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A CONTINUITY QUESTION OF DUBINS AND SAVAGE
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Abstract

Lester Dubins and Leonard Savage posed the question as to what extent the

optimal reward function U of a leavable gambling problem varies continuously

in the gambling house Γ, which specifies the stochastic processes available to a

player, and the utility function u, which determines the payoff for each process.

Here a distance is defined for measurable houses with a Borel state space and

a bounded Borel measurable utility. A trivial example shows that the mapping

Γ �→ U is not always continuous for fixed u. However, it is lower semicontinuous

in the sense that, if Γn converges to Γ, then lim inf Un ≥ U . The mapping

u �→ U is continuous in the supnorm topology for fixed Γ, but is not always

continuous in the topology of uniform convergence on compact sets.

Dubins and Savage observed that a failure of continuity occurs when a sequence

of superfair casinos converges to a fair casino, and queried whether this is the

only source of discontinuity for the special gambling problems called casinos.

For the distance used here, an example shows that there can be discontinuity

even when all the casinos are subfair.
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1. Introduction

A basic question about any problem of mathematics is how the solution depends

on the conditions. For a stochastic control problem, it is thus natural to ask how

the optimal reward varies as a function of the stochastic processes available to the

controller and of the reward structure. In the Dubins-Savage (1965) formulation, the

processes available are determined by a gambling house Γ which specifies for each state

x the set Γ(x) of possible distributions for the next state. The worth of each state x

to a player is the value u(x) of the utility function at the state. In a leavable gambling

problem a player chooses, in addition to one of the processes determined by Γ, a time

to stop the game, and receives in reward the expected utility at the time of stopping.

The optimal reward U(x) is the supremum of the possible rewards starting from state

x. (Precise definitions are in the next section.)

Dubins and Savage ([3], page 76) suggest that a notion of convergence be defined

for gambling houses in order to study the extent to which U varies continously in Γ

and u. For the notion of convergence introduced in section 3 below, a trivial example

in section 4 shows that the mapping Γ �→ U is not continuous in general. However,

by Theorem 1, it is lower semicontinuous in the sense that, for Γn converging to Γ,

lim inf Un ≥ U . Also, by Theorem 2, the mapping is continuous from below in the

sense that, when the Γn increase to Γ, then lim Un = U . By Corollary 1 in section 5,

the mapping u �→ U is continuous in the supnorm topology. A simple example shows

that the mapping is not always continuous for the topology of uniform convergence on

compact subsets of X. Nonleavable gambling problems are discussed briefly in section

6, where examples are given to show that the analogues to Theorems 1 and 2 do not

hold for these problems. However, the analogue to Corollary 1 remains true.

The interesting special class of gambling problems called casinos are introduced in

section 7. Dubins and Savage observed ([3], page 76) that a discontinuity occurs when

a sequence of superfair casinos converges to a fair casino (cf. Example 6 in section

8). They surmised that this might be the only source of discontinuity for casinos

with a fixed goal. For the definition of convergence used here, Example 8 shows that

a discontinuity can occur even when all the casinos are subfair. However, Dubins

and Meilijson (1974) proved a continuity theorem for subfair casinos using a quite
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different notion of distance. A brief discussion of their work is in section 9. The

final section suggests the possibility of analogous results for continuous-time stochastic

control problems.

There is related work available for control problems formulated as Markov decision

processes including some very general results for finite horizon and discounted models

given by Langen (1981). There is little overlap with the main results here, which

concern infinite horizon problems with no discounting.

The next section presents the necessary definitions and some general background

material on the Dubins-Savage theory.

2. Preliminaries

A Dubins-Savage gambling problem is composed of a state space or fortune space

X, a gambling house Γ, and a utility function u. The gambling problems of this paper

are assumed to be measurable in the sense of Strauch (1967). This means that X is

assumed to be a nonempty Borel subset of a complete separable metric space. So, in

particular, X is separable metric. The gambling house Γ is a function that assigns to

each x ∈ X a nonempty set Γ(x) of probability measures defined on the Borel subsets

B(X) of X. Let P(X) be the set of all probability measures defined on B(X) and

give P(X) the usual weak* topology. The set {(x, γ) : γ ∈ Γ(x)} is assumed to be a

Borel subset of the product space X × P(X). The utility function is a mapping from

X to the real numbers with the usual interpretation that u(x) represents the value to

a player of each state x ∈ X. In this paper we assume that u is bounded and Borel

measurable.

