
Title: T cell densities in brain metastases are associated with patient survival times and 

diffusion tensor MRI changes 

Running title: MRI and immune response to brain metastases 

Authors: Rasheed Zakaria1,4, Angela Platt-Higgins4, Nitika Rathi2, Mark Radon3, Sumit Das2, 

Kumar Das3, Maneesh Bhojak3, Andrew Brodbelt1, Emmanuel Chavredakis1, Michael D. 

Jenkinson1,5, Philip S. Rudland4 

Affiliations 1. Department of Neurosurgery, 2. Department of Neuropathology & 3. Department 

of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, UK.   

4. Institute of Integrative Biology & 5. Institute of Translational Medicine, University of 

Liverpool, UK 

Corresponding author: Dr Rasheed Zakaria PhD, Neuroscience Research Office, The Walton 

Centre NHS Foundation Trust, Lower Lane, Fazakerley, Liverpool, L9 7LJ, UK. Tel: 0151 525 3611 

Email: rzakaria@nhs.net 

Financial support: The authors declare no competing financial interests. R. Zakaria received 

support from The Medical Research Council (MRC) UK - grant MR/L017342/1 and the Royal 

College of Surgeons of England (RCS) via a Research Training Fellowship. P.S. Rudland received 

support from the Cancer and Polio Research Fund, UK and MRC (UK) - grant G0801447. 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/146502003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract  

Brain metastases are common and are usually detected by magnetic resonance imaging 

(MRI). Diffusion tensor imaging (DTI) is a derivative MRI technique which can detect 

disruption of white matter tracts in the brain. We have matched preoperative DTI with 

image-guided sampling of the brain-tumor interface in 26 patients during resection of a 

brain metastasis and assessed mean diffusivity (MD) and fractional anisotropy (FA). The 

tissue samples were analysed for vascularity, inflammatory cell infiltration, growth pattern, 

and tumor expression of proteins associated with growth or local invasion such as Ki67, 

S100A4, and MMP2, 9, and 13. A lower FA in the peritumoral region indicated more white 

matter tract disruption and independently predicted longer overall survival times (HR for 

death = 0.21, 95% CI 0.06 - 0.82, p=0.024). Of all the biological markers studied, only 

increased density of CD3+ lymphocytes in the same region correlated with decreased FA 

(Mann Whitney U, p=0.037) as well as confounding completely the effect of FA in 

multivariate survival analyses. We conclude that the T cell response to brain metastases is 

not a surrogate of local tumor invasion, primary cancer type, or aggressive phenotype and is 

associated with patient survival time regardless of these biological factors. Furthermore, it 

can be assayed by DTI, potentially offering a quick, non-invasive, clinically available method 

to detect an active immune microenvironment and, in principle, to measure susceptibility to 

immunotherapy. 

 



Introduction  

Brain metastases (BM) are a profound clinical problem, causing significant morbidity and 

mortality in patients with solid organ cancers, however they are poorly responsive to traditional 

chemotherapeutic agents. There has been little investigation of the interface between the brain 

and the brain metastasis (B-BM) in patients undergoing treatment, however there are now 

strong reasons for doing so (1-3). First, it has recently been shown that far from being discrete 

and encapsulated, brain metastases show a variety of growth patterns at the leading edge, with 

implications for prognosis and treatment (1,4). Second, the B-BM interface is the region in 

which the tumor interacts with the host immune system (5,6). Third, there are new treatments 

which act at the B-BM interface: cavity boost radiosurgery in radiation oncology, immune 

modulating agents in medical oncology and supra-marginal resection in neurosurgery (7,8). 

