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The question of how the orbital angular momentum of 
structured light might engage with chiral matter is a topic 
of resurgent interest.  By taking account of electric 
quadrupole transition moments, it is shown that the 
handedness of the beam can indeed be exhibited in local 
chiral effects, being dependent on the sign of the 
topological charge.  In the specific case of absorption, a 
significant interplay of wavefront structure and 
polarization is resolved, and clear differences in behavior 
are identified for systems possessing a degree of 
orientational order and for those that are randomly 
oriented.  
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vortices  
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It is now well established that photons can possess two essentially 
different forms of angular momentum: spin and orbital [1].  In the 
paraxial regime, the spin angular momentum (SAM) manifest in 
circular polarization is restricted to helicity eigenvalues of ±ħ per 
photon.  However, the orbital angular momentum (OAM) 
associated with many forms of structured light has no theoretical 
bounds on dimensionality [2].   In ‘twisted’ beams each photon can 

possess OAM values of ±ħ, where  is an integer representing the 

topological charge that characterizes the wavefront structure.  
The question of how such an orbital angular momentum of 

structured light might engage with chiral matter is a topic of 
resurgent interest – see for example [3-5].  Chiral interactions and 
discriminatory effects have long been associated with the 
differential response of circularly polarized photons, in their 
interactions with right or left-handed chiral molecules [6-8].  
Archetype examples include circular dichroism [9], optical rotation 
[10] and differential scattering [11], supplemented by more recent 
developments in optical trapping [12] and binding forces [13]. The 
mechanisms responsible for these discriminatory optical processes 
and phenomena generally involve a coupling between electric 
dipole (E1) and either magnetic dipole (M1) or electric quadrupole 

(E2) transition moments.  The origin of such interactions can be 
succinctly explained in terms of the overall PT symmetry afforded 
by the underlying electrodynamics, associated with the fact that E1 
moments have odd spatial parity, and M1 and E2 even parity.  The 
E1-M1 and E1-E2 interference terms therefore change sign on 
spatial inversion – and in consequence differ for left- and right-
handed forms of any chiral molecule.[8, 11] 

Light propagating with any form of helical wavefront is 

inherently chiral, the beam twisting to the right for  < 0 and to the 

left for > 0. It is for this reason that one would anticipate, in chiral 

matter, discriminatory effects with respect to the orbital angular 

momentum: a beam with positive  should produce a different 

effect from one with negative. Studies on OAM and chirality in 

light-matter interactions have previously focused on E1 and M1 
couplings, indicating that wavefront handedness should play no 
part in chiral discrimination, and only circular polarization (SAM) 
could lead to any differential effects [3].  This was later 
experimentally verified [14, 15]. 

In considering the possibility of electric quadrupole effects, it 
is interesting to first reflect on the issue of physical scale with regard 
to optical vortices.  It may be borne in mind that electric quadrupole 
effects can contribute to the exhibition of conventional molecular 
chirality – as for example in circular differential Rayleigh and 
Raman scattering [11]. At a given radial and angular displacement 
from the beam axis, the gap between successive wavefronts in an 
optical vortex is the same wavelength as for non-vortex light (it just 

intercepts a different member of the set of  individual helicoidal 

wavefronts).  
It is shown in this paper that due consideration of electric 

quadrupole (E2) moments does indeed reveal a basis for the 

chirality associated with photon OAM to produce chiral effects in 

light-matter interactions, such that the rates of optical processes can 

in fact depend on the direction in which the vortex beam is twisting, 

and therefore the sign of.  Moreover the results explicitly depend 

on the magnitude of , which quantifies the orbital angular 

momentum. 
In the work presented we adopt the Power-Zienau-Woolley 

(PZW) Hamiltonian to study the interplay between radiation and 
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material [16]. In the PZW representation, the Hamiltonian for the 
interaction between matter and quantized radiation is expanded in 
terms of multipole moments and their engagement with the 
transverse electromagnetic field: 
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where there is an implied summation over subscript component 
indices.  In (1), the first term involves the electric dipole   coupling, 
(E1); the second term involves the electric quadrupole Q (E2); and 
the final term is the magnetic dipole m (M1). To correctly account 
for the electromagnetic field being able to possess an orbital angular 

