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Abstract 

 

Enzyme-resistant receptor agonists of the incretin hormone glucagon-like peptide-1 (GLP-1) 

have shown positive therapeutic effects in people with type 2 diabetes mellitus (T2DM). T2DM 

has detrimental effects on brain function and impairment of cognition and memory formation 

has been described. One of the underlying mechanisms is most likely insulin de-sensitization 

in the brain, as insulin improves cognitive impairments and enhances learning. Treatment with 

GLP-1 receptor agonists improves memory formation and impairment of synaptic plasticity 

observed in animal models of diabetes-obesity. Furthermore, it has been shown that diabetes 

impairs growth factor signalling in the brain and reduces energy utilization in the cortex. 

Inflammation and apoptotic signalling was also increased. Treatment with GLP-1 receptor 

agonists improved neuronal growth and repair and reduced inflammation and apoptosis as well 

as oxidative stress. In comparison with the diabetes drug metformin, GLP-1 receptor agonists 

were able to improve glycemic control and reverse brain impairments, whereas metformin only 

normalized blood glucose levels. Clinical studies in non-diabetic patients with 

neurodegenerative disorders showed neuroprotective effects following administration with 

GLP-1 receptor agonists, demonstrating that neuroprotective effects are independent of blood 

glucose levels. 

 
 
Highlights 
- enzyme-resistant receptor agonists of GLP-1 are effective in treating diabetes 
- GLP-1 plays important additional roles as a growth factor 
- GLP-1 receptor agonists have protective effects in the brain 
- impaired insulin signaling is restored by GLP-1 drugs 
- other, glucose independent neuroprotective effects are found 
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1. Introduction 

Glucagon-like peptide 1 (GLP-1) is a gut hormone secreted from enteroendocrine L-cells and 

is best known for its ability to enhance glucose-induced beta cell insulin secretion. In addition, 

GLP-1 also possesses a range of extrapancreatic actions which helps control blood glucose 

concentrations. Based on these observations, several GLP-1 receptor agonists that are resistant 

to enzyme degradation and have enhanced biological half-life in the blood stream have been 

developed as treatments for type 2 diabetes mellitus (T2DM) (Madsbad et al., 2008; 

Christensen et al., 2011; Campbell and Drucker, 2013). GLP-1 receptor agonists are effective, 

well received with few side effects, and widely used throughout the world to treat people with 

T2DM. 

 

2. Diabetes and cognitive impairment 

Studies have found evidence of cross-sectional and prospective associations between T2DM 

and cognitive impairment, memory and executive function (Stewart and Liolitsa, 1999; Yaffe 

et al., 2004). As vascular health is impaired by T2DM (Brands et al., 2004), both vascular and 

non-vascular factors are likely to play a role in causing this effect. Furthermore, T2DM has 

been identified as a risk factor for developing dementia (Luchsinger et al., 2004; Li et al., 

2017). Epidemiological studies have shown a correlation between T2DM and the development 

of dementia in later life (Leibson et al., 1997; Luchsinger et al., 2004; Ristow, 2004; Strachan, 

2005; Biessels et al., 2006; Haan, 2006). In one study, T2DM had been identified as a risk 

factor that doubled the likelihood of developing dementia (Janson et al., 2004). In a 

longitudinal study monitoring the health status of people over time, there was an increased risk 

of developing dementia in people with significantly elevated blood glucose levels (Schrijvers 

et al., 2010; Ohara et al., 2011; Li et al., 2017).  

 

2.1 Insulin desensitization in the brain 

A key parameter in developing T2DM is the desensitization of insulin signaling. Insulin 

signaling in T2DM is not only affected in the periphery, but in the brain as well (Gispen and 

Biessels, 2000; Biessels et al., 2002; Baker et al., 2011). In cognitive tests and in labelled 

deoxyglucose 18FDG -PET brain imaging scans, it was found that people with T2DM exhibited 

poor performance and much reduced glucose uptake in cortical areas during cognitive testing 

(Baker et al., 2011). Reduced uptake of 18FDG demonstrated reduced energy turnover and 

neuronal function. Moreover, brain tissue analysis of people with diabetes showed clear signs 

of neuropathology (Beeri et al., 2008). In animal models of T2DM, insulin signaling in the 



brain was found to be markedly impaired (Yang et al., 2013; Agrawal et al., 2014). 

