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Abstract

In this article we derived an important example of the inconsistent countable set in second order

ZFC (ZFC2) with the full second-order semantics. Main results: (i) ¬Con(ZFC2), (ii) let k

be an inaccessible cardinal and Hk is a set of all sets having hereditary size less then k, then

¬Con(ZFC + (V = Hk)).

Keywords: Gödel encoding; Completion of ZFC2; Russell ′s paradox ; ω-model; Henkin semantics;
full second-order semantics.

1 Introduction

Let’s remind that accordingly to naive set theory, any definable collection is a set. Let R be the
set of all sets that are not members of themselves. If R qualifies as a member of itself, it would
contradict its own definition as a set containing all sets that are not members of themselves. On
the other hand, if such a set is not a member of itself, it would qualify as a member of itself by the
same definition. This contradiction is Russell’s paradox. In 1908, two ways of avoiding the paradox
were proposed, Russell’s type theory and the Zermelo set theory, the first constructed axiomatic
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set theory. Zermelo’s axioms went well beyond Frege’s axioms of extensionality and unlimited set
abstraction, and evolved into the now-canonical Zermelo–Fraenkel set theory ZFC .”But how do
we know that ZFC is a consistent theory, free of contradictions? The short answer is that we
don’t; it is a matter of faith (or of skepticism)”— E.Nelson wrote in his not published paper [1].
However, it is deemed unlikely that even ZFC2 which is a very stronger than ZFC harbors an
unsuspected contradiction; it is widely believed that if ZFC2 were inconsistent, that fact would
have been uncovered by now. This much is certain — ZFC2 is immune to the classic paradoxes of
naive set theory: Russell’s paradox, the Burali-Forti paradox, and Cantor’s paradox.

Remark 1.1. Note that in this paper we view the second order set theory ZFC2 under the Henkin
semantics [2],[3] and under the full second-order semantics [4],[5].Thus we interpret the wff’s of
ZFC2 language with the full second-order semantics as required in [4],[5].

Designation 1.1. We will be denote by ZFCHs
2 set theory ZFC2 with the Henkin semantics and

we will be denote by ZFCfss
2 set theory ZFC2 with the full second-order semantics.

Remark 1.2.There is no completeness theorem for second-order logic with the full second-order
semantics. Nor do the axioms of ZFCfss

2 imply a reflection principle which ensures that if a
sentence Z of second-order set theory is true, then it is true in some (standard or nonstandard)

model MZFC
fss
2 of ZFCfss

2 [2]. Let Z be the conjunction of all the axioms of ZFCfss
2 . We

assume now that: Z is true,i.e. Con
(
ZFCfss

2

)
. It is known that the existence of a model for

Z requires the existence of strongly inaccessible cardinals, i.e. under ZFC it can be shown that
3ba is a strongly inaccessible if and only if (H3ba,∈) is a model of ZFCfss

2 . Thus ¬Con(ZFCfss
2 +

∃MZFC
fss
2 ) =⇒ ¬Con(ZFC + (V = Hk)).In this paper we prove that ZFCfss

2 is inconsistent.
We will start from a simple naive consideration.Let = be the countable collection of all sets X such
that ZFCfss

2 ` ∃!XΨ (X) ,where Ψ (X) is any 1-place open wff i.e.,

∀Y {Y ∈ = ↔ ∃Ψ (·) ∃!X [Ψ (X) ∧ Y = X]} . (1.1)

Let X /∈`
ZFC

fss
2

Y be a predicate such that X /∈`
ZFC

fss
2

Y ↔ ZFCfss
2 ` X /∈ Y.Let < be the

countable collection of all sets such that

∀X
[
X ∈ < ↔ X /∈`

ZFC
fss
2

X

]
. (1.2)

From (1.2) one obtain

< ∈ < ↔ < /∈`
ZFC

fss
2

<. (1.3)

But obviously this is a contradiction. However contradiction (1.3) it is not a contradiction inside
ZFCfss

2 for the reason that predicate X /∈`
ZFC

fss
2

Y not is a predicate of ZFCfss
2 and therefore

countable collections = and < not is a sets of ZFCfss
2 . Nevertheless by using Gödel encoding the

above stated contradiction can be shipped in special consistent completion of ZFCfss
2 .

Remark 1.3. We note that in order to deduce ¬Con(ZFCHs
2 ) from Con(ZFCHs

2 ) by using Gödel
encoding, one needs something more than the consistency of ZFCHs

2 , e.g., that ZFCHs
2 has an

omega-model M
ZFCHs

2
ω or an standard model M

ZFCHs
2

st i.e., a model in which the integers are the
standard integers [6].To put it another way, why should we believe a statement just because there’s a
ZFCHs

2 -proof of it? It’s clear that if ZFCHs
2 is inconsistent, then we won’t believe ZFCHs

2 -proofs.
What’s slightly more subtle is that the mere consistency of ZFC2 isn’t quite enough to get us to
believe arithmetical theorems of ZFCHs

2 ; we must also believe that these arithmetical theorems
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are asserting something about the standard naturals. It is ”conceivable” that ZFCHs
2 might be

consistent but that the only nonstandard models M
ZFCHs

2
Nst it has are those in which the integers

are nonstandard, in which case we might not ”believe” an arithmetical statement such as ”ZFCHs
2

is inconsistent” even if there is a ZFCHs
2 -proof of it.

