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This paper studies a new comprehensive model for topplibg unlocking several hypotheses proposed in the Stronge’s
dynamics of regularly spaced dominoes in an array. Theaodel [1]. A detailed analysis of domino’s dynamical
model has unlocked the hypotheses introduced by Strorrgeponse is performed with consideration for the complex
and Shul[l], which can provide us some essential insighitsteractions among a group of neighboring dominoes. These
into the mechanism of domino wave. Extensive comparisanteractions include various discrete events, such as the
are made between the proposed model and the experimestatk-slip motion caused by friction, the separation and im
results studied in existing literature. Our numerical Segl pact between two dominoes, and the detachment followed by
show that the existing theoretical models are special catesthe impact between the domino and the ground. Modeling
the proposed model, and the fluctuation in the waveform sfich nonsmooth dynamics has been a challenging research
propagation speed observed from experiments was causeark. Daykin [9] for the first time raised the question of how
by the irregular multiple impacts between colliding domifast dominoes fall. McLachlan et al._[15] experimentally
noes. Influence of physical parameters of domino on tlséudied this problem and found a scaling law for its wave
natural speed of toppling dominoes is also considered, asgeed providing that the dominoes were equally spaced with
it is found that the cg@cients of friction and restitution zero thickness in a straight line. With these assumptions, a
between colliding dominoes have mopgeets due to the functional relation between the wave speed and the relative
energy dissipation during impact. spacing (i.e. the ratio of domino spacing and height) of
dominoes was identified. Later on, this functional relation
was concreted by Bert [16] then by Efthimiou et al.][17].
1 Introduction Nevertheless, these theoretical analyses were establshe
Domino dfect is a special word commonly used tdntroducing excess assumptions, leading to the solutions
describe the destabilization of marginally stable systemsith large errors in comparison with existing experimental
nature, such as the phenomena of earthquake rupture [2,8kults [1[ 15, 1%, 19]. Stronge pioneered the physicatdhas
signal propagation within a neural network([4, 5], as well asudies on the domino wave by performing considerable
the wave behaviour triggered in nanomaterials [6]. It i®alsealistic analyses under two limiting conditions. [n[18],
used to describe the accidents appearing in process ifdugié presented theoretical results for the wave propagation
[7], chemical reaction [8], and sometimes is even used issuming that there was only a single collision between
sociology and economic51[9.110]. From the view point ofeighbouring dominoes. Furthermore, Stronge and Shu
mechanics, manifestation of the domino phenomenon c) considered the domino wave triggered by a cooperative
be physically implemented via successive destabilizatfon group with a large number of dominoes, where each domino
neighbouring dominoes in a regularly spaced array. Singganed against a neighbor keeps contacting during toppling
each domino in the array is marginally stable, destabijzimprocess. While the Stronge’s model has fundamentally
force can propagate through the array in a wave of destabilgrovided some insights into the mechanism of the domino
ing collisions once it is sfiicient to topple the first domino. wave, large discrepancies between his theoretical resuits
Modeling the dynamics of such destabilization is a topic @fssociated experimental data still exist. This suggesis th

ongoing research, see e.d.,|[11,[12/13, 14]. The existiagnore accurate and general model is needed for precisely
works have focused on investigating the characteristics gfaracterizing the domino wave.

the domino wave, such as the necessary conditions for . . )

toppling and the natural speed of wave propagation (see e.g. N Order to obtain accurate theoretical results, this work
[]). However, excessive hypotheses have been introduccerns a& computational method for numerical simulation
in these studies which undermine the validity of the modelof the domino system. When there are strong couplings

This paper studies a new model for domino syster'?letwee” frictions and collisions at several simultaneous
contact points, adoption of a proper collision law for pseci

numerical simulation of multiple impacts is crucial. Shaw

*Address all correspondence to this author: liucs@pkucedu.



1)

[20] has proposed a numerical model for the domino systesmtis i along the ground. The centre of mass of il
under the assumptions that the collisions between domindesck o; is located at X;,y;) in the frame#,. The motion
are inelastic and the angular momentums during collision$ the ith block can be represented using= (x,V;,6:),
are conserved. Similar assumptions were used by vahered is the angular displacement and its positive value
Leeuwen[[13] and Fuijii et. al[21] who developed a numeis along the clockwise direction. The body-fixed coordinate
ical model with consideration of frictionfiect. Both works frame#; = {Oj;ijji} for theith block is considered, and its
conclude that it is dficult to interpret experimental results,transformation to the inertial coordinate fraffgis given as
since the collision laws used in these two domino models
are too simplistic to precisely capture the complex motion il [cow —sim]]i i
of falling dominoes. Using the constitutive law involvirtggt ji} = [sinai cos HJ =R; L—
contact force and deformation of the collision body is anoth
er way of quantifying impact interactions. For example, Lu For an array of equally spaced dominoes wittel-
et al. [14] has adopted the discrete element method to mo%elents its motion can be fully described by a set of
the interactions between dominoes and the ground Whicedweral'ized coordinate, = (1, o y )T € R yNoting
. hy — ’ s s Yn .