 

2.2 Insulin boosts brain function 

When insulin was administered via a nasal spray, people showed improved performance in 

several tests of attention, cognition and memory formation (Biessels et al., 2004; Freiherr et 

al., 2013). In clinical trials, verbal and spatial memory was improved after administration of a 

single dose of insulin (Benedict et al., 2008; Krug et al., 2010). Another study investigated the 

effects of 8 weeks of intranasal administration of insulin on memory and attention in healthy 

subjects in a double blind, placebo controlled trial. Blood glucose and plasma insulin levels 

were measured and did not differ between placebo and insulin treatment groups. After 

treatment, the delayed recall of words improved significantly (Benedict et al., 2004). 

Improvements in memory was even greater using insulin aspart, a fast-acting and long-lasting 

insulin analogue (Benedict et al., 2007).   

 

2.3 Insulin plays important roles in brain function and neuronal growth 

Insulin not only controls glucose utilization in the periphery (Hallschmid et al., 2004; Benedict 

et al., 2011; Hallschmid et al., 2012; Ott et al., 2012), but has additional roles in the brain. 

Insulin receptors have been identified in a variety of brain areas; the highest densities can be 

found in the cortex, olfactory bulb, hippocampus, and hypothalamus (Havrankova et al., 1978a; 

Havrankova et al., 1978b). Neurons express insulin receptors and their stimulation activates 

growth factor second messenger cascades that are vital for cell growth, repair and synaptic 

functions (de la Monte and Wands, 2005; Holscher, 2014). The observed cognitive 

impairments observed in people with T2DM and in animal models of diabetes can be explained 

by the loss of growth factor signaling. This in turn reduces the ability to withstand stressors 

and to repair damage that accumulates over time (Neth and Craft, 2017). In brain tissue of 

dementia patients, insulin signaling has also been shown to be severely impaired (Moloney et 

al., 2010; de la Monte, 2011; Talbot et al., 2012). 

 

3. Protective effects of GLP-1 signaling in the brain 

3.1 GLP-1 receptor agonists can reverse insulin de-sensitization in the brain 

The incretin hormone GLP-1 is a growth factor and has similar properties to insulin. The GLP-

1 receptor is a classic 7 membrane spanning G-protein coupled receptor of the glucagon class 

(Perry and Greig, 2002; Baggio and Drucker, 2007; Doyle and Egan, 2007; Holscher, 2014).  

GLP-1 and several of its analogues can cross the blood-brain-barrier (BBB) and exert 



neuroprotective effects (Kastin et al., 2002; Kastin and Akerstrom, 2003; McClean et al., 2011; 

Hunter and Holscher, 2012; Christensen et al., 2015; Athauda et al., 2017). GLP-1 receptors 

are expressed in the brains of rodents, primates and humans (Merchenthaler et al., 1999; Cork 

et al., 2015; Heppner et al., 2015; Farr et al., 2016). GLP-1 receptor agonists such as exendin-

4 or liraglutide can reverse insulin de-sensitization in the brain (Bomfim et al., 2012; Long-

Smith et al., 2013). The localization and distribution of the insulin receptor and increased levels 

of insulin receptor substrate (IRS)-1 phosphorylated at serine 616 (IRS-1 pS(616)), a key 

marker of insulin resistance, was normalized in the brains of mice by treatment with liraglutide 

(Long-Smith et al., 2013). Liraglutide also improved key biomarkers in the brains of diabetic 

rats. The levels of insulin found in the brain were reduced, and there was a decrease in the 

phosphorylation of protein kinase B (AKT) and glycogen synthase kinase-3beta (GSK-3beta), 

which indicated decreased insulin signaling in rats with T2DM. Liraglutide treatment not only 

ameliorated hyperglycemia and peripheral insulin resistance, but also reversed brain insulin de-

sensitization in a time-dependent manner (Yang et al., 2013). In the STZ model, insulin 

signaling was re-sensitized following activation of GLP-1 receptors, as illustrated by reduction 

of phospho-IRS1Ser1101 levels and by pAktSer473 upregulation and reactivation (Shi et al., 2017). 

Through GLP-1 receptor activation, cAMP/PKA/CREB growth factor signaling cascade is 

activated thus increasing gene expression of the insulin receptor, insulin, IRS-1, Akt and other 

growth factor-related proteins (Perfetti et al., 2000; Doyle and Egan, 2007; Park et al., 2010; 

Holscher, 2014; Talbot, 2014). 