Remark 1.4. However assumption ∃MZFCHs
2

st is not necessary. Note that in any nonstandard

model M
ZHs

2
Nst of the second-order arithmetic ZHs

2 the terms 0, S0 = 1,SS0 = 2, . . . comprise the

initial segment isomorphic to M
ZHs

2
st ⊂M

ZHs
2

Nst . This initial segment is called the standard cut of the

M
ZHs

2
Nst . The order type of any nonstandard model of M

ZHs
2

Nst is equal to N + A × Z for some linear

order A [6],[7]. Thus one can to choose Gödel encoding inside M
ZHs

2
st .

Remark 1.5. However there is no any problem as mentioned above in second order set theory
ZFC2 with the full second-order semantics becouse corresponding second order arithmetic Zfss

2 is
categorical.

Remark 1.6. Note if we view second-order arithmetic Z2 as a theory in first-order predicate
calculus. Thus a model MZ2 of the language of second-order arithmetic Z2 consists of a set M
(which forms the range of individual variables) together with a constant 0 (an element of M),
a function S from M to M , two binary operations + and × on M, a binary relation < on M ,
and a collection D of subsets of M , which is the range of the set variables. When D is the full
powerset of M, the model MZ2 is called a full model. The use of full second-order semantics is
equivalent to limiting the models of second-order arithmetic to the full models. In fact, the axioms
of second-order arithmetic have only one full model. This follows from the fact that the axioms of
Peano arithmetic with the second-order induction axiom have only one model under second-order
semantics, i.e. Z2, with the full semantics, is categorical by Dedekind’s argument, so has only one
model up to isomorphism. When M is the usual set of natural numbers with its usual operations,
MZ2 is called an omega model. In this case we may identify the model with D, its collection of sets
of naturals, because this set is enough to completely determine an omega model. The unique full

omega-model M
Z

fss
2

ω , which is the usual set of natural numbers with its usual structure and all its
subsets, is called the intended or standard model of second-order arithmetic.

2 Derivation of the Inconsistent Countable Set in
ZFCHs

2 + ∃MZFCHs
2

Let Th be some fixed, but unspecified, consistent formal theory. For later convenience, we assume
that the encoding is done in some fixed formal second order theory S and that Th contains S.The
sense in which S is contained in Th is better exemplified than explained: if S is a formal system of
a second order arithmetic ZHs

2 and Th is, say, ZFCHs
2 , then Th contains S in the sense that there

is a well-known embedding, or interpretation, of S in Th. Since encoding is to take place in S, it
will have to have a large supply of constants and closed terms to be used as codes. (e.g. in formal
arithmetic, one has 0, 1, ... .) S will also have certain function symbols to be described shortly.To
each formula, Φ, of the language of Th is assigned a closed term, [Φ]c, called the code of Φ. We note
that if Φ (x) is a formula with free variable x, then [Φ (x)]c is a closed term encoding the formula
Φ (x) with x viewed as a syntactic object and not as a parameter. Corresponding to the logical
connectives and quantifiers are function symbols, neg (·), imp (·), etc., such that, for all formulae
Φ, Ψ : S ` neg ([Φ]c) = [¬Φ]c , S ` imp ([Φ]c , [Ψ]c) = [Φ→ Ψ]c etc. Of particular importance is
the substitution operator, represented by the function symbol sub (·, ·). For formulae Φ (x), terms
t with codes [t]c :
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S ` sub ([Φ (x)]c , [t]c) = [Φ (t)]c . (2.1)

It well known [8] that one can also encode derivations and have a binary relation ProvTh (x, y)
(read ”x proves y ” or ”x is a proof of y”) such that for closed t1, t2 : S ` ProvTh (t1, t2) iff t1 is
the code of a derivation in Th of the formula with code t2 . It follows that

Th ` Φ iff S ` ProvTh (t, [Φ]c) (2.2)

for some closed term t.Thus one can define

PrTh (y)↔ ∃xProvTh (x, y) , (2.3)

and therefore one obtain a predicate asserting provability. We note that is not always the case that
[8]:

Th ` Φ iff S ` PrTh ([Φ]c) . (2.4)

It well known [8] that the above encoding can be carried out in such a way that the following
important conditions D1,D2 and D3 are meet for all sentences [8]:

D1.Th ` Φ implies S ` PrTh ([Φ]c) ,
D2.S ` PrTh ([Φ]c)→ PrTh ([PrTh ([Φ]c)]c) ,

D3.S ` PrTh ([Φ]c) ∧PrTh ([Φ→ Ψ]c)→ PrTh ([Ψ]c) .
(2.5)

Conditions D1,D2 and D3 are called the Derivability Conditions.

Lemma 2.1. Assume that: (i) Con (Th) and (ii) Th ` PrTh ([Φ]c) , where Φ is a closed
formula.Then Th 0 PrTh ([¬Φ]c) .
Proof. LetConTh (Φ) be a formula{

ConTh (Φ) , ∀t1∀t2¬ [ProvTh (t1, [Φ]c) ∧ProvTh (t2, neg ([Φ]c))]↔
¬∃t1¬∃t2 [ProvTh (t1, [Φ]c) ∧ProvTh (t2, neg ([Φ]c))] .

