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Abstract—Multi-wing chaotic attractors are highly complex
nonlinear dynamical systems with higher number of ndex-2
equilibrium points. Due to the presence of severatquilibrium
points, randomness of the state time series for teke multi-wing
chaotic systems is higher than that of the convemtnal double
wing chaotic attractors. A real coded Genetic Algdathm (GA)
based global optimization framework has been preseéed in this
paper, to design optimum PID controllers so as toantrol the
state trajectories of three different multi-wing Lorenz like chaotic
systems viz. Lu, Rucklidge and Sprott-1 system.
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adaptive control methods, traditional linear anch imear
control methods, fuzzy control techniques etc. ased to
control chaotic systems [2]. Chaos control usedabethat any
chaotic attractor which contains infinite number wfstable
periodic orbits can be modified using external oardction to
produce a stable periodic orbit. The chaotic sysestates
never remains in any of this unstable orbits foigléime rather
it continuously switches from one orbit to the athwehich

gives rise to this unpredictable, random wandeohthe state
variables over longer period of time. Chaotic cohtis

basically the stabilization, by means of small eyst
perturbations, of one of these unstable periodlutsr The
result is to render an otherwise chaotic motionerstable and
predictable, which is often an advantage. The peation must
be tiny, to avoid significant modification of thgssem's natural

Chaos is a field in mathematics which has foundewid dynamics. Several techniques have been used ts cioadrol,

application around us. Chaos theory studies theneh of
dynamical systems which are nonlinear, highly &hitiondition
sensitive, having deterministic (rather than pralsiiz)
underlying rules which every future state of theteypn must
follow. Such systems exhibit aperiodic oscillationghe time
series of state variables. It has a large or igfimumber of
unstable periodic patterns which is commonly terrasarder
in disorder. Long term prediction is almost impb#sidue to
the sensitive dependence on initial conditions. ufjto such
effect may seem quite unusual but it is howeverenks in
very simple systems, for example, a ball placatietrest of a
hill might roll into different valleys depending oslight
difference in the initial position. Most common otia
phenomenon is observed in case of regular weatkéigtion.
Other application of chaos theory is pervaded imynelds
like geology, mathematics, biology, microbiologygnmputer
science, economics, philosophy, politics, populatignamics,
psychology, robotics etc. Some real world applarati of
chaotic time series are computer networks, datayption,
information processing, pattern recognition, ecoicom
forecasting, market prediction etc [1].

Chaotic systems may cause trouble due to theiruahus
unpredictable behavior. Hence chaotic control isnigg
increasing attention in last few years [1]. In di@oontrol, the
prime objective is to suppress the chaotic osizihat
completely or reduce them to regular oscillatioNsewadays
many control techniques such as open loop contethaods,

but most are developments of two basic approathesOGY
(Ott, Grebogi and Yorke) method [3], and Pyragastiooous
control method [4]. Both methods require a previous
determination of the unstable periodic orbits oé tthaotic
system before the controlling algorithm can be glesil. The
basic difference between the OGY and Pyragas metlobd
chaos control is that the former relies on thediimation of the
Poincare map and the later is based on time delagbick.
Though PID type controller design has been foundeent
literatures like [5] for state synchronization dfaotic systems
for different initial condition, but optimum PID notrol of
chaotic systems [6] is not well addressed yet, @alhe for the
control of highly complex chaotic systems like muling
attractors in the Lorenz family as attempted is thaper.

Rest of the paper is organized as follows. Sedtiogports
Lorenz family of multi-wing chaotic systems. Seantidll
presents simulation results with GA based optimuid P
controller to suppress chaotic oscillations in iAwihg
attractors with robustness study in Section IV. Paper ends
with conclusion as section V, followed by the referes.