A strategy σ is a sequence σ0, σ1, . . . such that σ0 ∈ P(X), and, for n ≥ 1, σn is a

universally measurable mapping from Xn into P(X). A strategy σ is available in Γ at

x if σ0 ∈ Γ(x) and σn(x1, . . . , xn) ∈ Γ(xn) for every n ≥ 1 and (x1, . . . , xn) ∈ Xn.

Every strategy σ determines a probability measure, also denoted by σ, on the Borel

subsets of the infinite history space H = X × X × · · · with its product topology. Let

X1, X2, . . . be the coordinate process on H. Then, under σ, X1 has distribution σ0 and,

for n ≥ 1, Xn+1 has conditional distribution σn(x1, . . . , xn) given X1 = x1, . . . , Xn =

xn.
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We will concentrate on leavable gambling problems in which a player chooses a time

to stop play as well as a strategy. A stop rule is a universally measurable function

from H into {0, 1, . . .} such that whenever t(h) = n and h′ agrees with h in the first

n coordinates, then t(h′) = n. It is convenient to assume, as we now do, that, for all

x, the point mass measure δ(x) ∈ Γ(x). This does not affect the value of the optimal

reward function defined below, but does simplify some algebraic expressions in the

sequel.

A player, who begins with fortune x selects a strategy σ available at x and a stop

rule t. The player’s expected reward is then
∫

u(Xt) dσ

where X0 = x. The optimal reward function is defined for x ∈ X to be

U(x) = sup
∫

u(Xt) dσ

where the supremum is over all σ at x and all stop rules t. The n-day optimal reward

function Un is defined, for n ≥ 1 in the same way except that stop rules are restricted

to satisfy t ≤ n.

The one-day operator G = GΓ is defined on the collection M(X) of bounded

universally measurable functions g by

Gg(x) = sup{
∫

g dγ : γ ∈ Γ(x)}, x ∈ X.

By Theorem 2.15.1 of [3], the n-day optimal rewards Un can be calculated by backward

induction using G:

U1 = Gu, Un+1 = GUn. (2.1)

Because the universal measurability of the Un was shown in [13], the operator G is

well-defined on these n-day optimal reward functions. Notice that

Un = Gnu (2.2)

where Gn is the composition of G with itself n times. Furthermore, it follows easily

from the definitions of U and the Un that

Un ≤ Un+1 ≤ U and U = lim
n

Un. (2.3)



Short title 5

3. Convergence of gambling houses

To define a notion of convergence for gambling houses on X, first let dV be the total

variation distance defined for probability measures γ, λ ∈ P(X) by

dV (γ, λ) = sup{|
∫

g dγ −
∫

g dλ| : g ∈ M(X), ‖g‖ ≤ 1}

where ‖g‖ = sup{|g(x)| : x ∈ X} is the supremum norm.

Next let dH be the Hausdorff distance on subsets of P(X) associated with dV ; that

is, for subsets C, D of P(X) let

dH(C, D) = inf{ε ≥ 0 : C ⊆ Dε, D ⊆ Cε},

where Dε (respectively, Cε) is the set of all γ ∈ P(X) such that dV (γ, D) ≤ ε

(respectively, dV (γ, C) ≤ ε). Finally, for gambling houses Γ, Λ on X, let

D(Γ, Λ) = sup
x∈X

dH(Γ(x), Λ(x)).

A sequence of houses Γn is now said to converge to Γ if D(Γn, Γ) → 0 and we write

Γn → Γ if this holds. Note that Γn → Γ means that dH(Γn(x), Γ(x)) → 0 uniformly

in x.

Remark 1. Other measures of distance for gambling houses can be obtained by fol-

lowing the procedure above starting from a different measure of distance on P(X). For

example, suppose that the topology on the state space X is given by a bounded metric,

say ρ : X × X �→ [0, 1] and define the space of 1-Lipschitz functions:

L(X) = {g : g : X �→ R, (∀x, y)(|g(x) − g(y)| ≤ ρ(x, y))}.

The well-known Kantorovich metric on P(X) is

dK(γ, λ) = sup{
∫

g dγ −
∫

g dλ : g ∈ L(X)}

= sup{|
∫

g dγ −
∫

g dλ| : g ∈ L(X)}.

