
1	
	

Beware the F-test (or, how to compare variances). 1	

Running title: Do not use F-tests to compare variances 2	

 3	

In Press Animal Behaviour 4	

 5	

 6	

D.J. Hosken*, D.L. Buss & D.J. Hodgson* 7	

Centre for Ecology & Conservation 8	

University of Exeter, Cornwall 9	

Penryn TR10 9EZ 10	

*Joint Corresponding Authors. Email d.j.hodgson@exeter.ac.uk;  11	

d.j.hosken@exeter.ac.uk. 12	

 13	

  14	

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Exeter

https://core.ac.uk/display/146502802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2	
	

Abstract. 15	

Biologists commonly compare variances among samples, to test whether 16	

underlying populations have equal spread.  However, despite warnings from 17	

statisticians, incorrect testing is rife.  Here we show that one of the most 18	

commonly employed of these tests, the F-test, is extremely sensitive to 19	

deviations from Normality. The F-test suffers greatly elevated false-positive 20	

errors when the underlying distributions are heavy-tailed, a distribution feature 21	

which is very hard to detect using standard Normality tests. We highlight and 22	

assess a selection of parametric, jackknife and permutation tests, consider 23	

their performance in terms of false positives, and power to detect signal when 24	

it exists, then show correct methods to compare measures of variation among 25	

samples. Based on these assessments, we recommend using Levene’s Test, 26	

Box-Anderson Test, Jackknifing or Permutation Tests to compare variances 27	

when Normality is in doubt. Levene’s and Box-Anderson tests are the most 28	

powerful at small sample sizes, but the Box-Anderson test may not control 29	

Type I error for extremely heavy-tailed distributions. As noted previously, do 30	

not use F-tests to compare variances. 31	

 32	

 33	

Key words: Box-Anderson test, F-test, Jackknife, Levene’s Test, Normality, 34	

permutation, power, variance.   35	
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Introduction 36	

“Never use an F-test to test equality of variances” – Van Valen 2005 37	

“The effects of nonnormality on the distribution theories for the test 38	

statistics…are catastrophic” – Miller 1998 39	

Evolutionary biologists and behavioral ecologists study variation alongside 40	

averages, and commonly wish to partition observed variation among various 41	

causes.  This is of course the basis of analysis of variance (ANOVA) and its 42	

associated family of tests, where variation is partitioned among and within 43	

experimental treatments (predictors), to determine their influence on the 44	

response variable(s).   45	

Sometimes, however, we are also interested in comparing the size of the 46	

variances themselves, among samples or treatments, to ask is there more 47	

variation in A than in B? Classic examples include comparing variation in 48	

behavioural plasticity, sex-specific variation in fitness, variance in sex-ratios, 49	

variance in dietary breadth or preference, variation in preferred group size, 50	

and even how intra-individual variation in trait size can affect mating success 51	

(e.g. Brown & Robinson, 2016; Craft, 2016; Hosken, 2001; MacLeod & 52	

Clutton Brock, 2013; Shafir, Menda, & Smith, 2005; Sutherland, 1985; 53	

reviewed in Krebs & Davies, 1978, 1997; Westneat & Fox, 2010).  54	

Another common reason to compare sample variances is as a diagnostic 55	

check for homogeneity of variance, prior to using ANOVA. Given the 56	

importance of the question (“Do the variances differ?”), we seek a statistical 57	

test that tells us the probability of detecting the observed signal were the null 58	
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hypothesis to be true. This P-value is commonly considered “significant” if it 59	

lies below the conventional threshold of 0.05. So a test of variances must, if it 60	

is to be accurate and effective, satisfy two statistical conditions. First, it should 61	

have a low probability of concluding different variances when in fact the 62	

samples are drawn from the same underlying population. This is the Type I (or 63	

false positive) error rate, and conventionally it should be 0.05. Second, the 64	

test should have a high probability of detecting a significant difference when 65	

samples are drawn from populations with genuinely different variances. This 66	

is called statistical “power”. Inevitably power decreases with decreasing 67	

difference in variance between the underlying populations, such that small 68	

differences in population variances can be hard to detect. 69	

A standard statistical approach, among biologists at least, is to use the F-test 70	

to ask whether variance ratios differ significantly from unity. However, as Van 71	

