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Abstract

Oxidative stress has been implicated as both a physiological cost of reproduction and a driving force on an animal’s lifespan.
Since increased reproductive effort is generally linked with a reduction in survival, it has been proposed that oxidative stress
may influence this relationship. Support for this hypothesis is inconsistent, but this may, in part, be due to the type of
tissues that have been analyzed. In Damaraland mole-rats the sole reproducing female in the colony is also the longest
lived. Therefore, if oxidative stress does impact the trade-off between reproduction and survival in general, this species may
possess some form of enhanced defense. We assessed this relationship by comparing markers of oxidative damage
(malondialdehyde, MDA; protein carbonyls, PC) and antioxidants (total antioxidant capacity, TAC; superoxide dismutase,
SOD) in various tissues including plasma, erythrocytes, heart, liver, kidney and skeletal muscle between wild-caught
reproductive and non-reproductive female Damaraland mole-rats. Reproductive females exhibited significantly lower levels
of PC across all tissues, and lower levels of MDA in heart, kidney and liver relative to non-reproductive females. Levels of TAC
and SOD did not differ significantly according to reproductive state. The reduction in oxidative damage in breeding females
may be attributable to the unusual social structure of this species, as similar relationships have been observed between
reproductive and non-reproductive eusocial insects.
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Introduction

Investment in the production of offspring is customarily linked

to compromised survival, as prolific reproduction tends to be

coupled with a relatively shorter life span [1,2,3]. This relationship

has been classically characterized as being driven by the diversion

of resources from self-maintenance towards reproduction, howev-

er, attention has been more recently turned to the investigation of

physiological costs of reproduction that impair functionality of one

or more physiological processes[4]. Such costs may result from the

reduction of resources available for self-maintenance, but they

may also be direct effects of the process of reproduction, itself

[4,5].The production of offspring is associated with a myriad of

physiological adjustments, and it has been frequently proposed

that oxidative stress resulting from such changes is one such cost of

reproduction.

Oxidative stress arises when the production of reactive oxygen

species (ROS), which damage proteins, lipids and DNA, exceeds

the capacity of antioxidants and repair mechanisms to prevent or

mitigate ROS damage [6,7,8]. It has been proposed that elevated

reproductive effort should increase an animal’s vulnerability to

oxidative stress [9,10,11], and this has been demonstrated in some

bird and reptile species [9,12,13,14,15,16]. In eutherian mammals,

ROS production is elevated, in part, by mitochondrial activity of

the placenta[17,18], and during gestation sows, humans and sheep

exhibit an increase in oxidative damage along with a reduction in

antioxidant capacity[19,20,21,22,23](but see[24]).Oxidative dam-

age also increases with number or mass of offspring produced in

sheep, mice and Eastern chipmunks (Tamias striatus)
[25,26,27,28].

Oxidative stress is also associated with numerous pathologies

(see [29]), and the accumulation of oxidative damage has long

been considered a mechanism by which animals age [30,31].

Across several animal taxa there is a negative correlation between

maximum lifespan and endogenous levels of tissue antioxidants

[32] and long-lived species exhibit low rates of ROS production

relative to oxygen consumption near DNA paired with high rates

of DNA repair [33]. Thus, oxidative stress that accompanies the

production of offspring has frequently been suggested to be the

physiological link between reproduction and lifespan.

It is important to note that many investigations into the

relationship between reproduction and oxidative stress have

measured biomarkers of oxidative stress only in serum or plasma

samples (see [34]). While this type of sampling is more practical for

field and longitudinal studies, individual tissue types may vary in

the level of oxidative damage exhibited at a given time within an

animal (see [35]). Reproductive female Sprague-Dawley rats have

higher levels of lipid oxidation in lung, uterus, brain, kidney and

thymus, but not in the liver or spleen, relative to non-reproductive
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females [36] and reproductive female mice have less protein and

lipid oxidation, higher concentration of antioxidants in the liver,

and less lipid oxidation in skeletal muscle than do non-

reproductive females (this difference was not detected in the

serum; [26]). In bank voles (Myodes gareolus) lipid oxidation was

lower in skeletal muscle and kidney and protein oxidation tended

to be lower in the heart of reproductive females relative to non-

reproductive females, whereas there was no difference in levels of

oxidative damage in the liver between reproductive and non-

reproductive females [37]. Thus, serum and plasma measurements

by themselves may not accurately portray the balance between

ROS production and antioxidant activity.

