMIs constraints in 
polynomial time. In most cases the BMI problems are solved using random search techniques. For 
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this reason, the ADS approach has not been considered in the present work. In this paper, the NCS 
is modeled as a set of switched Linear Time Invariant (LTI) systems with arbitrary switching 
between them caused by random data loss. This mechanism avoids the problems in ADSs. In 
switched system scheme, the equations are formulated using linear matrix inequality (LMI) 
constraints which can be solved using standard off-the-shelf LMI solvers to ensure Lyapunov 
stability for the system, even in the presence of packet-losses. In the present approach, the LMI 
based stability criteria is solved as a sub-problem in each iteration and the controller design is done 
by global optimization technique using Multi-Objective Genetic Algorithm (MOGA) [7]. 

In Xiong and Lam [8], the switched system methodology is used for stabilization of NCSs 
but the performance criteria are not considered in the design problem. But for industrial uses such 
as networked process control applications, the quality of control is also a major consideration and 
not mere stabilization. With the present formulation, guaranteed Lyapunov stability and optimum 
time domain performance both can be achieved in NCSs in the presence of random packet losses. 
However, in a practical NCS, often conflicting objectives are encountered which needs to be 
optimized to get a trade-off between them. Contradictory objectives imply that if the performance 
of one objective is improved, performance of other objective gets degraded and it is not possible to 
minimize both the objectives simultaneously.  

 In Pan et al. [6], Particle Swarm Optimization (PSO) has been used to maximize the 
stabilizing region of the predictive networked controller. From their simulations it is clear that the 
stabilizing region is patchy and discontinuous and consequently cannot be visualized as a standard 
continuous nonlinear objective function. Some of the continuous nonlinear objective functions can 
also be solved using standard LMI with special transformation techniques like the Schur 
complement, change of variables etc [9]. On the other hand evolutionary and swarm optimization 
algorithms have been found to be expedient in optimizing functions which are discontinuous, noisy 
or dynamically varying which often occur in standard control engineering problems [10]. Hence in 
the present approach, the controller design problem is attempted through population based multi-
objective evolutionary optimization techniques. LMI based techniques are preferred over 
evolutionary approaches, in cases where the problem is convex, since they can be solved in 
polynomial time and have the feature of guaranteed convergence. However in the present case, the 
objective functions are non-convex due to their discontinuous nature. To further explain this point,    
a reference can be made to the stability region in the state feedback controller parameter space as in 
Pan et al. [6] which is clearly a discontinuous function. As a subset of this problem, the present 
paper seeks the optimum performance inside the stable regions only. Hence the region, in which the 
multiobjective optimization searches needs to be confined, is also discontinuous in nature in order 
to achieve optimum time domain performance. This is due to the fact that only stabilizing controller 
gains can produce finite integral performance index associated with them where the multi-objective 
search is to be carried out. Thus, even though the evolutionary techniques have the issues of 
consistency and guaranteed convergence, these have been resorted to and LMI techniques have 
been used as a sub-problem in the present scenario.  

 Multiobjective optimization also can be done using LMI [11]-[12]. However, the functions 
need to be convex for this type of optimization which is not valid for the present networked 
predictive controller design scenario. So MOGA has been used for simultaneous minimization of 
multiple contradictory objectives for this non-convex, discontinuous objective function. In this 
paper, the multi-objective NSGA-II is used to find out the Pareto optimal solutions for the controller 
parameters as a trade-off between different contradictory performance objectives [13]-[20]. MOGA 
provides a powerful population-based search and a flexible optimal control system can be designed 
with the user’s choice of putting weights of those objectives [16]-[20]. It is used to optimize the 
objective functions, represented by few time domain performance indices for those gains which 
satisfy the LMIs for state-feedback control with packet-losses. 
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The rest of the paper is organised as follows. In section 2 the NCS is analysed as a switched 
system and the LMI formulation for the predictive controller is outlined. The NSGA II algorithm is 
also introduced and various contradictory objective functions are discussed. An illustrative example 
is given in section 3, along with credible simulation results to demonstrate the proposed 
methodology. The paper ends in section 4 with the conclusions followed by the references. 

Notations: 

Throughout this paper, n
ℝ  and   n m×

ℝ  denote the n dimensional Euclidean space and the set 
of all n m×  real matrices respectively. i  refers to the Euclidean norm for vectors and induced 2-

norm for matrices. I  and φ  are the identity and null matrix respectively with appropriate 

dimensions. +
ℤ  is the set of positive integers. The superscript “T ” indicates matrix transpose 

operation. 

 

2. Theoretical formulation 

2.1 LMI formulation for the state feedback NCS with predictive gains considering drop in both 
the forward and the feedback channels 

The model of the plant concerned in this paper is shown in the Fig. 1. The discrete time state 
space model of the process is represented as: 

( 1) ( ) ( )x k Fx k Gu k+ = +       (1) 

where, k +∈ℤ  is the time step, ( ) nx k ∈ℝ  is the system state and ( ) mu k ∈ℝ  is the control input; 

0 : (0) nx x= ∈ℝ  is the initial state. F  and G  are two system matrices of appropriate dimensions. 

 

Fig. 1. Schematic diagram of considered predictive NCS. 

 

Fig. 1 shows the schematic of the NCS with the predictive feedback controller and the 
unreliable network having packet drops in the forward and the feedback paths. The sensor is 
assumed to be time driven. It samples the plant at fixed multiples of the sampling time and sends 
the data to the controller in the form of packets along with a time stamp. The controller is a full 
state feedback controller and full state information of the plant is assumed to be available. The 
controller can be time-driven or event-driven. But in the peak load situation of the network, a 
number of packets can arrive within the same sampling instant for the event driven case, which is 



5 
 

undesirable for safety critical applications. For this reason, in the present paper the controller is 
chosen as time-driven. The controller encapsulates the present and next predicted control signals 
into a data packet and sends it over the network. The control signal is given by  

zu K x=              (2) 

where, zK  is the feedback gain to be designed  and {1,2,..., }dropz M∈ .      

