Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

The Quadratic Shortest Path Problem: Complexity,
Approximability, and Solution Methods

Borzou Rostami®* André Chassein”, Michael Hopf?, Davide Frey?, Christoph
Buchheim®, Federico Malucelli®, Marc Goerigk!

aEeole de Technologie Supérieure de Montréal and Interuniversity Research Center on
Enterprise Networks, Logistics and Transportation (CIRRELT), Canada
b Fachbereich Mathematik, TU Kaiserslautern, Germany
¢ Fakultdt fiir Mathematik, TU Dortmund, Germany
4INRIA-Rennes Bretagne Atlantique, Rennes, France
¢ Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
fDepartment of Management Science, Lancaster University, United Kingdom

Abstract

We consider the problem of finding a shortest path in a directed graph with a
quadratic objective function (the QSPP). We show that the QSPP cannot be
approximated unless P = NP. For the case of a convex objective function, an
n-approximation algorithm is presented, where n is the number of nodes in the
graph, and APX-hardness is shown. Furthermore, we prove that even if only
adjacent arcs play a part in the quadratic objective function, the problem still
cannot be approximated unless P = NP. In order to solve the problem we first
propose a mixed integer programming formulation, and then devise an efficient
exact Branch-and-Bound algorithm for the general QSPP, where lower bounds
are computed by considering a reformulation scheme that is solvable through a
number of minimum cost flow problems. In our computational experiments we
solve to optimality different classes of instances with up to 1000 nodes.

Keywords: Combinatorial optimization, Shortest path problem, Quadratic
0-1 optimization, Computational complexity, Branch-and-Bound.

1. Introduction

The Shortest Path Problem (SPP) of finding a path in a directed graph
from an origin node s to a target node ¢ with minimal arc length is a well-
studied combinatorial optimization problem. Many classical algorithms such as
Dijkstra’s labeling algorithm [8] have been developed to solve the SPP efficiently.

Several extensions of the basic SPP exist to model more complex settings.
These include problems where the travel costs of an arc follow a distribution
and the shortest path is constrained by parameters such as the variance of the

*Corresponding author. E-mail: bo.rostami@gmail.com
The first author has been supported by the German Research Foundation (DFG) under grant
BU 2313/2. The second author is sponsored by the Air Force Office of Scientific Research,
Air Force Material Command, USAF, under grant number FA8655-13-1-3066. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental purpose not-
withstanding any copyright notation thereon.

Preprint submitted to Elsevier December 11, 2017

https://core.ac.uk/display/146499377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cost of the path [23], and problems in which additional costs arise from pairs of
arcs in a solution [1, 13].

In this paper we consider the shortest path problem with a quadratic objec-
tive function (the QSPP). Specifically, writing the linear objective function of
the classical shortest path problem as ¢’z with a cost vector ¢, the objective
function of the QSPP is ' Qz + ¢z with a quadratic matrix Q.

1.1. Applications and Related Work

One variant of the SPP studied in the literature that is directly related to
QSPP is that of finding a variance-constrained shortest path [23] where the
arc costs are not deterministic but follow a distribution and the objective is to
find a path with minimum expected costs subject to the constraint that the
variance of the costs is less than a specific threshold. In particular, a solution
consists of a path that must have both a short expected length and a low risk
of exploding costs in an unfortunate event. An application for this problem
is the transportation of hazardous materials. Possible approaches to solve the
Variance-Constrained Shortest Path problem involve a relaxation in which the
quadratic variance constraint is incorporated into the objective function, thus
yielding a QSPP problem. In this case, the quadratic part of the objective
function is determined by the covariance matrix of the coefficient’s probability
distributions, and hence convex. In a similar way, instead of bounding the
variance, one may search for a solution that considers both the expected cost
and the variance of a path as optimization criteria. In [22], the authors consider
this as a multi-objective optimization problem. They solve this problem by
combining the linear and quadratic objective functions into a single QSPP. Also
related to variance-constrained shortest path problems are the so-called reliable
shortest paths, see [7].

