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Abstract—This paper investigates typical behaviors like
damped oscillations in fractional order (FO) dynamcal systems.
Such response occurs due to the presence of, whatbnceived as,
pseudo-damping and meta-damping in some special sk of FO
systems. Here, approximation of such damped oscitlan in FO
systems with the conventional notion of integer orel damping
and time constant has been carried out using GenetiAlgorithm
(GA). Next, a multilayer feed-forward Artificial Ne ural Network
(ANN) has been trained using the GA based result® tpredict the
optimal pseudo and meta-damping from knowledge of hie
maximum order or number of terms in the FO dynamicad system.

Keywords— Atrtificial Neural Network (ANN); fractioal order
linear systems; meta-damping; pseudo-damping; Genéigorithm

l. INTRODUCTION

Fractional order dynamical systems which are gaaivy
fractional order differential equations have gotewed interest
in the science and engineering community in repast for its
higher capability and flexibility in modeling of taal
processes [1], [2]. It is well known from basics adntrol
theory that second order stable oscillatory dynahsystems
or higher order stable oscillatory systems, whieh also be
approximated as second order transfer function lepdecay
with an exponential envelope upon step or impulgee t
excitation [3]. In other words, a physical systeyjoyerned by
second order differential equation of the form (With
excitationu(t) and responsej(t) shows oscillatory time

response fof 0(0,1)-

d’y(t dy(t) )
dzz( )+2.{w )(;(t)+a) y(t) = w’u(t)

,d?y(t dy( t
=T d{2()+2gr )(lj(t)+y(t):u(t)

(1)
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r =1/w. For step and impulse type excitation, the dynamic

system governed by (1) exhibit damped time respondth an
exponential envelope, represented by (2) and Epedively.

y(t)=1- e ™ sin[a)t 1—£2+tan‘1[—“1_{2]] )
Ny :

we

y(t)= W

In contrast, a dynamical system, governed by a tewm
fractional order differential equation (4) can alshow
oscillatory damped time response dar (1, 2), although there

®)

sin(a)t 1—{2)

is no explicit damping term, containiggn (4). This typical
behavior of fractional order systems lead to thacept of
“Pseudo-damping” which can not be visualized withe t
conventional theory of integer order calculus fesctibing the
dynamics of physical systems.

aD y(t)+by(t)= u( 9 4

Laplace transform of (4) with zero initial conditigives the
system’s transfer function as (5) which again poeduits
impulse response as the Green's function (6) upmerse
Laplace transformation [1] for the two-term FO syst(4).

a a

Gz(S)::((z)):a§1+ bzga[ §+(1ng ©)
gz(t):lt“Ea,a(—Et”j (6)

In (6), E, , represents the two-parameter Mittag-Leffler
function which is a higher transcendental, encosipgsa

Here, parameter{s;,w,r} represent the system’s damping large family of conventional transcendental funmsiolike

ratio, natural frequency and time constant respegti with

trigonometric, inverse circular, exponential, Idtianic,
hyperbolic etc. [1]-[2]. The series representatioh two
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parameter Mittag-Leffler function is given by (7hieh is a
generalized template and reduces to an exponé&miction for
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(9). Time domain simulation for FO systems using-(8
needs evaluation of few convergent infinite seréseach

a =1,5 =1[1]-[2]. Also, from (6) it can be observed that the discrete time step (). For numerical implementation the

envelope is guided by a power law instead of aroeeptial
one in (3). In this system, a Mittag-Leffler typscdlation
takes place in contrast to the sinusoidal osalhein (3).

Eop (Z) = Z”:Z—k

ST (ak+B)

The present paper firstly attempts to approximdte t
oscillations, produced due to step excitation of dth an
equivalent template given by (1) using GA i.e. firgdoptimal
pseudo/meta (FO)-damping or time constants, assdcigith
the oscillatory time response of the FO system.tNbee
optimal FO damping and time constants are predicsiag a
multilayer feed-forward ANN. This approach reducte
computational load, associated with running GA eviene for
finding out the equivalent optimal FO damping fonya
arbitrary FO system within this range and suchpplieation is
justified from the point that multilayer feed-formaANN is
generally very good function approximator [4]-[5}. [6], the
concept of optimal fractional order damping wastfproposed
with a specific need for faster stabilization ofcidatory
systems using the concept of FO damping with régpesome
integral performance indices like Integral of SaaarError
(ISE), Integral Time weighted Squared Error (ITSE). This
paper gives a new concept of finding the optimedder order
equivalence of FO damping using ISE/ITSE as perdoce
indices and also proposes their ANN based predictio

a>0,8>0 (7)

Rest of the paper is organized as follows. Sedtitmiefly
introduces the basics of pseudo-damping and meigidg in
some special class of oscillatory FO dynamicalesysiSection
[l describes time domain simulation of pseudo/radeping
and their GA based optimal time domain approxinmatio
Section IV presents the ANN based training and iptiet
performance for these optimal FO-damping. The papels
with the conclusion as section V, followed by théerences.