 

3.2 GLP-1 receptor agonists normalize cognitive impairments in T2DM 

Several studies examining learning and memory in animal models show clear cognitive 

impairments induced by diabetes-obesity. In the high fat diet mouse model, memory formation 

was impaired and treatment with exendin-4 reversed this (Gault et al., 2010). Exendin-4 also 

protected streptozotocin (STZ)-induced diabetic rats from learning impairments as 

demonstrated using an elevated plus maze task and passive avoidance task (Gumuslu et al., 

2016). Treatment with native GLP-1 also protected memory formation in STZ-treated rats 

(Iwai et al., 2009). Liraglutide protected STZ treated rats from impairments of learning a water 

maze task and a passive avoidance task, and improved motor impairments observed in the 

forced swimming test, open field, elevated plus maze, and rotarod motor coordination tests 

(Palleria et al., 2017). Liraglutide also normalized object recognition memory impairments in 

mice were maintained on a high fat diet (Porter et al., 2010). Furthermore, the DPP-4 inhibitor 

Sitagliptin, which elevates GLP-1 concentrations by reducing GLP-1 degradation, protected 



memory formation in a high fat diet mouse model (Gault et al., 2015). Importantly, this effect 

is not entirely due to the normalization of blood glucose levels. When comparing effects of the 

enzyme-resistant GLP-1 analogue (Val8)GLP-1(GluPAL) with the diabetes drug metformin, it 

was found that both drugs effectively controlled blood glucose levels in high fat fed mice. 

However, the memory impairment observed in diabetic mice was not reversed in the metformin 

drug group alone, but only in the (Val8)GLP-1(GluPAL) treated group, see fig. 1 (Lennox et 

al., 2014). This clearly indicates that the neuroprotective effect of GLP-1 signaling goes beyond 

the regulation of glucose levels. GLP-1 receptor agonists have also shown neuroprotective 

effects in non-diabetic patients of Alzheimer’s or Parkinson’s disease, underscoring the 

protective effects that are independent of blood glucose regulation (Gejl et al., 2016; Athauda 

et al., 2017). In contrast, metformin enhances the risk of developing Alzheimer’s or Parkinson’s 

disease in people with T2DM, demonstrating that control of blood glucose is not sufficient to 

protect the brain in the same way that GLP-1 receptor agonists do (Hsu et al., 2011; Kuan et 

al., 2017).  

 

3.3 GLP-1 receptor agonists normalize synaptic plasticity in the brain  

Neurons communicate via synaptic activity, and long-term potentiation of synaptic activity 

(LTP) is considered to be the cellular correlate of memory (Bliss and Collingridge, 1993; 

Hölscher, 1999). When stimulating pyramidal neurons in area CA3 of hippocampal formation, 

the synapses projecting to CA1 neurons are upregulated. In diabetic animals, LTP has been 

found to be impaired. When treating high fat fed mice with liraglutide, the diabetes-induced 

block of LTP in the hippocampus was found to be reversed (Gault et al., 2010). Liraglutide 

also protected LTP formation in mice were maintained on a high fat diet (Porter et al., 2010). 

Native GLP-1 was also able to rescue impairments in synaptic transmission in STZ-treated rats 

(Iwai et al., 2009). In the ob/ob mouse model of diabetes, liraglutide rescued LTP in the 

hippocampus (Porter et al., 2013). GLP-1 has direct modulatory effects on synaptic activity, 

independent of the growth factor related effects, as shown in acute drug treatment in 

electrophysiological recording experiments (Gault and Holscher, 2008; Wang et al., 2013; 

Korol et al., 2014). 

 

Similar to the effects on memory formation, when comparing the effects of the enzyme-

resistant GLP-1 analogue (Val8)GLP-1(GluPAL) with the diabetes drug metformin, it was 

found that both drugs effectively controlled blood glucose levels in high fat fed mice, but the 

block of LTP observed in diabetic mice was not reversed in the metformin drug group, only in 



the (Val8)GLP-1(GluPAL) treated group (Lennox et al., 2014) (see fig. 2). 