  The buffer situated on the plant side has a logic element in it. It receives the control packet 
and applies the proper control signal to the actuator based on the arrival history of packets. The 
logic of the buffer is explained in Definition 1. The time lines of the system sensor, the controller 
and the actuator are assumed to be synchronized with a skew to take care of the inherent delays. 
Thus if 1τ  be the time skew between the sensor and the controller, 2τ be the time skew between the 

controller and the actuator, then the following is assumed to hold: 1 2sT τ τ> + , where sT is the 

sampling time of the system. Thus a packet with a particular time step is considered to be dropped if 
it does not reach the actuator in the same time step. Any out of order packet is discarded by the 

buffer and considered to be dropped. Let 1 2: { , ,...}S i i += ⊆ ℤ  indicate the sequence of time points of 

the effective packets which are transmitted successfully from the sensor to the actuator buffer (Fig. 
2). Based on above notations, packet loss process is defined as  

1( ) : { | }m m m mi i i i Sξ += − ∈           (3) 

which means from mi  to 1mi + , maximum ( ) 1miξ −  number of packets can be dropped consecutively. 

Also let, 
 

: max { ( )}
m Sdrop i mM iξ

∈
= . Hence, ( )miξ  can take values in the finite set: {1,2,..., }dropMµ = . 

The packet loss process is assumed to take random values inµ . At every sampling instant, the 
controller sends packets encapsulated with present and future control signal. The control signal can 

be represented as ( )pq q pu K x i= where 1 2[   ]q q q qnK K K K= ⋯ , { }1,2,3,...p ∈ denotes the sample time 

of effective packets and { }1,2,3..., dropq M∈  represents the index numbers of the next dropM  
samples of control signals from the present sampling instant. 

 

Fig. 2. Illustration of packet drops in the predictive NCS scheme. 

 

 As for example, consider a case where, maximum two consecutive packets can be dropped 
i.e. 3dropM = , The situation of packet drops in NCS can be as shown in Fig.2. It means that 1st, 2nd, 

4th, 6th, 9th sensor packets are effective packets used to control the plant. Whereas the 3rd, 5th, 7th and 
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8th sensor packets are considered as dropped and they are not used. At every kth ( 1,2,3, ,9)k = ⋯  
sampling instant the control input used to control the plant is given by 

11 21 22 41 42 61 62 63 91{ , , , , , , , , }u u u u u u u u u respectively. 

Definition 1 [6]: The buffer logic which decides the control signal u  to the actuator at each 
sampling instant k , is defined as 1( ) : ( )ku k ρψ ρ− +=  where 1mk iρ = − + . Here, ψ denotes the buffer, 

the subscript 1k ρ− +  denotes the time index the buffer was last updated by an effective 
packet.ρ denotes the array index of the buffer from which the control signal is applied to the 
actuator. The plant (1) at each instant is updated by the control values in the buffer depending on 

( )miξ . Thus at any given instant the plant can be controlled by a packet index ψ µ∈  in the buffer.  

 Buffer states corresponding to the effective packets as in Fig. 2, are shown in Table 1, The 
buffer is a memory device which will register maximum three data at every sampling instant in an 
array for 3dropM = . The data of first column is used to update the plant at every instant which is 

shown in the column “Present” in Table 1. Status of next predicted data is shown in columns “1st 
Predicted Sample” and “2nd Predicted Sample” respectively. At sampling instants 1 and 2, the buffer 
is updated with the data of two consecutive successfully transmitted packets containing control 
signals 11 12 13{ , , }u u u  and 21 22 23{ , , }u u u  respectively. When the buffer sends the current control 

signals such as 11u  and 21u  for the instants 1 and 2 respectively, other control signals followed by 

those signals, predicted to compensate for next instants, are shifted left by one. At instant 3, the 
packet containing current control signal from controller fails to reach the buffer. So the predicted 
data 22u which is already transmitted to the buffer with the previous packet is used to update the 

plant and 23u  is shifted left. At next instant, the packet is again lost. Hence 23u  is sent to the plant. 

At instant 4, the packet successfully reaches to the buffer and update it with the control signal data 

41 42 43{ , , }u u u . In this way the buffer is being updated for next instants also. 

 

Table 1 

Buffer states corresponding to packet arrival in Fig. 2 

Sampling Instant Present 1st Predicted Sample 2nd Predicted Sample 

1 u11 u12 u13 

2 u21 u22 u23 

3 u22 u23 - 

4 u41 u42 u43 

5 u42 u43 - 

6 u61 u62 u63 

7 u62 u63 - 

8 u63 - - 

9 u91 u92 u93 

 

2.2 Discrete time switched system stability of NCS using predictive controller 

This switched system approach essentially incorporates the idea of the lifted sampling 
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period. Consider that every alternate packet of the control loop is dropped. This is equivalent to 
sampling it at twice the sampling time. For two consecutive packet drops the equivalence is with 
thrice the sampling time. In other words, the sampling timeline is “lifted” to a new timeline which is 
some integer multiple of the base sampling rate. In the present analysis the NCS is modelled in such 
a manner that the packet drop process is modelled as switching between these different lifted 
timelines. In the NCS modelling scenario the switching between the finite number of states is 
arbitrary and hence there is no control over the order of the switching.  Hence this is not a 
stabilization problem where a switching schedule can be designed to stabilize the system. 
Asymptotic stability of the overall system must be guaranteed in the presence of arbitrary switching 
between the sub-systems. 

Let us consider the augmented state vector( ) ( ) ( 1) ... ( 1)
T

dropk x k x k x k M Γ = − − +  . The 

NCS with the state feedback predictive controllers can be cast in the form of a discrete time 
switched system given by: 

( )( 1) ( )kk kσΓ + = Φ Γ                  (4) 

where, ( )kσ is a piecewise constant function, known as a switched signal, which takes values in the 

finite set : {1,2,..., }dropMΛ = . ( )
drop dropnM nM

kσ
×Φ ∈ℝ is of the generalized form:  

( 1)

( )

( 1) ( 1) ( 1)

drop

drop drop drop

n n n n M

k

n M n M n M n

F H

I
σ φ

× × −

− × − − ×

 
 Φ =
  

            (5) 

where, { }
1 ( ) 1

( ) 2, , drop

F GK for k
F

F k M

σ
σ

+ ==  ∀ ∈ ⋯
 ; 

( ) { }( )1, ( )  ( ) 2, ,k dropH k GK k Mσσ σ= ∀ ∈ ⋯ , and (1, )  ( )n nH t t kφ σ×= ∀ ≠  

Theorem 1 [6]: The NCS defined by the switched system (4) is asymptotically stable for the 
arbitrary packet loss process( )miξ , if for ,i j ∈ Λ , there exists positive definite 

matrices, iP and jP satisfying the following set of LMIs.  