MRI provides a quick, widely available modality to assess the B-BM interface non-invasively, 

and can deliver information that applies to both resected and non-resected tumors. Diffusion 

along white matter tracts in the brain assessed by MRI is particularly sensitive at detecting 

changes at the B-BM interface (9,10) although MR spectroscopy (for tumour metabolism, 

cellular proliferation) and MR perfusion (for increased blood flow) may also detect changes not 

seen on conventional imaging. Disruption of white matter tracts causes reduced fractional 

anisotropy (FA) without necessarily reducing mean diffusivity (MD) and this may indicate local 

tumor invasion - as has been demonstrated by meta-analysis in glioma (11,12) - and/or other 

processes, such as inflammation or neoangiogenesis. Diffusion MRI has the further advantage 



of being quick to obtain, relatively easy to post process and reproducible across different 

scanners or institutions(13). 

We have performed matched diffusion MRI (measuring FA & MD) with image-guided sampling 

of the B-BM interface for newly diagnosed patients undergoing surgery to assess MRI features, 

cellularity, growth pattern, cell invasion/division and host inflammatory responses for brain 

metastases from different primary cancers in an attempt to relate them to the MRI data and 

patient outcomes. 

 

 Material & Methods  

 

Patients & follow up 

Overall 26 patients were studied prospectively and the clinical details are summarised in Table 

1. Patient study was conducted in accordance with the principles of the Declaration of Helsinki. 

Ethical approval was granted as an internal project within the institution’s Research Tissue Bank 

after board review (National Research Ethics Service ID 11/WNo03/2) and patients provided 

written, informed consent for inclusion in this bank before surgery.  All patients underwent 

complete resection of a symptomatic, supratentorial BM in the course of routine clinical care 

(including dexamethasone 16mg per day in divided doses for at least 72 hours prior to surgery) 

at a single institution. Post-operative clinical course and care including radiotherapy or the use 

of adjuvant systemic chemotherapy (including targeted agents) were recorded prospectively, as 



these were potential confounding factors for survival. Intracranial progression was determined 

by a neuro-radiologist as per standard criteria (14) in combination with the clinical findings, and 

all patients were discussed at the interdisciplinary tumor board. 

 

MRI studies and image guided sampling 

At a median of 5 days prior to surgery, patients underwent an MRI brain scan protocoled by a 

clinical neuro-radiologist, further details of sequences are provided in Supplementary Methods 

but are summarised here. A volumetric fast spoiled gradient echo sequence was taken after 

gadolinium injection at a standard dose of 0.1mmol/kg (repetition time/echo time 9/1.4ms, flip 

angle 15 degrees, acquisition matrix 256×256, volume 180 × 1 mm2 slices at zero angle gantry); 

this is referred to as the planning scan. Scans were reviewed by a clinical neuro-radiologist 

including scoring the degree of edema on T2 weighted using a previously defined scale (15). 

Following standard post-processing (e.g. to correct for eddy current distortion) maps of 

fractional anisotropy (FA) and mean diffusivity (MD) were generated using DTIstudio, version 

3.0.3(16). In theatre the planning scan was used for registration to a neuro-navigation system 

(StealthStation S7, Medtronic Inc., MN, USA). For each case a biopsy location was chosen which 

showed a radiological and histological interface with brain. In the course of tumor resection, 

patients had image guided samples taken from this location using standard forceps with a 

tracking device attached, so that the realtime location of the forceps tip could be followed. 

These forceps yielded specimens of approximately 4x 3x 2mm3 and the location was 

electronically marked on the planning scan as samples were taken (17).  



After surgery, the vector specifying this location was extracted from the image guidance 

software and transferred offline to the image analysis software. Each location was double 

checked visually with screenshots taken in three orthogonal planes at the biopsy location 

during surgery. A region of interest (ROI) placed at this location in the image analysis software, 

which was co-localised to the tissue sample taken intra-operatively, could then be applied to 

the MRI parametric maps generated as these maps were also co-registered to the planning 

scan. Average and minimum readings of MD and FA were taken on the tumor and brain side of 

the B-BM interface at the biopsy location for each case.  Control readings were taken from the 

contralateral white matter by flipping the ROIs across the anatomical midline, ensuring that this 

avoided any confounding structures such as ventricles or bone.  