momentum of ±ħ per photon, the electromagnetic field needs to be 

cast in a form that accommodates an azimuthal phase 
factor exp(𝑖ℓ𝜙) [17, 18]. The most widely utilized solutions to the 
wave equation in the paraxial approximation are Laguerre-
Gaussian (LG) modes, whose radial profile is cast as a Gaussian 
distribution modified by one of the associated (generalized) 
Laguerre polynomials.  The rotational symmetry of such beams 
invites casting the transverse  field operators 𝒆⊥and b in (1) in 
terms of cylindrical coordinates [19].   

Looking in particular at the coupling between E2 and E1 
multipoles, it will now be shown that it is possible exhibit chiral 
discrimination with regards to the sign of the orbital angular 
momentum, assuming paraxial beam propagation. To highlight and 
exemplify our general findings, we choose the most fundamental of 
optical processes: one-photon absorption. To continue, we can 
study the time evolution of the system wavefunction using time-
dependent perturbation theory. The matrix element including only 
the E1 and E2 couplings is thus seen to be: 
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where |𝐸⟩ designate molecular states and |𝑛⟩ is the radiation state 
belonging to a specific mode (𝒌, 𝜂, ℓ, 𝑝). Here, k is the wave-vector, 

η a polarization label,  is the topological charge – which for an LG 

beam equates to the degree of the Laguerre polynomial, and p is the 
corresponding order.  Expanding the Dirac brackets in (2) using the 
transverse electric field expansion for LG beams, the matrix element 
(2) can be written as 
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in which i is the unit polarization vector, n is the number of 

photons in the quantization volume V, and 𝑓ℓ,𝑝(𝑟) is the 

appropriately normalized radial distribution function.  The second 
term in brackets in (3), which involves the coupling of electric 
quadrupole moment components with the gradient of the 
transverse electric field, requires specific attention. As mentioned 

above, the mode expansions for the electromagnetic field may be 
cast in a cylindrical coordinate system (z, ϕ, r), and ∇ in (3) operates 
accordingly. The crux of the result emerges from 
∇𝑗𝑓ℓ,𝑝(𝑟)e(𝑖𝑘𝑧+𝑖ℓ𝜙), whose implementation leads to: 
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where the prime symbol on the left signifies removal of terms that, 
in the ensuing rate equation, cannot contribute to an overall 

dependence on the sign of .  This removal of terms is made more 

clear in the correct anticipation that for any parametric or non-
parametric optical processes, once the rate is calculated through the 
Fermi rate rule, all information on wave-front handedness through 

the sign of  in the phase factor exp(𝑖ℓ𝜙) is lost in the ensuing 

modulus square of the amplitude.    Using the aforementioned Fermi 
rule, we now obtain for the rate: 
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where I(ω) is the irradiance per unit frequency interval, which 
when integrated over frequency represents the intensity of the 
input beam, and N is the number of absorbers. Once again retaining 

only those terms that are dependent on the sign of, securing the 

final modulus square of (5) gives: 
 





1 1

2 2

ˆ ˆ

ˆ ˆˆ ˆ .

mo mo mo mo

j k ij l i kl

mo mo mo mo

j l ij kl j l ij kl

i r Q r Q

r r Q Q r rQ Q

   

 

 

 



 
 (6) 

 
Therefore it can be seen that we produce a mixture of E1-E2 

and E2-E2 terms that are all dependent on the optical orbital 

angular momentum, as determined by the sign and magnitude of .  