0T
i j i iP PΦ Φ − <                  (6) 

where, iΦ  is of the form (5) with specified controller gains lK l∀ ∈ Λ .  

Proof: For the switched system (4) let us define multiple quadratic Lyapunov functions of the form 
(7), for each switched state. 

( )( ) ( ) ( )T
kV k k P kσ= Γ Γ                                      (7) 

where, ( )kPσ are symmetric positive definite matrices ( )kσ∀ ∈ Λ . 

Let the value of  ( )kσ  at the thk  and ( 1)thk + time instant be  i  and  j  respectively, where,i j ∈ Λ . 
The difference of the Lyapunov function between the two instants of time is given by: 

( )

( ) ( 1) ( )

( 1) ( 1) ( ) ( )

( ) ( )

T T
j i

T T
i j i i

V k V k V k

k P k k P k

k P P k

∆ = + −
= Γ + Γ + − Γ Γ

= Γ Φ Φ − Γ

                        (8) 
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For any ( ) 0kΓ ≠ ,  ( ) 0V k∆ <  if (6) holds. 

Thus, lim ( ) 0
k

V k k +→∞
= ∀ ∈ℤ . Hence the system (4) is asymptotically stable. □ 

Therefore, the linear equations (6) are solvable if matrices iΦ  are stable i.e. all eigen-values of iΦ  
should have negative real part. In other word, we have to show that the LMIs are feasible for some 

value of 0iP >  and 0jP > .  

 

2.3 MOGA based controller design with optimized performance and guaranteed stability  

 Multi Objective Genetic Algorithm (MOGA) is a population based optimization algorithm 
based on Darwinian principle of survival of the fittest. This algorithm transforms a set of solution 
variables into population of solutions depending upon individual fitness value through reproduction. 
Reproduction implies that solution vectors with higher fitness values can produce more replicas of 
themselves in the next generation. Usually a parameter called the elite count is used which 
represents the number of fittest solution vectors that will definitely go to the next generation. But 
increasing the elite count may result in domination of the fitter individuals obtained earlier in the 
simulation process and as such will result in less effective solutions. Hence this parameter is 
generally a small fraction of the total population size. After the selection of the fittest solutions, 
different operations like crossover and mutation take place among them to produce better and 
effective solutions in each generation. In crossover, information is exchanged between a pair of 
solution vectors so that good solutions can frequently arrive in the next generation. It makes the 
search process to converge towards overall best solutions with similar characteristics. In mutation 
any randomly selected portion of solution vector is altered, introducing diversity to similar 
solutions. It helps to avoid local minima and initiates to search the unexplored regions of Pareto-
front to find new non-dominated set of solutions. It randomly changes the information of individual 
solution.   

 The multiobjective optimization problems can be solved by transforming the objectives into 
single objective by assigning weights to individual objectives and any of single objective 
optimization algorithms can be applied to solve the problem. However in this case the solution will 
depend upon the specific choice of the weights. Sometimes appropriate choice of these weights can 
be very difficult to guess for the designer. Even a small change in the weights can produce very 
different solutions. On the other hand MOGA, being a population based search algorithm, can 
simultaneously search different regions of the solution space. This property is helpful to find the 
different set of solutions for discontinuous or non-convex problem of switched systems. MOGA can 
search a set of solutions keeping one objective under acceptable level without being dominated by 
other objectives. Thus simultaneous optimization of multiple objectives can be achieved. For these 
numerous advantages, MOGA is chosen for the optimization of conflicting objectives in the present 
design procedure. 

 In this paper, NSGA-II algorithm is used for multi-objective optimization [21]. The 
crossover and mutation operations are similar to those in single objective genetic algorithm 
excluding the selection procedure. Before the selection is performed, the non-dominated solution of 
the population is given a high dummy fitness value. Then these solutions are ignored temporarily 
and a new non-dominated set of solutions are formed from rest of the population and is assigned 
with lesser fitness value. This process continues until all the solutions are assigned with a fitness 
value. After that all solutions are reproduced according to individual fitness value. As the 
individuals in the first front have highest fitness value, they produce more replicas than others. This 
makes them to converge faster on the non-dominated space. A generalized multi-objective 
optimization framework can be defined as follows: 
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Minimize 1 2'( ) ( ( ), ( ),..., ( ))mF x f x f x f x= such that x ∈Ω                                                               (9) 

where Ω  is the decision space, mℝ  is the objective space, and  ' : mF Ω → ℝ  consists of m  real 
valued objective functions.  

 Let 1{ ,..., }mv v v= , 1{ ,..., } m
mw w w= ∈ℝ  be two vectors. Here,v is said to dominatew if 

{1,2,..., }i iv w i m< ∀ ∈  and v w≠ . A point *x ∈Ω  is called Pareto optimal if ∃ |x x ∈Ω  such that 

'( )F x  dominates *'( )F x . The set of all Pareto optimal points, denoted by PS is called the Pareto set. 

The set of all Pareto objective vectors, { '( ) , }mPF F x x PS= ∈ ∈ℝ , is called the Pareto Front.  This 
implies that no other feasible objective vector exists which can improve one objective function 
without simultaneous worsening of some other objective function. 

Multi-objective Evolutionary Algorithms (MOEAs) which use non-dominated sorting and 
sharing have higher computational complexity, uses a non-elitist approach and requires the 
specification of a sharing parameter. The non-dominated sorting genetic algorithm (NSGA-II), 
removes these problems and is able to find a better spread of solutions and better convergence near 
the actual Pareto optimal front [21].  The pseudo code for the NSGA-II is as shown below [21]-
[22]. 