(2.6)

where t1, t2 is a closed term. We note that Th+Con (Th) ` ConTh (Φ) for any closed Φ. Suppose
that Th ` PrTh ([¬Φ]c) ,then (ii) gives

Th ` PrTh ([Φ]c) ∧PrTh ([¬Φ]c) . (2.7)

From (2.3) and (2.7) we obtain

∃t1∃t2 [ProvTh (t1, [Φ]c) ∧ProvTh (t2, neg ([Φ]c))] . (2.8)

But the formula (2.6) contradicts the formula (2.8). Therefore Th 0 PrTh ([¬Φ]c) .

Lemma 2.2. Assume that : (i)Con(Th) and (ii) Th ` PrTh ([¬Φ]c) , where Φ is a closed formula.Then
Th 0 PrTh ([Φ]c) .

Assumption 2.1. Let Thbe an second order theory with the Henkin semantics. We assume now that :

(i) the language of Th consists of:
numerals 0,1,...
countable set of the numerical variables: {v0, v1, ...}
countable set of the set variables: = {x, y, z,X, Y, Z,<, ...}
countable set of the n-ary function symbols: fn

0 , f
n
1 , ...

countable set of the n-ary relation symbols: Rn
0 , R

n
1 , ...
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connectives: ¬,→
quantifier:∀.
(ii) Th contains ZFC2,
(iii) Th has an an ω-model MTh

ω or
(iv) Th has an nonstandard model MTh

Nst. .

Definition 2.1. An Th-wff Φ (well-formed formula Φ) is closed - i.e. Φ is a sentence - if it has no
free variables; a wff is open if it has free variables.We’ll use the slang ‘k-place open wff ’ to mean a
wff with k distinct free variables.

Definition 2.2.We said that,Th# is a nice theory or a nice extension of the Th iff

(i) Th# contains Th;(ii) Let Φ be any closed formula, then Th ` PrTh ([Φ]c) implies Th# ` Φ.

Definition 2.3.We said that,Th# is a maximally nice theory or a maximally nice extension of the
Th iff Th# is consistent and for any consistent nice extension Th′ of the Th : Ded

(
Th#

)
j

Ded (Th′) implies Ded
(
Th#

)
= Ded (Th′) .

Remark 2.1. We note that a theory Th# depend on model MTh
ω or MTh

Nst., i.e. Th# =
Th#

[
MTh

ω

]
or Th# = Th#

[
MTh

Nst

]
correspondingly. We will consider the case Th# , Th#

[
MTh

ω

]
without loss of generality.

Proposition 2.1. Assume that (i) Con (Th) and (ii ) Th has an ω-model MTh
ω .Then theory Th

can be extended to a maximally consistent nice theory Th# , Th#
[
MTh

ω

]
.

Proof. LetΦ1... Φi... be an enumeration of all wff’s of the theory Th (this can be achieved if the
set of propositional variables can be enumerated). Define a chain ℘ = {Thi|i ∈ N} ,Th1 = Th of
consistent theories inductively as follows: assume that theory Thi is defined. (i) Suppose that a
statement (2.9) is satisfied

Thi ` PrThi ([Φi]
c) and [Thi 0 Φi] ∧

[
MTh

ω |= Φi

]
. (2.9)

Then we define a theory Thi+1 as follows Thi+1 , Thi ∪ {Φi} .Using Lemma 2.1 we will rewrite
the condition (2.9) symbolically as follows{

Thi ` Pr#
Thi

([Φi]
c) ,

Pr#
Thi

([Φi]
c) ⇐⇒ PrThi ([Φi]

c) ∧
[
MTh

ω |= Φi

]
.

(2.10)

(ii) Suppose that a statement (2.11) is satisfied

Thi ` PrThi ([¬Φi]
c) and [Thi 0 ¬Φi] ∧

[
MTh

ω |= ¬Φi

]
. (2.11)

Then we define theory Thi+1 as follows: Thi+1 , Thi ∪ {¬Φi} .
Using Lemma 2.2 we will rewrite the condition (2.11) symbolically as follows{

Thi ` Pr#
Thi

([¬Φi]
c) ,

Pr#
Thi

([¬Φi]
c) ⇐⇒ PrThi ([¬Φi]

c) ∧
[
MTh

ω |= ¬Φi

]
.

(2.12)

(iii) Suppose that a statement (2.13) is satisfied

Thi ` PrThi ([Φi]
c) and Thi ` PrThi ([Φi]

c) =⇒ Φi. (2.13)

We will rewrite the condition (2.13) symbolically as follows
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{
Thi ` Pr∗Thi

([Φi]
c)

Pr∗Thi
([Φi]

c) ⇐⇒ PrThi ([Φi]
c) ∧ [PrThi ([Φi]

c) =⇒ Φi]
(2.14)

Then we define a theory Thi+1 as follows: Thi+1 , Thi.

