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Abstract 

Mitochondria play a key role in the biosynthesis of two metal cofactors, iron-sulfur (FeS) 

clusters and molybdenum cofactor (Moco). The two pathways intersect at several points, but 

a scarcity of mutants has hindered studies to better understand these links. We screened a 

collection of sirtinol-resistant Arabidopsis thaliana mutants for lines with decreased activities 

of cytosolic FeS enzymes and Moco enzymes. We identified a new mutant allele of ATM3, 

encoding the ATP-binding cassette Transporter of the Mitochondria 3 (systematic name 

ABCB25), confirming the previously reported role of ATM3 in both FeS cluster and Moco 

biosynthesis. We also identified a mutant allele in CNX2, Cofactor of Nitrate reductase and 

Xanthine dehydrogenase 2, encoding GTP 3′,8-cyclase, the first step in Moco biosynthesis 

which is localized in the mitochondria. A single nucleotide polymorphism in cnx2-2 leads to 

substitution of Arg88 with Gln in the N-terminal FeS cluster-binding motif. cnx2-2 plants are 

small and chlorotic, with severely decreased Moco enzyme activities, but they performed 

better than a cnx2-1 knockout mutant, which could only survive with ammonia as nitrogen 

source. Measurement of cyclic pyranopterin monophosphate (cPMP) levels by LC-MS/MS 

showed that this Moco intermediate was below the limit of detection in both cnx2-1 and 

cnx2-2, and accumulated more than 10-fold in seedlings mutated in the downstream gene 

CNX5. Interestingly, atm3-1 mutants had less cPMP than wild type, correlating with previous 

reports of a similar decrease in nitrate reductase activity. Taken together, our data 

functionally characterise CNX2 and suggest that ATM3 is indirectly required for cPMP 

synthesis. 

Short title: Functional characterization of CNX2 in Arabidopsis 
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Abbreviations 

ABA3, abscisic acid protein 3; ABC, ATP-binding cassette; ATM3, ABC transporter of the 

mitochondria 3; AldOx, aldehyde oxidase; cPMP, cyclic pyranopterin monophosphate; CNX, 

cofactor of nitrate reductase and xanthine dehydrogenase; Col-0, Columbia-0 ecotype; EMS, 

ethyl methanesulfonate; F1, filial 1; FeS, iron-sulfur; GSSG, glutathione disulfide; GS-S-SG, 

glutathione trisulfide; ISU/ISCU, iron-sulfur cluster assembly protein 1; Ler, Landsberg 

ecotype; mARC, mitochondrial amidoxime-reducing component; Moco, molybdenum 

cofactor; MOCS, molybdenum cofactor synthesis protein; NFS1, nitrogen fixation S (NIFS)-

like 1; SAM, S-adenosylmethionine; SNP, single nucleotide polymorphism; SSLP, simple 

sequence length polymorphism; T-DNA, transfer DNA; TMH, transmembrane helix; TOM40, 

translocator of the outer membrane 40; URM, ubiquitin-related modifier; XDH, xanthine 

dehydrogenase. 

 

 

Introduction 

 

Iron-sulfur clusters (FeS) and molybdenum cofactor (Moco) are two covalently bound metal 

cofactors that mediate different types of redox reactions. Both FeS and Moco must be 

synthesized de novo in cells because they are chemically unstable, particularly under 

aerobic conditions [1,2]. There are only a few Moco enzymes known in eukaryotes: xanthine 

dehydrogenase in purine catabolism, aldehyde oxidase, sulfite oxidase, the mitochondrial 

amidoxime-reducing components mARC1 and mARC2, and nitrate reductase [3,4]. Cells 

harbour many different FeS enzymes. At least 100 FeS proteins are found in the model plant 

Arabidopsis thaliana, which are involved in respiration, photosynthesis, DNA metabolism and 

a wide range of metabolic pathways [1,5]. 

 

Moco consists of a pyranopterin ring structure with two sulfur atoms forming an enedithiolate 

group that coordinates molybdate [6]. The biosynthesis of Moco has been primarily 

characterized in bacteria, the fungus Aspergillus nidulans, Arabidopsis and humans [2,7]. 

The pathway is largely conserved across all domains of life but has been lost from Baker’s 

yeast. Moco biosynthesis starts with the condensation of GTP into cyclic pyranopterin 

monophosphate (cPMP) by the consecutive action of GTP 3',8-cyclase and cPMP synthase 

[8], encoded by CNX2 and CNX3 in plants, respectively (Figure 1). The homologs in bacteria 

are MoaA and MoaC, and MOCS1A and MOCS1B in human. In eukaryotes, the synthesis of 

cPMP is localized in the mitochondrial matrix whereas the next steps occur in the cytosol 
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[9,10]. Two sulfurs are inserted into the pterin mediated by the concerted action of CNX5, 

CNX6 and CNX7. The CNX5 (MOCS3) protein first adenylates the C-terminal glycine of 

CNX7 (MOCS2A) and subsequently replaces the adenylate group with a sulfur, to form a 

thiocarboxylate. CNX7 binds to CNX6 (MOCS2B) to catalyse sulfur transfer to the third 

pterin ring, which is repeated for a second sulfur to form enedithiolate. In both plants and 

humans, CNX5 / MOCS3 also mediates thio-modification of cytosolic tRNAUUU (Lys), 

tRNAUUC (Glu) and tRNAUUG (Gln), with URM11 (URM1 in humans) acting as sulfur acceptor 

[11,12]. Finally, CNX1 inserts Mo into the enedithiolate group. One more maturation step is 

required for a specific class of Moco enzymes, aldehyde oxidases and xanthine 

dehydrogenases, namely sulfuration of the molybdenum atom by a highly specialized 

cysteine desulfurase, ABA3 in Arabidopsis and MOCOS in mammals [7,13,14]. 

 

FeS clusters occur mostly as rhombic Fe2S2 or cubane Fe4S4 clusters. Mitochondria and 

plastids are the main sites of FeS cluster biosynthesis. Sulfur is provided by a cysteine 

desulfurase, which is NFS1 in the mitochondria and NFS2 in the plastids. The sulfur is 

directly transferred from the enzyme active site to the scaffold protein, ISU1 (ISCU) in 

mitochondria, where it is combined with iron. Additional carrier proteins are required for 

cluster transfer to target FeS proteins, see [15,16] for reviews. Interestingly, the activities of 

cytosolic and nuclear FeS enzymes depend on NFS1 in the mitochondria in both plants and 

humans [1,17]. The plastid-localized NFS2 does not play any role in the maturation of 

cytosolic FeS enzymes, nor does ABA3 [17], which only serves to sulfurate Moco. A 

mitochondrial ATP Binding Cassette (ABC) transporter conserved in plants (ATM3/ABCB25), 

mammals (ABCB7) and yeast (Atm1) is also required for cytosolic FeS enzymes, and has 

been suggested to export a sulfur-containing compound from the mitochondria to the 

cytosol. In-vitro studies to identify the substrate of ATM3/Atm1 have focussed on glutathione 

derivatives and showed that they can transport glutathione disulfide and, in the case of 

Atm1, glutathione trisulfide [18]. 