 

3.4 Other neuroprotective effects of GLP-1 receptor agonists 

3.4.1 Growth factor expression 

GLP-1 receptor activation not only normalizes insulin signaling, but the impaired signaling of 

several other key growth factors, such as insulin-like growth factor 1 (IGF-1) (Moloney et al., 

2010; Torres-Aleman, 2010), brain-derived neurotrophic factor (BDNF) (Park et al., 2010; 

Gumuslu et al., 2016), glia-derived neurotrophic factor (GDNF) (Allen et al., 2013; Yuan et 

al., 2017), and others. Exendin-4 normalized BDNF expression in the STZ rat model of diabetes 

(Gumuslu et al., 2016). Treatment of high fat fed mice with (Val8)GLP-1(GluPAL) normalized 

the expression of vascular endothelial growth factor (VEGF) (Lennox et al., 2014). Sitagliptin 

also enhanced VEGF expression (Gault et al., 2015). Other studies found normalization in 

expression and function of other growth factors after treatment with GLP-1 receptor agonists 

(Holscher, 2014; Yuan et al., 2017). These growth factors have neuroprotective effects and 

protect synapses and keep them functional under conditions of cellular stress (Cheng and 

Mattson, 1994; Yamada et al., 2001; Allen et al., 2013; Holscher, 2014). 

 

3.4.2 Neurogenesis 

While neurons do not divide and regenerate in most parts of the brain, there are specific brain 

regions such as the hippocampus/dentate gyrus where neurogenesis is still observed even in the 

adult brain. Neurogenesis is impaired in diabetic animals (Lang et al., 2009; Guo et al., 2010; 

Park et al., 2010). Exendin-4 normalized neurogenesis in STZ treated rats (Solmaz et al., 2015), 

while liraglutide normalized neurogenesis in ob/ob mice (Porter et al., 2013). Liraglutide or 

lixisenatide can enhance neurogenesis in wild type mice (Hunter and Holscher, 2012). 

Treatment with Sitagliptin also rescued neurogenesis in T2DM mice (Gault et al., 2015). 

Continuous neurogenesis is considered to be an important factor in long-term memory 

formation (Winocur et al., 2006).  

 

3.4.3 Second messenger signalling for cell growth, repair, energy utilization and 

autophagy 

GLP-1 signaling can compensate for the loss of other growth factors and insulin signaling in 

the brain. The main second messenger signaling pathway is the cAMP-PKA-CREB expression 

pathway (Doyle and Egan, 2007). However, other pathways such as Akt/PKB, AMPk and ERK 

kinase activity are also enhanced by GLP-1 receptor activation (Sharma et al., 2013; Jalewa et 



al., 2016; Palleria et al., 2017). Genes that are activated include those relevant to energy 

utilization, for example, glucose uptake, mitochondrial function and replacement of damaged 

mitochondria (Lennox et al., 2014; Jalewa et al., 2016; Palleria et al., 2017); cell signaling that 

is linked to blocking apoptosis, for example, Bcl2 and Bax/BAD signaling and caspase 

activation (Baggio and Drucker, 2007; Kimura et al., 2009; Lupi et al., 2010); genes that control 

DNA repair (Yang et al., 2017), as well as control of chronic inflammation response in the 

brain that is observed in diabetics and that enhances oxidative stress (Parthsarathy and 

Holscher, 2013; Gault et al., 2015; Qin et al., 2016). In addition, autophagy, an important 

protective process that helps to eliminate cell debris that can become toxic if left to accumulate, 

is also enhanced and controlled by GLP-1 signaling (Jalewa et al., 2016; Panagaki et al., 2017). 

 

4. Is GLP-1 unique? 

Neuroprotective hormones that are released to signal energy availability and have 

cytoprotective properties form a large family. They include glucagon (Lund et al., 2011), 

insulin (Dailey, 2007), IGF-1 (Levine et al., 2012), leptin (Harvey, 2013), ghrelin (Gomez et 

al., 2009), oxyntomodulin (Pocai, 2014), adinopectin (Katsiki et al., 2011), GLP-1 (Baggio and 

Drucker, 2007), GLP-2 (Lund et al., 2011), GIP (Finan et al., 2016) and others. One might 

speculate if GLP-1 has a unique role to play in physiology or if its success is just a random 

finding, simply dictated by the fact that it was one of the first incretin hormones to be identified. 