 

Tissue analysis 

Histological assessment by a neuropathologist was performed to determine the primary cancer 

of origin, confirm the diagnosis of metastasis and categorise the growth pattern (4). A number 

of proteins acting as markers of proliferation (Ki67), glial cells (GFAP), inflammatory cells (CD3, 

CD8, CD4, CD20, CD68, FOXP3, PD1), connective tissue (reticulin, CD34), ECM 

adhesion/remodelling (MMP 2,9,13) and metastasis (S100A4, S100P, AGR2, OPN) were 

examined by immunohistochemistry and manually and electronically scored for how intense 

and widespread the staining was using validated methods (18). Absolute numbers of 

immunoreactive lymphocytes and macrophages were manually counted per high powered 

field; further detail on the methods as well as how biopsy samples were processed and the 



types and serial numbers of commercially available antibodies are provided online in 

Supplementary Methods.   

 

Statistical methods 

Overall survival (OS) was taken as the time from surgery to death; a non-cancer death or those 

lost to follow up were censored at the last recorded follow up. Patients who died before 

progression were censored at the last date of follow up imaging. Significant differences were 

assessed using Fisher’s Two-sided Exact Test. Time-to-event comparisons were made using the 

Kaplan-Meier method with Log Rank tests and multivariate analyses conducted using Cox’s 

method. Correlations were assessed using Spearman’s Rank Test and pairwise comparisons 

using Wilcoxon’s Signed Rank Test. Data processing was performed using SPSS version 22.0 

(IBM, Chicago, IL) and R version 3.10 (R Core Team, 2013). 

 

Results 

Clinical outcomes 

Post-operative CT brain scan within 24 hours confirmed complete resection of the contrast-

enhancing lesion and there were no post-operative complications such as infection or 

haematoma. Median overall survival (OS) was 5.5 months (95% CI 4.2 – 6.8). The only factors 

associated with increased OS were tumor size (median 8.2 months < 30mm diameter vs. 5.2 

months if larger, Log Rank 5.65, p=0.017) and administration of postoperative whole brain 



radiotherapy (WBRT) (median 6.5 months versus 2.7 months untreated, Log Rank 16.26, 

p<0.001). 

 

MRI suggests two different prognostic phenotypes, unrelated to biological features of the tumor 

The median fractional anisotropy (FA) readings in the peritumoral region where tissue was 

obtained from were consistently lower than control white matter from the comparable brain 

region in the unaffected, contralateral hemisphere (0.140, interquartile range (IQR) 0.106 – 

0.176, versus 0.198, IQR 0.162 – 0.235, matched samples Wilcoxon-signed Rank Test, p<0.001). 

We observed two populations within the group, as illustrated in Figure 1A - F. Those cases with 

a low peritumoral FA (<median), showed significantly longer survival times (median 9.9 months, 

95% CI: 7.4-12.4 versus 5.3 months, 95% CI: 3.4 – 7.13, Log Rank = 4.57, p=0.033), Figure 1G & 

H, even when confounding variables were introduced (Cox’s multivariate analysis: Table 2A & 

B; HR for death = 0.21, 95% CI 0.06 – 0.82, p=0.024).  The co-localised samples obtained at the 

B-BM interface were analysed in relation to the different MRI phenotypes (high FA vs. low FA). 

The primary cancer type and metastasis growth pattern (diffuse versus encapsulated) as 

assessed by a neuropathologist (4) did not show any association with FA readings at the leading 

edge of the tumor or in the adjacent peritumoral region. There was no difference in the tumor 

expression of relevant matrix-metalloproteinases (MMP 2, 9 & 13), tumor cellularity, Ki67 

proliferative index, tumor or peritumoral vascularity (assessed as CD34 positive blood vessel 

density), necrosis or connective tissue density (reticulin and GFAP staining) between the high 

and low FA cases.  