Upon investigating oxidative stress in various tissues, the

aforementioned studies also reveal that in some species reproduc-

ing females are experiencing less oxidative damage than those that

do not reproduce. This relationship has been observed in social

insect species (see [38]) and, interestingly, these reproductive

females, or queens, live much longer than non-reproductive

members of the colony [39,40,41]. In mammals, social species of

African mole-rats (Bathyergidae) exhibit both a reproductive

hierarchy and extended lifespan of reproducing females akin to

that of social insects [42,43,44,45,46,47,48], and Damaraland

mole-rats (Fukomys damarensis), which, along with naked mole-

rats (Heterocephalus glaber), are argued to be the only truly

eusocial mammals[43]. Like social bees, ants and termites, there is

only one female in a Damaraland mole-rat colony that reproduces,

all other female colony members are reproductively suppressed

[44] and the reproductive female lives longer than her non-

reproductive counterparts [45]. Upon separation from the

reproductive female, a reproductively-suppressed female com-

mences ovulation and thus can feasibly begin to reproduce [49],

suggesting that reproductive status is not genetically regulated. It

has been suggested that reproductive female Ansell’s mole-rats

possess stronger defenses against oxidative damage relative to non-

reproductive females [50], however, to date little is known about

how reproduction affects susceptibility to oxidative stress in this

uniquely social group of mammals.

If reproductive mole-rats experience less oxidative stress than

their non-reproductive cohorts, this may serve as a mechanism

that underlies their extended lifespan. To determine this, we

measured oxidative stress in several different tissues of reproduc-

tive and non-reproductive female Damaraland mole-rats, predict-

ing that reproductive females have less oxidative damage and

better antioxidant defense relative to their non-reproductive

cohorts, and that there will be variation between tissue types as

to how this difference in relation to reproduction is manifested.

Although it has been suggested that a comparison between

reproductive and non-reproductive females can be confounded by

a female’s ability to adjust reproductive investment [51], any

degree of reproductive investment will result in an elevation of

metabolic rate relative to non-reproductive females [34]. Addi-

tionally, many potential problems may accompany suggested

means for controlling and manipulating reproductive investment,

such as the impact of physiological constraints that are unaffected

by experimental manipulation (see [34]). Thus, our approach is

argued to be not only valid, but ideal for assessing oxidative stress

as a potential cost of reproduction [34].

Materials and Methods

Ethics Statement
Research protocols were approved by the animal ethics

committee at the University of Pretoria and complied with their

guidelines for animal research (protocol number EC008-12).

Animals
We selected 9 reproductive and 14 non-reproductive females

from colonies at the University of Pretoria that had been recently

collected (following [52]) from the area surrounding the towns of

Hotazel and Blackrock, Northern Cape Province, South Africa.

Reproductive females were initially differentiated from non-

reproductive females by their swollen teats or perforate vaginas

[44] and later confirmed by the presence of placental scars. The

number of previous reproductive bouts could not be determined.

As these were wild-caught animals, exact age was not known, but

they were all adult based on body mass measurements. Repro-

ductive and non-reproductive females were kept together with

other members of their colony to maintain their reproductive

status, and were housed in large plastic boxes lined with wood

shavings and paper nesting materials. We provided all animals

with ad libitum access to a combination of sweet potatoes, carrots,

apples and gemsbok squash.

Sample Collection
On 3–4 July 2012, we euthanized animals via decapitation and

immediately collected about 1 mL of blood in heparinized tubes.

We then centrifuged the sample for 10 min at 1,0006g, drew off

the plasma, transferred it to plastic tubes, and stored plasma and

erythrocytes in a 280 freezer until time of analysis, which was

within a period of 40 days. We removed the heart, left kidney, a

section of the left median lobe of the liver, and the vastus lateralis

of the left leg (herein, skeletal muscle) immediately following

decapitation and snap froze them in liquid nitrogen. We

homogenized liver, heart, skeletal muscle and kidney on ice in

10% weight per volume 100 mM HEPES (N-2 hydroxyethylpi-

perazine-N9-2-ethanesulfonic acid) buffer solution for 1 (liver and

kidney) or 2 (heart and skeletal muscle) minutes on an Ultra

Turrax T18 Basic Homogenizer (IKA, Staufen, Germany), and

stored all homogenates in a -80 freezer until time of analysis.

Analyses of Oxidative Stress
Oxidative stress represents an imbalance between ROS

production, resulting in oxidative damage, and antioxidant

defenses or repair mechanisms, and is thus more accurately

characterized by including a range of assays of these damage and

protection mechanisms [34,53]. We quantified oxidative damage

by concentrations of malondialdehyde (MDA), a marker of lipid

peroxidation [54], and protein carbonyls (PC), which indicates

protein oxidation [55]. We assessed antioxidant levels as

superoxide dismutase (SOD) activity as well as total antioxidant

capacity (TAC). The specific tissues used for each of these assays

are described below.

