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Abstract—This paper investigates typical behaviors like 
damped oscillations in fractional order (FO) dynamical systems. 
Such response occurs due to the presence of, what is conceived as, 
pseudo-damping and meta-damping in some special class of FO 
systems. Here, approximation of such damped oscillation in FO 
systems with the conventional notion of integer order damping 
and time constant has been carried out using Genetic Algorithm 
(GA). Next, a multilayer feed-forward Artificial Ne ural Network 
(ANN) has been trained using the GA based results to predict the 
optimal pseudo and meta-damping from knowledge of the 
maximum order or number of terms in the FO dynamical system. 

Keywords— Artificial Neural Network (ANN); fractional order 
linear systems; meta-damping; pseudo-damping; Genetic Algorithm  

I.  INTRODUCTION 

Fractional order dynamical systems which are governed by 
fractional order differential equations have got renewed interest 
in the science and engineering community in recent past for its 
higher capability and flexibility in modeling of natural 
processes [1], [2]. It is well known from basics of control 
theory that second order stable oscillatory dynamical systems 
or higher order stable oscillatory systems, which can also be 
approximated as second order transfer function models, decay 
with an exponential envelope upon step or impulse type 
excitation [3]. In other words, a physical system, governed by 
second order differential equation of the form (1), with 
excitation ( )u t and response ( )y t shows oscillatory time 

response for ( )0,1ξ ∈ . 
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Here, parameters{ }, ,ξ ω τ represent the system’s damping 

ratio, natural frequency and time constant respectively with 

1τ ω= . For step and impulse type excitation, the dynamical 
system governed by (1) exhibit damped time responses with an 
exponential envelope, represented by (2) and (3) respectively. 
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In contrast, a dynamical system, governed by a two term 
fractional order differential equation (4) can also show 
oscillatory damped time response for ( )1, 2α ∈ , although there 

is no explicit damping term, containingξ in (4). This typical 
behavior of fractional order systems lead to the concept of 
“Pseudo-damping” which can not be visualized with the 
conventional theory of integer order calculus for describing the 
dynamics of physical systems. 

( ) ( ) ( )taD y t by t u tα + =              (4) 

Laplace transform of (4) with zero initial condition gives the 
system’s transfer function as (5) which again produces its 
impulse response as the Green’s function (6) upon inverse 
Laplace transformation [1] for the two-term FO system (4). 
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In (6),
,Eα β represents the two-parameter Mittag-Leffler 

function which is a higher transcendental, encompassing a 
large family of conventional transcendental functions like 
trigonometric, inverse circular, exponential, logarithmic, 
hyperbolic etc. [1]-[2]. The series representation of two 
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parameter Mittag-Leffler function is given by (7) which is a 
generalized template and reduces to an exponential function for 

1, 1α β= = [1]-[2]. Also, from (6) it can be observed that the 
envelope is guided by a power law instead of an exponential 
one in (3). In this system, a Mittag-Leffler type oscillation 
takes place in contrast to the sinusoidal oscillation in (3). 
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The present paper firstly attempts to approximate the 
oscillations, produced due to step excitation of (4) with an 
equivalent template given by (1) using GA i.e. finding optimal 
pseudo/meta (FO)-damping or time constants, associated with 
the oscillatory time response of the FO system. Next the 
optimal FO damping and time constants are predicted using a 
multilayer feed-forward ANN. This approach reduces the 
computational load, associated with running GA every time for 
finding out the equivalent optimal FO damping for any 
arbitrary FO system within this range and such an application is 
justified from the point that multilayer feed-forward ANN is 
generally very good function approximator [4]-[5]. In [6], the 
concept of optimal fractional order damping was first proposed 
with a specific need for faster stabilization of oscillatory 
systems using the concept of FO damping with respect to some 
integral performance indices like Integral of Squared Error 
(ISE), Integral Time weighted Squared Error (ITSE) etc. This 
paper gives a new concept of finding the optimal integer order 
equivalence of FO damping using ISE/ITSE as performance 
indices and also proposes their ANN based prediction. 

Rest of the paper is organized as follows. Section II briefly 
introduces the basics of pseudo-damping and meta-damping in 
some special class of oscillatory FO dynamical system. Section 
III describes time domain simulation of pseudo/meta-damping 
and their GA based optimal time domain approximation. 
Section IV presents the ANN based training and prediction 
performance for these optimal FO-damping. The paper ends 
with the conclusion as section V, followed by the references. 