A different type of applications arises from research on network protocols.
In [18], the authors study different restoration schemes for self-healing ATM
networks. In particular, the authors examine line and end-to-end restoration
schemes. In the former, link failures are addressed by routing traffic around the
failed link, in the latter, traffic is rerouted by computing an alternative path
between source and target. Within their analysis, the authors point out the
need to solve a QSPP to address rerouting in the latter scheme. Nevertheless,
they do not provide details about the algorithm used to obtain a QSPP solution.

All problems described above involve variants of the classical shortest path
problem in which additional costs arise with the presence of pairs of arcs in the
solution. Such a setting can be modeled by a quadratic objective function on
binary variables associated with each arc, and leads to the definition of a QSPP.

To the best of our knowledge there is no specific method in the literature
to solve the QSPP. The only algorithmic approach that has been applied to
solve instances of the the QSPP is the one proposed in [4]. They studied a
generic framework for solving binary quadratic programming problems. In their
computational experiments, they solve some special classes of quadratic 0 — 1
problems including the QSPP.

1.2. Main Contributions

In this paper, we analyze the complexity of the general QSPP and several
of its special cases. In particular, we show that the general QSPP cannot be

GRAPH TYPE
PROBLEM general [acyclic | series-parallel graph
QSPP not approximable* | not approximable* not approximable*
convex QSPP APX-hard APX-hard APX-hard
AQSPP not approximable* P P

Table 1: Our complexity results for different variants of the Quadratic Shortest Path Problem.
The entries marked with in asterisk (*) hold true unless NP = P.

approximated unless P = NP. This is done by reducing an instance of the Path
with Forbidden Pairs Problem (known to be NP-complete) to a corresponding
instance of the QSPP. We also show that, even if we restrict the quadratic part
of the cost function to pairs of arcs which are adjacent (AQSPP), the problem
still cannot be approximated unless P = NP. This is done by a gap-producing
reduction from an instance of 3SAT to an instance of the AQSPP. Moreover,
for the convex QSPP where the quadratic form is positive semidefinite and,
thus, the objective function is convex, we show that the problem is APX-hard
and provide an n-approximation algorithm, where n is number of nodes in the
graph. Our complexity results are summarized in Table 1.

From the practical point of view, we present a mixed integer programming
formulation whose size is linear in terms of the number of variables in the original
quadratic formulation. We also propose an exact Branch-and-Bound algorithm
for the general QSPP, where lower bounds are computed by considering a re-
formulation scheme that is solvable through a number of minimum cost flow
problems. In our computational experiments we solve to optimality different
types of instances with up to 1000 nodes and show that our results outperform
a state-of-the-art solver.

Parts of this paper have been published as conference proceedings [21], where
the authors show the NP-hardness of the general QSPP, analyze polynomially
solvable special cases, and propose some bounding procedures for the general

QSPP.

2. Problem Formulation

Let a directed graph G = (V, A) be given, with a source node s € V, a
target node t € V, a cost function ¢ : A — RT, which maps every arc to a
non-negative cost, and a cost function q : A x A — R* that maps every pair
of arcs to a non-negative cost. We denote by 6= (i) = {j € V | (4,7) € A} and
0t(i)={j eV | (i,j) € A} the sets of predecessor and successor nodes for any
given ¢ € V, by n the number of nodes, and by m the number of arcs. Using
binary variables z;; indicating the presence of arc (i,j) € A on the optimal
path, the QSPP is represented as:

QSPP: z* = min Z QijklTi5 Tk + Z CijTij
(i.9),(k,))EA (i.5)eA (1)
s.t. x € X4, x binary.

Here the feasible region X, is the path polyhedron

th:{nggl Z Tij — Z Ij,:b(l) \V/ZGV}

Je&t(4) j€s=(3)

with b(i) = 1 for i = s, b(i) = —1 for i = ¢, and b(i) = 0 for i € V' \ {s,t}.
Note that, like in the case of classic shortest path problems, it is not necessary
to include cycle-elimination constraints, as all costs are positive.