MDA
We measured concentrations of MDA in all tissue homogenates

(i.e. liver, kidney, skeletal muscle, heart) and in plasma using high

performance liquid chromatography (HPLC) as described by

Nussey et al. [24]. We prepared samples following Nussey et

al.[24] and injected 20 mL of sample into a Dionex HPLC system

(Dionex Corporation, California, USA) fitted with a 5 mm ODS

guard column and a Hewlett-Packard Hypersil 5 m ODS

10064.6 mm column maintained at 37uC. The mobile phase

was methanol-buffer (40:60, v/v; 50 mM anhydrous solution of

potassium monobasic phosphate at pH 6.8), running isocratically

over 3.5 min at a flow rate of 1 mL min21. We collected data

using a fluorescence detector (RF2000; Dionex) set at 515 nm

(excitation) and 553 nm (emission). For calibration, we prepared a

standard curve using a TEP stock solution (5 mM in 40% ethanol)
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serially diluted using 40% ethanol. Results are expressed as nmol

MDA per g tissue or ml plasma.

PC
We measured concentrations of PC in all tissue homogenates

(i.e. liver, kidney, skeletal muscle, heart) and in plasma. Oxidation

or oxidative cleavage of proteins results in the production of

carbonyl groups [55], which covalently reacts with 2,4-dinitro-

phenylhydrazine (DNPH) to form 2,4-dinitrophenyl (DNP)

hydrazone. DNP can then be detected via spectrophotometry at

a wavelength of 370nm [56]. We measured PC concentration

using a commercially available kit (Protein Carbonyl Assay Kit,

Cayman Chemical Co., Ann Arbor, MI, USA), reading absor-

bances using a Spectramax M2 plate reader (Molecular Devices

Corp., Sunnyvale, CA, USA). We then quantified the protein

content of each sample from a bovine serum albumin (BSA)

standard curve. Results are expressed as nmol per mg protein.

SOD
We measured SOD activity in all tissue homogenates (i.e. liver,

kidney, skeletal muscle, heart) and in erythrocytes. SOD is an

enzymatic antioxidant that catalyses the dismutation of superoxide

anions to oxygen and hydrogen peroxide [57]. We measured SOD

content with a commercially available kit (Superoxide Dismutase

Assay Kit, Cayman Chemical Co., Ann Arbor, MI, USA) that

measures the percentage of superoxide radicals that undergo

dismutation in a given sample. Absorbances were read at 440 nm

using a Spectramax M2 plate reader (Molecular Devices Corp.,

Sunnyvale,CA, USA). Erythrocyte lysate was used instead of

plasma for this assay only. Results are expressed as units of SOD

activity per mg tissue.

TAC
We measured TAC in homogenates of liver, kidney and heart,

and in plasma. We did not measure TAC in skeletal muscle

because intracellular antioxidant defenses (e.g. SOD) are likely to

be more important in this tissue type. TAC was quantified using a

commercially available kit (Antioxidant Assay Kit, Cayman

Chemical Co., Ann Arbor, MI, USA) which measures the

oxidation of ABTS (2,29-Azino-di-[3-ethybenzthiazoline sulpho-

nate]) by metmyoglobin, which is inhibited by non-enzymatic

antioxidants contained in the sample. Oxidized ABTS can then be

detected via spectrophotometry at a wavelength of 740 nm. The

capacity of antioxidants in the sample to inhibit oxidation of

ABTS is compared with the capacity of known concentrations of

Trolox, and results are expressed as nmol of Trolox equivalents

per g tissue or ml plasma.