 

Local cellular immune response is heterogeneous and unrelated to biological features of the 

tumor 

Assessment of the cellular immune response at the B-BM interface revealed a dense CD68-

positive macrophage infiltration compared to the metastasis core - median 62 cells per high 

powered field (HPF), IQR 43-105 in peritumoral regions versus 21 cells/HPF (IQR 13-33) in 

control white matter; these cells formed a band surrounding the tumor rather than focal islands 

or a diffuse infiltrate extending away from the tumor edge. In contrast, T-cell (CD3-positive 

lymphocyte) infiltration was heterogeneous (Figure 1B,E,C,F & Figure 2A). Although 

consistently present in the peritumoral region (median 16 cells/HPF, significantly greater than 

control white matter, Mann-Whitney U, p<0.001), the density of T-cells varied from 0 to 113 

cells / HPF. This was not a function of the primary cancer type nor of any clinical features 

tested, e.g. control of the primary cancer, presence of extracranial metastases, intra-cranial 

location, growth pattern, markers of aggressive growth/invasion or patient age (all comparisons 

non-significant by Kruskal-Wallis test).  Low B-cell (CD20-positive) infiltration was observed in 

all regions (Figure 2A).  

 

Peritumoral T- cell infiltrates were further stained for CD4, CD8, FOX-P3 and PD-1 (Figure 2B). 

Mean ratio of cytotoxic (CD8+) to helper (CD4+) cells in the peritumoral region was 1.5:1, with 

no significant difference observed by primary cancer or any other biological factor relating to 

the metastasis or the patient (Kruskal-Wallis & Friedman’s Analysis of Variance by Ranks tests).  

The percentage of regulatory, FOX-P3 positive T cells varied from 34% in the core to 24% at the 



leading edge and 16% in the peritumoral region, with a lower density of FOX-P3 positive cells in 

those brain metastases with extracranial metastases (Mann-Witney U, p=0.001) and those 

presenting with a previously-treated primary cancer (Mann-Witney U, p=0.012). Regarding 

possible susceptibility to existing immunotherapy drugs, 52% of T-cells in the peritumoral 

region were PD-1 receptor positive (compared to 15% in core and 25% at leading edge) and the 

proportion of T-cells that were PD-1 positive was no greater around or in those BMs expressing 

PD-L1. PD-L1 staining was detected in 13/26 tumors studied with no relation to the primary 

cancer nor the levels of immune cells seen and no effect on patient survival in this series.  

 

Peritumoral T cells are associated with low FA and prolonged patient survival 

The peritumoral density of CD3+ T-cells was the only significant biological difference observed 

between the high and low FA groups (Mann-Whitney U, p=0.037); there were no differences in 

the presence of other immunoreactive cells in the same region (macrophages p=0.867, B-cells 

p=0.074, all immune cells combined p=0.232) nor in vascularity (CD34+ blood vessels p=0.673). 

The continuous values for peritumoral T-cell density and peritumoral FA were compared to 

matched samples and these correlated strongly (Spearman’s rho = -0.676, p=0.003), whereas 

there was no significant correlation with other MRI features such as the degree of T2 oedema 

(0.233, p=0.262). There was no difference in the mean diffusivity (MD) in those cases with high 

versus low peritumoral T-cell infiltration (median samples test p=0.684) and no correlation of 

the MD with T-cell density (Spearman 0.113, p=0.599). 



The differential response in different brain metastases is clinically relevant, since increased 

peritumoral CD3+ T-cell density was significantly associated with prolonged survival time 

(median 8.1 months vs. 5.2 months, Log Rank 5.77, p=0.016; Figure 2C, Table 2B-D). When 

further categorised into 3 groups (<5, 5-25 and >25 immunoreactive cells per high power field), 

those patients with moderate peritumoral CD3+ T-cell infiltration appeared to be at no 

advantage compared to those with low infiltration, whereas those with the highest infiltration 

lived over twice as long (median 11.7 months vs. 5.1, 5.2 months for moderate and low groups 

respectively, Log Rank (pooled) =10.06, 2 d.f., p=0.007) (Figure 1G, Figure 2D). A number of 

important biological factors were excluded as potential confounders including macrophage, B-

cell, T-cell subtypes (CD4/8/FOX-P3/PD-1), growth pattern (invasive or pseudo-encapsulated), 

metalloproteinases (MMP 2, 9, 13) or metastasis-inducing proteins (19), cellularity, Ki67 

proliferative index, vascularity, necrosis, connective tissue density at the leading edge and 

clinical factors, such as extracranial metastases, primary cancer, age and performance status. 