 

The Moco and FeS biosynthetic pathways intersect in several places, as reviewed for 

bacteria [19] and modified here for Arabidopsis (Figure 1). Firstly, NFS1 provides sulfur for 

both FeS clusters and Moco in bacteria and in human cells. Studies in HeLa cells showed 

that a cytosolic form of NFS1 physically interacts with MOCS3 to provide a sulfur atom for 

subsequent relay to MOCS2A [10,20]. In plants, there is as yet no evidence for a cytosolic 

pool of NFS1, which appears to be exclusively localized to mitochondria based on GFP 

studies [21,22] and large-scale proteomics data (www.suba.live). Secondly, CNX2 / 

MOCS1A is an FeS enzyme depending on two Fe4S4 clusters, which are assembled by the 

mitochondrial FeS cluster assembly pathway. Thirdly, ATM3 in Arabidopsis is required for 
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the activity of both Moco and cytoslic FeS enzymes [9,23]. It has been suggested that cPMP 

is a substrate of ATM3, but this idea has not been tested in transport assays, and it should 

be noted that cPMP can cross membranes in co-culture experiments [24] or therapeutic 

treatments for Moco deficiency [25]. A fourth convergence point of the FeS and Moco 

pathways are enzymes that bind both types of cofactor, the cytosolic enzymes aldehyde 

oxidase and xanthine dehydrogenase. 

 

To better understand the cross-over points of the FeS and Moco pathways, we screened a 

sirtinol mutant collection for mutants with decreased aldehyde oxidase activities. We 

identified and characterised a new atm3 allele and a viable allele of cnx2 in Arabidopsis. A 

new LC-MS/MS method was developed to measure cPMP in plant samples, which revealed 

that cPMP was strongly decreased in cnx2 mutants but accumulated in a cnx5 mutant. 

cPMP was also decreased in atm3-1, providing a biochemical explanation for partially 

decreased Moco enzyme activities and why atm3 mutant alleles are found together with 

mutants in Moco biosynthesis. 

 

 

Experimental 

Plant material and genetic analysis 

Arabidopsis thaliana ecotype Columbia (Col-0) or Landsberg (Ler) were used as wild-type 

controls. The atm3-1, atm3-2 and atm3-4 lines in the Col-0 background have been described 

previously [23]. The cnx5 (sir1) mutant has also been reported previously [26], containing 

substitution of the conserved Ser149 residue to Phe, caused by a C to T point mutation 

which we confirmed by sequencing. The xd22 and xd105 lines were a gift from Florian 

Bittner and originate from a sirtinol resistance screen carried out on ethyl methanesulfonate 

(EMS)-mutagenized Arabidopsis (Ler) by Dai et al. (2005) [27]. The T-DNA insertion line 

cnx2-1 (SALK_037143 in Col-0 background) was obtained from the Nottingham Arabidopsis 

Stock Centre. Genotyping was carried out using gene-specific primers CNX2 2F and CNX2 

2R for the wild-type CNX2 allele and CNX2 2F with LBb1.3 for the T-DNA insertion. A 

PCR/restriction assay was designed to detect the xd22 point mutation, which removes a 

BsaWI site: the PCR product generated with primers CNX2endog 1F and CNX2endog 1R 

was digested with BsaWI, resulting in 3 fragments for wild-type CNX2 and 2 fragments for 

the cnx2-2 allele.  

 

Plant growth  

All seeds were vernalised for 2 days at 4°C. Seeds were sown directly onto Levington’s F2 

compost, or they were surface sterilised using chlorine gas and spread on ½-strength 
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Murashige and Skoog (MS) medium containing 0.8% (w/v) agar. When indicated 1% (w/v) 

sucrose was included. To overcome growth impairment due to diminished nitrate reductase 

activity, seedlings were grown on plates containing 2.5 mM (NH3)2succinate as the only 

nitrogen source and buffered at pH 5.6 with 2.5 mM 2-(N-morpholino)ethanesulfonic acid-

KOH [28]. Plants were grown under long-day conditions (16 hours light, 8 hours dark) at 

22°C and a light intensity of 180-200 µmol m-2 s-1 for growth on soil or 120-160 µmol m-2s-1 

for growth on agar medium. Plants for isolation of mitochondria were grown under short-day 

conditions (8 hours light, 16 hours dark) to maximize the amount of leaf material. 

 

Mapping mutations by whole genome sequencing 

Coarse mapping of the xd22 mutation was performed using simple sequence length 

polymorphism (SSLP) markers. Whole genome sequencing was carried out by the Earlham 

Institute (Norwich Research Park) using the Illumina GAIIx platform with 80 bp paired-end 

reads and ≥ 30x coverage. Sequence assembly and alignment was performed by two 

independent bioinformatics methods (1) Bowtie [29] hosted on http://bowtie-

bio.sourceforge.net/index.shtml and the Integrative Genomics Viewer [30] 

http://software.broadinstitute.org/software/igv/; (2) Cortex [31] hosted on 

http://cortexassembler.sourceforge.net/index.html. The reference Ler genome was obtained 

from http://mus.well.ox.ac.uk/19genomes/. The single nucleotide polymorphisms (SNPs) 

were filtered for EMS mutant exchanges (G>A and C>T) and a stringent level of 

homozygosity was applied (>90% of reads supporting the variant). This identified 2065 

SNPs genome-wide and 54 within the mapping interval of chromosome 2 (~12799630-

16291977). 

 

RNA extraction and cDNA synthesis 

RNA was extracted from plant material using a QIAGEN extraction kit following the 

manufacturer’s instructions. cDNA synthesis was performed using the SuperScript TM III 

Reverse Transcriptase (Invitrogen) and an oligo-dT primer as per manufacturer’s 

instructions. RT-PCR was performed using the primers ACT2 F2 and ACT2 R2 for ACTIN2, 

ATM3 RT-F1 and ATM3 RT-R1 for ATM3 and CNX2 3F and CNX2 3R for CNX2. 

 

Molecular cloning and plant transformation 

For complementation of the cnx2-2 phenotype, a genomic fragment including the promoter 

region from position -1224 and UTRs was amplified by PCR using the primers A1F and A1R 

and Phusion polymerase as per manufacturer’s instructions (New England Biolabs). The 

PCR fragment was cloned in a pUC-derived cloning plasmid using HindIII and KpnI to cut 

the vector and an In-Fusion Kit (Takara) to insert the fragment. After confirming the 
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sequence, the gene fragment was cut out using AscI and PacI and ligated into a pBIN-

derived binary vector containing a hygromycin resistance marker. cnx2-2 plants were 

transformed using the floral-dip method and Agrobacterium tumefaciens (strain GV3101). 

Successfully transformed plants were selected on medium containing 25 µg ml-1 hygromycin 

B. 