The corresponding Hausdorff distance dHK on subsets of P(X) and the distance DK

on gambling houses can be defined by analogy with dH and D above. It is easy to

see (and probably well-known) that dK is dominated by dV . It follows that DK is

dominated by D.
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4. Continuity with respect to Γ

The following trivial example shows that the mapping Γ �→ U is not continuous

in general for the distance D defined above. Some more interesting examples will be

given in section 8.

Notation: When a sequence {Γn} is considered below, the notation Un is used for

the optimal reward function of the house Γn, for each n, in order to avoid confusing it

with the n-day optimal reward Un of a given house Γ. Similarly, Uk
n = Gk

Γn
u is written

for the k-day optimal reward function for Γn.

Example 1. Let X = {0, 1} and u(0) = 0, u(1) = 1. Suppose that Γ(0) = {δ(0)} , Γ(1) =

{δ(1)} and, for n ≥ 1, Γn(0) = {δ(0), (1−1/n)δ(0)+(1/n)δ(1)} , Γn(1) = {δ(1)}. Then

Γn → Γ, but Un(0) = 1 for all n ≥ 1 and U(0) = 0.

Continuity does hold for finite horizon problems and there is a form of lower semi-

continuity in general.

Theorem 1. Suppose that Γn → Γ. Then

(a) ‖Uk
n − Uk‖ → 0 as n → ∞, for all k ≥ 1,

(b) lim infn Un(x) ≥ U(x), for all x ∈ X.

A lemma is needed for the proof.

Lemma 1. Let u, v ∈ M(X); γ, λ ∈ P(X); C, D be nonempty subsets of P(X); and

Γ and Λ be gambling houses on X. Then the following hold:

(i) | ∫ u dγ − ∫
u dλ| ≤ ‖u‖ · dV (γ, λ),

(ii) | supγ∈C

∫
u dγ − supλ∈D

∫
u dλ| ≤ ‖u‖ · dH(C, D),

(iii) |GΓu(x) − GΛu(x)| ≤ ‖u‖ · dH(Γ(x), Λ(x)) ≤ ‖u‖ · D(Γ, Λ), x ∈ X,

(iv) | supγ∈C

∫
u dγ − supγ∈C

∫
v dγ| ≤ ‖u − v‖,

(v) |GΓu(x) − GΓv(x)| ≤ ‖u − v‖, x ∈ X,

(vi) ‖Gk
Γu − Gk

Λu‖ ≤ k‖u‖ · D(Γ, Λ).

Proof. Part (i) is clear if ‖u‖ = 0. If not, then

|
∫

u dγ −
∫

u dλ| = ‖u‖ · |
∫

u

‖u‖ dγ −
∫

u

‖u‖ dλ| ≤ ‖u‖ · dV (γ, λ)
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where the inequality is by definition of dV .

For part (ii), let ε > 0 and choose γ∗ ∈ C such that

∫
u dγ∗ ≥ sup

γ∈C

∫
u dγ − ε.

Then

sup
γ∈C

∫
u dγ − sup

λ∈D

∫
u dλ ≤

∫
u dγ ∗ − sup

λ∈D

∫
u dλ + ε

= inf
λ∈D

[
∫

u dγ ∗ −
∫

u dλ] + ε

≤‖u‖ · inf
λ∈D

dV (γ∗, λ) + ε

=‖u‖ · dV (γ∗, D) + ε ≤ ‖u‖ · dH(C, D) + ε.

The second inequality in the calculation above is by part (i). Because ε is arbitrary, it

follows that

sup
γ∈C

∫
u dγ − sup

λ∈D

∫
u dλ ≤ ‖u‖ · dH(C, D).

By symmetry, the same inequality holds when the left hand side is replaced by its

negative. So part (ii) follows.

The first inequality of part (iii) is the special case of part (ii) when C = Γ(x) and

D = Λ(x). The second inequality is by definition of the distance D.

For part (iv), calculate as follows:

sup
γ∈C

∫
u dγ = sup

γ∈C

∫
((u − v) + v) dγ

≤ sup
γ∈C

∫
(u − v) dγ + sup

γ∈C

∫
v dγ

≤‖u − v‖ + sup
γ∈C

∫
v dγ.

By symmetry, the same inequality holds with u and v interchanged, and part (iv)

follows.

Part (v) is the special case of part (iv) when C = Γ(x).