Il.  BASICS OF THEMULTI-WING CHAOTIC ATTRACTORS

A. Lorenz Family of Multi-wing Chaotic Systems

Three classical examples of symmetric double-wimgptic
attractors are studied here among the Lorenz famhibystems.
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State equations of the Lorenz family of chaotideys contain
either square and/or cross-terms which can be cegplay a
multi-segment parameter adjustable quadratic fancfl) to
form generate multi-wing attractor with additioffielxibility of
modifying the number and location of index-2 edmilim
points. As reported in the pioneering work [7] ttiad segment
characteristics like slope and width can be adjusi&ng the
parameter§|:o,|:i,Ei} of equation (1). This typical function

increases the number of index-2 equilibrium powftéorenz
family of chaotic systems from 2 f@N +2) , thereby

increasing the randomness of the state trajectofigeminal
(double-wing) chaotic system which is hard to cointr

f(x)=Fx° —i F[1+0.5sgr(x-E )~ 0.5sgfx+E)] (1)

1 forx>0

Where’sgn(x) =1 0 forx=0 @)
-1 forx<O0

B. Chaotic Multi-wing Lu System

The double-wing Lu system [8] is represented by

X = —ax+ay

y=Ccy-Xz ®3)

z2=xy—-bz

The typical parameter settings for chaotic douhilegwlu
attractor is given by =36,b= 3,c= 20. The equilibrium
points of the Lu system are located

wing chaotic Lu attractor whose states are to lrdrolbed are
given by:

X = —ax + ay
y=cy-(YP)xz+u )
z=f(x)-bz

Phase plane portraits for uncontrolled multi-wing Lu system
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Figure 1. Uncontrolled phase plane portraits for multi-wing &ystem.

Here,P reduces the dynamic range of the attractors sm as t

facilitate hardware realization. The suggested rpatars for

at
(0,0,0) ;(J_r bc ++/bc ,c)- The state equations of the multi-

N = 4 are given below [7] for which the chaotic Lu system
exhibits multi-wing attractors in the phase pot#giFig. 1).
P=0.05F, = 100F, = 10F,= 1Z,= 16.6F,= 18.1

E,=0.3,E,= 0.45E,= 0.6E,= 0.75

In (4) the PID control action is added to the secstate to
suppress the chaotic oscillations and is giverbhy (

_ de
u-er+Kije.dt+KdE (5)

e=|r-y|
Here,{Kp,Ki,Kd} are the controller gains which are to be

found out by a suitable optimization techniquetfa reference
signal (r ) as the unit step.

C. Chaotic Multi-wing Rucklidge system
The double-wing Shimizu-Morioka system [9] is givan

X=-ax+by-yz

z=y?*-1z
The typical parameter settings for chaotic doubiegw

Shimizu-Morioka attractor is given by=2b=7.7. The
equilibrium points of the Shimizu-Morioka systene docated
at(0,0,0) ;( 0+/b b)- The state equations of the multi-wing

chaotic Shimizu-Morioka attractor whose states trebe
controlled are given by:

X =-ax+ay
y=(c-a)x+cy-(1/P)xz+u ™
z=f(x)-bz

The above mentioned multi-wing chaotic systemss &hown
as modified Rucklidge system [7]. The suggestec@rmaters
for N = 3are given below [7] for which the chaotic Rucklidge
system exhibits multi-wing attractors in phase raats (Fig. 2).

P=05F,= 4F,= 9.2%F,= 1%,= 18.18,= 1B,= 285"

Phase plane portraits for uncontrolled multi-wing Rucklidge system
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Figure 2. Uncontrolled phase plane portraits for multi-wingdRlidge
(Shimizu-Morioka) system.



D. Chaotic Multi-wing Sprott-1 system
The double-wing Sprott-1 system [10] is given by

X=yz

y = X- (8)
z=1-x?

The equilibrium points of the Sprott-1 system aseated at
(J_rl,il, o) . State equations of the multi-wing chaotic Spfott-

attractor whose states are to be controlled aendby:

X=yz
y:)(—y+u (9)
z=1-f (x)

The suggested parameters for= 4 are given below [7] for
which the chaotic Sprott-1 system exhibits multigyi
attractors in phase portraits (Fig. 3).