ShOWS. a good agreement between n_umenc;al resgllts e?Hat, if thexth block is stable on the ground, the rest blocks
experimental observations. However, simulations usiig thn_K will not be involved in the dvnamics. we can define
method may encounter varioudfifiulties in determination a time-varying dimension fog; Ichhe (K—,l)th block is
ofphysical paramete_rs of th? model or_numeri(_:al integmtiqa”ing down towards its stablé neighberthe generalized
of d|ﬂ?renpal equations using small mt_egratlon _step. IE:]oordinates for the current configuration of the system can
[22,123], Liu et al. proposed a numerical algorithm fo[)e denoted ag e R¥
multiple impacts b.etween the_ quies composed OT rate- Point contact bétween two bodies means that the posi-
mde_pendent matengls. The pI’InC.Iple of this method is t.hﬁ ) of the contact point is commonly occupied by a pair of
the m_terface beh_awou_rs due to impacts can be descrlbeomts on the contours of the two contacting bodies. Let us
by using the relationship between the contact force and tﬁe . A . . .

. . L ésignatgAi, A’} as the pair of points for the point contact
elqstlc pqtentlal energy ”a”Sf‘?”?d fr.om.the kmgt_lc 8YET etween théth block and the ground, ani@®;, B/} as the pair
of |mpactlng bOd'eS' Energy dISSIpatIOI’.l Is quantified usiry points for the point contact between title bllock and the
an energetic cagcient, gnd the coupllngf’ﬁe_cts among iful)th block, where the symbols without prime correspond
simultaneous contact points are reflected using the ratlot the points on thith block, and the ones with prime denote
_potentia_d energy at each contact point. Morz_aover, nqmbri(;[ﬁe points on the coIIiding'bodies. The poitsandB; are
integration can be performed at the level of impulse in ord%red point on thath block, so the position vectors of these
to avoid using small variables, such as the time of impact ané. '
the length of local deformation. The multiple impacts mod&
will be used in this paper to solve the complex impacts

oints in framef, can be written as

involved in the dynamics of the domino system. Foa = Xal +hyA_aJ d _
The rest of the paper is organized as follows. In Section = (% =3 sin6; + zdco_sei){
2, the dynamics of toppling dominoes and the multiple +(i — 3 cosfl — 3 sin6i)j, @)
impacts model are introduced. Section 3 provides extensive rog = Xg! +hyB_iJ § _
comparisons between the proposed domino model and the = (X + 3 Sin; + 5 COH)i
theoretical and experimental results studiedn [I, @2 1B, +(yi + 3 cost — §sing))j.

Special attention is paid to reveal the mechanism of domino

falling and the cause of fluctuation in the waveform of  Nevertheless, the positions of poir&s on the ground
domino’s propagation speed. In addition, the influencand B/ on the (+1)th block change with the motion of ith
of physical parameters of domino on the natural speed ibck. In order to find the positions of poinfg andB/, we
toppling dominoes is also studied. Finally, in Section 4irst denoteP as an arbitrary point on the ground a@das

some conclusions are drawn. an arbitrary one on the left surface of the-()th block.
ror =¢i,
2 The model r _ _Qi. +Zii ®3)
This work considers the toppling dynamics for an array OnQ = Tl TSl

of regularly spaced dominoes. This section will study both

the kinematic and dynamic models of this domino systemhere, ¢ and ¢ are unknown parameters that should be
with a special attention paid to the introduction of theletermined according to the following contact conditions
multiple impacts model proposed by Liu et al.[[22,23].  [24]

2.1 Kinematic model {(roA. ~rop) o 0 (4)
Considern slender dominoes with each block of the (ros ~roa,, ~ro.,q)-Jis1 =0.

massm, the heighth, and the thicknesd, which stand on

the ground with equal spacingas depicted in Figll. We By substituting the relationships between parameteasd

introduce an inertial coordinate frarg = {O;ij} with the ¢ into Eq.[3), and applying the transformation matrix in
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Fig. 1. Toppling dominoes on the ground.

Eq. (1), the position vectors for the poirksandB/ in frame  block, and the matrixes; andn; are given as
¥, can be obtained as