 

Treatments with cPMP  

Chemically synthesized cPMP•HBr•2H2O [32] was provided by Alexion Pharmaceuticals, CT, 

USA and dissolved in dimethyl sulfoxide. All solutions were saturated with nitrogen gas to 

minimize oxidation of cPMP.  For application of cPMP to the roots, a 1 mM stock solution of 

cPMP was diluted 10-fold in ½ MS medium containing 1% (w/v) sucrose, and this was 

injected into the ½ MS agar plates around the roots of 2-week-old cnx2-1 seedlings. For 

vacuum infiltration, a 10 mM cPMP stock solution was diluted 25-fold in 50 mM KPO4 pH 

7.2, 5 mM ascorbic acid and 0.005% (v/v) Silwet L-77. Four-week-old cnx2-2 plants were 

held up-side-down into the solution and vacuum was applied at -30 kPa for 1 min. 

Transparent patches in the leaves indicated that the solution had entered the intracellular 

spaces. These patches disappeared after 2 hours and no tissue damage was visible by the 

naked eye.  

 

Protein blot analysis 

Mitochondria were purified from 4-week-old rosette leaves using differential centrifugation 

and density gradients [33]. Mitochondrial proteins were solubilized in sample buffer (0.125 M 

Tris-HCl pH 6.8, 2% (w/v) sodium dodecyl sulfate, 10% (v/v) glycerol, 5% (v/v) 2-

mercaptoethanol, 0.1% (w/v) bromophenol blue) and separated by standard sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This was followed by transfer of the 

proteins to nitrocellulose membrane and immunolabelling with specific antibodies. Antibodies 

against ATM3 and TOM40 were as previously described [23,34]. 

 

Enzyme assays 

All enzyme activities were carried out on 4-week-old rosette leaves. Activity assays for 

aldehyde oxidase (AldOx) and xanthine dehydrogenase (XDH) were performed using in-gel 

assays as previously described [23]. Nitrate reductase activity was measured following the 

production of nitrite, essentially as reported by [35]. Aconitase activities were visualized 

using an in-gel activity staining method for small tissue samples, as described by Bernard et 

al. (2009). To confirm equal protein loading, aliquots of the protein extracts were separated 

by SDS-PAGE and stained with Coomassie, or transferred to nitrocellulose followed by 

Ponceau-S staining of the membrane. 
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cPMP measurement by LC-MS/MS 

Sample preparation and conversion of cPMP to compound Z was adapted from [8]. Whole 

seedlings or rosette leaves were ground with 1 volume ice-cold 10 mM Tris-HCl pH 7.2 per 

gram fresh weight. Insoluble debris was removed by centrifugation at 16,000 x g for 10 min 

at 4°C. Ninety µl of sample was oxidized by adding 10 µl acidic I2/KI (1% / 2% (w/v)) and 

incubated at room temperature for 20 min to convert cPMP to compound Z. Samples were 

centrifuged at 16,000 x g for 10 min at room temperature to remove precipitated protein. The 

supernatant was diluted 10-fold with 50% (v/v) acetonitrile and 5 µl was run on a XEVO TQS 

tandem quadrupole mass spectrometer. Separation was on a 100 x 2.1 mm, 2.6 µm particle 

size Accucore™ 150 Amide HILIC LC column (Thermo) using the following gradient of 0.1% 

(v/v) formic acid in H2O (Solvent A) versus acetonitrile (Solvent B), run at 500 µl min-1 and 

40ºC: 0 min, 88% B; 7.5 min, 73% B; 14 min, 50% B; 14.5 min, 50% B; 14.6 min, 88% B; 20 

min, 88% B. Compound Z formed a hydrogen adduct m/z 344, and was monitored by the 

transition 344 to 217.9 at 25V collision energy. Spray chamber conditions were 500°C 

desorbation temperature, 900 l.h-1 desolvation gas, 150 l.h-1 nebulizer gas, 7 bar nebulizer 

pressure, and a capillary voltage of 3.9 kV; the cone voltage was 30 V. The concentration of 

cPMP was estimated by the method of standard addition, using a series of wild-type 

samples spiked with increasing amounts of synthetic cPMP. 

 

Databases and bioinformatic analysis 

Amino acid sequences were obtained from the TAIR database, www.arabidopsis.org. 

Protein sequences were obtained from the UniProt server (www.uniprot.org). Unless 

otherwise stated, sequence alignments were generated using ClustalW omega 

(www.ebi.ac.uk/Tools/msa/clustalo). Shading was performed using the Boxshade server 

www.ch.embnet.org/software/BOX_form.html. Prediction of transmembrane helix formation 

was performed using TMHMM2 (www.cbs.dtu/services/TMHMM-2.0) [36,37]. 

 

Gene identifiers 

ABA3, AT1G16540; ABCB25 / ATM3, AT5G58270; ACTIN2, AT3G18780; CNX1, 

AT5G20990; CNX2, AT2G31955; CNX3, AT1G01290; CNX5, AT5G55130; CNX6, 

AT2G43760; CNX7, AT4G10100; TOM40, AT3G20000. 

 

Statistical analysis 

Statistical analysis was performed using Genstat (version 18). Specific statistical information 

is given in figure legends. 
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Results 

 

Selection of sirtinol-resistant mutants with FeS and Moco defects 

In plants, sirtinol has been used to screen for mutants in auxin signalling, an important plant 

growth hormone [26,27]. Sirtinol undergoes a series of metabolic transformations to 2-

hydroxy-1-naphthaldehyde, which is then oxidized to its cognate acid, a structural mimic of 

auxin [27]. Sirtinol-resistant mutations were found in genes encoding auxin receptors and 

downstream signalling components as expected, but also in the Moco biosynthesis pathway. 

This finding indicated that Moco-dependent aldehyde oxidases are likely to catalyze the last 

oxidation step of auxin. The aldehyde oxidase genes themselves were not found in the 

mutant screen, most likely because of genetic redundancy of the four AAO paralogs [38]. 

Interestingly, the screen also identified several mutant alleles of ATM3, encoding a 

mitochondrial ABC transporter [23].  

In the hope of identifying novel gene products acting upstream or downstream of ATM3, we 

selected two lines, xd22 and xd105, from the pool of uncharacterized sirtinol-resistant 

mutants based on (i) growth phenotypes found in atm3 alleles, such as chlorosis and narrow 

leaves [23], (Figure 2A); (ii) a strong decrease in aldehyde oxidase activity (Figure 2B); and 

(iii) decreased cytosolic aconitase activity relative to the mitochondrial isozymes (Figure 2C). 

In-gel activity assays for aldehyde oxidase showed that xd22 and xd105 had no detectable 

activity of the three isozymes that are commonly detected in wild-type leaves (Figure 2B). 

xd105 had a strong decrease in cytosolic aconitase activity, concomitant with increased 

activity of a mitochondrial isozyme. The pattern of relative band intensities for in-gel 

aconitases in xd105 was very similar to atm3-1 (Figure 2C). In the xd22 line, all three 

aconitase activities were increased, but the line was taken forward because of its growth 

phenotype.   

