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This paper studies a new comprehensive model for toppling
dynamics of regularly spaced dominoes in an array. The
model has unlocked the hypotheses introduced by Stronge
and Shu [1], which can provide us some essential insights
into the mechanism of domino wave. Extensive comparisons
are made between the proposed model and the experimental
results studied in existing literature. Our numerical studies
show that the existing theoretical models are special casesof
the proposed model, and the fluctuation in the waveform of
propagation speed observed from experiments was caused
by the irregular multiple impacts between colliding domi-
noes. Influence of physical parameters of domino on the
natural speed of toppling dominoes is also considered, and
it is found that the coefficients of friction and restitution
between colliding dominoes have more effects due to the
energy dissipation during impact.

1 Introduction
Domino effect is a special word commonly used to

describe the destabilization of marginally stable systemsin
nature, such as the phenomena of earthquake rupture [2, 3],
signal propagation within a neural network [4,5], as well as
the wave behaviour triggered in nanomaterials [6]. It is also
used to describe the accidents appearing in process industry
[7], chemical reaction [8], and sometimes is even used in
sociology and economics [9, 10]. From the view point of
mechanics, manifestation of the domino phenomenon can
be physically implemented via successive destabilizationof
neighbouring dominoes in a regularly spaced array. Since
each domino in the array is marginally stable, destabilizing
force can propagate through the array in a wave of destabiliz-
ing collisions once it is sufficient to topple the first domino.
Modeling the dynamics of such destabilization is a topic of
ongoing research, see e.g., [11, 12, 13, 14]. The existing
works have focused on investigating the characteristics of
the domino wave, such as the necessary conditions for
toppling and the natural speed of wave propagation (see e.g.,
[1]). However, excessive hypotheses have been introduced
in these studies which undermine the validity of the model.

This paper studies a new model for domino system
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by unlocking several hypotheses proposed in the Stronge’s
model [1]. A detailed analysis of domino’s dynamical
response is performed with consideration for the complex
interactions among a group of neighboring dominoes. These
interactions include various discrete events, such as the
stick-slip motion caused by friction, the separation and im-
pact between two dominoes, and the detachment followed by
the impact between the domino and the ground. Modeling
such nonsmooth dynamics has been a challenging research
work. Daykin [9] for the first time raised the question of how
fast dominoes fall. McLachlan et al. [15] experimentally
studied this problem and found a scaling law for its wave
speed providing that the dominoes were equally spaced with
zero thickness in a straight line. With these assumptions, a
functional relation between the wave speed and the relative
spacing (i.e. the ratio of domino spacing and height) of
dominoes was identified. Later on, this functional relation
was concreted by Bert [16] then by Efthimiou et al. [17].
Nevertheless, these theoretical analyses were established by
introducing excess assumptions, leading to the solutions
with large errors in comparison with existing experimental
results [1, 18, 15, 19]. Stronge pioneered the physical-based
studies on the domino wave by performing considerable
realistic analyses under two limiting conditions. In [18],
he presented theoretical results for the wave propagation
assuming that there was only a single collision between
neighbouring dominoes. Furthermore, Stronge and Shu
[1] considered the domino wave triggered by a cooperative
group with a large number of dominoes, where each domino
leaned against a neighbor keeps contacting during toppling
process. While the Stronge’s model has fundamentally
provided some insights into the mechanism of the domino
wave, large discrepancies between his theoretical resultsand
associated experimental data still exist. This suggests that
a more accurate and general model is needed for precisely
characterizing the domino wave.

In order to obtain accurate theoretical results, this work
concerns a computational method for numerical simulation
of the domino system. When there are strong couplings
between frictions and collisions at several simultaneous
contact points, adoption of a proper collision law for precise
numerical simulation of multiple impacts is crucial. Shaw



[20] has proposed a numerical model for the domino system
under the assumptions that the collisions between dominoes
are inelastic and the angular momentums during collisions
are conserved. Similar assumptions were used by van
Leeuwen [13] and Fujii et. al [21] who developed a numer-
ical model with consideration of friction effect. Both works
conclude that it is difficult to interpret experimental results,
since the collision laws used in these two domino models
are too simplistic to precisely capture the complex motion
of falling dominoes. Using the constitutive law involving the
contact force and deformation of the collision body is anoth-
er way of quantifying impact interactions. For example, Lu
et al. [14] has adopted the discrete element method to model
the interactions between dominoes and the ground which
shows a good agreement between numerical results and
experimental observations. However, simulations using this
method may encounter various difficulties in determination
of physical parameters of the model or numerical integration
of differential equations using small integration step. In
[22, 23], Liu et al. proposed a numerical algorithm for
multiple impacts between the bodies composed of rate-
independent materials. The principle of this method is that
the interface behaviours due to impacts can be described
by using the relationship between the contact force and the
elastic potential energy transferred from the kinetic energy
of impacting bodies. Energy dissipation is quantified using
an energetic coefficient, and the coupling effects among
simultaneous contact points are reflected using the ratio of
potential energy at each contact point. Moreover, numerical
integration can be performed at the level of impulse in order
to avoid using small variables, such as the time of impact and
the length of local deformation. The multiple impacts model
will be used in this paper to solve the complex impacts
involved in the dynamics of the domino system.