Statistical Analyses
Data were examined for normality, homoscedasticity, and

outliers. For MDA and SOD, data were log10-transformed to

improve the approximation of normality. Individual markers of

oxidative damage and antioxidant defense may vary in their

association with reproductive state, and such relationships are

likely to differ amongst tissues [58]. Therefore, we assessed

whether each marker of oxidative damage or antioxidant defense

in turn differed between reproductive and non-reproductive

females, using General Linear Mixed Models (GLMM) with

reproductive state and tissue (and their interaction) as fixed factors,

and with individual identity and colony membership included as

random factors. Degrees of freedom were calculated using

Satterthwaite’s correction. Models were developed by backward

elimination of non-significant terms (where P.0.05) starting with

the reproductive state x tissue interaction term. Significant

reproductive state x tissue interactions were followed by post-hoc

GLMMs for each tissue in turn, including reproductive state as a

fixed factor and colony membership as a random factor. In the

absence of any association with reproductive state, we were not

interested in differences in oxidative damage or antioxidant

defenses amongst tissues per se. Such differences are inevitable

given the wide variety of tissues included in this study. Therefore,

any significant main effect of tissue was not followed by post-hoc

tests. Not all tissue samples were available for each individual and

each assay, resulting in a variation in sample size between tissue

types (Table S1). All analyses were performed using Genstat (16th

edition) (VSN International Ltd., Hemel Hempstead, UK). Results

are reported as means 6 s.e.

Results

Levels of MDA were significantly decreased in reproductive

compared to non-reproductive females, although this differed

amongst tissue types. Post-hoc analyses revealed that MDA was

significantly lower in the heart, kidney and liver in reproductive

compared to non-reproductive females, but did not differ

significantly according to reproductive state in skeletal muscle or

plasma (Fig. 1a and Table 1). Levels of PC were significantly

decreased in reproductive compared to non-reproductive females,

and this was apparent across all tissues (Fig. 1b and Table 1). SOD

activity did not differ significantly according to reproductive state,

but varied markedly amongst tissues (Fig. 1c and Table 1). Levels

of TAC showed a similar pattern, not differing significantly

between reproductive and non-reproductive females, but varying

markedly amongst tissues (Fig. 1d and Table 1).

Discussion

Lower concentrations of both markers of oxidative damage

observed in reproductive females suggest that either these females

produced less ROS than non-reproductive females, or that

antioxidant defenses were more active in reproductive females.

Mitochondrial uncoupling can result in reduced ROS production,

although studies of mice have indicated that expression of the

genes that code for uncoupling proteins is reduced or unchanged

in breeders compared with non-breeders [5]. Therefore, mito-

chondrial uncoupling seems an unlikely general explanation for

reduced levels of oxidative damage in various tissues of female

Damaraland mole-rats. However, since we did not explicitly

quantify ROS production and scavenging, we cannot rule out the

possibility that reproductive females may have produced less ROS

than non-reproductive females. Elevated ROS production has

been observed in other mammal species during reproduction, and

a variety of taxa, including sheep, mice, Pacific oysters (Crassostrea
gigas) and painted dragon lizards (Ctenophorus pictus), all

exhibited increased expression of antioxidants during reproduction

[16,59,60,61,62]. Thus, the difference in oxidative damage

observed in Damaraland mole-rats seems more likely to be

attributable to variation in antioxidant activity. The absence of

variation in TAC and SOD concentrations between reproductive

and non-reproductive female Damaraland mole-rats intimates that

either antioxidant defenses matched or exceeded ROS production

during reproduction, or that other antioxidant systems play a more

substantial role in this process.

Several physiological adjustments accompany a non-reproduc-

tive Damaraland mole-rat’s transition to reproductive status,

including increased body length, brain volume, reproductive

hormone concentrations and pituitary sensitivity [52,63,64,65,66].

It is possible that any combination of these adjustments may reflect

Oxidative Stress and Reproduction in Mole-Rats
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Figure 1. Oxidative stress markers of different tissue types for reproductive and non-reproductive females. Concentrations of markers
of oxidative damage (a. malondialdehyde and b. protein carbonyls) and antioxidant activity (c. superoxide dismutase and d. total antioxidant
capacity) in the heart, kidney, liver, skeletal muscle (skel musc) and plasma or erythrocytes (RBCs) of non-reproductive (black boxes) and reproductive
(white boxes) adult female Damaraland mole-rats.
doi:10.1371/journal.pone.0103286.g001

Table 1. Variation in markers of oxidative damage (MDA and PC) and antioxidant defence (TAC and SOD) in relation to
reproductive state and tissue.