i (% Bsing + 8 cos wel © 1 w, 0 o o
Fon = Xal = (X — 38N + 3 COSH)i, ' 7 |- coshisa sinGii1 Wy COSOi41 —SiNGiig ||
rOB’ = XB'I +yB'J 1 0 ni 0 0 0 (9)
. _ 13
[XB, C05é6’|+1 +(Xir1— _0059i+l) sirn? 9i_+1 (5) ni [— Sindi;1 —CoHi;1 n'23 SinGi41 COYi41 |i]
+ (VB — Yi+1— 3 SiNBiL1) SING;.1 COSHy 1]
+[yg; SiN?Gi1 + (Yie1 + 3 SiNGi11) COL 41
+(Xg; — Xi+1— 3 COHi11) SiNGi11 COSHy41]]. where
Letdj = (64..98,) be the relative normal displacement of W‘13 3 sm9. 5 cos@.
the potential contact set for thin domino block. They are 13 = 2hcose. sme.
defined as follows: W =—(3 COS9| > S|n9.)c039.+1
—(2 sing; + 5 cose.)sm9.+1,
Sp = (rOA‘. - rop{)-i =i - 1 cos - Using, N3 = —(20089| 9sini) sin6i1
g = (ros' _ roa) dien +(23|n9. +5 cosel)cos9.+1,
_ (X.+1I x.)cose.+1—(y.+1 Y1) SinGiaa (6) . X! —X.+1+ sm9.+1+ COYis1 _D

—ih— (2 S|n6| + 3 CO$|)CO$|+]_ Sin9i+l 2
+(35 cost - sm9|)sm6.+1,

For thexth block, the bottom is kept line contact with
whereéj > 0. the ground until it starts to fall. In order to simplify the
Taking time derivatives of Eqs](2) arld (5), the relativénteraction at this contact surface, we introdu@sguidistant
velocity of the two contact sets\, A} and{B;, B/} can be discrete contact points to replace the line contact as shown
expressed as in Fig.[2, and the contact set for these points is written
as {Ap, Aipl, wherep =1,2,---,1. Here, we employ a
new coordinate fram&, = {o,;i,j.} located at the centre of

VI = Va —Va = dron  droy bottom edge of theth block. Then the position of thpth
A i dngB/ drdt (7) pointin the local coordinate frame can be expressas(),
vai = Vg Vg = T L (;?[E”', where Xqp = Z%d - %. Applying the transformation, the

contact set#\.p is given as

which can be decomposed along the normal and tangential

directions of the contact surfaces as follows: =Y~ 2 N cos, — XpSiné, = 0,
= Vi + (3 SiN6, = Xep COK, )b, (10)
S = ‘:SAa _ Vj*-j W@ i vgkp—x,( (3 COHy + Xp SINB,) Oy,
el
T ro; .
Vi = zg]z[v[:A-'jiLJ:niT(qi’q”l)[q(iﬁJ’ where 6p,,, da,, and Va,, are the normal distance, the

normal velocity, and the tangential velocity of the contact
set{AKp,A,’(p}, respectively.
whereg; = (>‘q,yi,éoi)T is the generalized velocity of thi¢h Considering« toppling blocks and the multi-points



Now, defining a Lagrangian functioh = T —U to use

the Euler-Lagrange equation, and considering the undhter
constraint at the potential contact set, we obtain the equa-
tions of motion fork toppling blocks

/TTTTTTTT i Mg =G+WF"+NF, a7
/ Agdg . Ao Ay

IA
OL,i Cei 11 whereM = diagMm m I,mm,]l,---,mm]) € R3*3 s the
el e generalized mass matrixz = [0,-mg0,0,-mg0,---,0—
mg 0]" e R3*1 js the generalized gravityg is the acceler-
Fig. 2. Multi-points contact between the kth block and the ground.  ation due to gravity.
In order to solve Eq.[{17), the contact ford€sandF~
need to be determined. The integrated linear complementary
relationship studied in [25, 26] was adopted in this paper fo
8= (B8 Ba it dng e n ) R contaCt st Todetect  contact
) (51,62, K 196/-\;(1’6/'\,(2’ . 5AM)T € R%- 2” (12) . ’ . .
{v ( v’ Y )T e R M _state, the foIIowmg_ two complementary conditions studied
Ao Vaa in [27,28] are considered,

contact at the bottom of theh block, we have

VT VT ..

Kl’

Combining Egs.[{9Q) and{10), the components of the relative

velocities at all of the contact points along their normad an
P J {5. FP=0, §i=0 F'>0,

tangential directions of the contact surfaces can be ranrit 5 F 0, 630 F” >0

as

=1,-2%-2+A. (18)

5=WTq, 12 It should be noted that contact is established only when
vi=NTg, 12) pboth condition®; = 0 ands; = 0 are satisfied simultaneously.
The normal contact forcE” 0 if 6; > 0 or 6; = 0 together

whereW andN are the Jacobian matrixes of the normaMV'th 5i > 0. Wheng; = 0 andél <0, this contact point is

Taking time derivatives of EG_{12), we can obtamthe norm&8etermine the contact force in a sustained contact process
and the tangential relative accelerations the linear complementary relationship must be established

at the acceleration level

5:WTq+Sn, (13) . .
vV =NTg§+S, 6i-F'=0, 6i >0, F'>0. (19)
whereS" = WTg andS" =NTg. Considering the tangential contact force acting on the

rough interface, we introduce the Coulomb friction into the

2.2 Dynamic model contact set, so the tangential forces can be written as

For k toppling blocks, the total kinetic energy is

{F;: Fplv,l, if V7 %0, (20)