However, when both low FA and high peritumoral levels of T-cells were included in Cox’s 

multivariate analysis either alone (Table 2A & B) or with the other potentially confounding 

variables (Table 2D), high peritumoral T cell density completely confounds low peritumoral FA 

in its association with patient survival times so rendering the contribution from FA completely 

insignificant (Table 2C). This result suggests that both are a reflection of the same or associated 

phenomenon irrespective of the other variables.  

 

 



Discussion 

Since the nature of samples obtained in this study are not routinely available in clinical practice 

unless intentionally performing a supramarginal resection (7,8), this is the first in vivo 

examination of the relationship between white matter disruption and inflammation for BMs. 

Here, we have shown for the first time that the FA in the peritumoral region is closely 

associated with the density of CD3+ T-cell infiltration but the MD is not.  Both increased T-cell 

infiltration and reduced FA (corresponding to more white matter tract disruption) are 

associated with prolonged overall survival time after resection of the metastasis, and one 

parameter completely confounds the other in this respect. Since all the imaging and biological 

data are obtained from the same region using image guided surgical procedures, we suggest 

that FA in the peritumoral region is possibly acting as a surrogate marker of the immune 

response to the BM. This is a novel finding which further supports the existing evidence for the 

tumor microenvironment in mediating BM behaviour and adds the possibility of assaying this 

inflammatory response non-invasively in patients with different primary cancers, in a clinically 

relevant context, using a widely available and studied imaging technique.  

The MRI characteristics of BMs have been extensively studied previously using DWI and DTI and 

readings obtained in our series are entirely in keeping with those previously recorded, although 

not their interpretation. Even those studies which focused on the B-BM interface by measuring 

changes in the peritumoral region have focused exclusively on invasion (11,12). However, the 

brain is uniquely sensitive to inflammatory changes and hence white matter disruption, 

assessed by changes in anisotropic diffusion, have been shown in a variety of pathologies in 



large numbers (20). In contrast to glioma, brain metastases do not diffusely infiltrate the brain, 

therefore the change in white matter signal may have a different cause than simple invasion.  

Since the CNS is an immune privileged environment, the DTI changes may be inflammatory, as 

suggested by post mortem (21), animal (10) and now in vivo human study. 

 

Our patient group is not unusual except that traditional predictive factors such as age and 

performance status - which are incorporated in scoring systems (22) - were not significant for 

survival. However, all the patients selected for neurosurgical intervention would tend to be of 

high performance status and younger age in any case, explaining this finding.  The image 

guidance system used is of the sort routinely used in clinical neurosurgical practice in Europe 

and North America and localisation accuracy is dependent on a number of factors from the 

fidelity of the planning MRI to the image registration algorithms. Accuracy could potentially be 

improved by using rigid frame based neuro-navigation or a robot mounted tool to take samples 

as opposed to a hand held forceps, but this would limit the angle of sampling and ability to 

manoeuvre the probe to the true B-BM interface under direct vision and navigation. Finally, in 

neuro-navigation there is an issue of brain shift where the pre-registered navigation loses some 

accuracy once the dura is opened and CSF is released. Although this can be corrected for 

potential inaccuracy using intraoperative ultrasound, this procedure is not routine clinical 

practice as it requires intense computational power and incurs a time delay, for little benefit in 

accuracy when dealing with mostly superficial tumors (metastases are usually seen at the grey-



white matter zone), where underlying brain edema often balances the loss of CSF on opening 

the dura.  