To investigate the possibility that the mutation in xd22 or xd105 is in the ATM3 gene, we 

tested for allelism by crossing with two different atm3 alleles. xd22 and xd105 were used as 

female parent with atm3-1 and atm3-4 as male parent. All mutations are recessive, thus 

phenotypic rescue is expected if the mutations are not in the same gene. Filial plants were 

analysed for aldehyde oxidase activities (Figure 2B) and for growth (Figure S1). Aldehyde 

oxidase activities were fully restored to wild-type levels in the F1 progeny of xd22 x atm3 

crosses, and the phenotype was comparable to wild type. In contrast, the offspring of xd105 

x atm3 crosses completely lacked aldehyde oxidase activities, and showed phenotypic 

similarities to the xd105 parent with pronounced veins and purple coloration (anthocyanin) at 

the leaf base (Figure S1). Growth of F1 xd105 x atm3-1 seedlings was more vigorous than 

the parent lines, but this may be due to hybrid effects: atm3 plants have a defect in DNA 

repair and accumulate random mutations in their genomes [39], which are outcrossed in the 
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F1. Together, the results suggest that xd105 contains a deleterious mutation in ATM3, 

whereas the xd22 phenotype is caused by a mutation in a different gene. 

 

xd105 has a mutation in ATM3 which destabilizes the protein  

Sequencing of the ATM3 gene in xd105 identified a G1271>A point mutation in exon 13 

(Figure 3A). The mutation changes a GGA codon to GAA, leading to substitution of glycine 

242 to glutamate (G424>E) in the sixth transmembrane helix (TMH6) of ATM3. The glycine 

residue is conserved in plant ATM3 and mammalian ABCB7 homologues, but not in 

Saccharomyces or bacterial Atm1 (Figure 3B). To investigate the effect of G424>E on the 

folding of TMH6, the wild-type and mutant amino acid sequences were run through 

prediction software for secondary structure. For wild-type ATM3, all six TMH were 

consistently predicted by four different prediction programs, in agreement with the crystal 

structure of yeast Atm1 [40]. The G424>E substitution in ATM3 drastically decreased the 

likelihood of TMH6, see Figure 3C for results from the TMHMM2 server and Figure S2 for 

results from other servers.  

To investigate if the mutation in xd105 affects the stability of ATM3 protein, mitochondria 

were purified from leaf tissue from wild-type, xd105 and atm3-1 plants, and subjected to 

immunoblot analysis with antibodies against the nucleotide-binding domain of ATM3. The 

immuno-reactive band corresponding to the 70-kDa monomer of ATM3 could not be 

detected in the xd105 line (Figure 3D). The antibodies recognise the N-terminal ATPase 

domain, including possible ATM3 degradation products shortened at the C-terminus, but no 

such intermediates were detected. RT-PCR analysis showed that ATM3 transcript levels in 

the xd105 mutant are similar to wild type (Figure 3E). These data suggest that disruption of 

TMH6 destabilizes the ATM3 protein, possibly by preventing its insertion into the inner 

mitochondrial membrane. It should be noted that the phenotype of xd105 is weaker than the 

atm3-1 allele lacking the nucleotide binding domain or the knockout line atm3-2, suggesting 

that some functional ATM3 remains which is below the detection limit of the antibodies. 

Taken together, we conclude that xd105 is another atm3 mutant allele and from here on is 

called atm3-5.  

 

xd22 has a mutation in CNX2 affecting the proximal FeS cluster loop 

To identify the mutation underlying the xd22 phenotype, the approximate position of the 

mutation was determined using SSLP mapping. This showed that xd22 was located on the 

right arm of chromosome 2 (Figure S3A). Whole genome sequencing identified a 

non-synonymous point mutation, G263>A in CNX2 (Figure 4A, S4B), changing a CGG 

codon to CAG and causing amino acid substitution of arginine 88 by glutamine (R88Q). R88 

is adjacent to a cysteine in the CxxxCxxC motif characteristic of the radical S-
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adenosylmethionine (SAM) superfamily of proteins. The cysteines coordinate the proximal 

Fe4S4 cluster and SAM. Arginine 88 is highly conserved amongst CNX2/MOCS1A/MoaA 

homologues in plants, fungi, mammals, and bacteria (Figure 4B). 

To confirm that the identified polymorphism in CNX2 is causing the xd22 phenotype, mutant 

plants were transformed with a 3-kb genomic sequence containing the wild-type CNX2 gene 

including the native promoter. The CNX2 transgene fully rescued the growth phenotype of 

xd22 mutants (Figure 4C, D). To further test if the healthy growth of the complemented line 

was due to restoration of the Moco biosynthesis defect, aldehyde oxidase activities were 

measured using the in-gel activity assay. Indeed, plants homozygous for xd22 containing the 

wild-type CNX2 transgene had normal activities of the three main aldehyde oxidase isoforms 

(Figure 5A). These data prove that xd22 is a mutant allele of CNX2 and was renamed 

cnx2-2.   

To analyse Moco enzyme activities in cnx2-2, xanthine dehydrogenase (XDH) and nitrate 

reductase activities were measured. Xanthine dehydrogenase belongs to the same family of 

Moco enzymes as aldehyde oxidase, which depend on FAD, two Fe2S2 cofactors and 

sulfurated Moco. Using an in-gel enzyme assay with hypoxanthine as substrate, no activity 

was detectable in leaves from cnx2-2 plants (Figure 5B). Nitrate reductase is a major plant 

enzyme depending on haem and Moco and its activity was determined by measuring nitrite 

production. We found that nitrate reductase activity in leaf extract from cnx2-2 was 55 ± 5% 

of wild-type values (Figure 5C). Taken together, genetic complementation and strongly 

decreased activities of Moco enzymes show that the mutation in xd22 is located in CNX2, 

encoding the first step in Moco biosynthesis.   

 

The cnx2-2 mutation is not a knock-out allele and growth is rescued by ammonia 

To further assess the impact of R88Q substitution on the functionality of CNX2, we 

compared the cnx2-2 allele with a knock-out allele. A T-DNA insertion mutant 

(SALK_037143), from here on named cnx2-1, has been reported previously [27], but the line 

was only minimally characterized. Specifically, there was no genetic confirmation that the T-

DNA insertion disrupted the gene, and phenotype analysis was limited to 5-day-old 

seedlings germinated in the dark. To demonstrate that the T-DNA insertion disrupted 

expression of CNX2, we isolated homozygous cnx2-1 mutant seedlings from a heterozygous 

parent (Figure 6A), and performed RT-PCR analysis to confirm that the CNX2 transcript was 

absent (Figure 6B). Homozygous cnx2-1 seedlings segregated in a 1:4 ratio (Figure S4A), 

which is less than the expected Mendelian ratio of 1:3, but the goodness-of-fit is still 

significant at p  0.05 (X2 = 4.182).  

On standard medium with sucrose, the growth of cnx2-1 seedlings was strongly impaired, 

the leaves were chlorotic and failed to expand (Figure 6C, S5A). cnx2-1 seedlings died after 
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two weeks. The phenotype resembles that of plants lacking nitrate reductase [28]. To bypass 

the requirement of nitrate reductase plants can be grown on medium with ammonium 

succinate. This nitrogen compound is preferred because, unlike NH4+ salts, it does not 

acidify the medium. When the chlorotic cnx2-1 seedlings were transferred to medium with 

ammonia, within a week they recovered chlorophyll levels and started to grow (Figure 6D). 

cnx2-2 seedlings germinated directly on ammonia also grew better than on standard medium 

with nitrate, appearing similar to wild type. 