However, we can neglect the E2-E2 terms as they are insignificant 
in magnitude compared to the E1-E2 terms – although they may 
have a capacity, in achiral media, to generate discriminatory effects 
with regard to the relative handedness of the spin and orbital 
angular momentum. This then leaves us with a vortex-modified 
component of the one-photon absorption rate, signified below by 
 , that contains only the leading-order E1-E2 terms dependent 

on the sign of  as:  
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Evidently – since all of the other parameters in the above equation 
are real – the polarization vectors must be complex to produce a 
non-zero real result. At this stage we can therefore conclude that a 
vortex beam comprised of plane polarized photons will show no 
chiral effects in one-photon absorption – but that if the photons are 



circularly polarized, we can expect a chiroptical response. That is to 
say, at the most significant order – E1-E2 – the orbital angular 
momentum cannot produce chiroptical effects alone, but only in 
conjunction spin angular momentum. In this sense, the process is 
seen to be an analogue of circular dichroism (CD) but with beams 
carrying a topological charge – circular-vortex dichroism (CVD). It is 
worth pointing out, however, that discriminatory effects involving 
linear polarization states of light are possible when molecular 
response is modified, e.g. through plasmonic resonance, a process 
that has been called ‘helical dichroism’ .[5] We do not rule out the 
possibility of other terms allowing a dichroism depending only on a 
twisted wavefront, but they do not arise in the leading level of 
multipolar interaction, and in the paraxial approximation, as 
examined here. 

To proceed further we now make use of the following 
identities [8]: 
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which allow us to write the final result as: 
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It is to be emphasized that the result is cast in terms of the absolute 
difference in absorption rates between left- and right-handed 
circularly polarized photons.  Here  ∆ΓCD represents all of the terms 
that have no dependence on the sign of the topological charge. It is 

important to retain these terms in the final result as, when = 0, the 

total rate reduces to the standard result for CD, in precise 
agreement with the expression given in ref. [8] for beams without 
orbital angular momentum. It is also worth noting that the 
magnitude of the CD and CVD contributions will in general be 
similar (when all E1, M1 and E2 couplings are accounted for, not just 
terms dependent on the sign of the topological charge), since E2 and 
M1 interactions with the field are approximately equal in strength – 

the CVD result will, nonetheless, scale linearly with  .  

Now it is worth concentrating on the separate factors in (9).  
An important facet of the result emerges; the CVD differential (in 
these leading terms) is linearly dependent on the three aspects of 
handedness in the complete matter-radiation system – which are: 
the sense of circular polarization, which we can denote by η = 1 for 

left/right-handed polarization; sign of the topological charge ; 

molecular chirality. For the last of these, it is clear that the product 
Q is odd with respect to the parity operator P, and therefore it too 
will change sign upon inversion – this is the equivalent of changing 
the L/R handedness of either enantiomer; see Table 1.  Thus we can 
have eight distinct possible ways to permute the system, which can 
only lead to two different outcomes.  Since we are specifically 
focusing on the differential absorption on changing left to right-
handed circularly polarized input, there are four possible 

combinations: using the designation ‘  mol’, the possible 

arrangements are RR  LL  LR  RL.  Thus, for example, the CVD 
component of the dichroic response, defined by association with 
changing from left to right-handed circular polarization, will be the 
same for a vortex beam of right-handed wavefront structure 
interacting with one enantiomer as for the corresponding left-
handed vortex engaging with the opposite enantiomer; 
additionally, the standard CD, independent of the topological 
charge, will still of course persist. 
 
Table 1: Spatial parities of the key constituents in the CVD.     
 

The parameter η designating a circular polarization difference 

has even parity, since unit wave-vector k̂   contracts with the 

Levi-Civita tensor, which is a pseudoscalar. 
 