The proof of part (vi) is by induction on k. The case k = 1 is by part (iii). Assume
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the desired inequality holds for k, and calculate as follows:

‖Gk+1
Γ u − Gk+1

Λ u‖ =‖GΓ(Gk
Γu) − GΛ(Gk

Λu)‖
≤‖GΓ(Gk

Γu) − GΛ(Gk
Γu)‖ + ‖GΛ(Gk

Γu) − GΛ(Gk
Λu)‖

≤‖Gk
Γu‖ · D(Γ, Λ) + ‖Gk

Γu − Gk
Λu‖

≤‖u‖ · D(Γ, Λ) + k‖u‖ · D(Γ, Λ).

The penultimate inequality uses parts (iii) and (v); the final inequality uses the easily

checked fact that ‖Gk
Γu‖ ≤ ‖u‖ and the inductive assumption.

�

Now, to prove part (a) of Theorem 1, apply part (vi) of the lemma to see that

‖Uk
n − Uk‖ = ‖Gk

Γn
u − Gk

Γu‖ ≤ k‖u‖ · D(Γn, Γ),

which converges to 0 as n → ∞ by hypothesis.

To prove part (b) of the theorem, let ε > 0 and x ∈ X. By (2.3) there exists k so

that Uk(x) = Gk
Γu(x) ≥ U(x) − ε. By part (a),

|Uk
n(x) − Uk(x)| → 0 as n → ∞.

Hence,

lim inf
n

Un(x) ≥ lim inf
n

Uk
n(x) = Uk(x) ≥ U(x) − ε.

Because ε is arbitrary, the proof of part (b) is complete.

Remark 2. A version of Theorem 1 can be proved for the distance DK , which arises

from the Kantorovich distance dK on P(X) as explained in Remark 1. For the proof of

the analogue of part (vi) of Lemma 1, one needs to know that if u is 1-Lipschitz, then

the same is true of GΓu and GΛu. A condition on a gambling house Γ, called Λ(1), is

given in [8] that guarantees that GΓ preserves the space L(X) of 1-Lipschitz functions.

Using this result, one can show that if Γn converges to Γ in DK distance and if Γ and

all the Γn satisfy Λ(1), then parts (a) and (b) of Theorem 1 hold as before.

Remark 3. As a referee observed, another proof of part (a) of Theorem 1 can be

based on a coupling of strategies that are close together in the total variation distance.

Another referee has pointed out that part (b) of Theorem 1 follows from part (a). Thus
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the lower semicontinuity property will be valid for any topology on gambling houses

for which property (a) holds.

Suppose now that the houses Γn approach Γ from below so that, in particular,

Un ≤ U for all n. Thus, if Γn → Γ, then, by Theorem 1, Un → U . However, the

convergence condition is not needed in this case.

Theorem 2. Suppose that, for all x ∈ X and all n, Γn(x) ⊆ Γn+1(x) ⊆ Γ(x), and

∪nΓn(x) = Γ(x). Then limn Un(x) = U(x) for all x.

Proof. Let Q = limn Un. The limit is well-defined since Un ≤ Un+1 for all n. These

inequalities hold because all strategies available in each Γn are also available in Γn+1.

Also u ≤ Q ≤ U because u ≤ Un ≤ U for all n. To show Q ≥ U , it suffices to verify

that Q is excessive for Γ ([3], Theorem 2.12.1 or [9], Lemma 3.1.2). That is, it suffices

to show that, for x ∈ X and γ ∈ Γ(x), that
∫

Q dγ ≤ Q(x). Now γ ∈ Γ(x) implies that

γ ∈ Γn(x) for n sufficiently large. Also Un is excessive for Γn ([3], Theorem 2.14.1 or

[9], Lemma 3.1.4), so
∫

Un dγ ≤ Un(x) for n sufficiently large. Hence, for γ ∈ Γ(x),
∫

Q dγ =
∫

lim
n

Un dγ = lim
n

∫
Un dγ ≤ lim

n
Un(x) = Q(x).

�

There is no result analogous to Theorem 2 for the case when the Γn approach Γ

from above. This is illustrated by the following example.

Example 2. Let X, u, Γ be as they were in Example 1. For n ≥ 1, define

Γn(1) = {δ(1)}, Γn(0) = {δ(0)} ∪ {(1 − 1/k)δ(0) + (1/k)δ(1) : k ≥ n}.

Then Γn+1(x) ⊆ Γn(x), and ∩nΓn(x) = Γ(x) for all n and x = 0, 1. However, U(0) = 0

and Un(0) = 1 for all n.

5. Continuity with respect to u

In this section, the state space X and gambling house Γ are held constant, and the

optimal reward function U is considered as a function of the utility u.