F=LF=5F,=5F,= 6.67F,= 88% = E,= Esz B,=

Phase plane portraits for uncontrolled multi-wing Sprott-1 system

Ill.  SIMULATION AND RESULTS

Each of the above three multi-wing chaotic systaresto be
controlled using a PID controller (5) which will fence the
second state variablgy() to track the unit reference step signal

(r). Instead of simple error minimization criteriar f@ID
controller tuning the well known Integral of Timeuitiplied
Absolute Error (ITAE) has been taken as the peréoce
index (J ) so as to ensure fast tracking of the second. state

0
For time domain simulation purposes, the upper timé
of the above integral is restricted to realistituea depending
on the speed of the chaotic time series to ensae 4ll
oscillations in the state variables have died dadue to
introduction of the PID control action. It is alseen that

controlling the second state variable with PID aatically
damps chaotic oscillations in the other two stagables.

o

tle(t)fdt = [t|r (t) - y(t)ot

0

J= (10)

Tuning of the PID controller gains have been danghis
study using the widely used population based opgmknown
as Genetic Algorithm. Due to randomness of the thdione

series of the multi-wing attractors, the error signith respect
to step command input also becomes highly jittarg avill
contain several minima which justify the applicatiof GA in
such controller tuning problems. For the controlsgbtems,
governed by nonlinear differential equations, a k&sed PID
controller design with other time domain performarindex
optimization based methods could also have beahlikeethat
presented by Daet al. [11] but for simplicity we restricted the
study with ITAE based PID design only to handle tinuing
attractors in chaotic nonlinear dynamical systefise real
coded GA based optimization (parameters adopted ffid])
results for the PID controller parameters (gaing) given in
Table | for the three respective multi-wing attcastamong the
Lorenz family of chaotic systems.

TABLE I. GA BASED OPTIMUM PID CONTROLLERSETTINGS FOR

CHAOS SUPPRESSION INVIULTI-WING ATTRACTORS

Multi-wing

Chaotic systems Jrmin Kp Ki Ka
Lu system 244.9856 3.155719 27.56161 1.449423
Rucklidge system 1.160501 19.43469 30.09687 0.237435
Sprott-1 system 1468.193 0.271562 0.432607 0.393097
A. PID Control of Multi-wing Lu System
Uncontrolled and PID controlled first
state variable (x) of multi-wing Lu system In zoomed scale
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Figure 4. Controlled response of first state variable (x).

Uncontrolled and PID controlled second

state variable (y) of multi-wing Lu system In zoomed scale
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Figure 5. Controlled response of second state variable (y).

Simulation results for the uncontrolled and PID tecolfed
state variables of the multi-wing Lu system (4) haen shown



in Fig. 4-6 with the corresponding control signatiaerror of
the second state depicted in Fig. 7. The PID ctetrgphase
portraits in Fig. 8 shows that the presented tepleni
successfully damps wandering of the states whist ebident
from the individual controlled state trajectori€sgy( 4-6).

Uncontrolled and PID controlled third
state variable (z) of multi-wing Lu system In zoomed scale
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Figure 6. Controlled response of third state variable (z).

Control signal from the PID controller Error signal for the second state variable
L
20 ]
[ak:]
07
200 &
0B
= s
T 1501 / 1 Zos
S 5
@ 5
= [z
H 504
5 &
100
03
0z o
50 q
o1 B q
o ; ; ; o ; ;
o 50 100 150 200 o 50 100 150 200
Time (sec)
Time (sec)

Figure 7. Control and error signal in PID controlled multi-gihu system.

Phase plane portraits for PID controlled multi-wing Lu system

Figure 8. PID controlled phase plane portraits for multi-wing System.

B. PID Control of Multi-wing Rucklidge System

Similar nature of chaos control can be found thdtimu
wing Rucklidge system (7) also with the GA basetnopm

PID controllers which enforces fast tracking of teecond
state variable. Also the irregular oscillationglus system are
found to be more sluggish compared to the Lu systéioh is

controlled by the PID to track a reference usingHTcriteria.