Crosses between heterozygous cnx2-1 CNX2 and homozygous cnx2-2 plants gave F1 

offspring in two phenotype categories: seedlings with wild-type appearance corresponding to 

cnx2-1 CNX2; and small chlorotic seedlings that were genotyped as cnx2-1 cnx2-2 (Figure 

S4B, C). From a single crossing event we obtained 8 wild-type and 11 mutant seedlings, 

which fits the expected 1:1 ratio although the low numbers are not statistically significant. 

The cnx2-1 cnx2-2 seedlings were of intermediate phenotype between cnx2-2 and cnx2-1 

homozygotes (Figure S4B).  

These genetic and phenotypic results show that the R88Q substitution partially inhibits the 

function of the CNX2 protein, and that lack of nitrate reductase activity is the main growth 

defect caused by Moco deficiency in Arabidopsis.  

 

cPMP is decreased in cnx2 and atm3, and accumulates in cnx5  

To estimate the residual activity of CNX2 R88Q, we set out to measure cPMP, the product of 

the coupled enzyme activities of CNX2 and CNX3 and their homologs [8]. Following a 

published method [9], plant extracts were oxidized by KI/I2, centrifuged to remove 

precipitated proteins, and the supernatant was separated by reverse phase HPLC with 

fluorescence detection. Although we were able to detect synthetic cPMP, it was not possible 

to resolve cPMP in plant extracts due to its low abundance and overlap with other 

fluorescent compounds. Therefore, we developed a LC-MS/MS method specific for cPMP, 

using a HILIC column to get better retention than with a C18 reverse phase column and thus 

improve separation. The precursor ion m/z 344 was trapped and 5 different fragments were 

recorded, of which the m/z 245.9 transition was most abundant, but m/z 217.9 was better 

resolved. Using this method including a calibration range of spiked wild-type samples, we 

found that Arabidopsis leaf extracts contain approximately 5 nmol cPMP per g extracted 

protein. A cnx5 mutant, which is blocked in a downstream biosynthetic step (Figure 1), 

accumulated 13-fold more cPMP than wild type (Figure 7). In cnx2-1 and cnx2-2 mutants 

cPMP was below the limit of detection, which we estimate to be less than a quarter of wild-

type values. We also measured cPMP levels in the atm3-1 mutant, a relatively strong mutant 

allele which produces sufficient plant material for analysis (Figure 2A). Interestingly, cPMP 

levels were approximately 50% decreased compared to wild type. This value correlates well 
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with a previously reported 50% decrease in nitrate reductase activity [9, 23]. Thus, using 

mass spectrometry rather than fluorescence for the more specific determination of cPMP, we 

show that cPMP levels are decreased in both cnx2 and atm3 mutants. 

To further compare plant mutants in ATM3 and CNX2, the knock-out alleles atm3-2 and 

cnx2-1 were grown side-by-side on medium with sucrose but without ammonia. atm3-2 

seedlings are small, but they grew better than cnx2-1 (Figure S5), indicating that ATM3 is 

not essentially required for either production of cPMP or a later step in Moco biosynthesis, 

such as export from mitochondria.  

 

 

DISCUSSION 

 

The biosynthesis of Moco has been studied in bacteria, archaea and eukaryotes. In plants, 

relatively little is known about the first step of the pathway carried out by CNX2 and CNX3, 

other than their localization in the mitochondrial matrix and a possible involvement of the 

ATM3 exporter [9]. No targeted mutant studies of CNX2 and CNX3 in any plant species have 

been carried out to our knowledge. We set out to further investigate the function of ATM3 in 

Moco biosynthesis, which led to identification of a novel atm3 allele as well as a viable allele 

of cnx2.   

The point mutation in the cnx2-2 allele changes arginine 88 to glutamine in the highly 

conserved CNLRCQYC sequence that coordinates the proximal FeS cluster using the thiol 

groups of the 3 cysteines. Crystal structures of the bacterial homolog MoaA [41] show that 

the side chain of R27, which is equivalent to R88 in Arabidopsis, points away from the FeS 

cluster, into the loop that positions the cluster in the β-barrel cavity of the enzyme. A 

glutamine in this position is likely to distort the loop or alter the position of the FeS cluster. 

This might affect the coordination of S-adenosyl methionine or the distance to the distal FeS 

cluster. Amino acid changes in the conserved motif have previously been reported to impair 

the function of the MoaA/MOSC1A protein. Mutating all 3 cysteines to alanines completely 

abolished enzyme activity [42]. Single amino acid substitutions such as C80G, C84R/F and 

the adjacent Q85 and Y86D cause Moco deficiency in humans [7,43]. We tried to explore if 

the R88Q substitution destabilizes the CNX2 protein in Arabidopsis, using protein blot 

analysis on mitochondrial fractions with previously published antibodies [9]. Unfortunately, 

we were unable to obtain a specific immuno-reactive signal for wild-type CNX2 with the 

antiserum, which may have expired over time. 
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In addition to genetic complementation (Figure 4), we attempted to chemically rescue the 

cnx2 mutants with cPMP. In animals, cPMP is injected intravenously and induces a 

remarkable and sustained improvement of Moco deficiency biomarkers within days after 

treatment [44]. We used chemically synthesized cPMP [32] and applied this to the roots in 

the agar medium, or vacuum infiltrated the leaves of cnx2-2 mutants. Buffers and medium 

were made oxygen-free to prevent immediate oxidation of cPMP. However, no improvement 

in growth or diminished chlorosis was seen in the next seven days compared to mock-

treated plants. These negative data suggest that cPMP is not taken up by the plant. This fits 

with our observation that cnx2-1 seedlings in direct root contact with wild-type seedlings did 

not grow any better than isolated cnx2-1 seedlings. Interestingly, cnx2-1 knockout embryos 

develop normally in the seed pods of heterozygous mother plants, suggesting that cPMP, 

MPT or Moco can be transported through vascular cells (symplastic transport). Animal cells 

deficient in either MOSCS1 or MOSC2 can be co-cultured to rescue each deficiency [24].  

In Arabidopsis, mutants in atm3 are found at a relatively high frequency among Moco 

biosynthesis mutants in genetic screens for sirtinol resistance ([23]; this study). Sirtinol 

resistance is caused by decreased activity of aldehyde oxidases, enzymes that depend on 

FeS and Moco for activity. While several Moco biosynthesis genes have been identified 

using this genetic screen [27], no genes for FeS cluster assembly have been found thus far, 

except for ATM3. Previous reports showed that stronger mutant alleles of ATM3 have a 

decrease in nitrate reductase activity, an enzyme that relies on Moco but not FeS clusters, 

pointing towards a role for ATM3 in Moco biosynthesis [9,17]. Our LC-MS/MS data showed a 

decrease in cPMP levels in the atm3-1 mutant, suggesting that CNX2 or CNX3 activities are 

affected. Either the expression levels of CNX2 and CNX3 are down, or the enzymes are 

inhibited. CNX2 has two FeS clusters, but ATM3 is not thought to be required for the 

assembly of FeS clusters inside the mitochondrial matrix, only for the cytosol [1, 23]. An 

illustration of this is presented in Figure 2C, showing that the activity of mitochondrial 

aconitase in the atm3-1 mutant is normal or even increased, whereas the cytosolic isozyme 

is inactivated.  