(iv) Suppose that a statement (2.15) is satisfied

Thi ` PrThi ([¬Φi]
c) and Thi ` PrThi ([¬Φi]

c) =⇒ ¬Φi. (2.15)

We will rewrite the condition (2.15) symbolically as follows{
Thi ` Pr∗Thi

([Φi]
c)

Pr∗Thi
([¬Φi]

c) ⇐⇒ PrThi ([¬Φi]
c) ∧ [PrThi ([¬Φi]

c) =⇒ ¬Φi]
(2.16)

Then we define a theory Thi+1 as follows: Thi+1 , Thi.We define now a theory Th# as follows:

Th# ,
⋃
i∈N

Thi. (2.17)

First, notice that each Thi is consistent. This is done by induction on i and by Lemmas 2.1-2.2. By
assumption, the case is true when i = 1.Now, suppose Thi is consistent. Then its deductive closure
Ded (Thi) is also consistent. If a statement (2.14) is satisfied,i.e. Th ` PrTh ([Φi]

c) and Th ` Φi,
then clearly Thi+1 , Thi∪{Φi} is consistent since it is a subset of closure Ded (Thi) .If a statement
(2.15) is satisfied,i.e. Th ` PrTh ([¬Φi]

c) and Th ` ¬Φi, then clearly Thi+1 , Thi ∪ {¬Φi} is
consistent since it is a subset of closure Ded (Thi) .Otherwise:(i) if a statement (2.9) is satisfied,i.e.
Th ` PrTh ([Φi]

c) and [Thi 0 Φi]∧
[
MTh

ω |= Φi

]
then clearly Thi+1 , Thi ∪{Φi} is consistent by

Lemma 2.1 and by one of the standard properties of consistency: ∆∪ {A} is consistent iff ∆ 0 ¬A;
(ii) if a statement (2.11) is satisfied,i.e. Thi ` PrThi ([¬Φi]

c) and [Thi 0 ¬Φi]∧
[
MTh

ω |= ¬Φi

]
then

clearly Thi+1 , Thi ∪ {¬Φi} is consistent by Lemma 2.2 and by one of the standard properties of
consistency: ∆∪{¬A} is consistent iff ∆ 0 A.Next, notice Ded

(
Th#

)
is maximally consistent nice

extension of the Ded (Th) .Ded
(
Th#

)
is consistent because, by the standard Lemma 2.3 belov, it

is the union of a chain of consistent sets. To see that Ded
(
Th#

)
is maximal, pick any wff Φ. Then

Φ is some Φi in the enumerated list of all wff’s. Therefore for any Φ such that Thi ` PrThi ([Φ]c)
or Thi ` PrThi ([¬Φ]c), either Φ ∈ Th# or ¬Φ ∈ Th#.Since Ded (Thi+1) j Ded

(
Th#

)
, we have

Φ ∈ Ded
(
Th#

)
or ¬Φ ∈ Ded

(
Th#

)
,which implies that Ded

(
Th#

)
is maximally consistent nice

extension of the Ded (Th) .

Lemma 2.3. The union of a chain ℘ = {Γi|i ∈ N} of consistent sets Γi, ordered by j, is consistent.

Definition 2.4. We define now predicate PrTh# ([Φi]
c) asserting provability in Th# : PrTh# ([Φi]

c) ⇐⇒
[
Pr#

Thi
([Φi]

c)
]
∨
[
Pr∗Thi

([Φi]
c)
]
,

PrTh# ([¬Φi]
c) ⇐⇒

[
Pr#

Thi
([¬Φi]

c)
]
∨
[
Pr∗Thi

([¬Φi]
c)
]
.

(2.18)

Definition 2.5. Let Ψ = Ψ (x) be one-place open wff such that the conditions:

(∗) Th ` ∃!xΨ [Ψ (xΨ)] or
(∗∗) Th ` PrTh ([∃!xΨ [Ψ (xΨ)]]c) and MTh

ω |= ∃!xΨ [Ψ (xΨ)] is satisfied.

Then we said that, a set y is a Th#-set iff there is exist one-place open wff Ψ (x) such that
y = xΨ. We write y

[
Th#

]
iff y is a Th#-set. Remark 2.2. Note that [(∗) ∨ (∗∗)] =⇒ Th# `

∃!xΨ [Ψ (xΨ)] .
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Remark 2.3. Note that y
[
Th#

]
⇐⇒ ∃Ψ [(y = xΨ) ∧PrTh# ([∃!xΨ [Ψ (xΨ)]]c)]

Definition 2.6. Let = be a collection such that : ∀x
[
x ∈ = ↔ x is a Th#-set

]
.

Proposition 2.2. Collection = is a Th#-set.

Proof. Let us consider an one-place open wff Ψ (x) such that conditions (∗) or (∗∗) is satisfied, i.e.
Th# ` ∃!xΨ [Ψ (xΨ)] .We note that there exists countable collection Ψ of the one-place open wff’s

Ψ = {Ψn (x)}n∈N such that: (i) Ψ (x) ∈Ψ and (ii)
Th ` ∃!xΨ [[Ψ (xΨ)] ∧ {∀n (n ∈ N) [Ψ (xΨ)↔ Ψn (xΨ)]}]

or
Th ` ∃!xΨ [PrTh ([Ψ (xΨ)]c) ∧ {∀n (n ∈ N) PrTh ([Ψ (xΨ)↔ Ψn (xΨ)]c)}]

and

MTh
ω |= ∃!xΨ [[Ψ (xΨ)] ∧ {∀n (n ∈ N) [Ψ (xΨ)↔ Ψn (xΨ)]}]