The rest of the paper is organized as follows. In Section
2, the dynamics of toppling dominoes and the multiple
impacts model are introduced. Section 3 provides extensive
comparisons between the proposed domino model and the
theoretical and experimental results studied in [1,13,18,21].
Special attention is paid to reveal the mechanism of domino
falling and the cause of fluctuation in the waveform of
domino’s propagation speed. In addition, the influence
of physical parameters of domino on the natural speed of
toppling dominoes is also studied. Finally, in Section 4,
some conclusions are drawn.

2 The model
This work considers the toppling dynamics for an array

of regularly spaced dominoes. This section will study both
the kinematic and dynamic models of this domino system
with a special attention paid to the introduction of the
multiple impacts model proposed by Liu et al. [22,23].

2.1 Kinematic model
Considern slender dominoes with each block of the

massm, the heighth, and the thicknessd, which stand on
the ground with equal spacings as depicted in Fig 1. We
introduce an inertial coordinate frameFI = {O; ij } with the

axis i along the ground. The centre of mass of theith
block oi is located at (xi ,yi) in the frameFI . The motion
of the ith block can be represented usingqi = (xi ,yi , θi ),
whereθi is the angular displacement and its positive value
is along the clockwise direction. The body-fixed coordinate
frameFi = {Oi ; i i j i} for the ith block is considered, and its
transformation to the inertial coordinate frameFI is given as

[

i i
j i

]

=

[

cosθi −sinθi
sinθi cosθi

] [

i
j

]

≡ Ri

[

i
j

]

. (1)

For an array of equally spaced dominoes withn el-
ements, its motion can be fully described by a set of
generalized coordinate,q = (q1,q2, · · · ,qn)T ∈ R3n. Noting
that, if theκth block is stable on the ground, the rest blocks
n− κ will not be involved in the dynamics, we can define
a time-varying dimension forq: If the (κ − 1)th block is
falling down towards its stable neighborκ, the generalized
coordinates for the current configuration of the system can
be denoted asq ∈ R3κ.

Point contact between two bodies means that the posi-
tion of the contact point is commonly occupied by a pair of
points on the contours of the two contacting bodies. Let us
designate{Ai ,A′i } as the pair of points for the point contact
between theith block and the ground, and{Bi ,B′i } as the pair
of points for the point contact between theith block and the
(i+1)th block, where the symbols without prime correspond
to the points on theith block, and the ones with prime denote
the points on the colliding bodies. The pointsAi andBi are
fixed point on theith block, so the position vectors of these
points in frameFI can be written as
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
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



rOAi = xAi i +yAi j
= (xi −

h
2 sinθi + d

2 cosθi )i
+(yi −

h
2 cosθi − d

2 sinθi )j ,
rOBi = xBi i +yBi j

= (xi +
h
2 sinθi + d

2 cosθi )i
+(yi +

h
2 cosθi − d

2 sinθi )j .

(2)

Nevertheless, the positions of pointsA′i on the ground
andB′i on the (i +1)th block change with the motion of ith
block. In order to find the positions of pointsA′i andB′i , we
first denoteP as an arbitrary point on the ground andQ as
an arbitrary one on the left surface of the (i +1)th block.



















rOP = ξi,

rOi+1Q = −
d
2

i i+1+ ζj i+1,
(3)

where, ξ and ζ are unknown parameters that should be
determined according to the following contact conditions
[24]










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

(

rOAi − rOP

)

· i = 0,
(

rOBi − rOOi+1 − rOi+1Q

)

· j i+1 = 0.
(4)

By substituting the relationships between parametersξ and
ζ into Eq.(3), and applying the transformation matrix in
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Fig. 1. Toppling dominoes on the ground.

Eq. (1), the position vectors for the pointsA′i andB′i in frame
FI can be obtained as
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rOA′i
= xAi i = (xi −

h
2 sinθi + d

2 cosθi )i,
rOB′i
= xB′i

i +yB′i
j

= [xBi cos2θi+1+ (xi+1−
d
2 cosθi+1)sin2θi+1

+ (yBi −yi+1−
d
2 sinθi+1)sinθi+1 cosθi+1]i

+ [yBi sin2θi+1+ (yi+1+
d
2 sinθi+1)cos2θi+1

+ (xBi − xi+1−
d
2 cosθi+1)sinθi+1 cosθi+1]j .