II. CONCEPT OF PSEUDO AND META-DAMPING IN 

FRACTIONAL ORDER LINEAR DYNAMICAL SYSTEMS 

In [1]-[2], it has been reported that time and frequency 
domain representations of few special functions, related to 
fractional calculus like R-function and G-function are given by: 
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If Laplace transform of excitation and response of a 
fractional order transfer function (FOTF)( )G s be ( )U s and 

( )Y s respectively, then simple treatments as in (10) gives its 

step and impulse response. Therefore, to find out the step and 
impulse response for few classes of fractional order systems, 

1v = − and 0v = need to be considered respectively in (8) and 

(9). Time domain simulation for FO systems using (8)-(9) 
needs evaluation of few convergent infinite series at each 
discrete time step (t ). For numerical implementation the 
infinite series have been evaluated in MATLAB at eacht , with 
the order of accuracy being 0.001. 
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Under this condition, expressions (8) and (9) represents the step 
response of stable FOTFs with the replacement of (a ) by unity 
and (b ) by ( b− ) in structures like (4). i.e. 

( )1 2

1 1
, rP P

s b s b
α α

= =
+ +

          (11) 

It has been seen from (4) that the step response gives 
sustained oscillation for 0α = . But the response becomes 
damped for1 2α< < . Hence, a fractional order system of the 
form (4) having no explicit damping term in it, also exhibits 
damped oscillation in time response for1 2α< < . Such an 
oscillation has been approximated by using a second order 
system of the form (1) while minimizing few integral error 
indices. The FO system of the structure (11) with1 2α< < , 
can be modified with normalized frequency to unity ( 1b = ) as: 

1 2 2

1 1

1 2 1
P

s s sα τ τξ
=

+ + +
ɶ ≃                  (12) 

where,{ },τ ξ can be termed as the optimal pseudo-time 

constant and pseudo-damping respectively with respect to some 
integral error index. 

The second class of FO systems in (11) exhibits different 
type of oscillations if different combinations of orders are used 
in the expansion of the polynomials, although the highest order 
of the models are same and only the number of fractional order 
terms varies in the model. It is well known that order of a FO 
LTI system is determined by the maximum order present in the 
denominator polynomial. If it be assumed that2r α= , the 
system governed by (9) becomes a different class of fractional 
second order system (13) which can again be represented by 
equivalent second order approximation with { },τ ξ being the 

optimal meta-time constant and meta-damping respectively. 
Similar treatment of normalizing the frequency to unity yields: 

( )
2 2 2 2

1 1

2 11
P

s ssα α τ τξ
=

+ ++
ɶ ≃

                 (13) 

The following examples put more light on the behavior of 
such systems with meta-damping. Simple modification of (13) 
gives first and second order transfer functions like (14). It is 
interesting to note that though the leading order remains one 
and two in these models, the number of fractional order 
elements increase upon binomial expansion for the terms with 
higher powers. These additional number of FO terms puts extra 
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damping to the FO system which is defined as the meta-
damping in FO dynamical system of the form (13). Thus a FO 
system represented by (14) is distinctly characterized by the 
number of FO elements present in it and not by the leading FO 
order unlike (12). This typical behavior is the motivation 
behind defining two different class of FO damping i.e. pseudo-
damping for system (12) and meta-damping for system (13). 
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It is therefore clear that the pseudo-damping is associated 
with the reduction in the highest order of a FO system whereas 
meta-damping is associated with the increase in fractional order 
elements within a FO model though the highest order of the 
plant remains the same. 

III.  TIME DOMAIN SIMULATION OF FRACTIONAL ORDER 

SYSTEMS WITH PSEUDO-DAMPING AND META-DAMPING  

MATLAB based codes have been developed using the 
infinite series representations of such FOTF i.e. (8)-(9) under 
impulse/step excitation. Time domain simulation using (8)-(9) 
often gives poor result above 30 seconds. This is due to the fact 
that gamma function in the denominator of (8)-(9) approaches 
towards a very large value which can not be computed using 
most of the scientific programming languages, due to buffer 
overflow. Thus it is recommended to reliably use expression 
(8)-(9) for time domain simulation of the special class of FO 
systems only up to 30 seconds. Simulation of first order system 
with meta-damping and 0.9α < also becomes computationally 
infeasible due to blowing up of the associated gamma 
functions. Similarly, second order systems with meta-damping 
and 0.9α < gives reliable time response up to 25 seconds, 
below which the results are unreliable as also reported in 
Hartley and Lorenzo [6] in the context of optimal FO damping. 