(2.19)

or of the equivalent form
Th ` ∃!x1 [[Ψ1 (x1)] ∧ {∀n (n ∈ N) [Ψ1 (x1)↔ Ψn,1 (x1)]}]

or
Th ` ∃!xΨ [PrTh ([Ψ (x1)]c) ∧ {∀n (n ∈ N) PrTh ([Ψ (x1)↔ Ψn (x1)]c)}]

and

MTh
ω |= ∃!xΨ [[Ψ (x1)] ∧ {∀n (n ∈ N) [Ψ (x1)↔ Ψn (x1)]}]

(2.20)

where we set Ψ (x) = Ψ1 (x1) ,Ψn (x1) = Ψn,1 (x1) and xΨ = x1. We note that any collection

Ψk = {Ψn,k (x)}n∈N , k = 1, 2, ... such above defines an unique set xΨk ,i.e. Ψk1

⋂
Ψk2

= ∅ iff

xΨk1
6= xΨk2

.We note that collections Ψk , k = 1, 2, .. is no part of the ZFC2,i.e. collection Ψk there
is no set in sense of ZFC2. However that is no problem, because by using Gödel numbering one
can to replace any collection Ψk , k = 1, 2, .. by collection Θk = g (Ψk ) of the corresponding Gödel
numbers such that

Θk = g (Ψk ) = {g (Ψn,k (xk))}n∈N , k = 1, 2, ... . (2.21)

It is easy to prove that any collection Θk = g (Ψk ) , k = 1, 2, .. is a Th#-set.This is done by Gödel
encoding [8],[9] of the statament (2.19) by Proposition 2.1 and by axiom schema of separation [10].
Let gn,k = g (Ψn,k (xk)) , k = 1, 2, .. be a Gödel number of the wff Ψn,k (xk) .Therefore g (k) =
{gn,k}n∈N , where we set k =Ψk , k = 1, 2, .. and

∀k1∀k2

[
{gn,k1}n∈N

⋂
{gn,k2}n∈N = ∅↔ xk1 6= xk2

]
. (2.22)

Let
{
{gn,k}n∈N

}
k∈N be a family of the all sets {gn,k}n∈N . By axiom of choice [10] one obtain unique

set =′ = {gk}k∈N such that ∀k
[
gk ∈ {gn,k}n∈N

]
.Finally one obtain a set = from a set =′ by axiom

schema of replacement [10]. Thus one can define a Th#-set <c $ = :

∀x [x ∈ <c ↔ (x ∈ =) ∧PrTh# ([x /∈ x]c)] . (2.23)

Proposition 2.3. Any collection Θk = g (Ψk ) , k = 1, 2, .. is a Th#-set.

Proof. We define gn,k = g (Ψn,k (xk)) = [Ψn,k (xk)]c , vk = [xk]c . Therefore gn,k = g (Ψn,k (xk))↔
Fr (gn,k, vk) (see [9]). Let us define now predicate Π (gn,k, vk)

{
Π (gn,k, vk)↔ PrTh ([∃!xk [Ψ1,k (x1)]]c)∧

∧∃!xk (vk = [xk]c) [∀n (n ∈ N) [PrTh ([[Ψ1,k (xk)]]c)↔ PrTh (Fr (gn,k, vk))]] .
(2.24)
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We define now a set Θk such that{
Θk = Θ′k ∪ {gk} ,

∀n (n ∈ N) [gn,k ∈ Θ′k ↔ Π (gn,k, vk)]
(2.25)

But obviously definitions (2.19) and (2.25) is equivalent by Proposition 2.1.

Proposition 2.4. (i) Th# ` ∃<c,(ii) <c is a countable Th#-set.

Proof.(i) Statement Th# ` ∃<c follows immediately by using statement ∃= and axiom schema of
separation [4]. (ii) follows immediately from countability of a set =.

Proposition 2.5. A set <c is inconsistent.

Proof.From formla (2.18) one obtain

Th# ` <c ∈ <c ↔ PrTh# ([<c /∈ <c]
c) . (2.21)

From formula (2.21) and Proposition 2.1 one obtain

Th# ` <c ∈ <c ↔ <c /∈ <c (2.22)

and therefore

Th# ` (<c ∈ <c) ∧ (<c /∈ <c) . (2.23)

But this is a contradiction.

Proposition 2.6.Assume that (i) Con (Th) and (ii ) Th has an nonstandard model MTh
Nst.Then

theory Th can be extended to a maximally consistent nice theory Th# , Th#
[
MTh

Nst

]
.

Proof. Let Φ1... Φi... be an enumeration of all wff’s of the theory Th (this can be achieved if
the set of propositional variables can be enumerated). Define a chain ℘ = {Thi|i ∈ N} ,Th1 = Th
of consistent theories inductively as follows: assume that theory Thi is defined. (i) Suppose that a
statement (2.24) is satisfied

Thi ` PrThi ([Φi]
c) and [Thi 0 Φi] ∧

[
MTh

Nst |= Φi

]
. (2.24)

Then we define a theory Thi+1 as follows Thi+1 , Thi ∪ {Φi} .Using Lemma 2.1 we will rewrite
the condition (2.24) symbolically as follows{

Thi ` Pr#
Thi

([Φi]
c) ,

Pr#
Thi

([Φi]
c) ⇐⇒ PrThi ([Φi]

c) ∧
[
MTh

Nst |= Φi

]
.

