
Optimum PID Control of Multi-wing Attractors in A 
Family of Lorenz-like Chaotic Systems 

Anish Acharya1, Saptarshi Das2 

1. Department of Instrumentation and Electronics 
Engineering, Jadavpur University, Salt-Lake Campus, LB-8, 

Sector 3, Kolkata-700098, India. 
2. Department of Power Engineering, Jadavpur University, 
Salt-Lake Campus, LB-8, Sector 3, Kolkata-700098, India. 

Email: saptarshi@pe.jusl.ac.in 

Indranil Pan2,3 

3. MERG, Energy, Environment, Modelling and Minerals 
(E2M2) Research Section, Department of Earth Science and 
Engineering, Imperial College London, Exhibition Road, 

London SW7 2AZ, UK.

 
 

Abstract—Multi-wing chaotic attractors are highly complex 
nonlinear dynamical systems with higher number of index-2 
equilibrium points. Due to the presence of several equilibrium 
points, randomness of the state time series for these multi-wing 
chaotic systems is higher than that of the conventional double 
wing chaotic attractors. A real coded Genetic Algorithm (GA) 
based global optimization framework has been presented in this 
paper, to design optimum PID controllers so as to control the 
state trajectories of three different multi-wing Lorenz like chaotic 
systems viz. Lu, Rucklidge and Sprott-1 system. 
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I. INTRODUCTION 

Chaos is a field in mathematics which has found wide 
application around us. Chaos theory studies the behavior of 
dynamical systems which are nonlinear, highly initial condition 
sensitive, having deterministic (rather than probabilistic) 
underlying rules which every future state of the system must 
follow. Such systems exhibit aperiodic oscillations in the time 
series of state variables. It has a large or infinite number of 
unstable periodic patterns which is commonly termed as order 
in disorder. Long term prediction is almost impossible due to 
the sensitive dependence on initial conditions. Though such 
effect may seem quite unusual but it is however observed in 
very simple systems, for example, a ball placed at the crest of a 
hill might roll into different valleys depending on slight 
difference in the initial position. Most common chaotic 
phenomenon is observed in case of regular weather prediction. 
Other application of chaos theory is pervaded in many fields 
like geology, mathematics, biology, microbiology, computer 
science, economics, philosophy, politics, population dynamics, 
psychology, robotics etc. Some real world applications of 
chaotic time series are computer networks, data encryption, 
information processing, pattern recognition, economic 
forecasting, market prediction etc [1]. 

Chaotic systems may cause trouble due to their unusual, 
unpredictable behavior. Hence chaotic control is gaining 
increasing attention in last few years [1]. In chaotic control, the 
prime objective is to suppress the chaotic oscillations 
completely or reduce them to regular oscillations. Nowadays 
many control techniques such as open loop control methods, 

adaptive control methods, traditional linear and non linear 
control methods, fuzzy control techniques etc. are used to 
control chaotic systems [2]. Chaos control uses the fact that any 
chaotic attractor which contains infinite number of unstable 
periodic orbits can be modified using external control action to 
produce a stable periodic orbit. The chaotic system’s states 
never remains in any of this unstable orbits for long time rather 
it continuously switches from one orbit to the other which 
gives rise to this unpredictable, random wandering of the state 
variables over longer period of time. Chaotic control is 
basically the stabilization, by means of small system 
perturbations, of one of these unstable periodic orbits. The 
result is to render an otherwise chaotic motion more stable and 
predictable, which is often an advantage. The perturbation must 
be tiny, to avoid significant modification of the system's natural 
dynamics. Several techniques have been used to chaos control, 
but most are developments of two basic approaches: the OGY 
(Ott, Grebogi and Yorke) method [3], and Pyragas continuous 
control method [4]. Both methods require a previous 
determination of the unstable periodic orbits of the chaotic 
system before the controlling algorithm can be designed. The 
basic difference between the OGY and Pyragas methods of 
chaos control is that the former relies on the linearization of the 
Poincare map and the later is based on time delay feedback. 
Though PID type controller design has been found in recent 
literatures like [5] for state synchronization of chaotic systems 
for different initial condition, but optimum PID control of 
chaotic systems [6] is not well addressed yet, especially for the 
control of highly complex chaotic systems like multi-wing 
attractors in the Lorenz family as attempted in this paper.  

Rest of the paper is organized as follows. Section II reports 
Lorenz family of multi-wing chaotic systems. Section III 
presents simulation results with GA based optimum PID 
controller to suppress chaotic oscillations in multi-wing 
attractors with robustness study in Section IV. The paper ends 
with conclusion as section V, followed by the references.  