A. Step Response Characteristics 

 

Figure 1.  Step response of FO system with pseudo-damping. 

FO systems given in (12)-(13) have now been subjected to 
step input excitations and evaluated at each discrete time step 

using (8)-(9) and shown in Fig. 1-3. Fig. 1 shows that the 
oscillations become more damped with decrease in the order 
(α ) of FO system (12). Similar behaviors can be found for FO 
systems with meta-damping with leading order being 2 (Fig. 2) 
and 1 (Fig. 3) respectively. It is interesting to note that even 
first order systems in the presence of other FO elements may 
exhibit oscillations as shown in Fig. 3. In Fig. 1 the decaying 
envelope may be guided by a power law as reported in (6), but 
the nature of oscillations for meta-damping in Fig. 2-3 are more 
complex to be represented as closed form solutions unlike (6). 

 

Figure 2.  Step response characteristics of fractional second order system 
with.meta-damping. 

 

Figure 3.  Step response characteristics of fractional first order system with 
meta-damping. 

B. Impulse Response Characteristics 

The impulse responses have been shown next for the above 
discussed three classes of FO systems. As expected in Fig. 6, 
the oscillations start from a value of unity for first order 
systems (with additional FO elements causing meta-damping). 
Fig. 5 shows the oscillations starting from zero confirming the 
preservation of the second order behavior of the FO system. In 
Fig. 4 showing FO systems with pseudo-damping mixed 
behaviors can be observed regarding the initial value of the 
impulse response which indicates that the classical notion of 
judging the order of the system by looking only at the impulse 
response characteristics is not valid for pseudo-damping. 
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Figure 4.  Impulse response of FO system with pseudo-damping. 

 

Figure 5.  Impulse response characteristics of fractional second order system 
with.meta-damping. 

 

Figure 6.  Impulse response characteristics of fractional first order system 
with meta-damping. 

C. Genetic Algorithm Based Approach for Finding Optimal 
Pseudo-Damping and Meta-Damping 

Genetic algorithm (GA) is a stochastic optimization process 
which can be used to minimize a chosen objective function. A 
solution vector is initially randomly chosen from the search 
space and undergoes reproduction, crossover and mutation, in 
each iteration to give rise to a better population of solution 

vectors in the next iteration. Reproduction implies that 
solution vectors with higher fitness values can produce more 
copies of themselves in the next generation. Crossover refers 
to information exchange based on probabilistic decisions 
between solution vectors. In mutation a small randomly 
selected part of a solution vector is occasionally altered, with a 
very small probability. This way the solution is refined 
iteratively until the objective function is minimized below a 
certain tolerance level or the maximum number of iterations 
are exceeded. In the present study the number of population 
members in GA is chosen to be 20. The crossover and 
mutation fraction are chosen to be 0.8 and 0.2 respectively for 
minimization of the following objective functions. 

( ) ( )2 2

0 0

,ISE ITSEJ e t dt J t e t dt
∞ ∞

= = ⋅∫ ∫          (15) 

Evaluation of the objective functions have been done in each 
generation of GA within the finite time horizon of 25 seconds 
as discussed earlier. Minimization of error index (15) between 
the respective FO systems and a second order approximation 
as in (13) and (14) gives the optimum values of pseudo/meta-
damping and time constant. The ISE and ITSE based 
optimization results have been reported in Table I-III for the 
three test cases, as in Fig. 1-3. 