However, we know that disruption of ATM3 has an indirect effect on the mitochondrial 

matrix: using redox-sensitive GFP, we observed that atm3 mutants have a more oxidized 

mitochondrial glutathione pool, in agreement with in-vitro transport data that ATM3 exports 

oxidized glutathione disulfide (GSSG) but not reduced glutathione (GSH) [18]. The chemical 

reactions carried out by MoaA and MoaC are very sensitive to oxygen [8, 40], and may be 

less efficient when the redox potential rises to more positive values. In eukaryotes, the 

homologs of MoaA and MoaC are localized in the mitochondrial matrix, whereas subsequent 
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steps are in the cytosol. Thus, there may be a function reason for cPMP synthesis to take 

place in the mitochondria, a more reducing environment than the cytosol.  
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Figure 1. Diagram of the pathways for FeS cluster assembly (light brown) and Moco biosynthesis (green) in 

Arabidopsis. Solid arrows indicate chemical transition based on independent experimental evidence; 

dashed arrows indicate more speculative steps. In human cells, cytosolic NFS1 is thought to provide 

sulphur to the CNX5 homologue. cPMP, cyclic pyranopterin monophosphate; GSSG, glutathione disulphide; 

GS-S-SG, glutathione trisulfide. For protein acronyms, please see the main text. 



Wild type (Ler) xd22 

Figure 2. Growth and genetic analysis of xd22 and xd105. 

A. Four-week-old wild type (Ler) and the indicated mutant lines grown on soil. Scale bar is 2 cm. 

B. Aldehyde oxidase (AldOx) activities in wild type (Ler), mutant lines and two F1 plants of the 

indicated crosses. Leaf protein extracts were separated by native PAGE and stained using 

specific aldehyde substrates and colorimetric electron acceptors. Total proteins were stained to 

verify equal protein loading. The prominent protein is the large subunit of Rubisco. 

C. Aconitase activities in wild type (Ler) and mutant lines. Leaf protein extracts were separated 

by native starch-PAGE and stained for activity using cis-aconitate as substrate, coupled to iso-

citrate dehydrogenase and colorimetric electron acceptors. The specific banding pattern 

corresponding to the cytosolic isoform (cyt, ACO1) and two mitochondrial isoforms (mit, ACO2 

and ACO3) was previously reported [17]. Results are representative for three biological repeats 

(independent plants). Protein loading control as in (B). 
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Figure 3. xd105 has a mutation in ATM3 leading to destabilization of the protein. 

A. Gene model of ATM3 (ABCB25, AT5G58270) with exons (boxes) and introns (lines). The 3’ 

and 5’-untranslated regions are in white, coding sequence in black. The G1271>A polymorphism 

in the xd105 allele, renamed atm3-5, is indicated.  

B. Amino acid alignment of the sixth transmembrane region of Arabidopsis ATM3. The G1271>A 

polymorphism is predicted to change glycine 424 into a glutamate (G424>E). Protein sequences 

were acquired from and aligned in the UniProt database: Arabidopsis thaliana (Q9LVM1) 

(ARATH), Oryza sativa subs. japonica (Q658I3) (RICE), Populus balsamifera subs. trichocarpa 

(B9I784) (POPLAR), human (O75027), mouse (Q61102), Saccharomyces cerevisiae (P40416) 

(SCER), Novosphingobium aromaticivorans (Q2G506) (NOVAD). 

C. Prediction of transmembrane helices in wild-type ATM3 and the G424>E variant using the 

TMHMM2 server (www.cbs.dtu/services/TMHMM-2.0). The black arrow points to the different 

probability of transmembrane helix 6. 

D. Immunoblot analysis of ATM3 in isolated mitochondria from wild-type, atm3-1 and xd105 

(atm3-5) seedlings. Immunolabelling with TOM40, the Translocator of the Outer Membrane 40, 

was used as a control to show equal loading and purity of mitochondria. 

E. Transcript levels of ATM3 in 3-week-old wild-type and xd105 (atm3-5) seedlings, using RT-

PCR with primers RT-F1 and RT-R1. 
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ABCB25_RICE    414 SGALTVGDLVMVNGLLFQLSLPLNFLGSVYRESRQSLI 
STARIK1_POPLAR 444 NGQMTVGDLVMVNGLLFQLSLPLNFLGSVYRETIQSLV 
ABCB7_HUMAN    402 AGTLTVGDLVMVNGLLFQLSLPLNFLGTVYRETRQALI 
ABCB7_MOUSE    402 AGALTVGDLVMVNGLLFQLSLPLNFLGTVYRETRQALI 
ATM1_YEAST     367 GGNLTVGDLVLINQLVFQLSVPLNFLGSVYRDLKQSLI 
ATM1_NOVAD     293 QGKLTVGDLVFVNTYLTQLFRPLDMLGMVYRTIRQGLI 
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Figure 4. xd22 has a mutation in CNX2 

A. Gene model of CNX2 (AT2G31955) with exons (boxes) and introns (lines). The 3’ and 5’-UTR 

are in white, coding sequence in black. The G263>A polymorphism in the xd22 mutant, renamed 

cnx2-2, is indicated. cnx2-1 contains a T-DNA insertion (SALK_037143) with the arrowhead 

indicating the left border primer. 

B. Amino acid alignment of the N-terminus of Arabidopsis CNX2 and homologs. Protein sequences 

were acquired from and aligned in the UniProt database: Arabidopsis thaliana (Q39055) (ARATH), 

Oryza sativa subs. japonica (Q6K248) (RICE), Populus balsamifera subs. trichocarpa (B9HPR5) 

(POPLAR), human (Q9NZB8), mouse (Q5RKZ7), Neurospora crassa (A0A0B0DPN3) (NEUC), 

Escherichia coli (P30745) (ECOLI). 

C. Growth of wild-type (WT), xd22 and two xd22 plants transformed with CNX2 (T1 generation), six 

weeks after sowing. Scale bar is 1 cm. 

D. Genotype analysis of the plants in (C) to show the presence of the xd22 polymorphism and the 

CNX2 transgene. The 263 G>A mutation in xd22 removes a BsaWI restriction site (top), altering 

the restriction pattern of the 2138-nt PCR product obtained with primers CNX2endog 1F and 

CNX2endog 1R (Figure 4A). The CNX2 transgene was detected using the primers CNX2trans F 

and CNX2trans R. 
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Figure 5. The activities of Moco enzymes are 

decreased in cnx2-2 plants. 

A. In-gel aldehyde oxidase (AldOx) activities in leaves 

of wild-type, xd22 and two xd22 plants complemented 

with CNX2 (upper panel). Total protein staining with 

Coomassie shows equal loading (lower panel). 