( ) ( )

( )

0

0 1 2 0

0

NSGA II Algorithm

Step 1: generate population Y  randomly

Step 2: set Y ', ',...  non-dominated-sort

Step 3: for all '  Y  

                crowding-distance-assignment '

Step 4: set t=0

          

i

i

F F Y

F

F

= =
∈

( )

( ) ( )1 2

1

  while not completed

                    generate child population  from Y

                    set 

                    set ' ', ',... non-dominated-sort

                    set Y

  

t t

t t t

t

t

Q

R Y Q

F F F R

φ+

= ∪
= =

=

( )
1

1 1

                  i=1

                    while '

                             crowding-distance-assignment '

                             Y '

                             i=i+1

       

t i

i

t t i

Y F N

F

Y F

+

+ +

+ <

= ∪

( )1 1 1

1

             end

                    sort ' on crowding distances

                    set Y ' 1:

                    set 1

            end

return ' 

i

t t i t

F

Y F N Y

t t

F

+ + + = ∪ − 

= +
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The NSGA II algorithm convertsM different objectives into one fitness measure by 
composing distinct fronts which are sorted based on the principle of non-domination. In the process 
of fitness assignment, the solution set not dominated by any other solutions in the population is 
designated as the first front 1 'F  and the solutions are given the highest fitness value. These 

solutions are then excluded and the second non dominated front from the remaining population 2 'F   

is created and ascribed the second highest fitness. This method is iterated until all the solutions are 
assigned a fitness value. Crowding distances are the normalized distances between a solution vector 
and its closest neighbouring solution vectors in each of the fronts. All the constituent elements of 
the front are assigned crowding distances to be later used for niching. The selection is achieved in 
tournaments of size 2 according to the following logic. 

a) If the solution vector lies on a lower front than its opponent, then it is selected. 

b) If both the solution vectors are on the same front, then the solution with the highest 
crowding distance wins. This is done to retain the solution vectors in those regions of the 
front which are scarcely populated. 

 

3. Formulation and simulation of the conflicting objective functions 

Different methods of controller design are described now by optimizing two different set of 
objective functions simultaneously. As shown in Pan et al. [6], time domain performance decreases 
with increase in stability region for the predictive control. In control engineering, along with good 
relative stability there are also several other performance requirements which should be met in 
order to design a controller. These can be small steady state error, good transient response like small 
peak time, rise time, small overshoot, and robustness of parameters. All the performance parameters 
are inter-related to each other and if one parameter is optimized, other parameters will also change 
automatically. So there is a requirement of optimizing more than one parameter simultaneously, 
rather than one parameter at a time. Hence to achieve this, three design techniques are introduced, 
each consisting of two contradictory objective functions which are traded-off to achieve better 
performance. 

 

3.1. First design trade-off for controller tuning 

The first controller design comprises of two conflicting cost functions given by (10) and (11) 

1
1 0

( ) ( )
n

s l
l k

J kT x k
∞

= =

=∑∑            (10) 

and 2
2

1 0

( )
n

l
l k

J u k
∞

= =

=∑∑            (11) 

where n  denotes the number of state variables of the system; ( )lx k  is the thl  state at thk  time 

instant for the system given by equation (1).  
The performance index 1J ensures fast transient response or fast settling of the system’s states. 

Here, time multiplication term with the state variable minimizes the oscillation of the state as time 
increases and absolute value of state variable minimizes the percentage overshoot of the respective 
states. But on the other hand control signal is equally important for achieving this specific task. The 
required control signal should not be allowed to increase indefinitely as it can lead to saturation of 
the actuator. In order to prevent saturation of the actuator and also to reduce the size of the actuator, 
squared control signal2J  is taken as another cost function. Squared value of the control signal is 
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taken to put extra penalty on the higher values. Hence by balancing the cost functions1J  and 2J we 

can reduce oscillations of the state variable, reduce its peak overshoot, settling time while using the 
minimum possible control signal, due to the multi-objective optimization based design framework 
of the problem. During the simulations, the clock output is discretized and multiplied with each 
state at every sampling instant. These results are added to obtain the numerical values of 
objective 1J and 2J , in each iteration of the MOGA. 

 

3.2. Second design trade-off for controller tuning 

Another objective function 3J  is given by (12) which enforces a smooth variation of the 

state trajectories, even in the presence of predictive gains to compensate for the dropped data 
packets. 

( )
3

1 0

ˆ( ) ( )

ˆ  

n

l l
l k

l l

J x k x k

x smooth x

∞

= =

= −

=

∑∑           (12)       

Here, function “smooth” reduces the small local oscillations in the time series of state variables (lx ) 

using a moving average (MA) filter within each function evaluation of MOGA. Due to the 
introduction of predictive gains so as to maximize stabilizing region in Pan et al. [6] for packet 
drops in NCSs, such oscillations occurs in the state-variables and smoothing of the state excursions 
becomes a necessity. The smoothing results are stored in ˆlx and its difference with the original state 

vector can be considered as the error and its Euclidean distance as the error index which needs to be 
minimized. The moving average filter smoothes the time series of the state variables by replacing 
each data point with the average of the neighbouring data points defined within a given span. The 
span used for the moving average filter consists of consecutive 5 samples. At every sampling 
instant, the value of each state is stored in a buffer. Then those values are passed through the 

‘smooth’ function of MATLAB to obtain local oscillation free data set̂lx . The 2-norm of difference 

between original data and smoothed data of all states has been considered as the third objective 
function 3J . Pan et al. [6] have shown that state feedback controller with predictive gains with high 

robust stability yields jittery nature of the state excursions. So the objective function3J is chosen to 

minimize jittery effect of the states which is not desirable for many practical control applications. 
But in order to reduce the jittery effect, much more control signal will be needed, which may again 
saturate the actuator. So, integral squared control signal 2J  in discrete form has again been taken as 

the other objective function to study the second design trade-off. 