K
T(@.6)= Y (3m+imi +116%), (14) Fr <R, if vi =0.

i=1
wherey; > 0 andu? > y; are the slip and the stick friction
wherel = 12(h2 d?) is the moment of inertia of the block coeficients at théth contact set, respectively.
about its centre of mass. The gravitational potential gnerg  Combining the governing equatidn {17) with Eds.](13),
of « blocks with respect to the ground can be expressed agl9) and [2D), the dynamics of the domino system out of

collision events can be solved numerically.

v ;my. 13) 2.3 Impact dynamics
To use the impact model proposed by Liu etlall[22, 23],
In order to take the Coulomb’s friction into account, wéhe following assumptions are made: (i) the displacement
decompose the contact forces into the components aldigfing impact is invariant, and (i) the non-impulsive fesc

the normal and the tangential directions, which can B#Iring impact can be neglected. Under such assumptions,
represented as multiplying both sides of Eq.[(17) bytdthe dynamic
equations at the impulsive level can be written as

A

T _ T T, T T T T 1T
F _[FAl’FBl’ ’FAK-l’FBK- ’FAKl’ ’FAM] )

n_ren pEn ... pEN n n ... pn T
{F _[FAl’FBl’ ’FAK—l,FBK—l’FAKl, Faad (16)

Mdg = WdP" + NdP", (21)



where " = F"dt and d°* = F7dt are the normal and the be obtained by using the contactfistess and the potential

tangential infinitesimal impulses, respectively. energy distribution in these contact sets,
To obtain the velocity incrementalidthe distribution
of infinitesimal impulses B" and P™ at these contact sets aj
should be determined. According to the impact model . . dpP! Fin (a.+1)?<'ﬁ5kl”'+l Eij
studied in[[22], the distribution of normal impulse is relet i = dpn = 9] (27)
to the evolution of the potential energy betweeffatient ! (j +1)m km m

contact sets, and the tangential impulse can be obtained
by introducing the Coulomb friction law. So, the potential
energyE; induced by the work & done by the contact
force through deformation between contact sets can
transformed to the velocity and impulsive level as

Supposing that all of the contact points take the same
wer in [26), namelyy; = «j = a, we can simplify the Eq.

dE; = —dw = —Fds; = —5dP”, (22) qéﬁfszz(MYH(ay“_ 28)
dP? FJF‘
where ' is the infinitesimal impulse at théh contact set.
Definer; as the transitionféiciency between the poten- Generally, we select the contact pointvhich has the
tial energy d; and the work @j; done by the normal contact maximal potential energy among all the closed contact sets,
forces through deformation, it gives i.e. Ej=maxE, i =123, ,«}, as the primary impact
point, and define @ as the prlmary dierential impulse.
— ()< 1 When('?i <0, 23 Hence, by using qu]]&?) we have
D= T, O e, whens; >0,
dP" = R”dP’j‘, (29)

wheres; < 0 means the compression phase; 0 indicates

the expansion phase, argl is a macroscopic parameterwhere R" = [Rl R2J ’Rgx—2+/l,j]T is the normal dis-

for encapsulating the loss of energy induced by variowgbuting matrix.

factors to be confined in a single compression-expansion For the tangential diierential impulse, we introduce

cycle. Here, we assume that no pre-press energy exists, it Coulomb friction to calculate the ratllaf between

Ei(0)=0whenP} =0, so the potential energy correspondinghe tangential dferential impulse B and the primary

to the |mpulsePn can be obtained by using Eds)22) and (23)ormal impulses E” and the d|str|but|on of the tangential
differential |mpulse can be rewritten as

Pn
E|(PP) = —j; T]|6|dP (24) dP? = RTdPT, (30)
where P is always positive and increases monotonicallyhereR™ = [Rg_j’jo"“ N 17 is the tangential dis-
when the contact is retained. tributing matrix. Now, applying Eqs[129) an@{30) to

Suppose that the relationship between the normal cang. [22), it gives
tact force and normal deformation satisfies a constitutive

equation in a power form, )
Mdg = (WR" + NRT)dp?. (31)

= fi(6i) = ki (=61)™, (25) : : : ,
For starting the simulation of the domino system under

_ S the assumption that there is no pre-press potential energy
wherek; is the contact sfiness, the negative sign indicatestored at the contact sets, the relationship between ttie ini

that (-6;) > 0 when contact holds, ang is set to 15 for a npormal infinitesimal impulse distribution and the initial
Hertzian model, and to.Q for a contact model with a linear ye|ocity

constitutive relationship.

Now combining Eqs[{24) and(P5), we have ) N
dP! (ki \*"t(=5i(0))
— -2 - ) (32)
o ol o
FI'= (i + 1)@ Dk (26)

should be utilized for initial calculation [22, 23].