Lemma 2. Let (X, Γ, u) and (X, Γ, w) be gambling problems with optimal reward func-

tions U and W , respectively. Then ‖U − W‖ ≤ ‖u − w‖.
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Proof. Each strategy σ and stop rule t determine a distribution for the random state

Xt. Fix x and let C be the collection of all such distributions that can be obtained by

choosing a strategy σ available in Γ at x and a stop rule t. Then U(x) = supγ∈C

∫
u dγ

and W (x) = supγ∈C

∫
w dγ. Now apply Lemma 1(iv) to see that |U(x) − W (x)| ≤

‖u − w‖. �

An immediate corollary is the continuity of the optimal reward as a function of the

utility in the supnorm topology.

Corollary 1. Let (X, Γ, u) and (X, Γ, un), n = 1, 2, . . . be gambling problems with

optimal reward functions U and Un, n = 1, 2, . . ., respectively. If

‖un − u‖ → 0, then ‖Un − U‖ → 0.

The optimal reward is not a continuous function of the utility for the topology of

pointwise convergence, or the topology of uniform convergence on compact subsets.

The latter topology corresponds on metric spaces to the topology of “continuous con-

vergence” used by Langen [7] in his study of related questions for dynamic programming

models. Here is an example.

Example 3. Let X = N be the set of positive integers, and, for each n ∈ N, let

Γ(n) = {δ(n), δ(n + 1)}. Then there is a strategy at each state under which the

sequence of states moves deterministically up in steps of size 1. Now let un be the

indicator function of {n, n + 1, . . .} so that un converges pointwise to the function u

which is identically zero. It is trivial to check that, for each n, the optimal reward

function for (X, Γ, un) is identically equal to 1, and that for (X, Γ, u) is identically

zero.

6. Nonleavable gambling problems

A nonleavable gambling problem has the same three ingredients (X, Γ, u) as a

leavable problem. However, in a nonleavable problem, the player is not allowed to

stop the game. (The assumption that δ(x) ∈ Γ(x) for all x is not made in this section.)

A player at an initial state x chooses a strategy σ available at x and is assigned as

reward the quantity u(σ) =
∫

[lim supn u(Xn)] dσ. (This definition of u(σ) is equivalent

to that of Dubins and Savage as is explained in Chapter 4 of [9].) The optimal reward
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V (x) is defined to be the supremum over all σ at x of u(σ).

The optimal reward function V is, in general, more difficult to calculate than U .

There is an algorithm for V , but unlike the backward induction algorithm (2.1) for

U , the algorithm for V is transfinite (cf. Dubins et al [1] or section 4.7 of [9]). It is

not surprising that results like Theorems 1 and 2 fail to hold in the nonleavable case.

The two examples below illustrate the failure of the analogues to the two theorems. In

both examples there will be gambling problems (X, Γ, u) and (X, Γn, u), n ∈ N with

associated optimal reward functions V and Vn, n ∈ N. Also both examples have state

space X = {0, 1} and utility function u(0) = 0, u(1) = 1.

Example 4. Let Γ(0) = Γn(0) = {δ(0)}; Γ(1) = {δ(1)}; Γn(1) = {(1 − 1/n) · δ(1) +

1/n · δ(0)} for all n = 1, 2, . . .. Clearly Γn → Γ and V (0) = Vn(0) = 0 for all n. It is

also clear that V (1) = 1. However Vn(1) = 0 for all n since under the unique strategy

available at 1 in Γn the process of states is eventually absorbed at 0 with probability

one.

Example 5. Let Γ(0) = Γn(0) = {δ(0)} for all n. Set γn = (1 − 1/n) · δ(1) +

1/n · δ(0), n = 1, 2, . . .. Then let Γn(1) = {γ1, γ2, . . . , γn} for each n and let Γ(1) =

∪nΓn(1) = {γ1, γ2, . . .}. The hypotheses of Theorem 2 are satisfied and clearly V (0) =

Vn(0) = 0 for all n. Also Vn(1) = 0 for each n since every gamble in Γn(1) assigns

probability of at least 1/n to state 0 so that the process of states must be absorbed

at 0 with probability 1. However V (1) = 1 because the player starting from state 1

in Γ can choose to play a sequence γn1 , γn2 , . . . such that the product Πk(1 − 1/nk) is

arbitrarily close to 1.