 

3.3. Third design trade-off for controller tuning 

 It is known that if there is an attempt to make the settling time short, as its consequence the 
peak value of the state vector increases and vice-versa. For small settling time, the state feedback 
controller gains should be increased and consequently the controller output also increases. But this 
will lead to increase in overshoot of the state variables. Hence here these two conflicting features 
have been used in the multi-objective optimization framework to design the predictive state 
feedback controllers as also studied in [23] for single objective optimization. Here the performance 
indices 4J  (13) and 5J  (14) impose penalties on high peak value and long settling time respectively.  
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4 0
1

( )n
peak l

l l

M x
J

x=

=∑                      (13) 

where 0
lx  is the initial value of thl  state vector. Peak value of thl  state vector is denoted 

by ( )peak lM x . Since, in many practical applications initial value of the state variables (0lx ) may be 

different, therefore they are normalized in (13) with respect to0
lx to ensure that overshoots are 

considered in the same normalized scale in the optimization process. It is to be noted that in the 
evaluation of objective function (13), zero initial states have to be replaced with small initial values 
for to avoid division by zero. 

5
1

n

l
l

J ST
=

=∑                   (14) 

where lST  is the settling time of thl  state vector.  

In the simulation of performance index (14), the absolute values of a state are stored in a buffer at 
every sampling time. If maximum value of last 10 consecutive samples becomes less than a certain 
tolerance (taken as ±0.02 or 2% criterion in this case), it is confirmed that the respective state 
response reaches inside the tolerance band of its final value and that instant can be considered as the 
settling time (ST). 

Here controller gains are randomly generated using MOGA so as to study design trade-off 
between above control objectives. Within the multi-objective optimization process, it is first 
checked using the LMI Toolbox “YALMIP” [24] whether the randomly generated controller gains 
satisfy the LMIs as given in equation (6) derived from Lyapunov stability criteria. In case the 
stability criteria is not satisfied, a high value of objective function is assigned which automatically 
makes the solution inferior and the algorithm steers off from these regions of the search space in the 
consequent generations. The objective functions mentioned above are stochastic in nature because it 
is not possible to predict at which time instant the packet losses occur. Hence both the objective 
functions in multi-objective optimization for every set of controller design have been simulated 
multiple times using same set of solution vectors (controller gains) and average values of objective 
functions are obtained. In the simulation, a random variable is used to decide whether the packet 
will be dropped or not. The random variable generates random value between 0 and 1. If the 
generated value is less than 0.8, the packet is considered as drop. Otherwise the packet is taken as 
effective packet.  

Similar LMI formulation for networked process control application can be found in recent literature 
e.g. using dynamic matrix control [25], observer based H∞ control [26] for nonlinear systems, 

receding horizon H∞ control [27], robust fault detection filter [28], distributed model predictive 

control [29], guaranteed cost MIMO control [30], event-triggered control [31] etc. The proposed 
methodology searches for Pareto optimal solutions for controller gains with different time domain 
control objectives with the LMI criterion serving as an inherent checking condition for guaranteed 
stability. The flowchart of a systematic closed loop networked controller design has been shown in 
Fig. 3. 
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Fig. 3. Flowchart for the proposed controller design technique. 

 

4. Illustrative simulation examples 

4.1. DC motor plant 

Let us consider, an NCS with a continuous time dc motor plant (15) as in [32]-[34] with the 
state variables considered as the angular position and angular velocity. The dc motor parameters are 
detailed in [34]. The continuous time plant is unstable with a pole very close to the origin and the 
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other pole being non-dominating is far away from the imaginary axis of the complex s-plane. 

0 1 0
( ) ( ) ( )

1 217.4 1669.5
x t x t u t

   
= +   −   

ɺ         (15) 

By taking sampling period as 0.05s, we can get discrete time plant of the structure (1) having the 
system matrices given by (16) 

1.0002 0.0046

0.0046 0
F

 
=  
 

, 
0.3487

7.6807
G

 
=  
 

        (16) 

Initial values of the state variables are chosen as0 [3 2]Tx = −  . 3dropM = is assumed to illustrate the 

proposed design technique. As 3dropM = , the augmented state matrix [ ]( ) ( ) ( 1) ( 2)
T

k x k x k x kΓ = − −  

is introduced into NCS. Then according to equation (4) the closed loop NCS can be expressed as  

( )( 1) ( )kk kσΓ + = Φ Γ  for ( )  {1,2,3}kσ ∈         (17) 

where, 
1
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  
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3

3

F GK

I

I

φ
φ φ

φ φ

 
 Φ =  
  

. 

For the NSGA-II simulations the population size is set as 90, cross-over fraction is chosen as to be 
0.8 and Pareto-front population factor as 0.35. Mutation fraction is considered as to be 0.2. The 
algorithm is run up to a maximum 200 number of generations. The Pareto-front obtained after 
multi-objective optimization of 1J  and 2J  is shown in Fig. 4. 

From the Pareto-front of Fig. 4, two extreme solutions (solution A1 and C1) and one solution 
in between (solution B1, which is the median solution) have been chosen for demonstrating their 
time domain characteristics. The corresponding controller gains are given in Table 2. As the state 
feedback control loop behaves like a switched system in presence of packet losses, positive state 
feedback can also stabilize the plant. Hence gains, as assumed in equation (2), can also be positive. 