(5)

Let δδδiii = (δAi , δBi ) be the relative normal displacement of
the potential contact set for theith domino block. They are
defined as follows:
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δAi =
(

rOAi − rOA′i

)

· i = yi −
h
2 cosθi − d

2 sinθi ,

δBi =
(

rOB′i
− rOBi

)

· i i+1

= (xi+1− xi)cosθi+1− (yi+1−yi)sinθi+1

−d
2 − ( h

2 sinθi + d
2 cosθi )cosθi+1

+( h
2 cosθi − d

2 sinθi )sinθi+1,

(6)

whereδδδiii ≥ 0.
Taking time derivatives of Eqs. (2) and (5), the relative

velocity of the two contact sets{Ai ,A′i } and {Bi ,B′i } can be
expressed as
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vr
Ai
= vAi −vA′i

=
drOAi

dt
−

drOA′i

dt
,

vr
Bi
= vB′i

−vBi =
drOB′i

dt
−

drOBi

dt
,

(7)

which can be decomposed along the normal and tangential
directions of the contact surfaces as follows:
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δ̇δδi =
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δ̇Ai

δ̇Bi

]

=
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vr
Ai
· j

vr
Bi
· i i+1

]

= wT
i (qi ,qi+1)

[

q̇i

q̇i+1

]

,

vvvτi =

[

vτAi

vτBi

]

=

[

vr
Ai
· i

vr
Bi
· j i+1

]

= nT
i (qi ,qi+1)

[

q̇i

q̇i+1

]

,

(8)

whereq̇i = (ẋi , ẏi , θ̇i)T is the generalized velocity of theith

block, and the matrixeswi andni are given as
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0 1 wi
13 0 0 0

−cosθi+1 sinθi+1 wi
23 cosθi+1 −sinθi+1 l i

]T
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ni =
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1 0 ni
13 0 0 0

−sinθi+1 −cosθi+1 ni
23 sinθi+1 cosθi+1 l i

]T

,

(9)

where
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2 sinθi − d

2 cosθi
ni

13 = −
h
2 cosθi − d

2 sinθi
wi

23 = −( h
2 cosθi − d

2 sinθi )cosθi+1

−( h
2 sinθi + d

2 cosθi )sinθi+1,

ni
23 = −( h

2 cosθi − d
2 sinθi )sinθi+1

+( h
2 sinθi + d

2 cosθi )cosθi+1,

l i =
xB′i
− xi+1+

h
2 sinθi+1+

d
2 cosθi+1

sinθi+1
−

h
2
.

For theκth block, the bottom is kept line contact with
the ground until it starts to fall. In order to simplify the
interaction at this contact surface, we introduceλ equidistant
discrete contact points to replace the line contact as shown
in Fig. 2, and the contact set for these points is written
as {Aκp,A′κp}, where p = 1,2, · · · ,λ. Here, we employ a
new coordinate frameFκ = {oκ; i′κj

′
κ} located at the centre of

bottom edge of theκth block. Then the position of thepth
point in the local coordinate frame can be express as (xκp,0),

wherexκp = 2 p−1
λ−1d− d

2 . Applying the transformation, the
contact setsAκp is given as























δAκp = yκ − h
2 cosθκ − xκpsinθκ ≡ 0,

δ̇Aκp = ẏκ + ( h
2 sinθκ − xκpcosθκ)θ̇κ,

vτAκp = ẋκ − ( h
2 cosθκ + xκpsinθκ)θ̇κ,

(10)

where δAκp, δ̇Aκp and vτAκp are the normal distance, the
normal velocity, and the tangential velocity of the contact
set{Aκp,A′κp}, respectively.

Consideringκ toppling blocks and the multi-points



Fig. 2. Multi-points contact between the κth block and the ground.

contact at the bottom of theκth block, we have


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
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

δδδ = (δδδ111, δδδ222, · · · , δδδκ−1, δAκ1, δAκ2, · · · , δAκλ)
T ∈ R2κ−2+λ,

δ̇δδ = (δ̇δδ111, δ̇δδ222, · · · , δ̇δδκ−1, δ̇Aκ1, δ̇Aκ2, · · · , δ̇Aκλ)
T ∈ R2κ−2+λ,

vτ = (vτ1,v
τ
2, · · · ,v

τ
κ−1,v

τ
Aκ1
,vτAκ2, · · · ,v

τ
Aκλ

)T ∈ R2κ−2+λ.

(11)

Combining Eqs. (9) and (10), the components of the relative
velocities at all of the contact points along their normal and
tangential directions of the contact surfaces can be rewritten
as

{

δ̇δδ =WT q̇,
vτ = NT q̇,

(12)

whereW and N are the Jacobian matrixes of the normal
and the tangential constraints of the contact set, respectively.
Taking time derivatives of Eq. (12), we can obtain the normal
and the tangential relative accelerations

{

δ̈δδ =WT q̈+Sn,

v̇τ = NT q̈+Sτ,
(13)

whereSn = ẆT q̇ andSτ = ṄT q̇.