1. CONCEPT OFPSEUDO ANDMETA-DAMPING IN
FRACTIONAL ORDERLINEAR DYNAMICAL SYSTEMS

In [1]-[2], it has been reported that time and freqcy
domain representations of few special functionsated to
fractional calculus like R-function and G-functiare given by:

REAR,

R S (2 e TR
e % rarre)ey)

a" t(n+l)a -1-v

(8)
r ((n +1)a —v)

j=0
If Laplace transform of excitation and response aof

fractional order transfer function (FOTE)( s) beu (s) and

Y(s) respectively, then simple treatments as in (10ggils

step and impulse response. Therefore, to find lutstep and
impulse response for few classes of fractional osystems,

infinite series have been evaluated in MATLAB atlaa with

the order of accuracy being 0.001.

Y(s)=6(9 (3
= y(t) = g(t)Ou(t)
£[G(s)/s| forstep response

(10)

B {Ll[G (s)] forimpulse respons

Under this condition, expressions (8) and (9) regmés the step
response of stable FOTFs with the replacemena iy unity
and (b ) by (-b) in structures like (4). i.e.

1 1

_ P2 :—r (11)
s“+b (s" + b)

P1:

It has been seen from (4) that the step responses gi
sustained oscillation far =0 . But the response becomes
damped fot < g < 2. Hence, a fractional order system of the
form (4) having no explicit damping term in it, @lexhibits
damped oscillation in time response ferag < 2. Such an
oscillation has been approximated by using a secuder
system of the form (1) while minimizing few integrrror
indices. The FO system of the structure (11) withr < 2,
can be modified with normalized frequency to uifity=1) as:

|5:l 1

- (12)
s+l 2@+ 2ié s+l

where,{r,g} can be termed as the optimal pseudo-time

constant and pseudo-damping respectively with mdpesome
integral error index.

The second class of FO systems in (11) exhibiferdifit
type of oscillations if different combinations afders are used
in the expansion of the polynomials, although thlyhést order
of the models are same and only the number ofidrzait order
terms varies in the model. It is well known thatdler of a FO
LTI system is determined by the maximum order presethe
denominator polynomial. If it be assumed that2/a , the

system governed by (9) becomes a different clagsactional
second order system (13) which can again be reuessdy
equivalent second order approximation V\ﬁtﬂ g} being the

optimal meta-time constant and meta-damping resgdet
Similar treatment of normalizing the frequency tityyields:

B-_ 1 1 (13)
2 (Sa+1)% r%s?+2rfs+1

The following examples put more light on the bebawf
such systems with meta-damping. Simple modificatibiil3)
gives first and second order transfer functions [k4). It is
interesting to note that though the leading or@éenains one
and two in these models, the number of fractionaleo
elements increase upon binomial expansion forehag with

v =-landy = 0 need to be considered respectively in (8) anchigher powers. These additional number of FO tguuts extra



damping to the FO system which is defined as th¢aime
damping in FO dynamical system of the form (13)ug'la FO
system represented by (14) is distinctly charamteriby the
number of FO elements present in it and not byiahding FO
order unlike (12). This typical behavior is the iation
behind defining two different class of FO dampirey pseudo-
damping for system (12) and meta-damping for sy£fedh

1 1 1 1 1

(407 ($2+97 (247" (8297 (%97 )
1 = 1 1 1 1 ce
(¢4 (24g " (89" (8497 (85"

It is therefore clear that the pseudo-damping soaated
with the reduction in the highest order of a FQtexyswhereas
meta-damping is associated with the increase atidnzal order
elements within a FO model though the highest oadethe
plant remains the same.