TABLE I.  GA BASED RESULTS FOR OPTIMAL PSEUDO-DAMPING FOR 
FRACTIONAL ORDER SYSTEMS 

ISE Based ITSE Based Fractional 
Order (α) Jmin τ ξ Jmin τ ξ 

1.1 0.0054 0.3485 1.3152 0.0235 0.47 0.9848 

1.2 0.0168 0.5246 0.8094 0.0647 0.6467 0.6887 

1.3 0.0287 0.6587 0.596 0.0979 0.7659 0.5537 

1.4 0.0379 0.7634 0.4672 0.1153 0.8457 0.4635 

1.5 0.0429 0.8432 0.374 0.1176 0.8998 0.3878 

1.6 0.0429 0.9029 0.2965 0.1085 0.9374 0.3146 

1.7 0.0378 0.9463 0.2247 0.0927 0.9647 0.239 

1.8 0.0277 0.976 0.1527 0.074 0.9837 0.1597 

1.9 0.0127 0.993 0.0771 0.0448 0.9947 0.0786 

TABLE II.  GA BASED RESULTS FOR OPTIMAL META-DAMPING FOR 
FRACTIONAL ORDER SYSTEMS WITH LEADING ORDER = 1 

ISE Based ITSE Based Fractional 
Order (α) Jmin τ ξ Jmin τ ξ 

1.1 0.0057 0.3463 1.1946 0.02 0.4006 1.0538 

1.2 0.0147 0.342 1.067 0.0512 0.4933 0.7747 

1.3 0.0273 0.4182 0.7884 0.0769 0.5761 0.6247 

1.4 0.0415 0.4793 0.6322 0.0956 0.6399 0.5336 

1.5 0.0571 0.5317 0.5308 0.1105 0.6906 0.4667 

1.6 0.0748 0.5996 0.4393 0.1271 0.7352 0.4091 

1.7 0.097 0.6597 0.3708 0.1568 0.7784 0.3529 

1.8 0.13 0.7233 0.3086 0.2382 0.8253 0.2913 

1.9 0.1996 0.7959 0.2422 0.5806 0.8828 0.2131 
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TABLE III.  GA BASED RESULTS FOR OPTIMAL META-DAMPING FOR 
FRACTIONAL ORDER SYSTEMS WITH LEADING ORDER = 2 

ISE Based ITSE Based Fractional 
Order (α) Jmin τ ξ Jmin τ ξ 

1.1 0.005 1.0426 0.7299 0.0462 1.0837 0.712 

1.2 0.0138 1.0499 0.574 0.1053 1.0939 0.5732 

1.3 0.0215 1.0452 0.4668 0.1359 1.0809 0.4809 

1.4 0.0266 1.0362 0.3845 0.1407 1.0609 0.4066 

1.5 0.0291 1.0263 0.3153 0.1315 1.0409 0.3395 

1.6 0.029 1.0171 0.2529 0.117 1.0241 0.2741 

1.7 0.0266 1.0094 0.1931 0.1038 1.012 0.2083 

1.8 0.0217 1.0042 0.1325 0.0935 1.0047 0.1405 

1.9 0.0119 1.0012 0.0679 0.0657 1.0012 0.0701 

IV.  ANN BASED PREDICTION OF OPTIMAL PSEUDO-
DAMPING AND META-DAMPING 

A. Multi-Layer Feedforward Neural Network Architecture 

The standard neural network architecture consists of an 
input layer, one or more hidden layers with multiple 
perceptrons and an output layer. The number of perceptrons in 
the hidden layer and the number of hidden layers are generally 
problem specific and depend on the choice of the user. In the 
present study, the number of hidden layers is varied from 1 to 2 
and for each case the number of neurons in each layer is varied 
from 5 to 25 in incremental steps of 5. The ANN is fully 
connected, i.e., the output from each input and hidden neuron is 
distributed to all the neurons of the subsequent layer. Also a 
feed-forward architecture is used, i.e. the data flows and is 
processed sequentially through the input, hidden and output 
layers and are not fed-back to the previous layers, unlike the 
recurrent ANN structure. Hyperbolic tangent sigmoid (tansig) 
and logarithmic sigmoid (logsig) type activation functions and 
their combinations are used to create different ANN 
architectures for comparing the relative effectiveness of these 
structures at capturing the nonlinear relationship between the 
input (α ) and output ( ,τ ξ ) data. 

B. Training Performance of ANN and Time Domain 
Performance of the Predicted Outputs 

Multilayer feed-forward ANN has now been employed to 
predict the optimal pseudo/meta damping/time constants from 
the knowledge of the fractional order of the dynamical system. 
Tables IV-VI gives the GA based optimal pseudo/meta 
damping (ξ ) and time constant (τ ) of the FO systems in terms 
of equivalent second order systems considering the ITSE 
criterion, since ITSE puts more penalties on the error at later 
stages unlike ISE producing better accuracy. The ANNs are 
trained with Levenberg-Marquardt back-propagation algorithm 
which is a gradient based method and often gets stuck in local 
minima. To check the consistency of the ANNs for capturing 
the input-output relationship, the Mean Squared Error (MSE) 
of 25 independent runs has been chosen as the performance 
measure. This is justified from the fact that often large size 
multilayer ANNs accurately establishes arbitrary nonlinear 
relation between any input-output data but they might not show 

consistency in the mapping [4]-[5]. Hence there is always a 
trade-off between size of the ANN and the prediction accuracy. 