Table 2: 

Multi-objective optimization results amongst the objective functions for the dc motor plant 

Design 
trade-off 
amongst 
objective 
functions 

Solution 
points 

Objective functions State feedback controller gains 

J1 J2 J3 J4 J5 K11 K12 K21 K22 K31 K32 

J1 and J2 

A1 5.393 0.090 - - - -0.155 0.003 -0.047 0.036 -0.152 -0.040 

B1 33.123 0.028 - - - -0.040 0.021 -0.035 0.010 -0.065 -0.042 

C1 62.284 0.019 - - - -0.026 0.013 -0.038 -0.001 -0.044 -0.045 

J3 and J2 

A2 - 0.056 2.000 - - -0.104 -0.015 -0.100 -0.012 -0.116 -0.039 

B2 - 0.040 2.076 - - -0.071 -0.009 -0.077 -0.021 -0.087 -0.049 

C2 - 0.032 2.524 - - -0.058 -0.007 -0.058 -0.035 -0.080 -0.048 

J4 and J5 

A3 - - - 2.000 13.950 -0.091 -0.009 -0.074 0.022 -0.127 -0.051 

B3 - - - 2.406 9.350 -0.116 0.026 -0.054 0.075 -0.135 -0.012 

C3 - - - 3.268 7.050 -0.178 0.029 -0.069 0.075 -0.120 -0.012 

 



15 
 

After getting the Pareto solutions, the simulations have been run for those set of optimal 
controller gains corresponding to A1, B1 and C1. As the system is stochastic, the values of objectives 
will not be exactly same as the values which are obtained from the Pareto-front. So the simulation is 
run for several times and only those time response plots are shown for which values of objectives 
become most near to the obtained Pareto solution. The time evolution of the state variables and the 
associated control signals have been depicted in Fig. 5-6 for the three chosen solutions given in 
Table 2. It is clear from Fig. 5 that the states for the solution A1 settles faster than others, whereas 
states for C1 take more time to settle down to the final value. So in case of A1, more control action is 
needed to settle down the states in much shorter time. On the other hand, to settle the states within 
greater time, control action needed is less for solution C1 as shown in Fig. 6. These situations justify 
the design trade-off between the two chosen performance criteria. 

 

Fig. 4. Pareto optimal front for the conflicting objective functions J1 and J2 
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Fig. 5. Time evolution of states for solutions A1, B1 and C1 with the conflicting objectives J1 and J2 

 

Fig. 6. Plot of control signals for the solutions A1, B1 and C1. 
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Similarly, the Pareto-front for the objective functions J3 and J2 has been shown in Fig. 7. 
Similar to the previous case, two extreme solutions and one intermediate solution is taken and their 
controller values and time domain performances are shown in Table 2 and Fig. 8-9 respectively. 
From Fig. 8 and 9 it is clear that making state transition smooth, lead to oscillatory control signals, 
because the control signal changes rapidly so that the states can track a smooth curve. But 
smoothing of states cause them to take a long time to settle down as the settling time is not 
penalized in the designing technique.  

 

Fig. 7. Pareto optimal front for the conflicting objective functions J3 and J2 
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Fig. 8. Time evolution of states for solutions A2, B2 and C2 with the conflicting objectives J3 and J2 

 

Fig. 9. Plot of control signals for the solutions A2, B2 and C2 
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Now for the third type of design technique (as discussed in Section 3.3) the Pareto plot 

obtained after optimization is shown in Fig. 10 and three solution points A3, B3 and C3 are taken for 
further investigation.  

 
Fig. 10. Pareto optimal front for the conflicting objective functions J4 and J5 
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Fig. 11. Time evolution of states for solutions A3, B3 and C3 with the conflicting objectives J4 and J5 

 

 
Fig. 12. Plot of control signals for the solutions A3, B3 and C3 
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Figs. 11 and 12 show the time response and the control signal of the representative solutions 

respectively. It is evident from the Table 2 and also Fig. 11 that response for C3 is quicker than 
others and response of A3 takes longest time to settle. But states for C3 attain a higher peak value 
than the states for A3. Fig. 12 shows that more control signal is needed for C3 than for A3. Hence it 
is proved from the graphs that for quicker response overshoot increases, for which more control 
signal is needed to settle down in a short time. Hence overshoot and settling time are two 
conflicting objectives that need to be traded-off for an optimal controller design. 

 

4.2. Double Integrator plant 

The unstable system, considered next has two poles at the origin of complex s-plane which 
represents a double integrator process [35].  

0 1 0
( ) ( ) ( )

0 0 1
x t x t u t

   
= +   
   

ɺ           (18) 

By taking sampling period as 0.01s, we can get discrete time plant having the system matrices given 
by (19) 

1 0.01

0 1
F

 
=  
 

, 
0.0001

0.01
G

 
=  
 

         (19) 

Multi-objective optimization for the predictive controller design with different objective functions 
yields controller parameters given in Table 3 while considering the same initial condition as before. 

 

Table 3: 

Multi-objective optimization results amongst the objective functions for the double integrator plant 

Design 
trade-off 
amongst 
objective 
functions 

Solution 
points 

Objective functions State feedback controller gains 

J1 J2 J3 J4 J5 K11 K12 K21 K22 K31 K32 

J1 and J2 

A1 4.716 5.623 - - - -1.534 -1.650 -1.179 -2.644 -3.497 -2.730 

B1 6.525 1.251 - - - -0.994 -1.670 -0.658 -1.279 -1.374 -2.164 

C1 20.022 1.094 - - - -0.253 -0.741 -0.439 -0.970 -0.139 -0.719 

J3 and J2 

A2 - 8.816 1.939 - - -2.660 -1.593 -0.814 -1.233 -2.401 -1.476 

B2 - 2.510 1.946 - - -1.678 -1.624 -0.917 -1.480 -1.540 -1.721 

C2 - 1.076 1.954 - - -0.309 -0.686 -0.417 -0.962 -0.161 -0.627 

J4 and J5 

A3 - - - 2.000 5.900 -0.949 -1.425 -0.598 -0.867 -0.707 -1.366 

B3 - - - 2.024 5.280 -1.086 -1.644 -0.355 -1.301 -2.343 -1.723 

C3 - - - 2.176 4.570 -1.784 -1.276 -1.127 -2.745 -3.318 -2.731 

 

Fig. 13 shows the Pareto front for the trade-off between the two objectives J1 and J2 for the 
double integrator plant. Fig. 14 and 15 shows the time evolution of the states and the control signals 
respectively for the three representative solutions as labelled on the Pareto front. Similar to the dc 
motor plant in the previous case, the solution A1 has the fastest settling time but requires a much 
larger control signal. Solution C1 has the longest settling time among the three solutions but requires 
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much lower value of the control signal. The key difference between this example and the previous 
one of the dc motor is that there are a lot of oscillations in the control signal. This is due to the 
nature of the double integrator plant which is inherently unstable. Similar example of unstable 
system stabilization with fractional order and integer order PID type controllers over network as in 
Pan et al. [36] have shown that the control signal may be jittery even though the time response 
curves are smooth. This is due the fact that the controller produces additional control signals after 
the packet drop occurs and to compensate for this missing measurement or control values the 
manipulated variable is perturbed violently. This phenomenon is intrinsically different from that due 
to measurement noise and cannot be removed by conventional derivative filtering or similar 
techniques. It can be seen that for solution A1 although there is an improvement in the settling time, 
there are much larger oscillations in the control signal. So, if this is a mechanical system, then it is 
not really advisable to go with solution A1 as large frequent variations in control signal would result 
in dithering of the actuator which is undesirable.  