For the detailed derivation of Eq.(26), one can refef t0.[26] In general, we select the contact poiptwhich has
By using Eq. [(26), we can determine the normal contatiie maximal normal relative velocity among all the closed
force F}" using the potential enerdy; stored in the contact contact sets, i.65;(0)l = max[si(0)l, i = 1,2,3,--- }, as the
set. With the help of = dP}'/dt, the ratio of the normal primary impact point. Then the ratio matr|c§§ andR?
infinitesimal impulsive betweenfﬂerent contact setg’] can will be dynamically updated based on the evolution of the



potential energy. The multi-impact process will finish once  The work [18] provided two sets of experimental data
all the potential energy stored in the contact sets aregetka for the toppling of dominoes triggered by twdl@irent initial
i.e. Ej =0, wherei = 1,2,...,«x. Here, it is worth noting that speeds of the first block. Nevertheless, the author did not
the potential energy at the contact points might not disappemention the concrete values of the initial speeds. In owler t
simultaneously. have the best match with the experimental results_in [18],
we assigned the first block to initially rotate around its
_ _ _ o bottom corner with dimensionless angular velocitiagt =
3 Nur_nenca_l simulation and model yahdatlon 0) = 1.8 and 05, where#; = @, for fast and slow toppling,
This section presents the numerical results of the domigpectively. Figll3 presents the dimensionless propayati
no model studied in Section 2. Comparisons with th§peedvAas a function of the number of domino blocks

experimental results shown inJ[1.]18] will be given tQyhere simulation and experimental results are shown in red
validate the numerical model. By setting the physicg|nq pjue markers, respectively.

parameters satisfying the assumptions introduced by on  Aq can be seen from the Fi§] 3, our numerical results
in [1], we will show that Stronge’s theoretical model indeed ¢ i, good agreement with the experimental results. As
sheds essential insights on the mechanism of domino WaEpected, the propagation speed tends to a stable value,
Similar comparisons between the results obtained from oYt he natural speed, which is independent of the initial
numerical model and the theoretical model by van Leeuw%bp”ng angular speed. Nevertheless, the value of the

[13] and Fujii et. all[21] will also be given. Furthermore,ra speed is not fixed, yet it fluctuates with the wave
how the physical parameteriect the domino wave will be ,.553qation. We will explain this phenomenon in detail in
investigated through comprehensive numerical simulationy,« |ater subsection.

3.1 Comparison of numerical and experimental results
For regularly spaced dominoes with identical slend

—— T
= Simulate fast

rectangular blocks, the motion state of each block duril + Simulate slow
the toppling process is irrelevant to the mass of the bloc 25k o [Experiment fast | |
* Experiment slow

Therefore, we can seb = 1 in our simulations without loss *
of generality. Following Stronge, we introduce a natur.
speed scale = y/gh and a natural time scale= /h/g to
present the numerical results in a dimensionless form.
Stronge [[1, 18] performed experiments by using thre
kinds of blocks. They are referred to as domino X, T and P
this paper. The physical parameters used in our simulatic *
are shown in Tabl€]1, in which the underlined data we ir + 1
extracted from[[1, 18]. Other parameters, such as t
codficients of restitution and friction, the contactfBiess, 05 o
for the domino-domino and domino-ground interactions, a "o 3 6 9 12 15
estimated according to the physical properties of the blo_.. Number of dominos
and ground materials. It is worth .notlng that only Fhe ratloﬁg. 3. (Colour online) Dimensionless propagation speed V varies
of the contact sffness between fierent contact points are . . . o .
. . L a? a function of the number of dominoes N for different initial toppling
needed in our numerical model. In addition, the number g . .
. . . Speeds. Parameters of Domino X in Table[Ilwere used. To compare
discrete points for the line contact of thil block was setto . . . . .
N L. ith experimental results, our calculations were carried out using a
A=9, and the power for the constitutive equation in Ed.(2 v§ L .
. . . . st initial dimensionless angular speed at 1.8 and a slow one at 0.5.
was set tar = 1.5. Numerical integration was implemented.. . - .
b ing the i d Eul thod with a ti imulation results for fast and slow initial toppling angular speeds are
y using the improved Euler method with a time sfep= marked by W and +, and the experimental results obtained from [18]

4 . . L .
1x10™%s. The |Tpulse step II".I solving |m_pact dynaml_cs Waf%r fast and slow initial toppling angular speeds are marked by e and
set toApj = 10"Po, wherePyq is the amplitude of the linear respectively

momentum of the system just before the impact.