TABLE IV.  TRAINING PERFORMANCE FOR VARIOUS ANN 
CONFIGURATIONS FOR THE PREDICTION OF PSEUDO-DAMPING FOR 25 

INDEPENDENT RUNS 

Number of 
layers 

Number of neurons 
in each hidden layer 

Activation 
function 

Average 
MSE 

tansig 0.009 
5 

logsig 0.0061 

tansig 0.07 
10 

logsig 0.0326 

tansig 0.1009 
15 

logsig 0.026 

tansig 0.1609 
20 

logsig 0.0418 

tansig 0.1216 

1 

25 
logsig 0.0559 

tansig/tansig 0.0185 

tansig/logsig 0.0148 

logsig/tansig 0.0238 
5 

logsig/logsig 0.0153 

tansig/tansig 0.0453 

tansig/logsig 0.0169 

logsig/tansig 0.0218 
10 

logsig/logsig 0.0133 

tansig/tansig 0.0714 

tansig/logsig 0.0245 

logsig/tansig 0.0779 
15 

logsig/logsig 0.0346 

tansig/tansig 0.1075 

tansig/logsig 0.0269 

logsig/tansig 0.1492 
20 

logsig/logsig 0.0375 

tansig/tansig 0.141 

tansig/logsig 0.0341 

logsig/tansig 0.2229 

2 

25 

logsig/logsig 0.0357 

 

Figure 7.  ANN prediction of pseudo-damping for FO system (12). 
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TABLE V.  TRAINING PERFORMANCE FOR VARIOUS ANN 
CONFIGURATIONS FOR THE PREDICTION OF META-DAMPING IN FO SYSTEMS 

WITH LEADING ORDER = 1 FOR 25 INDEPENDENT RUNS 

Number of 
layers 

Number of neurons 
in each hidden layer 

Activation 
function 

Average 
MSE 

tansig 0.0109 
5 

logsig 0.0038 

tansig 0.0487 
10 

logsig 0.0232 

tansig 0.0942 
15 

logsig 0.0257 

tansig 0.1113 
20 

logsig 0.026 

tansig 0.1002 

1 

25 
logsig 0.0694 

tansig/tansig 0.0126 

tansig/logsig 0.0117 

logsig/tansig 0.0086 
5 

logsig/logsig 0.0074 

tansig/tansig 0.0385 

tansig/logsig 0.021 

logsig/tansig 0.0392 
10 

logsig/logsig 0.0121 

tansig/tansig 0.0763 

tansig/logsig 0.0257 

logsig/tansig 0.0414 
15 

logsig/logsig 0.0314 

tansig/tansig 0.0985 

tansig/logsig 0.0201 

logsig/tansig 0.0934 
20 

logsig/logsig 0.0596 

tansig/tansig 0.0991 

tansig/logsig 0.0303 

logsig/tansig 0.0973 

2 

25 

logsig/logsig 0.0281 

 

 

Figure 8.  ANN based prediction of meta-damping for fractional second order  
system. 

TABLE VI.  TRAINING PERFORMANCE FOR VARIOUS ANN 
CONFIGURATIONS FOR THE PREDICTION OF META-DAMPING IN FO SYSTEMS 

WITH LEADING ORDER = 2 FOR 25 INDEPENDENT RUNS 

Number of 
layers 

Number of neurons 
in each hidden layer 

Activation 
function 

Average 
MSE 

tansig 0.0032 
5 

logsig 0.0014 

tansig 0.0274 
10 

logsig 0.0091 

tansig 0.0686 
15 

logsig 0.0093 

tansig 0.0431 
20 

logsig 0.019 

tansig 0.0654 

1 

25 
logsig 0.0436 

tansig/tansig 0.0058 

tansig/logsig 0.0059 

logsig/tansig 0.0038 
5 

logsig/logsig 0.0043 

tansig/tansig 0.014 

tansig/logsig 0.0099 

logsig/tansig 0.0126 
10 

logsig/logsig 0.0057 

tansig/tansig 0.0451 

tansig/logsig 0.006 

logsig/tansig 0.0353 
15 

logsig/logsig 0.0154 

tansig/tansig 0.0451 

tansig/logsig 0.0304 

logsig/tansig 0.0339 
20 

logsig/logsig 0.0139 

tansig/tansig 0.0372 

tansig/logsig 0.0137 

logsig/tansig 0.0351 

2 

25 

logsig/logsig 0.0206 

 