Unlike Theorems 1 and 2, the analogues to Theorem 3 and Corollary 1 do hold for

nonleavable problems. Indeed, let (X, Γ, u) and (X, Γ, u′) be gambling problems with

optimal reward functions V and V ′ respectively. Let σ be a strategy. One can check

that |u(σ) − u′(σ)| ≤ ‖u − u′‖ and it follows that ‖V − V ′‖ ≤ ‖u − u′‖. The exact

analogue to Corollary 1 is immediate.
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7. Red-and-Black Casinos

Dubins and Savage ([3], page 76) expressed particular interest in the continuity

properties of the special class of gambling problems they called casinos with a fixed

goal. These problems have the fortune space X = [0, ∞) and the utility function u

equal to the indicator of [1, ∞). So the objective of a gambler is to reach a fortune of

at least 1. The gambling house must satisfy two conditions expressed colorfully in [3]

as “a rich gambler can do whatever a poor one can do” and “a poor gambler can, on

a small scale, imitate a rich one.” For the formal definition, see [3], page 64.

The next section has three examples to illustrate how discontinuities can occur in

the special case of casinos with a fixed goal, and to answer, in part, the question raised

by Dubins and Savage about such discontinuities. A different approach to the same

question due to Dubins and Meilijson [2] is sketched in section 9.

The examples to follow will, for convenience, be based on the red-and-black casinos

of Dubins and Savage ([3], Chapter 5). For each w ∈ [0, 1], the red-and-black casino

with parameter w is the gambling house Γw defined by

Γw(x) = {γw(s, x) : 0 ≤ s ≤ x}, x ∈ [0, ∞)

where

γw(s, x) = wδ(x + s) + w̄δ(x − s).

(Here w̄ = 1 − w.) The optimal reward function for Γw is denoted by Uw.

Here are a few facts from [3]:

1. For 1/2 < w ≤ 1, Γw is superfair and Uw(x) = 1 for all x > 0.

2. For w = 1/2, Γw is fair and Uw(x) = x for 0 ≤ x ≤ 1.

3. If 0 < w < 1/2, Γw is subfair and Uw is continuous, strictly increasing on [0,1] with

0 < Uw(x) < x for 0 < x < 1. An optimal strategy for Γw in the subfair case is bold

play which stakes s(x) = min(x, 1 − x) whenever the current state is x ∈ [0, 1]; that is,

bold play uses the gamble γw(s(x), x) at x.

4. If 0 < w < w′ < 1/2, then Uw(x) < Uw′(x) for 0 < x < 1. (This follows from item

3 since it is easily seen that bold play in Γw is less likely to reach one than bold play

in Γw′ from an x ∈ (0, 1).)



Short title 13

5. For w = 0, Γw is trivial and Uw(x) = 0 for 0 ≤ x < 1.

Another trivial casino is ΓT defined by ΓT (x) = {δ(x)} for all x. Obviously, the

optimal reward function UT of ΓT satisfies VT (x) = 0 for 0 ≤ x < 1.

8. Three Examples

The first example is an instance of the phenomenon mentioned by Dubins and Savage

([3], page 76).

Example 6. A sequence of superfair casinos converging to a fair casino.

Let 1/2 < wn < 1 for all n and suppose that wn → 1/2 as n → ∞. A simple

calculation shows, for all x ≥ 0, 0 ≤ s ≤ x, that dV (γwn(s, x), γ1/2(s, x)) ≤ 2(wn −
1/2). Consequently, dH(Γwn(x), Γ1/2(x)) ≤ 2(wn − 1/2) for all x so that Γwn → Γ1/2.

However, by items 1 and 2 of the previous section, Uwn
(x) = 1 and U1/2(x) = x for

0 < x < 1. Hence Uwn does not converge to U1/2.

The next two examples use modifications of red-and-black defined for 0 ≤ w ≤
1, x ≥ 0, n ≥ 1 by

Γw,n(x) = {γw(s, x, n) : 0 ≤ s ≤ x}

where

γw(s, x, n) =
w

n
δ(x + s) + (1 − 1

n
)δ(x) +

w̄

n
δ(x − s).

Notice that a gambler playing at position x in the casino Γw,n, n > 1 can, by repeatedly

using γw(s, x, n), eventually achieve the same outcome as a gambler playing at position

x in Γw = Γw,1 who uses γw(s, x).

By bold play in the house Γw,n is meant the strategy that uses the gamble γw(s(x), x, n)

whenever the current state is x ∈ [0, 1]. As before s(x) = min(x, 1 − x).