Also, controlled state trajectories are smoothnétal stages
unlike that for the Lu system. Here, Fig. 9-11 shibw state
trajectories with the control/error in Fig. 12 atheé controlled
phase portraits depicted in Fig. 13.

Uncontrolled and PID controlled first

state variable (x) of multi-wing Rucklidge system In zoomed scale
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Figure 9. Controlled response of first state variable (x).
Uncontrolled and PID controlled second
state variable (y) of multi-wing Rucklidge system In zoomed scale
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Figure 10.Controlled response of second state variable (y).
Uncontrolled and PID controlled third
state variable (z) of multi-wing Rucklidge system In zoomed scale
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Figure 11.Controlled response of third state variable (z).



Control signal from the PID controller Error signal for the second state variable
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Figure 12.Control & error signal in controlled multi-wing Ruddgje system

Phase plane portraits for PID controlled multi-wing Rucklidge system
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Figure 13.PID controlled phase portraits for multi-wing Rudgde System

C. PID Control of Multi-wing Sprott-1 System

Uncontrolled and PID controlled first

state variable (x) of multiwing Sprott-l system In zoomed scale
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Figure 14.Controlled response of first state variable (x).

For the multi-wing Sprott-1 system (9), the stades even
more sluggish where the ITAE based GA tuned PlDreels
fast reference tracking and simultaneously dammihgotic
oscillations (Fig. 14-16) in an efficient way anadso be seen
from the control and error signals in Fig. 17. Warig of the

states can only be found at the initial stageshef phase
portraits (Fig. 18), like that in the multi-wing Lsystem also.
It is well known that chaotic systems are highlystve to

the initial conditions of the states and in the spraed
approach only a single value of the states arerasgtio tuned
the PID controllers. Hence, robustness of the mte§dD

control scheme is shown in next section for respedases.

Uncontrolled and PID controlled second
state variable (y) of multi-wing Sprott-1 system In zoomed scale
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Figure 15.Controlled response of second state variable (y).

Uncontrolled and PID controlled third
state variable (z) of multi-wing Sprott-1 system In zoomed scale
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Figure 16.Controlled response of third state variable (z).

Control signal from the PID controller

Error signal for the second state variable
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Figure 17.Control and error signal in controlled multi-wingrgfi-1 system



Phase plane portraits for PID controlled multi-wing Sprott-1 system
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Figure 18.PID controlled phase portraits for multi-wing SgdtSystem.

IV. ROBUSTNESS OF THEPID CONTROL SCHEME FOR
DIFFERENTINITIAL CONDITIONS OFCHAOTIC ATTRACTORS

Robustness of the PID controller for chaos suprression in multi-wing Lu system
for different initial conditions

—mx=0,y=05,z=1
—~-x=0,y=0,z=1

Figure 19.Robustness of PID for controlling multi-wing Lu sgst.

Robustness of the PID controller for chaos suppression in multi-wing Rucklidge system
for different initial conditions

Figure 20.Robustness of PID for controlling multi-wing Rucklggystem.

The proposed PID control scheme has also been fioubel
robust enough with variation in the initial condits of multi-
wing chaotic systems. Fig. 19-21 shows that inpthese-plane
portraits the chaotic oscillations get suppressedgathe same

trajectory for the three systems, even if theahitbnditions for
the first two states are gradually decreased froity to zero.

F

Robustness of the PID controller for chaos suppression in multi-wing Sprott-1 system
for different initial conditions

igure 21.Robustness of PID for controlling multi-wing Spratsystem.

V. CONCLUSION

GA based optimum PID controllers are designed ppsess
chaotic oscillations in few highly complex multitvg Lorenz
like chaotic systems. The controller enforces femtking of
the second state which also damps chaotic osaiilati the
other states and found to be robust enough foerefit initial
conditions for such typical nonlinear dynamicalteyss.
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