Valen (1978; 2005), Miller (1998), and many other statisticians (e.g. Box, 72	

1953) have noted, this is inappropriate.  Unfortunately, biologists have not 73	

heeded warnings from statisticians (as we have noted when serving as both 74	

editors and reviewers), and incorrect testing keeps occurring.  As part of the 75	

continuing battle against inappropriate and anti-conservative (failure to control 76	

Type I error) statistical analyses, we reiterate points raised by Van Valen 77	

(2005) and Miller (1998) by bringing this issue to the attention of a larger 78	

audience. We provide a comparison of statistical tests designed to compare 79	

sample variances, and use numerical simulations to demonstrate risks of 80	

false-positive and false-negative conclusions with increasingly severe 81	

deviations from Normality.  We focus on absolute variation in continuous 82	



5	
	

variables, but point readers to Van Valen (1974) for suggestions on discrete 83	

variables.   84	

Denouncement of the F-test might seem rather heretical, given its deep roots 85	

in the statistical training of all biologists. The bad news is that F-tests of the 86	

equality of variances are highly sensitive to deviations from Normality of the 87	

underlying data distributions (Figure 1). Van Valen (2005) links this sensitivity 88	

to violations of the Central Limit Theorem, but Miller (1998) attributes the 89	

problem more properly to a direct mathematical dependence of the variance 90	

of the sample variance on the kurtosis of the underlying probability distribution, 91	

damped by the sample size. The F-test is quite insensitive to the data’s third 92	

moment, skew, but highly sensitive to its fourth, kurtosis (Miller 1998; Figure 93	

1). Kurtosis measures the clustering of data around the mode, relative to 94	

variance: leptokurtic distributions have most data clustered tightly around the 95	

mode, coupled with very extreme values, and are therefore “heavy-tailed”. 96	

Platykurtic distributions are less clustered around the mode, coupled with a 97	

paucity of extreme values, and are therefore “light-tailed”. Heavy-tailed 98	

distributions risk very high rates of falsely positive F-tests (i.e. Type I error 99	

>>0.05), while light-tailed distributions can yield painfully conservative tests 100	

(i.e. Type I error <0.05). The good news is that F-tests used in standard 101	

ANOVA are very robust to minor deviations from Normality, for two reasons. 102	

First, the numerator of ANOVA tests represents variance among means, 103	

hence kurtoses of the underlying distributions have been “averaged away”. 104	

Second, the denominator of ANOVA tests will (usually) have large degrees of 105	

freedom that dampen the influence of kurtosis. Perversely though, the use of 106	

F-tests (and their multi-sample extension, Bartlett’s test) to check ANOVA’s 107	
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assumption of homogeneous variance across treatments, remains highly 108	

sensitive to departures from Normality. To quote Zar (1999), “Because of the 109	

poor performance of tests for variance homogeneity…. it is not recommended 110	

that [they] be performed as tests of the underlying assumptions of [ANOVA].” 111	

Defenders of the F-test might cite the availability of statistical tests for the 112	

Normality of data distributions. However, tests of normality have low power 113	

(they incorrectly fail to reject Ho except at very large sample sizes), and it is 114	

particularly hard to detect the heavy distribution tails that can have so much 115	

influence on both the magnitude of variance and the outcome of any F-test. 116	

Affirmative results of Normality tests (e.g. non-significant goodness of fit tests) 117	

should not be used to justify using the F-test to compare equality of variances 118	