II. BASICS OF THE MULTI-WING CHAOTIC ATTRACTORS 

A. Lorenz Family of Multi-wing Chaotic Systems  

Three classical examples of symmetric double-wing chaotic 
attractors are studied here among the Lorenz family of systems. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/146502878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


State equations of the Lorenz family of chaotic systems contain 
either square and/or cross-terms which can be replaced by a 
multi-segment parameter adjustable quadratic function (1) to 
form generate multi-wing attractor with additional flexibility of 
modifying the number and location of index-2 equilibrium 
points. As reported in the pioneering work [7] that the segment 
characteristics like slope and width can be adjusted using the 
parameters{ }0 , ,i iF F E of equation (1). This typical function 

increases the number of index-2 equilibrium points of Lorenz 
family of chaotic systems from 2 to( )2 2N + , thereby 

increasing the randomness of the state trajectories of nominal 
(double-wing) chaotic system which is hard to control.  
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B. Chaotic Multi-wing Lu System 

The double-wing Lu system [8] is represented by 
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              (3) 

The typical parameter settings for chaotic double-wing Lu 
attractor is given by 36, 3, 20a b c= = = . The equilibrium 
points of the Lu system are located at 

( ) ( )0, 0, 0 ; , ,bc bc c± ± . The state equations of the multi-

wing chaotic Lu attractor whose states are to be controlled are 
given by: 
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Figure 1.  Uncontrolled phase plane portraits for multi-wing Lu system.  

Here,P reduces the dynamic range of the attractors so as to 
facilitate hardware realization. The suggested parameters for 

4N = are given below [7] for which the chaotic Lu system 
exhibits multi-wing attractors in the phase portraits (Fig. 1). 
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In (4) the PID control action is added to the second state to 
suppress the chaotic oscillations and is given by (5). 

.p i d

de
u K e K e dt K

dt
e r y

= + +

= −

∫              (5) 

Here, { }, ,p i dK K K are the controller gains which are to be 

found out by a suitable optimization technique for the reference 
signal (r ) as the unit step. 

C. Chaotic Multi-wing Rucklidge system 

The double-wing Shimizu-Morioka system [9] is given by 

2
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The typical parameter settings for chaotic double-wing 
Shimizu-Morioka attractor is given by 2, 7.7a b= = . The 
equilibrium points of the Shimizu-Morioka system are located 
at( ) ( )0, 0, 0 ; 0, ,b b± . The state equations of the multi-wing 

chaotic Shimizu-Morioka attractor whose states are to be 
controlled are given by: 
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The above mentioned multi-wing chaotic system is also known 
as modified Rucklidge system [7]. The suggested parameters 
for 3N = are given below [7] for which the chaotic Rucklidge 
system exhibits multi-wing attractors in phase portraits (Fig. 2).  
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Figure 2.  Uncontrolled phase plane portraits for multi-wing Rucklidge 
(Shimizu-Morioka) system. 



D. Chaotic Multi-wing Sprott-1 system 

The double-wing Sprott-1 system [10] is given by 
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The equilibrium points of the Sprott-1 system are located at 
( )1, 1, 0± ± . State equations of the multi-wing chaotic Sprott-1 

attractor whose states are to be controlled are given by: 
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The suggested parameters for 4N = are given below [7] for 
which the chaotic Sprott-1 system exhibits multi-wing 
attractors in phase portraits (Fig. 3). 
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Figure 3.  Uncontrolled phase plane portraits for multi-wing Sprott-1 system. 

III.  SIMULATION AND RESULTS 

Each of the above three multi-wing chaotic systems are to be 
controlled using a PID controller (5) which will enforce the 
second state variable (y ) to track the unit reference step signal 
( r ). Instead of simple error minimization criteria for PID 
controller tuning the well known Integral of Time multiplied 
Absolute Error (ITAE) has been taken as the performance 
index (J ) so as to ensure fast tracking of the second state. 

( ) ( ) ( )
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∞ ∞
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For time domain simulation purposes, the upper time limit 
of the above integral is restricted to realistic values depending 
on the speed of the chaotic time series to ensure that all 
oscillations in the state variables have died down due to 
introduction of the PID control action. It is also seen that 
controlling the second state variable with PID automatically 
damps chaotic oscillations in the other two state variables.  

Tuning of the PID controller gains have been done in this 
study using the widely used population based optimizer known 
as Genetic Algorithm. Due to randomness of the chaotic time 

series of the multi-wing attractors, the error signal with respect 
to step command input also becomes highly jittery and will 
contain several minima which justify the application of GA in 
such controller tuning problems. For the control of systems, 
governed by nonlinear differential equations, a GA based PID 
controller design with other time domain performance index 
optimization based methods could also have been used like that 
presented by Das et al. [11] but for simplicity we restricted the 
study with ITAE based PID design only to handle multi-wing 
attractors in chaotic nonlinear dynamical systems. The real 
coded GA based optimization (parameters adopted from [11]) 
results for the PID controller parameters (gains) are given in 
Table I for the three respective multi-wing attractors among the 
Lorenz family of chaotic systems. 