Our first comparison between numerical and experi-
mental results is carried out for a domino system composed . . .
of Domino X with an array spacing af/h = 0.18. Stronge The dimensionless natural speed, denotedhgyn’this
provided the experimental data for the intercollision peri Paper for a stable domino wave, is independent of the initial
during toppling of dominoes (see Figure 4[in][18]). AccordPerturbation exerted on the first domino, and is predomi-

and the cofficient of restitution of the domino-domino

contact. In[[18], Stronge and Shu presented the experithenta
— (33) results for the speed varying with the domino spacing. The
tiv parameters of Domino T and P given in Tdble 1 were adopted

in our simulations. After the collision wavefront has pakse
wheret; is the time interval for théh block from the start of through the first 6 blocks, the dimensionless speeds, which
toppling to the collision with thei ¢ 1)th block. can be calculated using Hg.{33), settles down to a small but

on
“e-

15t

P X
»*e
[
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+ =
Ko
e
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+ e
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Table 1. Geometric and material parameters of the domino systems.

Domino X Domino T Domino P
Material Plastic Tufnol Perspex
Geometry (m)
Heighth 4.18x10°2 8.00x102 8.00x107?
Thicknessd 7.58x10°3 9.60x10°3  9.90x10°°
Slip codficient of friction *
Dominopuy 0.17 0.15 0.25
Grounduz 0.25 020 030
Stick codficient of friction
Dominous 0.20 018 030
Groundu3 0.30 025 036
Codficients of restitution
Dominoey 0.85 0.62 0.55
Grounde, 0.50 050 050
Contact stiffness(N/m3/2)
Dominok 2.30x10° 230x10°  230x10°
Groundk, 6.90x 10° 6.90x10°  6.90x10°

“ Domino X corresponds to the domino block in[18], and Dominari P represent
the tufnol and the perspex domino blockslih [1], respectiv€he physical parameters
between two blocks are labelled by combining with word thefiiino”, while the ones
between a block and the ground are stated by combining wehwibrd “Ground”.
Underlined data were extracted from [IL8, 1}. The codficient of sliding friction in
impact is smaller than the one in contact due to vibratiotaged by impact [29.30]. In
simulation, the values of the cffieient of sliding friction in impact are half of the ones
listed in the table.

25 3.2 Comparison of numerical and theoretical results
For capturing the essential features of the domino dy-
Sk namics, Strongel [18] proposed a simple single collision
model by introducing the following assumptions:
T sl (1) The toppling process initiates a sequence of colli-
& 1 sions where each toppling block knocks over its neigh-
E bor;
s} . (2) The toppling block before collision rotates about an
z 4 Simulate T edae with t sli th d
G ge without slippage on the ground.
v Experiment T (3) The collision between two blocks is treated as a
057! # Experiment P | frictional impact.
Theory group T
— =~ Theory group P Based on the above assumptions, a simple relationship
% 01 0.2 03 04 05 06 for the natural speed of the steady collision propagation ca
Domino spacing be obtained, which is a function depending on the domino

spacing, sliding friction and the cfigient of restitution in
the domino-domino contact.

The main problem concerned by the single collision
model is that the coupling of interaction in a group of
neighbouring blocks is neglected completely. In order to
capture the united action of a cooperative group, Strdnge [1
developed a cooperative group model by introducing the
following assumptions:

Fig. 4. (Colour online) Dimensionless speed Vng varies as a
function of the domino spacing S/h for Domino T and P in Table [
Simulation results using the proposed domino model are marked by
¢ and +, and the experimental results obtained from |1] are given by
V¥ and *. Theoretical solution for Domino T and P calculated using
the Stronge’s cooperative group model is denoted by the solid and
dot-dash line, respectively.

(i) there is an indefinitely large number of toppling domi-
regular variation around a constant. The values@ffér noes behind the collision wavefront;
each spacing are presented in [Fig. 4. As can be seen fr@in each domino behind the wavefrontleans forward against
the figure, the numerical results obtained by our proposed a neighbour;
model have a good agreement with the experimental resufii§ during toppling, friction at the sliding contact between
in [1] for both tufnol and perspex domino blocks. dominoes is negligible;



(iv) after a collision, colliding blocks remain in sliding 8
contact;

(v) no slippage occurs at the contact between the block ¢ 25f
the ground.

m = 0.00,e; = 0.00

+ pp =0.15,¢e; = 0.00
Group model

----- Single model

- - - Extended group model

The cooperative group model gives a prediction for tt
natural speed irrelevant to domino’s material paramete
while only depending on domino’s geometric paramete
and spacing of domino’s array. In terms of the parameters
Domino T given in Tabl€11, the theoretical solutions for th r
dimensionless natural speed, calculated using the Stionq
cooperative group model and the single collision model, ¢ 05f
shown in solid and dot-dash lines in F[d. 5, respectivel
Both the theoretical solutions take a large discrepancy 0 .
comparison with the experimental results. 0