(Van Valen, 2005).  Basically F-tests should be avoided, and since Bartlett’s 119	

test is a generalization of the F-test to k samples, it should also be avoided or 120	

at least used with extreme caution. 121	

 122	

A Comparison of Variance Comparisons 123	

So, what tests are appropriate to use in tests of equality of variance?  For 124	

univariate tests of absolute variation, Van Valen (2005) recommends three 125	

relatively simple and appropriate tests: Jackknifing, Smith’s test and Levene’s 126	

test. Miller (1998) does not scrutinize Smith’s test, but dissects a selection of 127	

robust parametric (including Levene’s test and the Box-Anderson test) and 128	

nonparametric options.  129	
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Here we compare parametric tests (Levene’s, Box-Anderson, Smith’s) and 130	

resampling tests (Jackknifing), and to the latter group we append a discussion 131	

of bootstrapping and permutation testing. We do not cover nonparametric 132	

tests based on ranked data and ranked variances because they either require 133	

assumptions of equal medians, throw away data, are not robust or are 134	

inefficient (Miller, 1998). Each test we consider has strengths and 135	

weaknesses, and they vary in their robustness to the problems that plague F-136	

testing of variance equality. We hope this comparison helps to guide the 137	

choice of tests for biologists wishing to compare sample variances but are 138	

suffering from, or simply worried about, non-Normality.  139	

 140	

Parametric Tests 141	

Levene’s test 142	

The most commonly used and simplest of the univariate equality of variance 143	

tests is Levene’s test.  For each sample first find the median (or, if that is not 144	

possible, the mean), and then calculate the absolute deviation of each datum 145	

from the median (yi = |xi – median(x)|).  This generates a new variable (yi = 146	

deviance), which increases with increasing variation in the sample.  Then 147	

calculate the mean and variance of the deviances among samples, and these 148	

can be tested for equality by t-test or an F-test.  This is very straight forward 149	

and has been implemented as the leveneTest function in the “car” package in 150	

R (Fox & Weisberg, 2011). 151	
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Formally, Levene’s test is a test of all the even moments of a distribution 152	

rather than just a test of variances, but the test is dominated by the effect of 153	

the variance and is robust in that sense.  It has been recommended that for 154	

very long-tailed symmetrical distributions, the 10% of data in either tail can be 155	

removed before testing.  However, Van Valen (2005) suggests that removal of 156	

biological important data is hardly ever justified for the small increase in the 157	

precision of estimates that this procedure generates. The test is conservative, 158	

but only just so for all but the heaviest-tailed distributions (Type I errors lie 159	

below, but not far below, the critical threshold of 0.05, Figure 2) and is robust 160	

even to extreme changes in skew and (pertinently, as the next even moment) 161	

kurtosis. Levene’s test ranks among the most powerful of the tests compared 162	

here, at all sample sizes (Figures 3-5). 163	

Box-Anderson Test 164	

Box and Anderson (1955) developed an approximately robust test, based on 165	

permutation theory, which is discussed in Miller’s (1998) review of variance 166	

comparisons. The test scales the numerator and denominator degrees of 167	

freedom of the standard F-test, to better match the theoretical variances 168	

under the Normal distribution and those under the permutation distribution. 169	

The significance of the F-ratio should be judged based on degrees of freedom 170	
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In R, this significance can be queried using pf(statistic, df1, df2). This test 173	

satisfies Type I error rates of 0.05 for all but the most extreme heavy-tailed 174	

distributions, for which it is anti-conservative (Figure 2). It ranks among the 175	

most powerful tests of equality of variance (Figures 3-5). 176	

 177	

Smith’s test. 178	

Smith’s test is general, but rarely used even though it is robust and normality 179	

is not required (Van Valen, 2005; apparently published only in Grüneberg et 180	

al., 1966).  It is also the only univariate test that can be used to compare 181	

published summaries of variation.  182	

With a sample size of N, the variance of the sample variance is given as the 183	

square of the standard error of the variance: 184	
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and the significance of this statistic can be assessed using tables of 189	

significance or by querying the cumulative distribution function (e.g. using 190	



10	
	

pchisq(statistic, df) in software R (R Core Team, 2016)). Our simulations show 191	

that Smith’s test is hardly affected by even the most extreme skews and 192	

kurtoses, but is extremely conservative, delivering Type I error (rejection of a 193	

true null – a false positive) rates consistently and dramatically less than 5% 194	