TABLE I.  GA BASED OPTIMUM PID CONTROLLER SETTINGS FOR 
CHAOS SUPPRESSION IN MULTI-WING ATTRACTORS 

Multi-wing 
Chaotic systems Jmin Kp K i Kd 

Lu system 244.9856 3.155719 27.56161 1.449423 

Rucklidge system 1.160501 19.43469 30.09687 0.237435 

Sprott-1 system 1468.193 0.271562 0.432607 0.393097 

A. PID Control of Multi-wing Lu System 

 
Figure 4.  Controlled response of first state variable (x). 

 
Figure 5.  Controlled response of second state variable (y). 

Simulation results for the uncontrolled and PID controlled 
state variables of the multi-wing Lu system (4) has been shown 



in Fig. 4-6 with the corresponding control signal and error of 
the second state depicted in Fig. 7. The PID controlled phase 
portraits in Fig. 8 shows that the presented technique 
successfully damps wandering of the states which also evident 
from the individual controlled state trajectories (Fig. 4-6). 

 
Figure 6.  Controlled response of third state variable (z). 

 
Figure 7.  Control and error signal in PID controlled multi-wing Lu system. 

 

Figure 8.  PID controlled phase plane portraits for multi-wing Lu System. 

B. PID Control of Multi-wing Rucklidge System 

Similar nature of chaos control can be found the multi-
wing Rucklidge system (7) also with the GA based optimum 

PID controllers which enforces fast tracking of the second 
state variable. Also the irregular oscillations of this system are 
found to be more sluggish compared to the Lu system which is 
controlled by the PID to track a reference using ITAE criteria. 
Also, controlled state trajectories are smooth at initial stages 
unlike that for the Lu system. Here, Fig. 9-11 show the state 
trajectories with the control/error in Fig. 12 and the controlled 
phase portraits depicted in Fig. 13. 

 
Figure 9.  Controlled response of first state variable (x). 

 

Figure 10.  Controlled response of second state variable (y). 

 

Figure 11.  Controlled response of third state variable (z). 



 

Figure 12.  Control & error signal in controlled multi-wing Rucklidge system 

 

Figure 13.  PID controlled phase portraits for multi-wing Rucklidge System 

C. PID Control of Multi-wing Sprott-1 System 

 

Figure 14.  Controlled response of first state variable (x). 

For the multi-wing Sprott-1 system (9), the states are even 
more sluggish where the ITAE based GA tuned PID enforces 
fast reference tracking and simultaneously damping chaotic 
oscillations (Fig. 14-16) in an efficient way as can also be seen 
from the control and error signals in Fig. 17. Wandering of the 

states can only be found at the initial stages of the phase 
portraits (Fig. 18), like that in the multi-wing Lu system also. 
It is well known that chaotic systems are highly sensitive to 
the initial conditions of the states and in the presented 
approach only a single value of the states are assumed to tuned 
the PID controllers. Hence, robustness of the present PID 
control scheme is shown in next section for respective cases. 

 

Figure 15.  Controlled response of second state variable (y). 

 

Figure 16.  Controlled response of third state variable (z). 

 

Figure 17.  Control and error signal in controlled multi-wing Sprott-1 system 



 

Figure 18.  PID controlled phase portraits for multi-wing Sprott-1 System. 

IV.  ROBUSTNESS OF THE PID CONTROL SCHEME FOR 

DIFFERENT INITIAL CONDITIONS OF CHAOTIC ATTRACTORS 

 

Figure 19.  Robustness of PID for controlling multi-wing Lu system. 

 

Figure 20.  Robustness of PID for controlling multi-wing Rucklidge system. 

The proposed PID control scheme has also been found to be 
robust enough with variation in the initial conditions of multi-
wing chaotic systems. Fig. 19-21 shows that in the phase-plane 
portraits the chaotic oscillations get suppressed along the same 

trajectory for the three systems, even if the initial conditions for 
the first two states are gradually decreased from unity to zero. 

 

Figure 21.  Robustness of PID for controlling multi-wing Sprott-1 system. 

V. CONCLUSION 

GA based optimum PID controllers are designed to suppress 
chaotic oscillations in few highly complex multi-wing Lorenz 
like chaotic systems. The controller enforces fast tracking of 
the second state which also damps chaotic oscillation in the 
other states and found to be robust enough for different initial 
conditions for such typical nonlinear dynamical systems. 
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