2.2 Dynamic model
For κ toppling blocks, the total kinetic energy is

T(q, q̇) =
κ

∑

i=1

(

1
2mẋ2

i +
1
2mẏ2

i +
1
2 I θ̇i

2)
, (14)

whereI = 1
12(h2+d2) is the moment of inertia of the block

about its centre of mass. The gravitational potential energy
of κ blocks with respect to the ground can be expressed as

U =
κ

∑

i=1

myi . (15)

In order to take the Coulomb’s friction into account, we
decompose the contact forces into the components along
the normal and the tangential directions, which can be
represented as

{

Fn = [Fn
A1
,Fn

B1
, · · · ,Fn

Aκ−1
,Fn

Bκ−1
,Fn

Aκ1
, · · · ,Fn

Aκλ
]T ,

Fτ = [FτA1
,FτB1
, · · · ,FτAκ−1

,FτBκ−1
,FτAκ1, · · · ,F

τ
Aκλ

]T .
(16)

Now, defining a Lagrangian functionL = T − U to use
the Euler-Lagrange equation, and considering the unilateral
constraint at the potential contact set, we obtain the equa-
tions of motion forκ toppling blocks

Mq̈ =G+WFn+NFτ, (17)

whereM = diag(m,m, I ,m,m, I , · · · ,m,m, I ) ∈ R3κ×3κ is the
generalized mass matrix,G = [0,−mg,0,0,−mg,0, · · · ,0−
mg,0]T ∈ R3κ×1 is the generalized gravity,g is the acceler-
ation due to gravity.

In order to solve Eq. (17), the contact forcesFn andFτ

need to be determined. The integrated linear complementary
relationship studied in [25,26] was adopted in this paper for
detecting the contact state and for calculating the normal
contact force at each contact set. To detect a contact
state, the following two complementary conditions studied
in [27,28] are considered,

{

δi ·Fn
i = 0, δi ≥ 0, Fn

i ≥ 0,
δ̇i ·Fn

i = 0, δ̇i ≥ 0, Fn
i ≥ 0,

i = 1, · · ·2κ−2+λ. (18)

It should be noted that contact is established only when
both conditionsδi = 0 andδ̇i = 0 are satisfied simultaneously.
The normal contact forceFn

i = 0 if δi > 0 or δi = 0 together
with δ̇i > 0. Whenδi = 0 andδ̇i < 0, this contact point is
involved in an impact state, which will be discussed later. To
determine the contact force in a sustained contact process,
the linear complementary relationship must be established
at the acceleration level

δ̈i ·F
n
i = 0, δ̈i ≥ 0, Fn

i ≥ 0. (19)

Considering the tangential contact force acting on the
rough interface, we introduce the Coulomb friction into the
contact set, so the tangential forces can be written as















Fτi = −µi Fn
i

vτi
|vτi |
, if vτi , 0,

Fτi ≤ µ
s
i Fn

i , if vτi = 0.
(20)

whereµi > 0 andµs
i > µi are the slip and the stick friction

coefficients at theith contact set, respectively.
Combining the governing equation (17) with Eqs. (13),

(19) and (20), the dynamics of the domino system out of
collision events can be solved numerically.

2.3 Impact dynamics
To use the impact model proposed by Liu et al. [22,23],

the following assumptions are made: (i) the displacement
during impact is invariant, and (ii) the non-impulsive forces
during impact can be neglected. Under such assumptions,
multiplying both sides of Eq. (17) by dt, the dynamic
equations at the impulsive level can be written as

Mdq̇ =WdPn+NdPτ, (21)



where dPn = FFFndt and dPτ = Fτdt are the normal and the
tangential infinitesimal impulses, respectively.

To obtain the velocity incremental dq̇, the distribution
of infinitesimal impulses dPn and dPτ at these contact sets
should be determined. According to the impact model
studied in [22], the distribution of normal impulse is related
to the evolution of the potential energy between different
contact sets, and the tangential impulse can be obtained
by introducing the Coulomb friction law. So, the potential
energyEi induced by the work dwi done by the contact
force through deformation between contact sets can be
transformed to the velocity and impulsive level as

dEi = −dwi = −Fn
i dδi = −δ̇idPn

i , (22)

where dPn
i is the infinitesimal impulse at theith contact set.

Defineηi as the transition efficiency between the poten-
tial energy dEi and the work dwi done by the normal contact
forces through deformation, it gives

dwi = −ηidEi , ηi(δ̇i) =

{

1, whenδ̇i ≤ 0,
e2

i , whenδ̇i > 0,
(23)

whereδ̇i ≤ 0 means the compression phase,δ̇i > 0 indicates
the expansion phase, andei is a macroscopic parameter
for encapsulating the loss of energy induced by various
factors to be confined in a single compression-expansion
cycle. Here, we assume that no pre-press energy exists, i.e.
Ei(0)= 0 whenPn

i = 0, so the potential energy corresponding
to the impulsePn

i can be obtained by using Eqs.(22) and (23)

Ei(Pn
i ) = −

∫ Pn
i

0
ηi δ̇idPn

i , (24)

where Pn
i is always positive and increases monotonically

when the contact is retained.
Suppose that the relationship between the normal con-

tact force and normal deformation satisfies a constitutive
equation in a power form,

Fn
i = fi (δi) = ki(−δi)

αi , (25)

whereki is the contact stiffness, the negative sign indicates
that (−δi) > 0 when contact holds, andαi is set to 1.5 for a
Hertzian model, and to 1.0 for a contact model with a linear
constitutive relationship.