(2.25)

(ii) Suppose that a statement (2.26) is satisfied

Thi ` PrThi ([¬Φi]
c) and [Thi 0 ¬Φi] ∧

[
MTh

Nst |= ¬Φi

]
. (2.26)

Then we define theory Thi+1 as follows: Thi+1 , Thi ∪ {¬Φi} . Using Lemma 2.2 we will rewrite
the condition (2.26) symbolically as follows{

Thi ` Pr#
Thi

([¬Φi]
c) ,

Pr#
Thi

([¬Φi]
c) ⇐⇒ PrThi ([¬Φi]

c) ∧
[
MTh

ω |= ¬Φi

]
.

(2.27)

(iii) Suppose that a statement (2.28) is satisfied

Thi ` PrThi ([Φi]
c) and Thi ` PrThi ([Φi]

c) =⇒ Φi. (2.28)
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We will rewrite the condition (2.28) symbolically as follows{
Thi ` Pr∗Thi

([Φi]
c) ,

Pr∗Thi
([Φi]

c) ⇐⇒ PrThi ([Φi]
c) ∧ [PrThi ([Φi]

c) =⇒ Φi]
(2.29)

Then we define a theory Thi+1 as follows: Thi+1 , Thi.

(iv) Suppose that a statement (2.30) is satisfied

Thi ` PrThi ([¬Φi]
c) and Thi ` PrThi ([¬Φi]

c) =⇒ ¬Φi. (2.30)

We will rewrite the condition (2.30) symbolically as follows{
Thi ` Pr∗Thi

([Φi]
c) ,

Pr∗Thi
([¬Φi]

c) ⇐⇒ PrThi ([¬Φi]
c) ∧ [PrThi ([¬Φi]

c) =⇒ ¬Φi]
(2.31)

Then we define a theory Thi+1 as follows: Thi+1 , Thi.We define now a theory Th# as follows:

Th# ,
⋃
i∈N

Thi. (2.32)

First, notice that each Thi is consistent. This is done by induction on i and by Lemmas 2.1-2.2. By
assumption, the case is true when i = 1.Now, suppose Thi is consistent. Then its deductive closure
Ded (Thi) is also consistent. If a statement (2.28) is satisfied,i.e. Th ` PrTh ([Φi]

c) and Th ` Φi,
then clearly Thi+1 , Thi∪{Φi} is consistent since it is a subset of closure Ded (Thi) .If a statement
(2.30) is satisfied,i.e. Th ` PrTh ([¬Φi]

c) and Th ` ¬Φi, then clearly Thi+1 , Thi ∪ {¬Φi} is
consistent since it is a subset of closure Ded (Thi) .Otherwise:(i) if a statement (2.24) is satisfied,i.e.
Th ` PrTh ([Φi]

c) and [Thi 0 Φi]∧
[
MTh

ω |= Φi

]
then clearly Thi+1 , Thi ∪{Φi} is consistent by

Lemma 2.1 and by one of the standard properties of consistency: ∆∪ {A} is consistent iff ∆ 0 ¬A;
(ii) if a statement (2.26) is satisfied,i.e. Thi ` PrThi ([¬Φi]

c) and [Thi 0 ¬Φi]∧
[
MTh

ω |= ¬Φi

]
then

clearly Thi+1 , Thi ∪ {¬Φi} is consistent by Lemma 2.2 and by one of the standard properties of
consistency: ∆∪{¬A} is consistent iff ∆ 0 A.Next, notice Ded

(
Th#

)
is maximally consistent nice

extension of the Ded (Th) .Ded
(
Th#

)
is consistent because, by the standard Lemma 2.3 belov, it

is the union of a chain of consistent sets. To see that Ded
(
Th#

)
is maximal, pick any wff Φ. Then

Φ is some Φi in the enumerated list of all wff’s. Therefore for any Φ such that Thi ` PrThi ([Φ]c)
or Thi ` PrThi ([¬Φ]c), either Φ ∈ Th# or ¬Φ ∈ Th#.Since Ded (Thi+1) j Ded

(
Th#

)
, we have

Φ ∈ Ded
(
Th#

)
or ¬Φ ∈ Ded

(
Th#

)
,which implies that Ded

(
Th#

)
is maximally consistent nice

extension of the Ded (Th) .

Definition 2.7. We define now predicate PrTh# ([Φi]
c) asserting provability in Th# : PrTh# ([Φi]

c) ⇐⇒
[
Pr#

Thi
([Φi]

c)
]
∨
[
Pr∗Thi

([Φi]
c)
]
,

PrTh# ([¬Φi]
c) ⇐⇒

[
Pr#

Thi
([¬Φi]

c)
]
∨
[
Pr∗Thi

([¬Φi]
c)
]
.

(2.33)

Definition 2.8. Let Ψ = Ψ (x) be one-place open wff such that the conditions:

(∗) Th ` ∃!xΨ [Ψ (xΨ)] or
(∗∗) Th ` PrTh ([∃!xΨ [Ψ (xΨ)]]c) and MTh

Nst |= ∃!xΨ [Ψ (xΨ)] is satisfied.

Then we said that, a set y is a Th#-set iff there is exist one-place open wff Ψ (x) such that y = xΨ.
We write y

[
Th#

]
iff y is a Th#-set.