(i.e. Type I errors lie well below the critical threshold of 0.05) (Figure 2). It is 195	

not commonly used in any of the empirical sciences, and this super-196	

conservatism also yields low power to detect real differences (Figures 3-5; 197	

spectacularly low power with sample size N=10), which will probably not 198	

improve its popularity. 199	

 200	

Resampling Tests 201	

The Bootstrap 202	

One method often used in testing equality of variances is the bootstrap 203	

(random sampling with replacement).  This is one of a family of randomization 204	

techniques that has become common place with the advent of the desktop 205	

computer.  However, some bootstrap methods are poor, non-robust 206	

performers (Hall & Wilson, 1991) and generally, for very heavy tailed 207	

distributions, the technique is prone to providing incorrect but increasingly well 208	

supported results as sample size increases (Wu, 1988).  209	

The Jackknife 210	

Jackknifing is another randomization technique and is now pretty standard. It 211	

requires reasonable sample sizes (>20) and involves dropping one datum at a 212	

time and calculating a variance for each group to be tested and for the total 213	
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variance, until each datum has been dropped in turn.  The variance of the 214	

variances can then be calculated and since these are distributed as t with N-1 215	

degrees of freedom, they can be compared with t- or F-tests. The Jackknife is 216	

robust to skew and to all but the most extreme kurtoses (Figure 2), is 217	

conservative, but more so than Levene’s test (i.e. the Type 1 error surface is 218	

below 0.05).  It is relatively powerful at reasonable sample sizes (Figures 3 & 219	

5) but, being based on subsamples of the data, suffers low power at small 220	

sample sizes (Figure 4). However, it is the only test that can provide 221	

confidence intervals on variance estimates (also see Bissell & Ferguson, 222	

1975). 223	

Permutation Tests 224	

The final test we consider here, Data Permutation, is completely data-driven, 225	

relying entirely on the sample data to consider the evidence for or against 226	

differences in variance between the two underlying populations. In other 227	

words, it requires no distributional assumptions for the test statistic and 228	

therefore loses power dramatically at small sample sizes. Data from the two 229	

samples are shuffled (sampled without replacement) between two fake 230	

samples, and the variance ratio is calculated. This is repeated many times 231	

(here, 10K) to create an empirical distribution of variance ratios under the null 232	

hypothesis of no difference. The observed variance ratio of the real samples 233	

is compared to this null distribution, and significant differences are inferred 234	

when this observation lies in the lower or upper 2.5% of the distribution of 235	

outcomes.  This test therefore uses the variance ratio, which might be called F, 236	

but it is not an F-test. Permutation tests are computationally expensive, but for 237	

most real-world examples the power of the modern personal computer is 238	
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more than sufficient. See Rodríguez-Muñoz et al. (2010) for an application to 239	

sex differences in reproductive variance in a wild insect. The Permutation Test 240	

is robust to skew and kurtosis and, perhaps self-evidently, provides Type I 241	

error rates of 0.05 or below (Figure 2). It is powerful at reasonable sample 242	

sizes (Figures 3 & 5) but, being based on data shuffles, suffers low power at 243	

small sample sizes (Figure 4). We note, however, that the permutation 244	

approach is more powerful than the Jackknife at small sample sizes (Figure 4).  245	

 246	

Comparison of False Positives and Power 247	

Simulations of Type I Error (false positive) rates 248	

For each test described here, including the F-test of sample variances, we 249	

asked, “how often would we mistakenly conclude different variances when in 250	

fact the samples are drawn from the same underlying population?” This is the 251	

risk of false positive outcome, or the Type I error rate [i.e. Pr(reject H0|H0 252	