Now combining Eqs. (24) and (25), we have

Fn
i = (αi +1)

αi
(αi+1) k

αi
(αi+1)

i E
αi

(αi+1)

i . (26)

For the detailed derivation of Eq. (26), one can refer to [26].
By using Eq. (26), we can determine the normal contact
forceFn

i using the potential energyEi stored in the contact
set. With the help ofFn

i = dPn
i /dt, the ratio of the normal

infinitesimal impulsive between different contact setsRn
i j can

be obtained by using the contact stiffness and the potential
energy distribution in these contact sets,

Rn
i j ,

dPn
i

dPn
j

=
Fn

i

Fn
j

=
(αi +1)

αi
(αi+1) k

αi
(αi+1)

i E
αi

(αi+1)

i

(α j +1)
α j

(α j+1) k

α j
(α j+1)

j E

α j
(α j+1)

j

. (27)

Supposing that all of the contact points take the same
power in (26), namely,αi = α j = α, we can simplify the Eq.
(28) as

Rn
i j ,

dPn
i

dPn
j

=
Fn

i

Fn
j

=

(

ki

k j

)
α
α+1

(

Ei

E j

)
α
α+1

. (28)

Generally, we select the contact pointj which has the
maximal potential energy among all the closed contact sets,
i.e. E j = max{Ei , i = 1,2,3, · · · , κ}, as the primary impact
point, and define dPn

j as the primary differential impulse.
Hence, by using Eq. (27), we have

dPn = RndPn
j , (29)

where Rn = [Rn
1, j ,R

n
2, j , · · · ,R

n
2κ−2+λ, j]

T is the normal dis-
tributing matrix.

For the tangential differential impulse, we introduce
the Coulomb friction to calculate the ratioRτi j between
the tangential differential impulse dPτi and the primary
normal impulses dPn

j , and the distribution of the tangential
differential impulse can be rewritten as

dPτ = RτdPn
j , (30)

whereRτ = [Rτ1, j ,R
τ
2, j , · · · ,R

τ
2κ−2+λ, j]

T is the tangential dis-
tributing matrix. Now, applying Eqs. (29) and (30) to
Eq. (21), it gives

Mdq̇ = (WRn+NRτ)dpn
j . (31)

For starting the simulation of the domino system under
the assumption that there is no pre-press potential energy
stored at the contact sets, the relationship between the initial
normal infinitesimal impulse distribution and the initial
velocity

dPn
i

dPn
j

=

(

ki

k j

)α+1 (

−δ̇i(0)

−δ̇ j(0)

)
α
α+1

(32)

should be utilized for initial calculation [22,23].
In general, we select the contact pointj which has

the maximal normal relative velocity among all the closed
contact sets, i.e.|δ̇ j(0)| =max{|δ̇i(0)|, i = 1,2,3, · · · κ}, as the
primary impact point. Then the ratio matricesRn andRτ

will be dynamically updated based on the evolution of the



potential energy. The multi-impact process will finish once
all the potential energy stored in the contact sets are released,
i.e. Ei = 0, wherei = 1,2, ..., κ. Here, it is worth noting that
the potential energy at the contact points might not disappear
simultaneously.

3 Numerical simulation and model validation
This section presents the numerical results of the domi-

no model studied in Section 2. Comparisons with the
experimental results shown in [1, 18] will be given to
validate the numerical model. By setting the physical
parameters satisfying the assumptions introduced by Stronge
in [1], we will show that Stronge’s theoretical model indeed
sheds essential insights on the mechanism of domino wave.
Similar comparisons between the results obtained from our
numerical model and the theoretical model by van Leeuwen
[13] and Fujii et. al [21] will also be given. Furthermore,
how the physical parameters affect the domino wave will be
investigated through comprehensive numerical simulations.

3.1 Comparison of numerical and experimental results
For regularly spaced dominoes with identical slender

rectangular blocks, the motion state of each block during
the toppling process is irrelevant to the mass of the block.
Therefore, we can setm= 1 in our simulations without loss
of generality. Following Stronge, we introduce a natural
speed scale ¯v =

√

gh and a natural time scalēt =
√

h/g to
present the numerical results in a dimensionless form.

Stronge [1, 18] performed experiments by using three
kinds of blocks. They are referred to as domino X, T and P in
this paper. The physical parameters used in our simulations
are shown in Table 1, in which the underlined data were
extracted from [1, 18]. Other parameters, such as the
coefficients of restitution and friction, the contact stiffness,
for the domino-domino and domino-ground interactions, are
estimated according to the physical properties of the block
and ground materials. It is worth noting that only the ratios
of the contact stiffness between different contact points are
needed in our numerical model. In addition, the number of
discrete points for the line contact of theκth block was set to
λ = 9, and the power for the constitutive equation in Eq.(25)
was set toα = 1.5. Numerical integration was implemented
by using the improved Euler method with a time step∆t =
1×10−4s. The impulse step in solving impact dynamics was
set to∆p j = 10−4P0, whereP0 is the amplitude of the linear
momentum of the system just before the impact.

Our first comparison between numerical and experi-
mental results is carried out for a domino system composed
of Domino X with an array spacing ofs/h = 0.18. Stronge
provided the experimental data for the intercollision period
during toppling of dominoes (see Figure 4 in [18]). Accord-
ingly, we define a dimensionless propagation speed ˆv as

v̂=
s+d
ti v̄
, (33)

whereti is the time interval for theith block from the start of
toppling to the collision with the (i +1)th block.