lll.  TiIME DOMAIN SIMULATION OF FRACTIONAL ORDER
SYSTEMS WITHPSEUDG-DAMPING AND META-DAMPING

MATLAB based codes have been developed using th
infinite series representations of such FOTF 83-(9) under
impulse/step excitation. Time domain simulatiomgs{8)-(9)
often gives poor result above 30 seconds. Thiséstd the fact
that gamma function in the denominator of (8)-(Bpr@aches
towards a very large value which can not be contputeng
most of the scientific programming languages, duduffer
overflow. Thus it is recommended to reliably us@ression
(8)-(9) for time domain simulation of the specitdss of FO
systems only up to 30 seconds. Simulation of firder system
with meta-damping and < 0.9also becomes computationally
infeasible due to blowing up of the associated gamm
functions. Similarly, second order systems with argamping

and g < 0.9gives reliable time response up to 25 seconds

below which the results are unreliable as also rtegdoin
Hartley and Lorenzo [6] in the context of optim& Eamping.

A. Step Response Characteristics

Pseudo-damping in fractional order systems with gradual decrease in the leading order

A \ N
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i N AL
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Figure 1. Step response of FO system with pseudo-damping.

FO systems given in (12)-(13) have now been sudgjet
step input excitations and evaluated at each destime step
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using (8)-(9) and shown in Fig. 1-3. Fig. 1 showattthe
oscillations become more damped with decreaseédnotter
(a ) of FO system (12). Similar behaviors can be foiand=O

systems with meta-damping with leading order bé&ir{gig. 2)

and 1 (Fig. 3) respectively. It is interesting twtenthat even
first order systems in the presence of other F@hetdés may
exhibit oscillations as shown in Fig. 3. In Figthke decaying
envelope may be guided by a power law as repont€@)j but
the nature of oscillations for meta-damping in ¢ are more
complex to be represented as closed form solutialike (6).

Meta-damping in fractional order systems with leading order =2
T

A v N
TN A
-
A A
£ | [\ \
1T 7
N M \
WM
D VAR VA BV,

Time (sec)

Figure 2. Step response characteristics of fractional seoother system
with.meta-damping.

Meta-damping in fractional order systems with leading order = 1
T T T

Amplitude

10

15
Time (sec)

Figure 3. Step response characteristics of fractional firdeosystem with
meta-damping.