 

Fig. 13. Pareto optimal front for the conflicting objective functions J1 and J2 
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Fig. 14. Time evolution of states for solutions A1, B1 and C1 with the conflicting objectives J1 and J2 

 

Fig. 15. Plot of control signals for the solutions A1, B1 and C1. 
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Fig. 16 shows the Pareto front for the trade-off between J2 and J3 with three representative 
solutions labelled on the front. Figs. 17 and 18 show the time response and the control signals of 
these representative solutions respectively. From Fig. 18, it is found that the control signal for A2 is 
the highest with very high oscillations in the signal as compared to solutions B2 and C2. This infact 
is also corroborated by the position of A2 on the Pareto front in Fig. 16. The state transitions of all 
the solutions are mostly smooth in Fig. 17 and the minute differences is almost negligible at a 
glance. This is also due to the fact that the range of x-axis (objective J3) in Fig. 16 is much smaller 
than the range of the y-axis (objective J2). However as a consequence of the larger control signal in 
A2, the solution has automatically been the fastest to settle. But since there is no constraint on the 
peak overshoot, the same solution has the maximum peak overshoot as compared to the other ones.  

 

Fig. 16. Pareto optimal front for the conflicting objective functions J3 and J2 
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Fig. 17. Time evolution of states for solutions A2, B2 and C2 with the conflicting objectives J3 and J2 

 

Fig. 18. Plot of control signals for the solutions A2, B2 and C2 
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Fig. 19 shows the Pareto trade-off for the two conflicting objective functions J4 and J5 for 
the double integrator plant. Figs. 20 and 21 show the plots of the time response and the control 
signal respectively of the representative solutions as labelled on the Pareto front. As observed from 
Fig. 20, the peak overshoot is higher for solution C3 as compared to A3 but the settling time of C3 is 
faster than that of A3. Since the x-axis (objective J4) of the Pareto front in Fig. 19 has a very small 
range, hence the difference in the settling time of the two solutions C3 and A3 are very small. Now a 
higher peak overshoot or faster settling time implies a higher control signal. This can be verified 
from Fig. 21 where the control signal of solution C3 is the highest. 

 

Fig. 19. Pareto optimal front for the conflicting objective functions J4 and J5 



27 
 

 

Fig. 20. Time evolution of states for solutions A3, B3 and C3 with the conflicting objectives J4 and J5 

 

Fig. 21. Plot of control signals for the solutions A3, B3 and C3. 
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4.3. Inverted pendulum plant 

 The continuous time plant, considered here has one stable pole and one unstable pole from 
which are at equal distance from the origin. It has been shown in [37] that such a simplified model 
represents an inverted pendulum process. 
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( ) ( ) ( )

1 0 1
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   
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ɺ           (20) 

By choosing the sampling time as 0.05s, we can get discrete time plant having the system matrices 
given by (21) 

1.0013 0.05
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F

 
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 

, 
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 
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        (21) 

For the above system, multi-objective optimization with LMI criteria yields stabilizing Pareto 
optimal gains as reported in Table 4 while taking different objective functions for simulation. Fig. 
22 shows the Pareto front for the inverted pendulum for the two contradictory objectives J1 and J2. 
Fig. 23 and 24 show the state responses and the control signal respectively for the inverted 
pendulum for the three representative cases as labelled in the Pareto front. Similar results can be 
observed as in the previous two cases with solution A1 having the fastest settling time and solution 
C1 having the slowest. Solution B1 has a settling time in between the two extremes. Since this is an 
unstable plant, the control signal for A1 has significantly more oscillations than solutions B1 and C1. 
But nevertheless, these oscillations are much lower than that in the double integrator case. 

 

Table 4: 

Multi-objective optimization results amongst the objective functions for the inverted pendulum 
plant 

Design 
trade-off 
amongst 
objective 
functions 

Solution 
points 

Objective functions State feedback controller gains 

J1 J2 J3 J4 J5 K11 K12 K21 K22 K31 K32 

J1 and J2 

A1 5.579 3.597 - - - -2.486 -2.322 -2.068 -1.047 -1.847 -1.878 

B1 6.389 2.354 - - - -2.370 -2.229 -1.468 -1.028 -1.929 -1.843 

C1 8.942 2.002 - - - -2.010 -2.048 -1.288 -1.052 -1.797 -1.804 

J3 and J2 

A2 - 26.993 1.938 - - -3.115 -1.015 -1.914 -0.872 -2.749 -1.198 

B2 - 5.676 1.964 - - -2.644 -1.746 -1.927 -1.280 -2.201 -1.686 

C2 - 2.002 2.000 - - -1.976 -2.021 -1.911 -1.945 -1.928 -1.971 

J4 and J5 

A3 - - - 2.000 6.300 -2.982 -1.571 -2.511 -2.130 -1.859 -3.151 

B3 - - - 2.028 6.050 -2.906 -1.569 -2.492 -2.142 -1.883 -3.161 

C3 - - - 2.251 5.650 -3.005 -1.574 -2.552 -2.176 -1.867 -3.158 
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Fig. 22. Pareto optimal front for the conflicting objective functions J1 and J2 

 

Fig. 23. Time evolution of states for solutions A1, B1 and C1 with the conflicting objectives J1 and J2 
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Fig. 24. Plot of control signals for the solutions A1, B1 and C1. 