The work [18] provided two sets of experimental data
for the toppling of dominoes triggered by two different initial
speeds of the first block. Nevertheless, the author did not
mention the concrete values of the initial speeds. In order to
have the best match with the experimental results in [18],
we assigned the first block to initially rotate around its
bottom corner with dimensionless angular velocities,ˆ̇θ1(t =
0)= 1.8 and 0.5, whereˆ̇θi = θ̇i t̄, for fast and slow toppling,
respectively. Fig. 3 presents the dimensionless propagation
speed ˆv as a function of the number of domino blocksn,
where simulation and experimental results are shown in red
and blue markers, respectively.

As can be seen from the Fig. 3, our numerical results
are in good agreement with the experimental results. As
expected, the propagation speed tends to a stable value,
i.e. the natural speed, which is independent of the initial
toppling angular speed. Nevertheless, the value of the
natural speed is not fixed, yet it fluctuates with the wave
propagation. We will explain this phenomenon in detail in
the later subsection.
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The dimensionless natural speed, denoted by ˆvna in this
paper for a stable domino wave, is independent of the initial
perturbation exerted on the first domino, and is predomi-
nately governed by the domino spacing, the sliding friction
and the coefficient of restitution of the domino-domino
contact. In [18], Stronge and Shu presented the experimental
results for the speed varying with the domino spacing. The
parameters of Domino T and P given in Table 1 were adopted
in our simulations. After the collision wavefront has passed
through the first 6 blocks, the dimensionless speeds, which
can be calculated using Eq.(33), settles down to a small but



Table 1. Geometric and material parameters of the domino systems.

Domino X Domino T Domino P

Material Plastic Tufnol Perspex

Geometry (m)

Heighth 4.18×10−2 8.00×10−2 8.00×10−2

Thicknessd 7.58×10−3 9.60×10−3 9.90×10−3

Slip coefficient of friction ⋆

Dominoµ1 0.17 0.15 0.25

Groundµ2 0.25 0.20 0.30

Stick coefficient of friction

Dominoµs
1 0.20 0.18 0.30

Groundµs
2 0.30 0.25 0.36

Coefficients of restitution

Dominoe1 0.85 0.62 0.55

Grounde2 0.50 0.50 0.50

Contact stiffness(N/m3/2)

Dominok1 2.30×108 2.30×108 2.30×108

Groundk2 6.90×108 6.90×108 6.90×108

* Domino X corresponds to the domino block in [18], and Domino Tand P represent
the tufnol and the perspex domino blocks in [1], respectively. The physical parameters
between two blocks are labelled by combining with word the “Domino”, while the ones
between a block and the ground are stated by combining with the word “Ground”.
Underlined data were extracted from [18, 1].⋆ The coefficient of sliding friction in
impact is smaller than the one in contact due to vibration agitated by impact [29,30]. In
simulation, the values of the coefficient of sliding friction in impact are half of the ones
listed in the table.
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regular variation around a constant. The values of ˆvna for
each spacing are presented in Fig. 4. As can be seen from
the figure, the numerical results obtained by our proposed
model have a good agreement with the experimental results
in [1] for both tufnol and perspex domino blocks.

3.2 Comparison of numerical and theoretical results
For capturing the essential features of the domino dy-

namics, Stronge [18] proposed a simple single collision
model by introducing the following assumptions:

(1) The toppling process initiates a sequence of colli-
sions where each toppling block knocks over its neigh-
bor;
(2) The toppling block before collision rotates about an
edge without slippage on the ground.
(3) The collision between two blocks is treated as a
frictional impact.

Based on the above assumptions, a simple relationship
for the natural speed of the steady collision propagation can
be obtained, which is a function depending on the domino
spacing, sliding friction and the coefficient of restitution in
the domino-domino contact.

The main problem concerned by the single collision
model is that the coupling of interaction in a group of
neighbouring blocks is neglected completely. In order to
capture the united action of a cooperative group, Stronge [1]
developed a cooperative group model by introducing the
following assumptions:

(i) there is an indefinitely large number of toppling domi-
noes behind the collision wavefront;

(ii) each domino behind the wavefront leans forward against
a neighbour;

(iii) during toppling, friction at the sliding contact between
dominoes is negligible;



(iv) after a collision, colliding blocks remain in sliding
contact;

(v) no slippage occurs at the contact between the block and
the ground.

The cooperative group model gives a prediction for the
natural speed irrelevant to domino’s material parameters,
while only depending on domino’s geometric parameters
and spacing of domino’s array. In terms of the parameters of
Domino T given in Table 1, the theoretical solutions for the
dimensionless natural speed, calculated using the Stronge’s
cooperative group model and the single collision model, are
shown in solid and dot-dash lines in Fig. 5, respectively.
Both the theoretical solutions take a large discrepancy in
comparison with the experimental results.