 

Immune response and in particular quantifying tumor-associated CD3+ T-cells is currently of 

great interest as a means of improving prognostication and developing therapies in cancer 

medicine. A small number of descriptions have disagreed on the degree of T cell infiltration in 

brain metastases from solid organ cancers (5,23). Here we show there is considerable variation 

in inflammatory cells with location, and this does not depend on the primary tumor type or the 

growth pattern of the BM; this is important in studying the biology of these tumors, given 

recent study has suggested that there may be more and less locally invasive subtypes(1). 

Furthermore proteins known to be involved in local invasion and recently found to be highly 

associated with local recurrence and overexpressed at the BM leading edge (19) do not appear 

to modulate the local cellular immune response, nor did the BM expression of PD-L1. The latter 

result suggests more caution is needed if PD-L1 expression is to be taken as the sole marker of 

susceptibility to immune modulating therapies in some primary types (e.g. melanoma)(5).  

There is an urgent need for better biomarkers of susceptibility to immunotherapy. These 

treatments, although potentially huge in their impact on survival for patients with metastatic 

disease, are only effective in some cases (perhaps 20-50% depending on estimates) and they 

have considerable costs, both financial and in terms of potentially harmful side effects. There 

remains no standard criteria for predicting tumor response and responses are difficult to 

distinguish during tumor growth using conventional imaging although reports using other 



modalities are emerging(24). Diffusion MRI is a well-established technique with huge numbers 

of reports on the theoretical basis and practical application in neuro-oncology imaging. It is 

therefore highly important if this technique could be re-purposed to predict in advance of 

obtaining tissue (often not performed for brain metastases patients with an established 

primary cancer) whether there is an “immune active” microenvironment in this case T-cell 

infiltration, which is known to be a predictor of response to immunotherapy(25). Further 

longitudinal study with imaging at multiple time points or after immunotherapy would be 

important in validating this finding although repeat, corroborative tissue sampling from 

peritumoral brain is unlikely to be obtained in the future. 

 

In conclusion we have tested and excluded the hypothesis that the immune reaction to brain 

metastases depends on tumor factors such as primary cancer type, growth pattern and 

expression of proteins mediating local invasion and recurrence. We have shown instead that 

the CD3+ T-cell density in the peritumoral region is the only biological factor independently 

associated with overall survival for patients with an operated brain metastasis from solid organ 

cancers. Higher T-cell infiltration in this region co-localises with white matter disruption and a 

decrease in anisotropic diffusion as measured non-invasively by DTI. Since the immune 

response is a marker of susceptibility to immune modifying drugs and most patients with brain 

metastases are not suitable for resection and hence tissue biomarkers, this is therefore a 

routinely available clinical technique that could in future be used as part of the work up before 

considering immunotherapy. 
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Table 1: Clinical features of patients studied. 

Characteristic Number % of total 

Age at surgery / years (range) 62.9 (23.8 – 76.0) 

Gender Female 14 53.8% 

Male 12 46.2% 

Karnofsky 
performance score 

80 5 19.2% 

90 18 69.2% 

100 3 11.5% 

Primary cancer Non-small cell lung 13 50% 

Breast 4 15.4% 

Melanoma 4 15.4% 

Colorectal 2 7.7% 

Renal  1 3.8% 

Other 2 7.7% 

Extra-cranial 
metastases  

Absent 18 69.2% 

Present 8 30.8% 

Control of primary 
disease  

Synchronous 9 34.6% 

Controlled 17 65.4% 

Adjuvant WBRT*  
(30Gy in 10#) 

No 5 19.2% 

Yes 21 80.8% 

Adjuvant 
chemotherapy  

None 13 50.0% 

Yes 9 34.6% 

Targeted agent 4 15.4% 

Overall Survival /months (range) 5.8 (1.6 – 15.5) 

Intracranial 
progression 
 

None 16 61.5% 

Local 7 26.9% 

Distant 3 11.5% 

Progression free survival /months(range) 3.8 (0.2 – 12.9) 

*WBRT = whole brain radiotherapy 

 

 



Table 2: Multivariate Cox proportional hazards model for overall survival. Models 

incorporating:  A. All factors that were significant at univariate Log Rank analysis. B. All factors 

significant at univariate analysis but with T cell density substituted for peritumoral fractional 

anisotropy (FA). C. Only FA and peritumoral T-cell infiltration, which confound one another. D. 