B. In-gel xanthine dehydrogenase (XDH) activity in 

wild type and cnx2-2 (upper panel). Total protein 

staining as in (A).  

C. Nitrate reductase activity in wildtype (WT) and 

cnx2-2 leaves. The values represent the mean  SE 

(n = 3), * p > 0.01, Student t-test.  
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Figure 6.  The cnx2-1 knockout is seedling lethal but growth is rescued by ammonia. 

A. Genotype analysis of plants in (B). Primer pairs CNX2 2F and CNX2 2R were used to amplify 

the wild-type product; CNX2 2F and LBb1.3 were used to detect the T-DNA insertion. 

B. Transcript levels of CNX2 in wild-type and cnx2 seedlings, using RT-PCR with primers ACT2 

F2 and R2 for ACTIN2 and CNX2 3F and 3R for CNX2 amplification. 

C. Growth of cnx2-1, cnx2-2 next to their respective wild-type lines on ½MS + 1% (w/v) sucrose 

for 3 weeks.  

D. Rescue of growth of cnx2-1 and cnx2-2 with ammonium succinate ((NH3)2succ). Seeds from a 

heterozygous cnx2-1/+ plant were germinated on medium with nitrate (KNO3) to select 

homozygous cnx2-1 seedlings after 10 days. They were transferred either to fresh medium with 

NO3, or to medium with NH3. Images were taken 11 days after transfer. cnx2-2 seeds and the 

corresponding wild-type were planted directly on plates with NO3 or NH3 and images were taken 

after 14 days. Scale bars in (C) and (D) are 5 mm. 

 

A: genotype 

C Wild type 
 (Ler) cnx2-2 cnx2-1 

Wild type  
(Col-0) 

CNX2 

ACT2 

CNX2 

cnx2-1  

T-DNA 

B: RT-PCR 

D 
5 mM KNO3 

2.5 mM (NH3)2succ 

cnx2-2 

WT (Ler) 

cnx2-1 

WT (Col) 



0

5000

10000

15000

20000

25000

30000

0 1 2 3 4 5 6 7 8 9 10

Io
n

 c
o

u
n

ts
 (

%
) 

Retention time (min) 

Wild type

cnx2-1

cnx5

Figure 7.  cPMP accumulates in cnx5, and is decreased in cnx2 and atm3-1 mutants 

A. Typical chromatograms of the m/z 344 to 217.9 transition of cPMP (oxidized to compound 

Z) in total extracts of wild type (Col-0), cnx2-1 and cnx5 seedlings. The protein 

concentrations of the extracts were 3.7; 4.5 and 5.8 mg / ml, respectively. 

B. cPMP concentrations in cnx2, cnx5 and atm3 mutant seedlings, their respective wild-type 

controls and the fold change compared to wild type. Values represent the mean ± SE (n = 3 – 

4 biological replicates of pooled seedlings).  

A 

B 

Mutant cPMP in mutant 

(nmol / g protein-1) 

Wild-type 

control 

cPMP in wild type 

(nmol / g protein-1) 

Fold 

change 

cnx2-1  Not detectable Col-0 (NH3) 8.4 ± 2.0 0 

cnx2-2  Not detectable Ler  3.6 ± 0.6 0 

cnx5 59.5 ± 12.7 Col-0  4.7 ± 1.7 13 

atm3-1   2.2 ± 1.8 Col-0 4.7 ± 1.7 0.5 

cPMP (compound Z) 

m/z 344 → 217.9 100 

0 
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Supplemental Figure S1. Growth of parental and F1 plants from xd22 x atm3-1 and xd105 x atm3-1 

crosses. Plants were grown for 11 days (A) or 15 days (B) on ½ MS-agar plates. atm3-1 and atm3-4 

are in the Col-0 background, xd22 and xd105 are in the Ler background. Close-up of an F1 plant 

from xd22 x atm3-1 (C) and xd105 x atm3-1 (D). Scale bar is 0.5 cm. 
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     seq  AMVLCSQGIV NGQMTVGDLV MVNELLFQLS LPLNFLGSVY RETIQSLVDM   450 
     pred HHHHoooooo oooooooooO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO  
 

     seq  KSMFQLLEEK SDITNTSDAK PLVLKGGNIE FENVHFSYLP ERKILDGISF   500 

     pred OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO  
 

     seq  VVPAGKSVAI VGTSGSGKST ILRMLFRFFD TDSGNIRIDG QDIKEVRLDS   550 

     pred OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO OOOOOOOOOO  

     WT 

     seq  AMVLCSQGIV NGQMTVGDLV MVNGLLFQLS LPLNFLGSVY RETIQSLVDM   450 
     pred HHHHoooooo ooooooooHH HHHHHHHHHH HHHHHHHHHH iiiiiiiiii  
 

     seq  KSMFQLLEEK SDITNTSDAK PLVLKGGNIE FENVHFSYLP ERKILDGISF   500 

     pred iiiiiIIIII IIIIIIIIII IIIIIIIIii iiiiiiiiii iiiHHHHHHH  
 

     seq  VVPAGKSVAI VGTSGSGKST ILRMLFRFFD TDSGNIRIDG QDIKEVRLDS   550 

     pred HHHHHHHHHH HHHooooooo ooooooooOO OOOOOOOOOO OOOOOOOOOO  
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Supplemental Figure S2. Modelling of structural changes caused by Glycine 424 

into Glutamate (G424>E) in ATM3 

A. Secondary structure prediction using TMPred (www.ch.embnet.org/cgi-

bin/TMPRED_form_parser). The red arrow indicates the 6th transmembrane helix.  

B. Secondary structure prediction using DAS (www.sbc.su.se/~miklos/DAS/tmdas.cgi). 

The red arrow indicates the 6th transmembrane helix.  

Reference: Cserzö M, Wallin E, Simon I, von Heijne G, Elofsson A (1997). Prediction of 

transmembrane α-helices in prokaryotic membrane proteins: the dense alignment surface 

method. Protein Engineering 10, 673-676. 

C. Secondary structure prediction using HMMTOP (www.enzim.hu/hmmtop/ 

server/hmmtop.cgi).  

Reference: Tusnady GE, and Simon I (2001) The HMMTOP transmembrane topology 

prediction server. Bioinformatics 17, 849-850. 
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Supplemental Figure S3. Mapping-by-sequencing of the xd22 mutation. 

A. Diagram of chromosome 2 with the centromere (grey oval) and percentage recombination at 

specific SSPL markers. The percentages were calculated based on the analysis of 80 F2 plants 

from the xd22 (Ler) x Col-0 with the xd22 phenotype.  

B. Frequency of SNPs in the mapping interval indicated in (A).  
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Figure S4. Genetic analysis of the cnx2-1 line. 

A. Segregation frequency of wild-type and mutant phenotypes from a heterozygous 

cnx2-1 /CNX2 plant. The observed numbers do not fit the expected 3:1 ratio, X2 =  4.182, 

>> 0.41  (p  0.05), indicating that a proportion of cnx2-1 homozygous embryos do not 

develop into seed. 