 

Fig. 25 shows the Pareto front for the two contradictory objectives J2 and J3 for the inverted 
pendulum plant with three representative solutions labelled. Figs. 26 and 27 show the time response 
plots of these solutions for these representative cases. Similar results are seen as in the previous two 
plants (the dc motor and the double integrator). The increase in control signal for A2 automatically 
makes it the fastest to settle and gives higher overshoot than the others. The oscillations in the 
control signal for the inverted pendulum are less than that of the double integrator plant.  
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Fig. 25. Pareto optimal front for the conflicting objective functions J3 and J2 

 

Fig. 26. Time evolution of states for solutions A2, B2 and C2 with the conflicting objectives J3 and J2 
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Fig. 27. Plot of control signals for the solutions A2, B2 and C2 

 

Fig. 28 shows the Pareto front with representative solutions for the conflicting objective 
functions J4 and J5 for the inverted pendulum plant. Figs. 29 and 30 show the time domain evolution 
of the states and the control signals respectively for the representative solutions. Similar 
characteristics of the solutions can be seen as in the previous two cases of the dc motor and the 
double integrator plant. The control signals are jittery for all the obtained solutions in this case.  
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Fig. 28. Pareto optimal front for the conflicting objective functions J4 and J5 

 

Fig. 29. Time evolution of states for solutions A3, B3 and C3 with the conflicting objectives J4 and J5 
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Fig. 30. Plot of control signals for the solutions A3, B3 and C3. 

 

4.4. Few discussions on the proposed networked predictive controller design scheme 

 In Li et al. [23] system’s control performance is improved by optimizing the control 
parameters using Estimation of Distribution Algorithm (EDA) which is a single objective 
optimization technique. Single objective optimization only finds best solution i.e. maximum or 
minimum value of a single objective. It does not give a set of solutions as a trade-off between 
different contradictory objectives. But in the present study, a new controller design philosophy for 
NCS applications has been proposed using multi-objective genetic algorithm, similar to that studied 
in [38], [39]. Due to the discontinuous nature of the objective functions, in the presence of random 
packet losses, it is not possible to frame it as classical convex optimization problem which again 
justifies the motivation of applying population based global optimization techniques [10]. The 
proposed predictive controller structure as in Pan et al. [6] not only ensures high degree of robust 
stability of the NCS but also it gives optimum time domain performance which is enforced in the 
present work with a MOGA based approach. Other evolutionary and swarm based algorithms could 
also have been employed for the present controller design problem similar to that done using 
particle swarm optimization [40] or genetic programming [41]. But for simplicity we restricted our 
study to multi-objective genetic algorithm only. 

The scheme proposed in Pan et al.  [6] is mainly for safety critical applications. In case of 
real time safety critical application User Datagram Protocol (UDP) is used whose transmission error 
checking capability is very poor. But this has the additional advantage that there are no 
retransmissions, unlike that of Transmission Control Protocol (TCP). This is especially important in 
real time control applications where the data must arrive within hard time limits and the integrity of 
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the data is less important. Also the controller is chosen as time-driven rather than event-driven [4] 
as in Pan et al. [6]. As in the time-triggered concept the total system is synchronized with a single 
clock, network load will be reduced drastically. Moreover time window of every system is 
predefined so that every subsystem can be developed independently. In this scheme also the delayed 
packets are considered as dropped to reduce complexity of the LMI formulation.  

Inspite of the advantages, the proposed scheme has few shortcomings. It can be seen that for 
a system with n  state variables and M  number of consecutive packet drops, the number of solution 
variables (predictive controller gains) that are to be determined is ( 1)M n+ . Thus the solution 
technique suffers from the curse of dimensionality. But for high dimensional systems where most of 
the state variables cannot be measured online, a reduced order model can be obtained and then an 
observer can be designed based on the reduced order model. This would reduce the number of state 
variables and consequently reduce the number of predictive controller gains. Generally in adaptive 
control where the system matrices are time varying and to tackle these problems the controller gains 
needs to be time varying, online system identification and optimization is used. Whereas in our case 
the nominal system matrix is fixed and the controller gains are not time varying. But the augmented 
system with different packet drop situations denote different matrices which has been stabilized 
using a LMI based approach and then optimized to obtain the design trade-off. Since the 
optimization problem is offline there does not exist any hard limits on the timeline as in the case of 
real time online optimization [10]. Hence computational complexity and guaranteed convergence 
are not of major concern for this particular problem on networked predictive controller design. 

It is often questioned whether such an algorithm can be implemented online or not. The 
proposed controller design technique is off-line. In real time applications, there is a hard time 
constraint and the computation must finish within a fraction of the sampling time for effective 
operation. Since the ‘predictive’ term here refers to the philosophy of applying proper control 
signals depending on the state of packet drop at each time step,  it is a different paradigm from the 
traditional notions of predictive control (like MPC). Unlike MPC, this proposed methodology does 
not need to perform a finite horizon optimization at each time step and hence takes much less 
computational resources. Thus it is more suitable for real time implementation. 

 

5. Conclusions 

The main focus of this paper is to propose a design methodology based on multi-objective 
optimization by NSGA-II which gives a set of Pareto optimal solutions to optimize different 
contradictory time domain performance objectives for a NCS with packet drop-outs. Simulation 
results show the validity of the proposed approach. The multi-objective framework gives additional 
choices to the designer to choose the controller according to the specific requirements of the 
system’s performance. Also chosen gains give guaranteed stability in the sense of Lyapunov since 
the LMI constraints are also solved as a sub-problem of the multi-objective optimization algorithm. 
Future works can be directed towards extending the predictive gain scheme in the event triggered 
systems to stabilize networked systems under random network induced delays [42], [43] along with 
packet drops. 

In the proposed scheme we restricted the theoretical analysis for linear systems only or 
linearized state space models for nonlinear systems around an operating point. An optimization 
framework is then proposed to study design trade-offs between different time domain control 
objectives. The linearity of the process is assumed throughout the paper. As a sub-problem of the 
multi-objective optimization, the LMI formulation is introduced which guarantees Lyapunov 
stability inspite of arbitrary packet losses. Theoretical extension of the stability proofs for nonlinear 
systems with the adopted predictive state feedback law to compensate for random packet losses is 
thus left as the scope for future research. 
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