Although the ideal scenario described by the assump-
tions of the Stonge’s theoretical model is hardly replidateFig. 5. (Colour online) Dimensionless natural speed Una varies as
by experiments, it can be simulated by setting ideal valuegunction of the domino spacing S/h for Domino T in Table [ In
to the material parameters in numerical simulations. Fel of the simulations, the material parameters between domino and
instance, to prevent block slipping and rebounding on tteeound are always set to €, = 0 and up = 0.9. Numerical results
ground in toppling process, we can set a largeittient of obtained by using different material parameters between dominos
friction (u2) and the cofficient of restitutione; = 0 for the  are plotted as follows: ® (€1 = O,u1 = 0); and + (u1 = 0.15,€; =
contact between dominoes and the ground. In order to méKe Theoretical solutions calculated by the cooperative group model,
the colliding blocks remain in frictionless sliding contacthe single collision model and the extended group model are denoted
after collisions, we can assigq =0 ande; = 0 for domino- by solid line, dot-dash line and dash line, respectively.
domino contact in our numerical model. Fig. 5 shows that
the numerical results obtained from our model, in which

the model parameters enable the Stronge’s assumptiong,{gnagation, and to unclose the dependence of the waveform
be satisfied, can agree with the theorgngal results of theofile on the physical parameters of the dominoes. Fig. 6
Stronge’s cooperative group model. This figure also showgows two sets of snapshots of the toppling domino array
that the theoretical results obtained from the single iMmpagiiy the spacing ofs/h = 0.52 obtained from numerical
model deviate far from our numerical results. Obviously;niations by using two sets of model parameters. The
the cooperative interaction between multiple dominoes jgqt set corresponds to the parameters of Domino X given
inevitable and it plays a significant role offecting the i, Taple[], while the second set modifies part of model
wave propagation. Meanwhile, the cooperative group mOd;%rameters of Domino X as followsi; = 0, &, = 0, up =
under the Stronge’s assumptions is just a special case of 84, ande, = 0. The second set of the model parameters
proposed model. o makes Domino X free of sliding friction and restitution in
By adopting the same assumptions in Stronge’s CO0fe domino-domino contact. In this case the assumption
erative group model except item (iii), Fujii et. @l [21]of the Stronge's cooperative group model is satisfied, and
and Leeuwen([13] have developed similar models takingcomplete solitary propagation wave can be formed in the
into account the friction fects between dominoes on thecoppling process. Fid] 6 shows the snapshots captured from
wave propagation, and established iterative formulations oy numerical simulations under the two sets of the model
computing the natural speed of the wave propagation. Thigrameters by using the same initial condition. It can be see
model is termed as the extended group model. [Fig. 5 shows; the rebounds between two colliding dominoes clearly

the extended group model can give a good prediction whepjs; in Fig.[®a, but in Fig[I6b, colliding blocks remain in
domino spacing is not $iciently large. For a large domino sliding contact during toppling.

spacing, however, a relative large error exists between the _| : _ 2
results of the extended group model and our numerical Fig.[d ShOWS_the d|men§|onless an_gular _velocmerf
model. This suggests that, if domino spacing iisiently the 7th-10th dominoes obtained from simulations u_nder th_e
large, the primary collision of the wavefront may result if WO S€ts of parameters. Due to the blocks starting their
separation or stick-slip motion between toppling domimoeg‘ono_n at the dfferent moments, the mometnt 0 |n.F|g.[]
leading to errors between the theoretical predictions ef th defined as the moment when the relevant domino forms a

cooperative group model and the numerical results obtainggtact with its neighbor. As can be seen from this figure,

from our numerical model, which can help us to captur%aCh domino experiences several impacts reflected by the

the details of motion of each domino during the wav&arP change of velocity, and all the blocks terminate at a
propagation. stationary state. Fifl 7(a) shows the results obtained fnem

first set of the model parameters. Clearly the dominoes have

anti-clockwise rotation, i.e. negative angular veloaithen

3.3 Details of the domino waveform collision with neighboring block occurs. The numerical
Exposure for the details of the domino waveform caresults for the second set of the model parameters shows

help us to understand the intrinsic property of the wawhat dominoes only have clockwise rotation as observed
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Fig. 6. Snapshots of the toppling of a domino array separated by a spacing of S/h = 0.52 Simulations were performed by using the
parameters of Domino X given in Table[dfor (a) u1 = 0.17, €1 = 0.85, u2 = 0.25and e, = 0.5; (b) u1 = 0,1 =0, up = 0.9and &2 = 0.
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Fig. 7. (Colour online) Dimensionless angular velocity éi of 7th, 8th, 9th, and 10th block as a function of dimensionless time t/t_obtained
from simulations by using the parameters of Domino X given in Table[for (a) u1 = 0.17, €1 = 0.85, u2 = 0.25and & = 0.5; (b) u1 = 0,
€1 =0, u2=0.9and & = 0. Time t = Qs defined as the moment when the domino forms a contact with its left neighbor.