Response Explanatory F d.f. P

MDA Reproductive state 17.07 1,17.9 ,0.001

Tissue 298.31 4,81.2 ,0.001

Reproductive state x tissue 5.54 4,81.5 ,0.001

PC Reproductive state 10.40 1,16.6 0.005

Tissue 2.04 4,65.8 0.10

Reproductive state x tissue 0.76 4,60.8 0.55

SOD Reproductive state 0.23 1,21.5 0.64

Tissue 212.19 4,78.9 ,0.001

Reproductive state x tissue 0.48 4,74.2 0.75

TAC Reproductive state 1.14 1,16.0 0.30

Tissue 349.14 3,62.3 ,0.001

Reproductive state x tissue 1.54 3,58.9 0.21

Results are from General Linear Mixed Models including individual identity and colony membership as random factors. See Methods for details. Significant P values are
shown in bold.
doi:10.1371/journal.pone.0103286.t001
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or drive a decreased susceptibility to oxidative stress, and this effect

could be enhanced by physiological adjustments associated with

gestation and lactation, themselves. An example of this is found in

honey bees (Apis mellifera), in which reproduction is associated

with an increased production of the protein vitellogenin, which

defends against oxidative stress [67,68]. Some vitellogenin

sequences are conserved amongst vertebrates, insects and nema-

todes [69], and vitellogenin is thought to be related to mammalian

low-density lipoproteins [70,71]. However, to date this potential

relationship in mammals has yet to be explored.

Additionally, the reduction of oxidative stress found in

reproductive Damaraland mole-rats and other species may be

indicative of hormetic response, in which exposure to ROS

associated with reproduction or becoming reproductive primes the

female’s system to defend against long-term oxidative challenges

[72,73,74,75,76]. Exercise also factors into the hormetic frame-

work; whereas vigorous and intermittent physical activity pro-

motes oxidative stress, regular and moderate exercise reduces

oxidative stress [77,78]. This is noteworthy, as non-reproductive

Damaraland mole-rats, along with other social mole-rat species

(naked mole-rats and common mole-rats (Cryptomys hottentotus)),-
spend much more time sleeping than the reproductive female

[44,79,80].Thus, the difference in physical activity between

reproductive and non-reproductive females may play a role in

differentiating oxidative stress characteristics of these two groups.

Levels of PC were reduced in all tissues of reproductive females,

however, levels of MDA showed different patterns amongst tissues

in relation to reproduction; MDA was reduced in heart, kidney

and liver, but did not differ in skeletal muscle or plasma. This

observation underscores the importance of assessing oxidative

stress in more than one tissue in order to obtain a more thorough

depiction of oxidative stress dynamics within an animal [34]. Our

findings support observed differences in biomarkers of oxidative

stress between tissues in other species [35,81], with some tissues

being more susceptible, such as the liver relative to skeletal muscle

[77], which is likely attributed to variation in metabolic rate

between tissues [82,83]. For example, about 60% of resting

energetic expenditure is attributed to metabolic activity of the

brain, liver and kidneys in humans [83]. The composition of the

different tissues may also drive variation in susceptibility. Cells that

comprise the parenchyma of kidney and liver are constantly

dividing, whereas those of the heart and skeletal muscle are post-

mitotic, and it is generally thought that age-associated changes are

stronger and more widespread in the latter cell type [84].

While several exceptions to the oxidative stress theory of aging

have emerged (see [74]), our results do not negate the idea that

accumulated oxidative damage is related to aging. Instead, our

results show that less oxidative damage is present in reproductive

female Damaraland mole-rats, which live longer than non-

reproductive females. This may be, in part, attributable to our

analysis of multiple tissues. Given our results, the question arises as

to whether oxidative stress can be considered to be a cost of

reproduction in Damaraland mole-rats, and, indeed, whether this

species experiences any physiological costs of reproduction. Our

results correlate reproduction, oxidative stress and lifespan, but it is

important to quantify oxidative stress relative to survival rate, and

to control for, or experimentally manipulate, reproductive effort

before strong conclusions can be made regarding this relationship

[85].

There is evidence that lifespan is not traded off against

reproduction in some social insect species [41,68,86,87,88] and

in Ansell’s mole-rats it has been proposed that, given no difference

in activity or intrinsic quality between reproductive and non-

reproductive individuals, reproduction may drive increased

longevity in breeding females [46]. Since the reproductive success

of a eusocial colony is almost solely dependent on the condition of

the queen, Damaraland mole-rats and other eusocial species may

have acquired adaptations to ensure or enhance survival that are

expressed when a female obtains dominance and commences

breeding. Ascension to dominant status is largely driven by

environmental stimuli [49,66], however, it is possible that an

individual’s capacity to defend against oxidative damage may also

influence likelihood of successfully attaining reproductive status.

Thus, in this and other eusocial species, oxidative stress may

serve as a potential link between reproduction and lifespan which

could function as a basis for prospective avenues for investigating

the evolution of sociality as well as life-history traits and

reproductive strategies.

Supporting Information

Table S1 Data used for the analyses of markers of
oxidative damage and antioxidant defence in various
tissues in relation to reproductive state.
(DOCX)
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