True)]. We simulated populations of 10K measurements drawn from adapted 253	

Normal distributions. We used the sinh-arcsinh family of distributions (Jones & 254	

Pewsey, 2009) for which skew is manipulated using shape parameter ε 255	

(positive values yield long tails above the mode, while negative values yield 256	

long tails below the mode), and kurtosis using shape parameter δ (increasing 257	

values move from leptokurtic (data clustered around the mode, but heavy-258	

tailed) to platykurtic (data spread around the mode, but light-tailed) 259	

distributions, recreating the Normal distribution at δ=1). We simulated 260	

populations factorially across a range of skews and kurtoses, and scaled all 261	

populations to have zero mean and unit standard deviation. 262	
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 263	

Here, y is a sample from the standard Normal distribution, y* is its sinh-264	

arcsinh transformation, and y** scales the transformed distribution back to 265	

zero mean and unit variance. 266	

For each assessment of Type I errors, we drew two samples (each with N = 267	

30) from the simulated population y**, compared variances, stored the P-268	

value of the test, and repeated 10K times. For each simulated population and 269	

each test, the Type 1 error rate is the proportion of tests deemed significant at 270	

a threshold α = 0.05. The relative performance of the tests we assess can 271	

then be judged by the Type I error rate for an underlying Normal distribution 272	

(ideally = 0.05, and usefully conservative when < 0.05), and by the sensitivity 273	

of this risk of false positives with changes in skew and kurtosis (Figure 2). We 274	

checked our simulations by confirming that for each combination of δ and ε, 275	

the average ratio of the variances of the two samples was one.  276	

Simulations of Power 277	

The second valuable characteristic of a statistical test is its power, i.e. its 278	

ability to detect signal when that signal is real. We only analyzed power of the 279	

tests in relation to changes in kurtosis because all were relatively robust to 280	

distributional skew (Figure 2). For these simulations we drew two samples of 281	

N = 30 from distributions with mean zero, that shared kurtoses of δ = 0.5 282	

(heavy tailed), 0.75 (moderately heavy tailed) or 1 (Normal), but whose 283	
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variances increased in ratio from 1 to 5. Using 10K simulations of each 284	

parameter combination, we measured power as the probability of detection of 285	

these real variance ratios. This is the complement of the Type II error rate 286	

(power = 1- Pr(false negative)). Somewhat confusingly, tests can provide what 287	

appears to be high power when signal is weak: this is in fact a consequence 288	

of high type I error rates (see the apparent power of the F-test in Figure 3, 289	

related to its high Type I error rate in Figure 2). We therefore require a test 290	

that has a Type I error rate of 0.05 at a variance ratio of 1, but whose ability to 291	

detect genuine signal increases rapidly as the variance ratio moves away 292	

from 1. We repeated these power analyses for small sample sizes (N=10, 293	

Figure 4) and large sample sizes (N=100, Figure 5). 294	

Comparison of False Positives and Power 295	

Our analyses, summarized in Figures 2-5, bring together a set of 296	

considerations of test specificity and sensitivity from the statistical literature of 297	

several decades ago (e.g. Miller, 1968; Shorack, 1969; reviewed in Van Valen, 298	

1978, 2005; Miller, 1998). Our main point is that the F-test, although 299	

apparently powerful to detect real differences in variance, is indeed highly 300	

anti-conservative (i.e. Type I error (falsely rejecting Ho) is high) with even 301	

small deviations in kurtosis from the Normal distribution, and while less 302	

sensitive to skew, deviations in this moment also reduce the test’s usefulness 303	