B. Impulse Response Characteristics

The impulse responses have been shown next fabibe
discussed three classes of FO systems. As expiected. 6,
the oscillations start from a value of unity forsfi order
systems (with additional FO elements causing matagihg).
Fig. 5 shows the oscillations starting from zerafgming the
preservation of the second order behavior of thes{&lem. In
Fig. 4 showing FO systems with pseudo-damping mixed
behaviors can be observed regarding the initialevaif the
impulse response which indicates that the classioibn of
judging the order of the system by looking onlythte impulse
response characteristics is not valid for pseudopilag.
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Pssudo-damping Infrackionsl orcer systms wth gradualdecrease i the leading oder vectors in the next iteration. Reproduction implidsat
' A A\ N \ solqtion vectors with higher fithess valueg candpee more
N\ [\ / [ copies of themselves in the next generation. Qmscefers
. / / \ to information exchange based on probabilistic slens
° VN [YaN! / \ between solution vectors. In mutation a small ramlglo
8 L~ \ selected part of a solution vector is occasionalligred, with a
E‘ N/ very small probability. This way the solution isfined
N\ N4 \ 7 \ iteratively until the objective function is miningd below a
: N/ V) certain tolerance level or the maximum number efaitions
_Da_decrmim\ / \V/ \ \/ \ L/ are exceeded. In the present study the number milgibon
\ \/ members in GA is chosen to be 20. The crossover and
0 : o ® ® = mutation fraction are chosen to be 0.8 and 0.2ectigly for
minimization of the following objective functions.
Figure 4. Impulse response of FO system with pseudo-damping. JISE — J‘ & (t)dl‘, JITSE - J‘ tl:lé( D ds (]_5)
0 0
‘ T e Evaluation of the objective functions have beeneditneach
N\ /\ \ generation of GA within the finite time horizon % seconds
/ \ as discussed earlier. Minimization of error indé%)(between
I/ \ | \ the respective FO systems and a second order apm@tion
Lo /a\ 78\ [~ as in (13) and (14) gives the optimum values otigsémeta-
zé of ﬁﬁ l\\\\/{/ —l\ damp_ing_ and time constant. The ISE_ and ITSE based
i ——— 7 | \ optimization results .hav.e been reported in Taldl fer the
Ds N7 W/ \ \ ") three test cases, as in Fig. 1-3.
08 \\' / \ / \ \ / TABLE I. GA BASED RESULTS FOROPTIMAL PSEUDO-DAMPING FOR
9 \, \/ \/ FRACTIONAL ORDERSYSTEMS
’ ’ ?tmen ’ : Fractional ISE Based ITSE Based
Order (a) Jmin T & Jmin z &
Figure 5. Impulse response characteristic_s of fractional sé@vder system 11 0.0054 0.3485 1.3153 0.0235 047 0.9848
with.meta-damping.
1.2 0.0168 | 0.5246| 0.8094 0.0647  0.6467  0.6887
: Meta-damping in fractional order systems with leading order = 1 1.3 0.0287 0.6587 0.596 0.097p 0.76%9 0.5537
1.4 0.0379 | 0.7634| 04672 0.1153 0.8457  0.4635
N 1.5 0.0429 | 0.8432] 0.374 01176 0.8998  0.3878
s 1.6 0.0429 | 0.9029| 0.296% 0.1085 0.93J4 0.3146
N 1.7 0.0378 | 0.9463| 0.2247 0.0927 0.9647  0.239
; VAN 1.8 0.0277| 0.976| 0.1527  0.074 0.9837  0.1597
é ; l 1.9 0.0127 | 0.993| 0.0771 0.0448 09947 0.0786
\ 7 TABLE Il. GA BASED RESULTS FOROPTIMAL META-DAMPING FOR
° /\/ FRACTIONAL ORDERSYSTEMS WITHLEADING ORDER= 1
! . i L i 1 Fractional ISE Based ITSE Based
Time (sec) Order (a) Jmin p £ Jmin p &
_ o _ _ 11 0.0057 | 0.3463| 1.1944 0.02 0.4006  1.0538
Figure 6. Impulse response characteristics of fractional éirder system
with meta-damping. 1.2 0.0147 | 0.342 1.067| 0.051p  0.4933  0.7747
1.3 0.0273| 0.4182| 0.7884 0.0769 0.5761  0.6247
C. Genetic Algorithm Based Approach for Finding Optima 14 00415 04793] 06322 009% 06399 0.5336
Pseudo-Damping and Meta-Damping 15 0.0571 0.5317 0.5308 0.1105 0.6906 0.4667
Genetic algorithm (GA) is a stochastic optimizatjmocess 16 0.0748 | 0.5996] 04393 01271 0.732 0.4091
which can be used to minimize a chosen objectinetfan. A 17 0.097 | 0.6597| 0.3708 0.1568 0.7784  0.3529
solution vector is initially randomly chosen frotnet search 1.8 0.13 0.7233| 0.308§ 0.2382  0.823  0.2913
space and undergoes reproduction, crossover aratiomytin 1.9 0.1996 | 0.7959| 0.2422 0.5806 0.8828  0.2131

each iteration to give rise to a better populatiddrsolution



TABLE IlI. GA BASED RESULTS FOROPTIMAL META-DAMPING FOR
FRACTIONAL ORDER SYSTEMS WITHLEADING ORDER= 2
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consistency in the mapping [4]-[5]. Hence therealiways a
trade-off between size of the ANN and the predicdocuracy.