from Fig.[@(b). This implies that there is no reboundinghat the propagation speeds undefatient initial conditions

between blocks when collision occurs. Another observati@symptotically approaches a natural speed whose value
is that the velocity waveform is exactly transmitted fronfluctuates around an average constant. The fluctuation is due
the 7th domino to the 10th one for the simulation undeéo the multiple and repetitious impacts between dominoes,
the second set of model parameters. Simulations undehnich can be seen from the serration of the curve of angular

the first set of model parameters reveal that the wavefonelocity in Fig.[7 (a). When simulations were performed

becomes irregular due to multiple and repetitious impactsnder the second set of model parameters, those events
This explains the reason why some fluctuations around itannot occur in the process of the wave propagation, such
natural speed have been observed in[Hig. 3. that the propagation speeds can converge to a constant

A further comparison for the numerical results obtaineigtrinsic speed, as observed from Hig. 8(b). Fuijii et. al

from the two sets of model parameters under various initif21] used their extended group model to study the wave
toppling velocities is shown in Fid] 8, where the temporgiropagation and obtained similar results as shown irlfig. 8b

evolution of propagation speed with the number of dominoes
is given. Fig[8(a) presents the numerical results obtained
from the first set of model parameters, and it can be seen
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Fig. 8. (Colour online) Dimensionless propagation speed V varies as a function of the number of dominoes N calculated for parameters of
Domino X in Table[dlfor (a) u1 = 0.17, €1 = 0.85, up = 0.25and e = 0.5; (b) u1 = 0, €1 = 0, u2 = 0.9 and € = O under different initial
toppling speeds cases.
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Fig. 9. (Colour online) Dimensionless natural speed Vng as a function of (a) coefficient of friction w1 calculated for d/h = 0.18, u2 = 0.9,
€1 = 0 and & = 0; (b) coefficient of restitution €1 calculated for d/h = 0.18, ux = 0.9, & = 0 and u1 = O; for different relative spacing
s/d.

3.4 Influence of physical parameters on natural speed since the friction is the primary mechanism responsible for
In this part, influence of the physical parameters, Speegenergy propagation. For the déieients of restitution
e1, u2, andey on the natural speed of the domino systerfr andey, their influences on the natural speed are not such
is investigated by using the numerical model proposed gteat, but as the céigcient of restitution between dominoes
this paper. The geometric parameters of Domino X givef is large enough, an obvious increase of the natural speed
in Table[1 are used in the numerical investigations. For eagn be observed in Figl 9(b). This is due to the fact that
set of model parameters, we carry out numerical simulatioA§ the cofficient of restitutione; increases, less energy is
under three dferent spacings. dissipated during elastic impact. Another reason for the
Fig.[d and FigI0 show how the sliding friction and théPeed increasing witey comes from the rebound motion
codficient of restitution in domino-domino contact and th@f dominoes triggered by collisions. Obviously the rebound
ones in domino-ground contacffect the natural speed of Motion will be enhanced by, leading to separation be-
the collision wave. Fid]9(a) and Fig.10(a) demonstrate thiveen dominoes, and finallffacting the propagation speed.
the speed decreases as either of thefiments of friction The spacing between dominoes, as shown in all of these
w1 OF uz increases, since increased friction may cause mdf@ures, is a significant influencing factor of the natural
energy dissipation. In particular, the speed will dransdtjc SPeed.
decrease with the increase of the friction between domijnoes
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Fig. 10. (Colour online) Dimensionless natural speed Vna as a function of (a) coefficient of friction w2 calculated for d/h = 0.18, u; = 0,
€1 = 0and & = 0; (b) coefficient of restitution € between domino and ground calculated for d/h = 0.18,€; =0, up = 0.9 and 3 = 0;
for different relative spacing S/d.

4 Conclusions increases. On the other hand, influences of théhobents

A new comprehensive model for toppling dynamics o?f restitution on the speeq are not so °b‘_"9“~°’_- )
regularly spaced dominoes in an array was studied in this " summary, the domino system exhibits interesting dy-
paper. The model has removed the hypotheses of the coo;ﬂ@m'cal phen_omena resulted from the combined actions c_)f a
ative group model proposed by Stronge [1], and the extend@uP of dominoes. Our proposed model can expose detailed
cooperative group model proposed by Fuiii et. [al [21] anfjformation of each domino’s motion by properly taking
van Leeuwen([13]. Stronge's model completely neglecf@to account the influence of the restitution and friction
the dfects of friction and restitution between dominoes oR€tWeen dominoes and the ground on domino propagation.
wave propagation, leading to the dependency of natquF'S model_ls more reallstlc _and has not_ been considered
speed only on domino's geometry and arrangement of tHe the previous studies. It is worth noting that contact
domino’s array. The extended cooperative group mod@ind impact widely exist in mechanical machnies, therefore,
modifies Stronge’s model by considering frictiofieets on this study glso has significar_]t implication§ for the dynamic
wave speed, while it cannot reflect the restitutidieets of ©f mechanical systems subject to complicated contact and
domino collisions, thus leading to errors for wave speéfiPactinteractions.
prediction. The numerical model proposed in this paper
can reflect the couplingfieects among simultaneous contact
points, and precisely detail the motion of each domino.  Acknowledgment
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