(Figure 2 F-test). To reiterate and emphasise our starting position, if the 304	

experimenter or analyst is ever in any doubt about the assumption of 305	

Normality, the F-test should be avoided for the testing of equality of variances. 306	
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The remaining tests have strengths and weaknesses. We suggest Smith’s 307	

test is not a viable alternative to the F-test because of its extreme 308	

conservatism (i.e. Type I error rates are much lower than 0.05). The 309	

Permutation test is immune to kurtosis and skew when considering Type I 310	

errors, but like the Jackknife, has low power (fails to reject Ho when Ho is 311	

false). This lack of power is further exaggerated at small sample sizes, 312	

because the tests are driven by the data themselves and rely on resampling, 313	

but the Permutation test trumps the Jackknife for power when n=10 (Figure 4).  314	

This leaves two rivals for the crown of “best test of equality of variances”: 315	

Levene’s test and the Box-Anderson test. Levene’s test is favoured by its 316	

conservatism at all values of skew and kurtosis. The Box-Anderson test is the 317	

most powerful at all sample sizes, but only just so, and this power comes at a 318	

cost of anti-conservatism for extremely heavy tailed distributions.  319	

A final point worthy of note is that power declines with increasingly heavy 320	

tailed distributions, whatever test is chosen. Differences in dispersion of heavy 321	

tailed distributions are simply very hard to detect.  322	

Who cares? 323	

We have chosen not to name or shame those who have used the F-test for 324	

equality of variances. Many examples of its misuse are caught in time by 325	

referees during peer review. However, errors do slip through the peer review 326	

net, and some of these are recent and include papers in Animal Behaviour. 327	

Examples of misuse fall into two camps: (1) studies whose hypotheses relate 328	

directly to the comparison of two or more variances; and (2) studies that use 329	

F-tests or Bartlett’s to test homogeneity of variance as an assumption of 330	
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ANOVA. “F-test equality of variance” is difficult to search for using 331	

bibliographic search engines, because of the vast number of hits for studies 332	

using ANOVA or hierarchical variance partitioning. However, a quick search of 333	

Google Scholar using the keywords “variance-ratio Animal Behaviour” 334	

revealed fifteen examples from the first camp within the first few pages, 335	

including six from Animal Behaviour. Most of these examples cite Zar (1999), 336	

or alternative editions of this classic textbook, to justify their choice of test, 337	

despite his repeated warnings about the sensitivity of F-tests and Bartlett’s 338	

test to non-Normality. 339	

Diagnostic tests of homogeneity of variance are even more prevalent, and 340	

raise an interesting slant on our argument. F-tests risk Type I errors for heavy-341	

tailed distributions. A significant F-test could therefore reveal either that the 342	

variances are not homogeneous, or that the underlying population distribution 343	

is heavy-tailed. On the other hand, a non-significant diagnostic F-test could 344	

reveal either that the underlying populations have similar variance and are not 345	

heavy-tailed, or that there is low power to detect either effect due to small 346	

sample size. We recommend much more stringent approaches to the 347	

verification of ANOVA’s assumptions. 348	

Conclusion 349	

Variation is not just one of the fundamental requirements for organic evolution, 350	

it is a concept that occupies and unifies many field of biological investigation.  351	

Whether one is interested in viral gene transcription, behavioral repertoires, 352	

reproductive skew or elephant parasites, comparing variation can be revealing 353	

and important (e.g. Dukas & Real, 1993; Hosken & Blanckenhorn, 1999; 354	



17	
	

Sutherland, 1985).  Unfortunately biologists often compare homogeneity of 355	

variances incorrectly. Rather than name and shame here, we thought it would 356	

be more helpful to point out this problem – reiterating Van Valen’s (1978, 357	

2005) previous discourse – alert biologists to the pitfall, and provide simple 358	

solutions.  Our simulations of Type I error rates associated with various tests 359	

confirm the sensitivity of F-test comparisons of variances to deviations from 360	

Normality, particularly those associated with heavy-tailed data distributions. 361	