All factors significant at univariate analysis including both FA and peritumoral T-cell density.  

A HR for death 95% CI for HR Sig. 

Adjuvant whole brain radiotherapy given 0.08 0.01 – 0.51 0.008* 

Tumor size: longest axis > 30mm 2.80 0.85 – 9.25 0.091 

Low peritumoral FA 

(more white matter tract disruption) 
0.21 0.06 – 0.82 0.024* 

B HR for death 95% CI for HR Sig. 

Adjuvant whole brain radiotherapy given 0.10 0.03 – 0.39 0.001* 

Tumor size: longest axis > 30mm 3.37 1.29 – 8.81 0.013* 

High peritumoral density of CD3+ T-cells 0.40 0.13 – 1.25 0.114 

C HR for death 95% CI for HR Sig. 

Low peritumoral FA 

(more white matter tract disruption) 
0.96 0.26 – 4.19 0.964 

High peritumoral density of CD3+ T-cells 0.08 0.12 – 0.49 0.007* 

D HR for death 95% CI for HR Sig. 

Adjuvant whole brain radiotherapy given 0.29 0.04 – 2.33 0.242 

Tumor size: longest axis > 30mm 3.11 0.87 – 11.18 0.082 

High peritumoral density of CD3+ T-cells 0.09 0.01 – 1.13 0.062 

Low peritumoral FA 

(more white matter tract disruption) 
0.83 0.11 – 6.58 0.862 

 



Figure 1: Two different populations of brain metastases identified by diffusion tensor imaging 

(DTI). A. lung adenocarcinoma metastasis which shows little white matter disruption and has a 

high peritumoral fractional anisotropy (FA) value at the biopsy location shown; B. H&E of 

biopsy; C. CD3 stained serial section showing sparse T cell infiltration in the same region (inset 

magnified). D. In contrast, a breast cancer metastasis shows more visible white matter change 

and the FA value in the peritumoral region shown is lower. E. H&E, F. CD3 stained section of 

biopsy. Here, there is dense peritumoral T cell infiltration (inset, magnified). G. Values of FA 

differentiated categories of peritumoral CD3+ T-cell density in the co-localised image-guided 

biopsy regions, the differences are significant (Kruskal-Wallis, p=0.033). H. Cases with high 

peritumoral FA (>median) died significantly sooner after neurosurgical resection of their 

metastasis than those with a low peritumoral FA (9.9 months vs. 5.3 months, log rank statistic = 

4.566, p=0.033).  

 

 

 

 

 

 

 



Figure 2: Cellular immune reaction to brain metastases. Absolute numbers of immunoreactive 

cells per high powered field (cells/HPF) were counted in specimens obtained from image-

guided resection of brain metastases. A. Highest infiltrates were present in the peritumoral 

region for both CD68+ macrophages (median 62 cells/HPF, 95% CI 45 – 105) and CD3+ T-cells 

(median 16 cells/HPF, 95% CI 6 – 25) whilst few or no CD20+ B cells were seen (median 0 

cells/HPF, 95% CI 0.1 – 1.1). B. T-cells seen were a mixture of CD8+ effector cells and CD4+ 

helper cells, with PD-1 receptor positive and regulatory FOX-P3 positive cells occurring 

predominantly at the tumor edge and peritumoral region. C. High peritumoral T-cell count (>16 

cells per PHF) was associated with improved overall survival times for resected brain 

metastases, compared to lower than median count (<16 cells per HPF) (log rank test = 5.77, p = 

0.016). D. Highest peritumoral T-cell counts (>25 per HPF) were associated with longer overall 

survival times compared to moderate (5-25) and low (<5) T-cell counts (Log Rank statistics = 

10.15, 4.84 and p = 0.001, 0.028 respectively). There was no significant difference between 

moderate and low T-cell counts (Log Rank 0.242, p=0.623). 
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