As it stands, the result (9) applies to one or more molecules 

with a fixed orientation at any point in the LG beam.  Let us now 

focus on the presence of the 𝜙̂𝑗  term.  Since this factor contracts with 

an index of the quadrupole transition moment – which itself has a 
fixed orientation within the molecule – the magnitude and sign of 
the CVD differential will in general vary around the beam axis.  
Specifically, the CVD will vary between a maximum and minimum 
of opposite sign, across the beam profile.  This effect registers the 
different directions of phase gradient around each intensity ring, as 
experienced by chiral molecules with a common orientation. This in 
turn means that in a system of molecules that possess a degree of 
orientational order, such as a poled liquid crystal, the observed 
differential Γ(L) − Γ(R) will be enhanced on one side of the beam, 
and diminished on the other – as compared with the standard CD 
value along the singular core.  To fully verify the mechanism, a 
potential method is to conduct experiments with varying values of 

, plotting against it the results for Γ(L) − Γ(R), probing the locally 

differential absorption whilst taking account of the differences in 
intensity distribution associated with various radial distribution 
functions 𝑓ℓ,𝑝(𝑟).  Such experiments would appear to necessitate 

resolving the extent of absorption at different locations within the 
beam profile.  

To complete the analysis, we now consider the consequences 
of a lack of orientational order.  In contrast to liquid crystals, most 
molecular fluids have randomly oriented molecules, and there are 
seldom any effective means for introducing orientational order.  To 
discover the effect of random orientation we therefore have to 
perform an isotropic rotational average of the expression for CVD.  
This requires the E1-E2 and E2-E1 terms to be contracted with the 
corresponding third rank isotropic tensor, namely the Levi-Civita 
epsilon [20]. However, since the electric quadrupole moment is 
symmetric in its indices, and the Levi-Civita fully index 
antisymmetric, the resulting molecular average is zero. Thus, it can 
be concluded that the extent of differential one-photon absorption, 
with a circularly polarized vortex beam, the CVD is non-zero for 
oriented systems but it vanishes for randomly oriented molecules. 
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This net zero contribution to CVD in systems lacking orientational 
order is consistent with the null results of previous studies [14]. 

It is to be stressed that the results presented here provide a 
broader basis for further study in the area of twisted light beams 
and their potential significance in chiral light-matter interactions. 
The identification of mechanism, and explicit proof, of how a vortex 
structure can exert an influence on circular dichroism, gives a 
strong indication of how such a feature might also be manifest in 
other forms of chiroptical behaviour.  The inclusion of electric 
quadrupole moments of matter in conjunction with structured light 
beams can be anticipated to lead to other discriminatory effects 
with a dependence on the sign of the topological charge.  Notably, 
for example, recent experiments suggest a significant role in circular 
differential Raman scattering – see [21]. 

A further consideration is the possibility of engineering 
special systems for chiral effects using twisted light, which could 
serve a similar purpose to those observed in nonlinear optics [22], 
and would allow normally forbidden transitions and processes to 
have non-zero amplitudes. Particular examples involve the 
exploitation of the degree of molecular ordering that is present at 
boundaries of isotropic systems [23], introducing molecular 
alignment using optical methods [24], or applying a magnetic field 
to induce symmetry breaking [25].  It can be appreciated that in 
conventional systems, and ‘normal’ beams of light, E2 moments 
usually generate small contributions to the overall amplitude of an 
optical process, but for vortex beams the gradient of the 
electromagnetic fields clearly becomes of increasing significance as 
the topological charge increases.   Indeed, this is manifest in the 

linear dependence on  in equation (9).   The enhanced role of such 
interactions is already recognized for light with OAM interacting 
with atoms [26, 27], and the study of enhancing their magnitude in 
light-matter interactions is an engaging field of research [28, 29].   

To conclude it has been shown that, through the engagement 
of electric quadrupole interactions, the optical orbital angular 
momentum of light can exert a significant chiroptical influence in 
light-matter interactions, with the sign and magnitude of the 
topological charge influencing the local rate of one-photon 
absorption in oriented chiral systems.  It is hoped that this work will 
now stimulate further study for other optical processes and 
experimental observations, where the possibility of varying the 
topological charge could lead to potentially significant advances in 
the burgeoning field of optical forces and nanomanipulation [30], 
chiral detection and chiroptical spectroscopy [31], and enantiomer 
separation [32, 33],  to name but a few.  
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