Fractional ISE Based ITSE Based
Order (a) Jrmin T ¢ Jrnin T ¢ TABLE IV.  TRAINING PERFORMANCE FORVARIOUS ANN
11 0.005 1.0426 0.7294 0.046b 1.0837 0.712 CONFIGURATIONS FOR 'Ii:gf’ERPEEID’\IISEI’\(‘J_II_\IR%l’:\ESEUDODAMPING FOR25
1.2 0.0138| 1.0499| 0.574| 0.1058 1.0939  0.5732 ___
Number of Number of neurons Activation Average
1.3 0.0215 1.0452 0.4668 0.1359 1.0809 0.4809 layers in each hidden layer function MSE
1.4 0.0266 | 1.0362| 0.3845  0.1407 1.0609  0.4066 5 tansig 0.009
15 0.0291| 1.0263| 0.3153 0.1315 1.0409  0.3395 logsig 0.0061
16 0.029 | 1.0171| 0.2529  0.117 1.0241  0.2741 1 tansig 0.07
1.7 0.0266 | 1.0094| 0.1931 01038 1012  0.2083 logsig 0.0326
1.8 0.0217 | 1.0042| 0.1325 0.0935 1.0047  0.1405 L 5 tansig 0.1009
1.9 0.0119| 1.0012| 0.0679 0.0657 1.0012  0.0701 logsig 0.026
tansig 0.1609
IV.  ANN BASED PREDICTION OFOPTIMAL PSEUDO- 20 onsi 0.0418
DAMPING AND META-DAMPING 9°9 :
25 tansig 0.1216
A. Multi-Layer Feedforward Neural Network Architecture logsig 0.0559
The standard neural network architecture consistano tansig/tansig 0.0185
input layer, one or more hidden layers with mudipl tansig/logsig 0.0148
; 5
perceptrons and an output layer. The number ofepémns in logsigitansig | 0.0238
the hidden layer and the number of hidden layersganerally — 00153
problem specific and depend on the choice of tlee. Us the 9 _g 9 _g :
present study, the number of hidden layers is gdr@n 1 to 2 tansig/tansig | 0.0453
and for each case the number of neurons in eaeh ilyaried 10 tansig/logsig 0.0169
from 5 to 25 in incremental steps of 5. The ANNfudly logsig/tansig 0.0218
connected, i.e., the output from each input anddnicheuron is logsiglogsig 0.0133
distributed to all the neurons of the subsequeygrlaAlso a ansin/tansi 00714
feed-forward architecture is used, i.e. the datevdl and is ansigransig | °
processed sequentially through the input, hiddemh eutput 2 1s tansig/logsig 0.0245
layers and are not fed-back to the previous layamike the logsig/tansig 0.0779
recurrent ANN structureHyperbolic tangent sigmoidgnsig logsig/logsig 0.0346
and logarithmic sigmoidiggsig) type activation functions and tansig/tansig 01075
their combinations are used to create different ANN - : :
architectures for comparing the relative effecta&s of these 20 tansigfiogsig | 0.0269
structures at capturing the nonlinear relationdiepveen the logsig/tansig 0.1492
input (a ) and output £, & ) data. logsig/logsig 0.0375
tansig/tansig 0.141
B. Training Performance of ANN and Time Domain tansig/logsig 0.0341
Performance of the Predicted Outputs 25 logsig/tansig 0.2229
Multilayer feed-forward ANN has now been employed t logsig/logsig 0.0357

predict the optimal pseudo/meta damping/time cotstirom
the knowledge of the fractional order of the dyneahsystem.
Tables IV-VI gives the GA based optimal pseudo/mete
damping ) and time constantr() of the FO systems in terms

of equivalent second order systems considering IT&E
criterion, since ITSE puts more penalties on thereat later
stages unlike ISE producing better accuracy. TheN&Mre
trained with Levenberg-Marquardt back-propagatitgorthm
which is a gradient based method and often getk $tulocal
minima. To check the consistency of the ANNs fgptaeang
the input-output relationship, the Mean SquaredE(MSE)
of 25 independent runs has been chosen as thermparfoe
measure. This is justified from the fact that oftarge size
multilayer ANNs accurately establishes arbitrarynlirear
relation between any input-output data but theyhinmpt show

Comparison of ANN based predicted and GA based optimal pseudo-dampings

Amplitude

Time (sec)

Figure 7. ANN prediction of pseudo-damping for FO system (12)



TABLE V.

TRAINING PERFORMANCE FORVARIOUS ANN
CONFIGURATIONS FOR THEPREDICTION OFMETA-DAMPING IN FO SYSTEMS

WITH LEADING ORDER= 1 FOR25INDEPENDENTRUNS

TABLE VL.

TRAINING PERFORMANCE FORVARIOUS ANN
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CONFIGURATIONS FOR THEPREDICTION OFMETA-DAMPING IN FO SYSTEMS
WITH LEADING ORDER= 2 FOR25INDEPENDENTRUNS