Lemma 3. Assume 0 < w ≤ 1/2. Then, for all n ≥ 1, bold play is optimal in the

house Γw,n and the optimal reward function Uw,n for Γw,n equals the optimal reward

function Uw for Γw.

Proof. Let x, X1, X2, . . . be the process of fortunes of a gambler who begins with x

and plays boldly in the house Γw,n. Let Y1 be the first Xn that differs from x. Clearly,

the distribution of Y1 is γw(s(x), x). If Y1 equals 0 or 1, let Y2 = Y1. If 0 < Y1 < 1,
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let Y2 be the next Xn different from Y1. Then the conditional distribution of Y2 given

that Y1 = y1 is γw(s(y1), y1). Continue in this fashion to define x, Y1, Y2, . . . and note

that this process has the same distribution as the process of fortunes for a gambler

who begins with x and plays boldly in the house Γw. Now the probability that the

process x, X1, X2, . . . reaches 1 is the same as that for the process x, Y1, Y2, . . ., and this

probability equals Uw(x) by item 3 of the previous section. So the gambler playing in

Γw,n can reach 1 from x with probability at least Uw(x) and, hence, Uw,n(x) ≥ Uw(x).

For the opposite inequality, it suffices to show that Uw is excessive for Γw,n ([3],

Theorem 2.12.1 or [9], Theorem 3.1.1). To see that this is so, let 0 < x < 1, 0 ≤ x ≤ s

and consider

∫
Uw dγw(s, x, n) =

w

n
· Uw(x + s) + (1 − 1

n
) · Uw(x) +

w̄

n
· Uw(xs)

=
1
n

·
∫

Uw dγw(s, x) + (1 − 1
n

) · Uw(x)

≤ Uw(x).

The last inequality holds because Uw is excessive for Γw ([3], Theorem 2.14.1 or [9],

Theorem 3.1.1).

It now follows that bold play is optimal at x in the house Γw,n because it reaches 1

with probability Uw(x) = Uw,n(x).

�

Example 7. A sequence of subfair casinos converging to a trivial casino.

Let 0 < w < 1/2 and consider the sequence of casinos Γw,n. If 0 < x < 1, 0 ≤ s ≤ x,

then dV (γw(s, x, n), δ(x)) ≤ 1/n and it follows that dH(Γw,n(x), ΓT (x)) ≤ 1/n where

ΓT is the trivial house from the previous section. Thus Γw,n → ΓT . By Lemma 1 and

item 3 of the previous section, Uw,n(x) = Uw(x) > 0 = UT (x) for 0 < x < 1. So Uw,n

does not converge to UT .

Example 8. A sequence of subfair casinos converging to a subfair casino.

Let 0 < w < w′ < 1/2 and define Γn(x) = Γw(x) ∪ Γw′,n(x) for all n ≥ 1 and

x ≥ 0. As in the previous example, Γw′,n converges to the trivial house ΓT . Since

δ(x) = γw(0, x) ∈ Γw(x) for all x, the trivial house is a subhouse of Γw. So it is easy to

conclude that Γn converges to Γw. By item 4 of the previous section, Uw(x) < Uw′(x)
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for 0 < x < 1, and, by the lemma below, the optimal reward function Un of Γn is equal

to Uw′ for all n. So Un does not converge to Uw.

Lemma 4. For every n ≥ 1 an optimal strategy in Γn is to play boldly in Γw′,n. Hence,

the optimal reward function of Γn is Un = Uw′ for all n.

Proof. By Lemma 1, Uw′ = Uw′,n for all n and bold play is optimal for the house

Γw′,n. Clearly, Un ≥ Uw′ because every strategy available in Γw′,n is also available in

the larger house Γn. To see that the reverse inequality Un ≤ Uw′ also holds, it suffices to

show that Uw′ is excessive for Γn ([3], Theorem 2.12.1). Now Uw′ is certainly excessive

for Γw′,n since it is the optimal reward function for this house. So it suffices to show

that γw(s, x)Uw′ ≤ Uw′(x) for x ≥ 0, 0 ≤ s ≤ x. But
∫

Uw′ dγw(s, x) = w · Uw′(x + s) + w̄ · Uw′(x − s)

≤ w′ · Uw′(x + s) + w̄′ · Uw′(x − s)

=
∫

Uw′ dγw′(s, x) ≤ Uw′(x).

The first inequality above holds because w < w′ and Uw′ is nondecreasing; the final

inequality holds because Uw′ is excessive for Γw′ .