B. Allelism between cnx2-2 and cnx2-1. Homozygous cnx2-2 plants were cross-fertilised 

with heterozygous cnx2-1/CNX2 plants and heterozygous cnx2-2 cnx2-1 seedlings 

isolated from the F1 generation, and grown alongside cnx2-1 and wild type parentals 

(Ler for cnx2-2, Col-0 for cnx2-1) on ½ MS plus 1% (w/v) sucrose. Scale bar is 1 cm. 

C. PCR analysis and restriction digests to confirm the genotype of the seedlings shown 

in (B). The PCR product for CNX2 is present in wild-type and the cnx2-2 allele (top 

panel), but the cnx2-2 allele lacks a BsaWI restriction site (bottom panel), see Figure 4A 

for details.  

              phenotype 
n Wild-type like Mutant-like Ungerminated 

   line   [%] [%] [%] 

Wild type 271 99.6 -- 0.4 

cnx2-1/CNX2 461 79.1 20.9 0.0 
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cnx2-1 
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cnx2-2  
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BsaWI digest of CNX2 fragment: 
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Figure S5. Comparison of  seedling growth in cnx2 and atm3 knockout mutants. 

A. Growth of 2-week-old cnx2-1 seedlings compared to atm3-2 on agar plates containing 

½MS salts and 1% (w/v) sucrose for 3 weeks. Scale bar is 5 mm. 

B. Genotype analysis of plants in (A). Primer pairs CNX2 2F and CNX2 2R were used to 

amplify the wild-type allele of CNX2; primers CNX2 2F and LBb1.3 were used to detect the T-

DNA insertion in CNX2 (cnx2-1). For the ATM3 wild-type allele, primers ATM3 F1 and RWT 

were used, and primers ATM3 F1 and GK8409 for the T-DNA insertion in ATM3 (atm3-2). 
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Table S1 List of oligonucleotides 
 

Oligonucleotide 5’-3’ sequence Use 

ACT2 F2  CCCAAAGGCCAACAGAGAGA RT-PCR ACTIN2 

ACT2 R2 ACCATCACCAGAATCCAGCA RT-PCR ACTIN2 

ATM3 RT-F1 TTGAGTGGTGGAGAGAAACAAA RT-PCR ATM3 

ATM3 RT-R1 TCCCGTTTTCCAGTACTACGAT RT-PCR ATM3 

CNX2 3F GGGTGATCTTGCATTCGTTT RT-PCR CNX2 

CNX2 3R  CCGTCTGAAGGTGTGGAACT RT-PCR CNX2 

CNX2 2F CTCAAGTTGGTTGCTTTTTCG Genotyping cnx2-1 

CNX2 2R TTTGAAGTTCCCATCTGCAAG Genotyping cnx2-1 

LBb1.3 ATTTTGCCGATTTCGGAAC Genotyping cnx2-1 

CNX2endog 1F AGAAACTAGATTTGCATACCTGGT  Genotyping cnx2-2 

CNX2endog 1R CGATTTCATAACCCTATCATGCCCTT  Genotyping cnx2-2 

CNX2trans F CGGTCTGGTGCTGATGATGA Transgene CNX2 

CNX2trans R TAAAGTGCCCCTGATGATGAGATTTTCTTAAA Transgene CNX2 

ATM3 F1 GATGTCGAGAGGATCTCGATTCG Genotyping atm3-2 

ATM3 RWT GAAAACTAGAGCTATTGAGAGTTACCA Genotyping atm3-2 

GK8409 ATATTGACCATCATACTCATTGC Genotyping atm3-2 

A1F CTGGCGCGCCAAGCTTTTATTTCCTACTAACTAGTTAA Cloning of CNX2 

A1R TCATCCTTGTAATCGACATTATATTGTTATGAATAAGC Cloning of CNX2 

At1g07810 F GTTCACGGACAAAGAGCCTGAAAT Mapping 

At1g07810 R AAGCAGTCAATATTGCAGGAAGGG Mapping 

At1g49610 F ACATTTTCTCAATCCTTACTC Mapping 

At1g49610 R GAGAGCTTCTTTATTTGTGAT Mapping 

At1g72650 F TGTTTTTTAGGACAAATGGCG Mapping 

At1g72650 R CTCCAGTTGGAAGCTAAAGGG Mapping 

At1g09940 F TCATGACGTGAAGAAGAAGAAAA Mapping 

At1g09940 R CATATCGCTGCTACTAATTTTAAACAA Mapping 

At2g04066 F GGGATAATGGATAGGACTCACG Mapping 

At2g04066 R GCTGAGAAGGCAAGGAAGAG Mapping 

At2g14890 F GAAACTCAATGAAATCCACTT Mapping 

At2g14890 R TGAACTTGTTGTGAGCTTTGA Mapping 

At2g39010 F TCGTCTACTGCACTGCCG Mapping 

At2g39010 R GAGGACATGTATAGGAGCCTCG Mapping 

AT2G21420 F GATGCCTTTCTCCTGGTTG Mapping 

AT2G21420 R AATATAGCCGTCGTCTTCATCA Mapping 

AT2G31070 F AAAGAGATGAGAATTTGGAC  Mapping 

AT2G31070 R CATATCAATATATTAAAGTAGC Mapping 

AT2G44798 F TGTTCTTCACTTTGCAAACCA Mapping 

AT2G44798 R GTGGCAAATGGGCTAAACTA Mapping 

AT2G29995 F CTGCATATTGTTAATGAGAAAAGAAT Mapping 

AT2G29995 R TCATGTCGAAAACATATAATTGAGC Mapping 

At3g11220 F GGATTAGATGGGGATTTCTGG Mapping 

At3g11220 R TTGCTCGTATCAACACACAGg Mapping 

At3g26605 F CCCCGAGTTGAGGTATT Mapping 



2 
 

At3g26605 R GAAGAAATTCCTAAAGCATTC Mapping 

At3g50820 F GTTCATTAAACTTGCGTGTGT Mapping 

At3g50820 R TACGGTCAGATTGAGTGATTC Mapping 

At4g01710 F AGATTTACGTGGAAGCAAT Mapping 

At4g01710 R GGTTAAAAATTAGGGTTACGA Mapping 

At4g10360 F GCCAAACCCAAAATTGTAAAAC Mapping 

At4g10360 R TAGAGGGAACAATCGGATGC Mapping 

At4g29860 F GCCCAGAGGAAGAAGAGCAAACTAGC Mapping 

At4g29860 R TGGGAATTCATGAGAGAATATGTGGGAC Mapping 

At5g22545 F TAGTGAAACCTTTCTCAGAT Mapping 

At5g22545 R TTATGTTTTCTTCAATCAGTT Mapping 

AT5G42600 F CAGACGTATCAAATGACAAATG Mapping 

At5g42600 R GACTACTGCTCAAACTATTCGG Mapping 

At5g63640 F ATCACTGTTGTTTACCATTA Mapping 

At5g63640 R GAGCATTTCACAGAGACG Mapping 
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