Number of Number of neurons Activation Average Number of Number of neurons Activation Average
layers in each hidden layer function MSE layers in each hidden layer function MSE
5 tansig 0.0109 5 tansig 0.0032
logsig 0.0038 logsig 0.0014
10 tansig 0.0487 1 tansig 0.0274
logsig 0.0232 logsig 0.0091
L - tansig 0.0942 . 15 tansig 0.0686
logsig 0.0257 logsig 0.0093
20 tansig 0.1113 20 tansig 0.0431
logsig 0.026 logsig 0.019
o5 tansig 0.1002 25 tansig 0.0654
logsig 0.0694 logsig 0.0436
tansig/tansig 0.0126 tansig/tansig 0.0058
5 tansig/logsig 0.0117 5 tansig/logsig 0.0059
logsig/tansig 0.0086 logsig/tansig 0.0038
logsig/logsig 0.0074 logsig/logsig 0.0043
tansig/tansig 0.0385 tansig/tansig 0.014
10 tansig/logsig 0.021 1 tansig/logsig 0.0099
logsig/tansig 0.0392 logsig/tansig 0.0126
logsig/logsig 0.0121 logsig/logsig 0.0057
tansig/tansig 0.0763 tansig/tansig 0.0451
5 15 tansig/logsig 0.0257 ) 15 tansig/logsig 0.006
logsig/tansig 0.0414 logsig/tansig 0.0353
logsig/logsig 0.0314 logsig/logsig 0.0154
tansig/tansig 0.0985 tansig/tansig 0.0451
20 tansig/logsig 0.0201 20 tansig/logsig 0.0304
logsig/tansig 0.0934 logsig/tansig 0.0339
logsig/logsig 0.0596 logsig/logsig 0.0139
tansig/tansig 0.0991 tansig/tansig 0.0372
- tansig/logsig 0.0303 25 tansig/logsig 0.0137
logsig/tansig 0.0973 logsig/tansig 0.0351
logsig/logsig 0.0281 logsig/logsig 0.0206
comparizen °L‘*£L’L?:::.":§LZ‘?‘:;2‘3::;’3‘;".:2:?’"‘;":‘,3:1Zi’“‘”“‘“”‘"“ . °°“"’I""°" i ractionsl ordor systome with osding order s 1
: DA ]
A
A N . |

Amplitude

s

Figure 8. ANN based prediction of meta-damping for fractiosetond order
system.

Time (sec)

Amplitude

Time (sec)

Figure 9. ANN based prediction of meta-damping for fractiofiesit order

system.



TABLE VIL.

ANN BASED PREDICTEDV ALUES OF PSEUDOMETA-
DAMPINGS AND TIME CONSTANTS FORTHREE CLASS OFFO SYSTEMS
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accurate for first and second order meta-dampira tthe
pseudo-damping and also for low value of fractiavder ().

Type of the Minimum Fractional . .

FO System MSE Order (a) T 3 In contemporary literatures like [7]-[9], the copteof
11 0.469965| 0.984699 Pseudo-damping was first proposed with a differse¢ond
> 069043 | 0673145 order like structure of the FO systems with commeaise
i - : orders. In the present paper, pseudo-damping réferthe
13 0.760275| 0.595913  damping introduced in the system with decreasésiteading

_ 1.4 0.819033| 0.531421  order which is different from that reported in [6} The

W'égrg]s?r‘:do' 6.1938x10 15 0.898188| 0.387535 contrjbution of the present paper is fi.rstly. to @igystematic

ping 16 0937233 0312222  definition of pseudo and meta-damping in FO systemd
. : : secondly their ANN based prediction from the GAduhETSE
1.7 0.966328| 0.242967  (ntimum results.
1.8 1.009048 | 0.130724
1.9 0.986992 | 0.061456 V. CONCLUSION
1.1 0.400597| 1.053798 In this paper, the concepts of pseudo-damping aath-m
12 0.495297| 0751861  damping are introduced for some special class aftifmal
1.3 0.576102| 0.624702  order dynamical systems. Genetic algorithm is usedbtain

First order 1.4 0.639898 0.5336 the equivalent second order damping c_haracterisﬁﬁctshese

with meta- | 9.6422x16 15 0.688546| 046088 O systems. An ANN based approach is used nextaem

damping e 07352 02001 this arbitrary (nonlinear) relationship and elimmathe
: : : requirement of running the computationally inteeS®&A every
17 0.779042| 0.350727  time. Extensive parametric study have been dofiadmut the
1.8 0.8253 0.2913 multilayer feed-forward ANN architecture that ispehle to
1.9 0.916861| 0207589  Optimally capture the nonlinearity, by minimizintgetMSE and
11 1091173 0707394 simultaneously avoiding the_pltfall of over-ﬂttm@on&st_ency
of ANN structures for mapping the fractional orderoptimal
12 1088813| 0573404  FQ damping and time constants are judged by camsife
13 1.076325 0.4878 average MSE of 25 independent runs. The time domain
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