Remark 2.4. Note that [(∗) ∨ (∗∗)] =⇒ Th# ` ∃!xΨ [Ψ (xΨ)] .
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Remark 2.5. Note that y
[
Th#

]
⇐⇒ ∃Ψ [(y = xΨ) ∧PrTh# ([∃!xΨ [Ψ (xΨ)]]c)]

Definition 2.9. Let = be a collection such that : ∀x
[
x ∈ = ↔ x is a Th#-set

]
.

Proposition 2.7. Collection = is a Th#-set.

Proof. Let us consider an one-place open wff Ψ (x) such that conditions (∗) or (∗∗) is satisfied,
i.e. Th# ` ∃!xΨ [Ψ (xΨ)] .We note that there exists countable collection Ψ of the one-place open wff’s

Ψ = {Ψn (x)}n∈N such that: (i) Ψ (x) ∈Ψ and (ii)

Th ` ∃!xΨ

[
[Ψ (xΨ)] ∧

{
∀n
(
n ∈M

ZHs
2

st

)
[Ψ (xΨ)↔ Ψn (xΨ)]

}]
or

Th ` ∃!xΨ

[
PrTh ([Ψ (xΨ)]c) ∧

{
∀n
(
n ∈M

ZHs
2

st

)
PrTh ([Ψ (xΨ)↔ Ψn (xΨ)]c)

}]
and

MTh
Nst |= ∃!xΨ

[
[Ψ (xΨ)] ∧

{
∀n
(
n ∈M

ZHs
2

st

)
[Ψ (xΨ)↔ Ψn (xΨ)]

}]
(2.34)

or of the equivalent form



Th ` ∃!x1

[
[Ψ1 (x1)] ∧

{
∀n
(
n ∈M

ZHs
2

st

)
[Ψ1 (x1)↔ Ψn,1 (x1)]

}]
or

Th ` ∃!xΨ

[
PrTh ([Ψ (x1)]c) ∧

{
∀n
(
n ∈M

ZHs
2

st

)
PrTh ([Ψ (x1)↔ Ψn (x1)]c)

}]
and

MTh
Nst |= ∃!xΨ

[
[Ψ (x1)] ∧

{
∀n
(
n ∈M

ZHs
2

st

)
[Ψ (x1)↔ Ψn (x1)]

}]
(2.35)

where we set Ψ (x) = Ψ1 (x1) ,Ψn (x1) = Ψn,1 (x1) and xΨ = x1. We note that any collection

Ψk = {Ψn,k (x)}n∈N , k = 1, 2, ... such above defines an unique set xΨk ,i.e. Ψk1

⋂
Ψk2

= ∅ iff

xΨk1
6= xΨk2

.We note that collections Ψk , k = 1, 2, .. is no part of the ZFCHs
2 ,i.e. collection Ψk

there is no set in sense of ZFCHs
2 . However that is no problem, because by using Gödel numbering

one can to replace any collection Ψk , k = 1, 2, .. by collection Θk = g (Ψk ) of the corresponding
Gödel numbers such that

Θk = g (Ψk ) = {g (Ψn,k (xk))}n∈N , k = 1, 2, ... . (2.36)

It is easy to prove that any collection Θk = g (Ψk ) , k = 1, 2, .. is a Th#-set. This is done by Gödel
encoding [8],[9] of the statament (2.19) by Proposition 2.6 and by axiom schema of separation [4].
Let gn,k = g (Ψn,k (xk)) , k = 1, 2, .. be a Gödel number of the wff Ψn,k (xk) .Therefore g (k) =
{gn,k}n∈N , where we set k =Ψk , k = 1, 2, .. and

∀k1∀k2

[
{gn,k1}n∈N

⋂
{gn,k2}n∈N = ∅↔ xk1 6= xk2

]
. (2.37)

Let
{
{gn,k}n∈N

}
k∈N be a family of the all sets {gn,k}n∈N . By axiom of choice [10] one obtain unique

set =′ = {gk}k∈N such that ∀k
[
gk ∈ {gn,k}n∈N

]
. F inallyoneobtainaset= from a set =′ by axiom

schema of replacement [10].Thus one can define a Th#-set <c $ = :

∀x [x ∈ <c ↔ (x ∈ =) ∧PrTh# ([x /∈ x]c)] . (2.38)
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Proposition 2.8. Any collection Θk = g (Ψk ) , k = 1, 2, .. is a Th#-set.

Proof. We define gn,k = g (Ψn,k (xk)) = [Ψn,k (xk)]c , vk = [xk]c .
Therefore gn,k = g (Ψn,k (xk))↔ Fr (gn,k, vk) (see [9]). Let us define now predicate Π (gn,k, vk){

Π (gn,k, vk)↔ PrTh ([∃!xk [Ψ1,k (x1)]]c)∧
∧∃!xk (vk = [xk]c)

[
∀n
(
n ∈M

ZHs
2

st

)
[PrTh ([[Ψ1,k (xk)]]c)↔ PrTh (Fr (gn,k, vk))]

]
.

(2.39)

We define now a set Θk such that{
Θk = Θ′k ∪ {gk} ,

∀n (n ∈ N) [gn,k ∈ Θ′k ↔ Π (gn,k, vk)]
(2.40)

But obviously definitions (2.39) and (2.40) is equivalent by Proposition 2.6.