Although the ideal scenario described by the assump-
tions of the Stonge’s theoretical model is hardly replicated
by experiments, it can be simulated by setting ideal values
to the material parameters in numerical simulations. For
instance, to prevent block slipping and rebounding on the
ground in toppling process, we can set a large coefficient of
friction (µ2) and the coefficient of restitutione2 = 0 for the
contact between dominoes and the ground. In order to make
the colliding blocks remain in frictionless sliding contact
after collisions, we can assignµ1 = 0 ande1 = 0 for domino-
domino contact in our numerical model. Fig. 5 shows that
the numerical results obtained from our model, in which
the model parameters enable the Stronge’s assumptions to
be satisfied, can agree with the theoretical results of the
Stronge’s cooperative group model. This figure also shows
that the theoretical results obtained from the single impact
model deviate far from our numerical results. Obviously
the cooperative interaction between multiple dominoes is
inevitable and it plays a significant role of affecting the
wave propagation. Meanwhile, the cooperative group model
under the Stronge’s assumptions is just a special case of our
proposed model.

By adopting the same assumptions in Stronge’s coop-
erative group model except item (iii), Fujii et. al [21]
and Leeuwen [13] have developed similar models taking
into account the friction effects between dominoes on the
wave propagation, and established iterative formulationsfor
computing the natural speed of the wave propagation. This
model is termed as the extended group model. Fig. 5 shows
the extended group model can give a good prediction when
domino spacing is not sufficiently large. For a large domino
spacing, however, a relative large error exists between the
results of the extended group model and our numerical
model. This suggests that, if domino spacing is sufficiently
large, the primary collision of the wavefront may result in
separation or stick-slip motion between toppling dominoes,
leading to errors between the theoretical predictions of the
cooperative group model and the numerical results obtained
from our numerical model, which can help us to capture
the details of motion of each domino during the wave
propagation.

3.3 Details of the domino waveform
Exposure for the details of the domino waveform can

help us to understand the intrinsic property of the wave
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propagation, and to unclose the dependence of the waveform
profile on the physical parameters of the dominoes. Fig. 6
shows two sets of snapshots of the toppling domino array
with the spacing ofs/h = 0.52 obtained from numerical
simulations by using two sets of model parameters. The
first set corresponds to the parameters of Domino X given
in Table 1, while the second set modifies part of model
parameters of Domino X as follows:µ1 = 0, e1 = 0, µ2 =

0.9, ande2 = 0. The second set of the model parameters
makes Domino X free of sliding friction and restitution in
the domino-domino contact. In this case the assumption
of the Stronge’s cooperative group model is satisfied, and
a complete solitary propagation wave can be formed in the
toppling process. Fig. 6 shows the snapshots captured from
our numerical simulations under the two sets of the model
parameters by using the same initial condition. It can be seen
that the rebounds between two colliding dominoes clearly
exist in Fig. 6a, but in Fig. 6b, colliding blocks remain in
sliding contact during toppling.

Fig. 7 shows the dimensionless angular velocitiesˆ̇θ of
the 7th-10th dominoes obtained from simulations under the
two sets of parameters. Due to the blocks starting their
motion at the different moments, the momentt = 0 in Fig. 7
is defined as the moment when the relevant domino forms a
contact with its neighbor. As can be seen from this figure,
each domino experiences several impacts reflected by the
sharp change of velocity, and all the blocks terminate at a
stationary state. Fig. 7(a) shows the results obtained fromthe
first set of the model parameters. Clearly the dominoes have
anti-clockwise rotation, i.e. negative angular velocity,when
collision with neighboring block occurs. The numerical
results for the second set of the model parameters shows
that dominoes only have clockwise rotation as observed
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Fig. 6. Snapshots of the toppling of a domino array separated by a spacing of s/h = 0.52. Simulations were performed by using the

parameters of Domino X given in Table 1 for (a) µ1 = 0.17, e1 = 0.85, µ2 = 0.25and e2 = 0.5; (b) µ1 = 0, e1 = 0, µ2 = 0.9 and e2 = 0.
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Fig. 7. (Colour online) Dimensionless angular velocity ˆ̇θi of 7th, 8th, 9th, and 10th block as a function of dimensionless time t/t̄ obtained

from simulations by using the parameters of Domino X given in Table 1 for (a) µ1 = 0.17, e1 = 0.85, µ2 = 0.25and e2 = 0.5; (b) µ1 = 0,

e1 = 0, µ2 = 0.9 and e2 = 0. Time t = 0 is defined as the moment when the domino forms a contact with its left neighbor.

from Fig. 7(b). This implies that there is no rebounding
between blocks when collision occurs. Another observation
is that the velocity waveform is exactly transmitted from
the 7th domino to the 10th one for the simulation under
the second set of model parameters. Simulations under
the first set of model parameters reveal that the waveform
becomes irregular due to multiple and repetitious impacts.
This explains the reason why some fluctuations around its
natural speed have been observed in Fig. 3.