Overall, Levene’s test tends to be the best means of comparing variances. It 362	

is robust to deviations from Normality, is conservative but not painfully so, and 363	

is powerful enough to detect signal when signal exists. For sufficiently large 364	

sample sizes, Permutation Tests also seem to be robust and relatively 365	

powerful.  But whatever you do, when comparing variances, don’t use the F-366	

test. 367	
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Figure Captions 456	

Figure 1. The influence of kurtosis on F-test comparisons of sample 457	

variances. (a) Probability distribution functions of a population’s phenotypic 458	

measurement “Y”: Normal/Gaussian distribution (green); a heavy-tailed 459	

distribution (red; kurtosis parameter δ = 0.5) and a light-tailed distribution 460	

(blue; δ = 100).  Each distribution has mean zero and standard deviation one. 461	

From each population we draw two samples of N = 30, mimicking the null 462	

hypothesis of no difference in variance. (b-d) Histograms of the samples from 463	

each population, and the results of F-tests. In each case, darker bars show 464	

where the samples overlap. (b) Two samples drawn from a light-tailed 465	

distribution overlap considerably, have similar variance (the spread of the grey 466	

and light blue bars is similar), and yield an F-ratio close to 1. (c) Two samples 467	

from a Normal distribution overlap, but light green sample has greater 468	

variance (although the P-value correctly concludes not significantly so). (d) 469	

Two samples from a heavy-tailed population have overlapping means but the 470	

light red sample has a much greater variance (and the P-value yields a Type I 471	

error). These scenarios have been chosen to mirror simulations of Type I 472	

error rates. 473	

Figure 2. Rates of false positive conclusions from tests of the equality of 474	

variance of samples with N = 30, drawn from two populations. Type I error 475	

rates are simulated from identical background populations of the sinh-arcsinh 476	

family with mean 0, standard deviation 1, and kurtosis (on the x-axis) defined 477	

by the delta parameter (small values = heavy-tailed; 1 = Normal; large values 478	

= light-tailed). Line shadings represent different skews, described by the 479	

epsilon parameter: black = unskewed (epsilon = 1); mid-grey = moderate 480	
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skew (epsilon = 0.5); light-grey = heavy skew (epsilon = 1.5). Well-behaved 481	

tests converge on a Type I error rate of 0.05. 482	

 483	

Figure 3. Simulations to determine the power (ability to detect real signal at 484	

significance threshold = 0.05) of tests that compare sample variances. 485	

Samples drawn with N = 30 from underlying populations following sinh-arcsinh 486	

probability distributions, with mean zero, skew parameter zero, and sharing 487	

different values of kurtosis parameter delta. For each test, the x-axis changes 488	

the variance ratio of the two underlying populations, from 1 to 5. Dashed line 489	

shows the threshold Type I error rate, which should ideally equal 0.05 for 490	

variance ratio = 1 and should be recreated by “power” simulations at this 491	

variance ratio. Line shadings represent: black = Normal (delta = 1); mid-gray = 492	

moderately heavy-tailed (delta = 0.75); light-grey = heavy-tailed (delta = 0.5). 493	

The “apparent” high power of the F-test for variance ratios close to 1 is in fact 494	

due to Type I error (see Figure 2). Power trajectories converge to a maximum 495	

of 1 with increasing variance ratio. 496	

 497	

Figure 4. Simulations to determine the power (ability to detect real signal at 498	

significance threshold = 0.05) of tests that compare small-sample variances. 499	

Samples drawn as in Figure 3 but with N = 10. Power trajectories fail to 500	

converge to 1, across the selected range of variance ratios, because of small 501	

sample size. 502	
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Figure 5. Simulations to determine the power (ability to detect real signal at 503	

significance threshold = 0.05) of tests that compare large-sample variances. 504	

Samples drawn as in Figure 3 but with N = 100. Power trajectories converge 505	

rapidly to 1 due to large sample sizes. 506	

 507	
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 509	
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