Proposition 2.9. (i) Th# ` ∃<c,(ii) <c is a countable Th#-set.

Proof.(i) Statement Th# ` ∃<c follows immediately by using statement ∃= and axiom schema of
separation [10]. (ii) follows immediately from countability of a set =.

Proposition 2.10. A set <c is inconsistent.

Proof.From formla (2.18) one obtain

Th# ` <c ∈ <c ↔ PrTh# ([<c /∈ <c]
c) . (2.41)

From formula (2.41) and Proposition 2.6 one obtain

Th# ` <c ∈ <c ↔ <c /∈ <c (2.42)

and therefore

Th# ` (<c ∈ <c) ∧ (<c /∈ <c) . (2.43)

But this is a contradiction.

3 Derivation of the Inconsistent Countable Set in ZFC2

with the Full Semantics

Let Th be an second order theory with the full second order semantics.We assume now that: (i)
Th contains ZFCfss

2 ,(ii) Th has no any model.

Definition 3.1. Using formula (2.3) one can define predicate PrωTh (y) really asserting provability
in ZFCfss

2

PrωTh (y)↔ ∃x
(
x ∈MZ2

ω

)
ProvTh (x, y) , (3.1)

Theorem 3.1.[11].(Löb’s Theorem for ZFC2) Let Φ be any closed formula with code
y = [Φ]c ∈MZ2

ω , then Th ` PrωTh ([Φ]c) implies Th ` Φ (see [12] Theorem 5.1).

Proof. Assume that

(#) Th ` PrωTh ([Φ]c) .
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Note that

(1) Th 0 ¬Φ. Otherwise one obtain Th ` PrωTh ([¬Φ]c) ∧PrωTh ([Φ]c) , but this is a

contradiction.

(2) Assume now that (2.i) Th ` PrωTh ([Φ]c) and (2.ii) Th 0 Φ.

From (1) and (2.ii) follows that

(3) Th 0 ¬Φ and Th 0 Φ.

Let Th¬Φ be a theory

(4)Th¬Φ , Th∪{¬Φ} .From (3) follows that

(5) Con (Th¬Φ) .

From (4) and (5) follows that

(6) Th¬Φ ` PrωTh¬Φ
([¬Φ]c) .

From (4) and (#) follows that

(7) Th¬Φ ` PrωTh¬Φ
([Φ]c) .

From (6) and (7) follows that

(8) Th¬Φ ` PrωTh¬Φ
([Φ]c) ∧PrωTh¬Φ

([¬Φ]c) ,but this is a contradiction.

Definition 3.2. Let Ψ = Ψ (x) be one-place open wff such that the conditions:

(∗) Th ` ∃!xΨ [Ψ (xΨ)] or

(∗∗) Th ` PrωTh ([∃!xΨ [Ψ (xΨ)]]c) is satisfied.

Then we said that, a set y is a Th-set iff there is exist one-place open wff Ψ (x) such that y = xΨ.
We write y [Th] iff y is a Th-set.

Remark 3.1. Note that [(∗) ∨ (∗∗)] =⇒ Th ` ∃!xΨ [Ψ (xΨ)] .

Remark 3.2. Note that y [Th] ⇐⇒ ∃Ψ [(y = xΨ) ∧PrωTh ([∃!xΨ [Ψ (xΨ)]]c)]

Definition 3.3. Let = be a collection such that : ∀x [x ∈ = ↔ x is a Th-set] .

Proposition 3.2. Collection = is a Th-set.

Definition 3.4. We define now a Th-set <c $ = :

∀x [x ∈ <c ↔ (x ∈ =) ∧PrωTh ([x /∈ x]c)] . (3.2)

Proposition 3.3. (i) Th ` ∃<c,(ii) <c is a countable Th-set.

Proof.(i) Statement Th ` ∃<c follows immediately by using statement ∃= and axiom schema of
separation [4]. (ii) follows immediately from countability of a set =.

Proposition 3.4. A set <c is inconsistent.

Proof.From formla (3.2) one obtain

Th ` <c ∈ <c ↔ PrωTh ([<c /∈ <c]
c) . (3.3)

From formula (3.3) and definition 3.1 one obtain

Th ` <c ∈ <c ↔ <c /∈ <c (3.4)

and therefore

Th ` (<c ∈ <c) ∧ (<c /∈ <c) . (3.5)
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But this is a contradiction.

Therefore finally we obtain:

Theorem 3.2. [12].¬Con(ZFC2).

That is well known that under ZFC it can be shown that k is inaccessible if and only if (Vk,∈) is
a model of ZFC2 [5],[11].Thus finally we obtain.

Theorem 3.3. [12].¬Con(ZFC + (V = Hk)).

4 Conclusion

In this paper we have proved that the second order ZFC with the full second-order semantic is
inconsistent,i.e. ¬Con(ZFC2).Main result is: let k be an inaccessible cardinal and Hk is a set of all
sets having hereditary size less then k, then ¬Con(ZFC + (V = Hk)).This result also was obtained
in [7],[11],[12] by using essentially another approach. For the first time this result has been declared
to AMS in [13],[14]. An important applications in topology and homotopy theory are obtained in
[15],[16],[17].
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