 

Figure 9.  ANN based prediction of meta-damping for fractional first order 
system. 
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TABLE VII.  ANN BASED PREDICTED VALUES OF PSEUDO/META-
DAMPINGS AND TIME CONSTANTS FOR THREE CLASS OF FO SYSTEMS 

Type of the 
FO System 

Minimum 
MSE 

Fractional 
Order (α) τ ξ 

1.1 0.469965 0.984699 

1.2 0.69043 0.673145 

1.3 0.760275 0.595913 

1.4 0.819033 0.531421 

1.5 0.898188 0.387535 

1.6 0.937233 0.314444 

1.7 0.966328 0.242967 

1.8 1.009048 0.130724 

with pseudo-
damping 

6.1938×10-4 

1.9 0.986992 0.061456 

1.1 0.400597 1.053798 

1.2 0.495297 0.751861 

1.3 0.576102 0.624702 

1.4 0.639898 0.5336 

1.5 0.688546 0.46988 

1.6 0.7352 0.4091 

1.7 0.779042 0.350727 

1.8 0.8253 0.2913 

First order 
with meta-
damping 

9.6422×10-5 

1.9 0.916861 0.207589 

1.1 1.091173 0.707394 

1.2 1.088813 0.573404 

1.3 1.076325 0.4878 

1.4 1.062211 0.402436 

1.5 1.040513 0.339679 

1.6 1.019453 0.278533 

1.7 1.012378 0.208497 

1.8 1.006116 0.13578 

Second order 
with meta-
damping 

1.4428×10-5 

1.9 1.002982 0.070353 

 
In IV-VI the ANN with 5 neurons in the single hidden layer 

with logsig activation function has been found to produce 
consistently good prediction of the optimal FO damping in 
terms of minimum average MSE for 25 runs. Subsequent 
increase in number of layers or different combinations of 
activation functions may result in lower MSE in some 
particular cases. But considering the consistency of ANNs, 
these complicated structures have been found to produce 
always a higher value of average MSE. Table VII reports the 
predicted values and MSE of three different classes of FO 
systems for different fractional orders while considering single 
hidden layer containing 5 neurons and logsig activation 
function. The simulations and results justify the argument that 
complicated ANN topology may establish arbitrary mapping 
but the consistency of such mapping reduces with large size of 
the network [4]-[5]. Time response curves for the systems with 
the predicted pseudo-meta damping and time constants 
corresponding to that presented Table VII and the GA based 
optimum results in Tables I-III has been shown in Fig. 7-9 for 
step input excitation. In Fig 7-9 it is clear that the ANN based 
predicted results (dashed lines) are very close to the GA based 
optimum values (continuous lines). The prediction is very 

accurate for first and second order meta-damping than the 
pseudo-damping and also for low value of fractional order (α). 

In contemporary literatures like [7]-[9], the concept of 
pseudo-damping was first proposed with a different second 
order like structure of the FO systems with commensurable 
orders. In the present paper, pseudo-damping refers to the 
damping introduced in the system with decrease in its leading 
order which is different from that reported in [6]-[9]. The 
contribution of the present paper is firstly to give systematic 
definition of pseudo and meta-damping in FO systems and 
secondly their ANN based prediction from the GA based ITSE 
optimum results. 

V. CONCLUSION 

In this paper, the concepts of pseudo-damping and meta-
damping are introduced for some special class of fractional 
order dynamical systems. Genetic algorithm is used to obtain 
the equivalent second order damping characteristics of these 
FO systems. An ANN based approach is used next to model 
this arbitrary (nonlinear) relationship and eliminate the 
requirement of running the computationally intensive GA every 
time. Extensive parametric study have been done to find out the 
multilayer feed-forward ANN architecture that is capable to 
optimally capture the nonlinearity, by minimizing the MSE and 
simultaneously avoiding the pitfall of over-fitting. Consistency 
of ANN structures for mapping the fractional order to optimal 
FO damping and time constants are judged by considering 
average MSE of 25 independent runs. The time domain 
comparison of the GA based optimum results with the ANN 
based predicted results is found to be very close. 
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