A further comparison for the numerical results obtained
from the two sets of model parameters under various initial
toppling velocities is shown in Fig. 8, where the temporal
evolution of propagation speed with the number of dominoes
is given. Fig. 8(a) presents the numerical results obtained
from the first set of model parameters, and it can be seen

that the propagation speeds under different initial conditions
asymptotically approaches a natural speed whose value
fluctuates around an average constant. The fluctuation is due
to the multiple and repetitious impacts between dominoes,
which can be seen from the serration of the curve of angular
velocity in Fig. 7 (a). When simulations were performed
under the second set of model parameters, those events
cannot occur in the process of the wave propagation, such
that the propagation speeds can converge to a constant
intrinsic speed, as observed from Fig. 8(b). Fujii et. al
[21] used their extended group model to study the wave
propagation and obtained similar results as shown in Fig. 8b.
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Fig. 9. (Colour online) Dimensionless natural speed v̂na as a function of (a) coefficient of friction µ1 calculated for d/h= 0.18, µ2 = 0.9,

e1 = 0 and e2 = 0; (b) coefficient of restitution e1 calculated for d/h= 0.18, µ2 = 0.9, e2 = 0 and µ1 = 0; for different relative spacing

s/d.

3.4 Influence of physical parameters on natural speed
In this part, influence of the physical parameters,µ1,

e1, µ2, ande2 on the natural speed of the domino system
is investigated by using the numerical model proposed in
this paper. The geometric parameters of Domino X given
in Table 1 are used in the numerical investigations. For each
set of model parameters, we carry out numerical simulations
under three different spacings.

Fig. 9 and Fig. 10 show how the sliding friction and the
coefficient of restitution in domino-domino contact and the
ones in domino-ground contact affect the natural speed of
the collision wave. Fig. 9(a) and Fig. 10(a) demonstrate that
the speed decreases as either of the coefficients of friction
µ1 or µ2 increases, since increased friction may cause more
energy dissipation. In particular, the speed will dramatically
decrease with the increase of the friction between dominoes,

since the friction is the primary mechanism responsible for
speed/energy propagation. For the coefficients of restitution
e1 ande2, their influences on the natural speed are not such
great, but as the coefficient of restitution between dominoes
e1 is large enough, an obvious increase of the natural speed
can be observed in Fig. 9(b). This is due to the fact that
as the coefficient of restitutione1 increases, less energy is
dissipated during elastic impact. Another reason for the
speed increasing withe1 comes from the rebound motion
of dominoes triggered by collisions. Obviously the rebound
motion will be enhanced bye1, leading to separation be-
tween dominoes, and finally affecting the propagation speed.
The spacing between dominoes, as shown in all of these
figures, is a significant influencing factor of the natural
speed.
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Fig. 10. (Colour online) Dimensionless natural speed v̂na as a function of (a) coefficient of friction µ2 calculated for d/h= 0.18, µ1 = 0,

e1 = 0 and e2 = 0; (b) coefficient of restitution e2 between domino and ground calculated for d/h= 0.18, e1 = 0, µ2 = 0.9 and µ1 = 0;

for different relative spacing s/d.

4 Conclusions

A new comprehensive model for toppling dynamics of
regularly spaced dominoes in an array was studied in this
paper. The model has removed the hypotheses of the cooper-
ative group model proposed by Stronge [1], and the extended
cooperative group model proposed by Fujii et. al [21] and
van Leeuwen [13]. Stronge’s model completely neglects
the effects of friction and restitution between dominoes on
wave propagation, leading to the dependency of natural
speed only on domino’s geometry and arrangement of the
domino’s array. The extended cooperative group model
modifies Stronge’s model by considering friction effects on
wave speed, while it cannot reflect the restitution effects of
domino collisions, thus leading to errors for wave speed
prediction. The numerical model proposed in this paper
can reflect the coupling effects among simultaneous contact
points, and precisely detail the motion of each domino.

Our proposed model was validated using the experimen-
tal results studied in [1, 18]. Some further insights into the
dynamics of falling domino were also taken by investigating
the collision propagation under different model parameters.
For a domino array with a small spacing, it has been found
that the extended cooperative group model developed in [13,
21] can give a good prediction for wave speed if no attention
is paid on the details of the toppling dynamics. For the
cases of the domino system with a large spacing, the effect
of separation or stick-slip motion in toppling dominoes on
wave speed cannot be ignorable. Therefore, a relative large
error may exist when the cooperative group models reported
in [1, 13, 21] are used. Actually, the fluctuation in the
waveform of domino’s propagation speed is caused by the
irregular multiple impacts between colliding dominoes, in
which there are frequent switches among separation and
closure of the contacts between neighboring dominoes. To
some extent, this fluctuation affects the wave speed. In
addition, our numerical results suggest that the wave speed
of toppling dominoes decreases as the coefficient of friction

increases. On the other hand, influences of the coefficients
of restitution on the speed are not so obvious.

In summary, the domino system exhibits interesting dy-
namical phenomena resulted from the combined actions of a
group of dominoes. Our proposed model can expose detailed
information of each domino’s motion by properly taking
into account the influence of the restitution and friction
between dominoes and the ground on domino propagation.
This model is more realistic and has not been considered
in the previous studies. It is worth noting that contact
and impact widely exist in mechanical machnies, therefore,
this study also has significant implications for the dynamics
of mechanical systems subject to complicated contact and
impact interactions.
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