�

Remark 4. It was proved in [8] that subfair casinos satisfy the condition Λ(1) men-

tioned in Remark 2 and also that they are non-expansive for the Kantorovitch metric,

that is dK(Γ(x), Γ(y)) ≤ d(x, y). Moreover, a subfair casino induces an acyclic law of

motion (any monotone and strictly concave function decreases in expectation along the

trajectories). Nevertheless, example 8 shows that continuity fails even in that case.

9. A different approach to continuity

Dubins and Meilijson [2] define measures of closeness for casinos that are different

from that used above. For purposes of comparison, one of these is described here. The

definition begins with the notion of a lottery at a fortune x.

If γ is a gamble available at x in a casino Γ and Y is a random variable with

distribution γ, then the lottery θ associated with γ is the distribution of Y −x. Suppose

now that θ and θ′ are lotteries with means μ and μ′, and distribution functions F and
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F ′, respectively. A measure of distance used in [2] is

ρ(θ, θ′) =
∫ |F (x) − F ′(x)| dx

−μ − μ′ .

(The application is to subfair casinos where the lotteries have negative means.) This

distance is used to induce a measure of distance between subfair casinos for which there

are interesting continuity results (Theorem 1 and the Corollary to Theorem 2 in [2]).

It may be helpful, as was suggested by a referee, to compare the distance ρ with the

total variation distance dV for lotteries from the casinos of Example 7 in the previous

section. Let 0 < x < 1, 0 < s ≤ x and consider the gambles

γ = δ(x) ∈ ΓT (x), γn =
w

n
δ(x + s) + (1 − 1

n
)δ(x) +

w̄

n
δ(x − s) ∈ Γw,n(x)

with associated lotteries

θ = δ(0), θn =
w

n
δ(s) + (1 − 1

n
)δ(0) +

w̄

n
δ(−s).

Then dV (γ, γn) = dV (θ, θn) = 1
n → 0, but ρ(θ, θn) = 1

1−2w does not approach zero.

Thus the casinos Γw,n do not approach ΓT in the Dubins-Meilijson sense, and there is

no violation of their continuity results when Uw,n fails to converge to UT .

10. Continuous-time problems

Consider the problem of controlling a continuous-time process X = {Xt, t ≥ 0} with

state space a Borel subset B of R
n that satisfies a stochastic differential equation

Xt = x, dXt = μ(t)dt + σ(t)dWt.

Here {Wt} is a standard n-dimensional Brownian motion. The nonanticipative control

processes μ(t) and σ(t) take values in R
n and the space M

n of n × n matrices,

respectively, and satisfy appropriate conditions to insure the existence of a solution to

the equation. There is given, for each y ∈ B, a nonempty control set C(y) ⊆ R
n × M

n

from which the controller is required to choose the value of (μ(t), σ(t)) whenever Xt = y.

Assume also that the controller selects a stopping time τ for the controlled process and

receives Eu(Xτ ) where u : I �→ R is a bounded, Borel measurable utility function. Let

U(x) be the supremum of the controller’s possible rewards starting from x.
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Similar formulations of this “continuous-time leavable gambling problem” are given

by Karatzas and Zamfirescu (2006) and Karatzas and Wang (2006). An explicit

solution to the one-dimensional problem when B is an interval and u is continuous

can be found in Karatzas and Sudderth (1999). No such solution is likely in higher

dimensions. However, it is straightforward to define a distance between problems

starting from the Haussdorf distance on the control sets and proceeding by analogy with

section 3. Perhaps there are continuous-time versions of the discrete-time theorems

above.

Suppose now that the controlled processes are one-dimensional with state space

the unit interval, and that the object of the controller is to reach 1. The problem is

called a continuous-time casino problem by Pestien and Sudderth (1988) if the control

sets satisfy certain conditions similar to those assumed by Dubins and Savage in the

discrete-time case. Many of the properties from [3] have counterparts in continuous-

time. For example, the classification of casinos as being trivial, subfair, fair, or superfair

still holds. Examples similar to those of section 3 might be based on the continuous-

time red-and-black model in Pestien and Sudderth (1985).

There may also be a result for continuous-time subfair casinos analogous to those of

Dubins and Meilijson [2]. In the continuous-time case, the optimal return is a function

of the ratios μ/σ2 where μ and σ are the control variables ([11], Theorem 4.1). This

suggests defining a notion of closeness based on these ratios.
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