However, it appears that there are differences between these hormones. The main reason why 

GIP had not been chosen to act as a novel treatment for type II diabetes even though it had been 

discovered first is because it was found to desensitize in diabetic patients (Vilsboll et al., 2002; 

Mohammad et al., 2014). Insulin obviously desensitizes, as does IGF-1 (Cohen et al., 2009), 

ghrelin (Theodoropoulou et al., 2012), leptin (Clemmensen et al., 2013), adinopectin (Satoh et 

al., 2005) and others. It appears that GLP-1 does not desensitize. What could be the reason for 

this? Perhaps analysing the mechanisms that cause desensitization will cast some light on this 

issue. In an acute inflammation response, the role of pro-inflammatory cytokines that are 

released by immune cells is to close down growth factor signalling (Musolino et al., 2017). 

Inflammation is observed in obesity, diabetes, Alzheimer’s and Parkinson’s disease (Craft, 

2005; Holmes et al., 2009; Tansey and Goldberg, 2010; Ferrari and Tarelli, 2011; Stafeev et 

al., 2017). Pro-inflammatory cytokines such as TNF-a and growth factors/ anti-inflammatory 

cytokines counteract each other (Rossert et al., 2000; Calixto et al., 2004; Cotman et al., 2007; 

Bomfim et al., 2012; Musolino et al., 2017). The purpose appears to be to preserve energy and 



to protect cells that are exposed to free radicals released during the inflammation response. 

When the acute inflammation response is coming to an end, anti-inflammatory cytokines are 

released in order to re-activate cell growth and energy utilization (Herder et al., 2013; Musolino 

et al., 2017). GLP-1 is one of such anti-inflammatory cytokines (Dozier et al., 2009; Shiraki et 

al., 2012; Parthsarathy and Holscher, 2013). Therefore, the reason why GLP-1 analogues are 

so successful in re-sensitizing insulin, IGF-1, and other growth factor signalling pathways is 

because GLP-1 signalling does not desensitize. If all growth factor signalling desensitized in 

the affected tissue, it would not be possible to reverse that situation. Some signalling pathways 

have to remain open to be accessible and to signal the end of the inflammatory response. GLP-

1 appears to be one of those privileged signalling pathways. There are many more, and perhaps 

there is a field of treasures right there, waiting to be discovered.  

 

5. Conclusion 

GLP-1 receptor agonists are effective treatments for T2DM and are widely used throughout the 

world. The evidence presented here documents that the beneficial effects exceed those of 

simply enhancing insulin release during hyperglycemic episodes and helping to normalize 

blood glucose levels. Additional beneficial effects are observed that are directly induced by 

GLP-1 receptor activation in the brain and that are visible even in non-diabetic people, and not 

visible in diabetic people that show good control of T2DM by non-GLP-1 diabetes drugs. 

Further research is required to investigate the underlying mechanisms of these additional 

neuroprotective processes.  
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Figure 1: Effects of 20 days treatment with (Val8)GLP-1(GluPAL), metformin or 
combined drug administration on recognition memory in high fat fed mice. 
Acquisition (A) and test (B-F) tasks in high fat fed mice. The recognition index (RI) 
was defined as the amount of time exploring the familiar (tA) or novel object (tB) over 
the total time spent exploring both objects x 100: (tA or tB/(tA+tB))∗100. Values are 
means ± SE for ten mice. *P < 0.05 compared with saline-treated HF control mice. For 
technical details, see (Lennox et al., 2014). This Figure has been reproduced with 
permission (Lenox et al., 2014). 
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Figure 2: Effects of 20 days treatment with (Val8)GLP-1(GluPAL), metformin or 
combined drug administration on measurements of LTP in the hippocampal CA1 
region in high fat fed mice. Field excitatory postsynaptic potentials were recorded 
from stratum radiatum in the CA1 region of the right hippocampal hemisphere in 
response to stimulation of the Schaffer collateral/commissural pathway. Values are 
means ± SEM for six mice. Treatment with the GLP-1 analogue ameliorated LTP as 
shown by a two-level two-way ANOVA indicating a significant difference between 
HF saline controls and GLP-1 analogue -treated mice (P < 0.001) and over time (P < 
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0.001). Similarly, a two-level two-way ANOVA showed a significant difference in 
LTP between HF saline controls and the combination treatment metformin and GLP-1 
analogue (P < 0.001) and over time (P < 0.001). However, no statistical difference was 
found between metformin treated HF mice and Saline treated HF mice. For technical 
details, see (Lennox et al., 2014). This Figure has been reproduced with permission 
(Lenox et al., 2014). 

 
 
 