Note that the objective function of the QSPP can be represented by a
quadratic and a linear term f(z) := 27 Qz + ¢’z for an appropriate matrix Q.
We can assume without loss of generality that the matrix @ is symmetric and
denote the special case where @ is positive semi-definite, i.e. when f is convex,
as the convex QSPP.

Next we define some special cases of the QSPP where the quadratic part
of the cost function has a local structure, meaning that each pair of variables
appearing jointly in a quadratic term in the objective function corresponds to a
pair of arcs lying close to each other. We define the Adjacent QSPP (AQSPP),
where interaction costs of all non-adjacent pair of arcs are assumed to be zero.
Therefore, only the quadratic terms of the form z;;zy; with j =k and i # [or
with j # k and 7 = [have nonzero objective function coefficients.

As a variant of the AQSPP, we may count additional costs for adjacent arc
pairs only if these arcs are traversed consecutively. This problem was investi-
gated in [1, 21, 13]. To distinguish it from the AQSPP, we call it Consecutive
QSPP (CQSPP) here. In fact, the AQSPP and the CQSPP are identical if the
given graph is acylic. However, for general graphs they are not equivalent. In
fact, while the AQSPP is not even approximable in general, as shown in this
paper, the CQSPP turns out to be tractable for any graph. This even remains
true when taking all arc pairs into account that appear with a fixed maximal
distance on the path [21].

3. Complexity Results

3.1. The General QSPP

We start our complexity analysis with the observation that the QSPP can
be seen as a generalization of the Path with Forbidden Pairs Problem (PFPP).
An instance of the PFPP consists of a graph G = (V, A), two nodes s,t € V
and a list of forbidden arc pairs £ = {(a1,@1), ..., (ar,ax)}. The goal is to find
a path from s to ¢ that contains at most one arc of each arc pair in £. (The
problem may also be defined with a list of forbidden vertex pairs). It is known
that this problem is NP-complete [9]. Every PFPP can be transformed to an
equivalent QSPP, which leads to the following theorem.

Theorem 3.1. The QSPP cannot be approrimated unless P = NP.

Proof. The proof is a reduction from PFPP to QSPP. Given an instance of
PFPP, specified by a graph G = (V,A) and a list of forbidden arcs £, we
construct an instance of QSPP, specified by a graph G’, a cost vector ¢ and
a matrix Q. We set G’ := G and c(a) := 0 Va € A. Further, we use the
quadratic cost function @) of the QSPP to model the forbidden list of arc pairs
L. For cach arc pair (a,b) € L, we set g, = 1. All other entries of @ are
zero. Hence, finding a path with costs equal to 0 in G’ with respect to the cost
function 27 Qx + ¢’z is equivalent to finding a path in G that contains at most
one arc of each pair in £. If and only if the instance of the PFPP problem
is a yes-instance there exists a solution of the QSPP with objective value 0.
Contrary, if the instance of the PFPP is a no-instance each feasible solution of

aq as [
Figure 1: The graph used for the reduction in the proof of Theorem 3.2.

the QSPP has cost of at least 2. Hence, every approximation algorithm for the
QSPP could be used to decide the PFPP, which implies the non approximability
result. O

3.2. The Conver QSPP

In the following we consider the convex QSPP. As it turns out it remains
APX-hard, but can be approximated within a factor of n. Hence, the non-
convexity of the general QSPP is necessary for the non-approximability result
of Theorem 3.1.

Theorem 3.2. The convex QSPP is APX-hard.

Recall that to show that a problem is APX-hard, we have to give a PTAS
reduction from another APX-hard problem. For that, we use the Independent
Set on degree three graphs problem, which is known to be APX-hard [3].

Independent Set on degree three graphs (1S3)

Given an undirected graph G = (V, E) with node degree at most
three for all nodes, find a subset I’ C V with maximum size such
that there exists no edge between two nodes of I'.

In the proof, we construct a PTAS reduction from 1S3 to the convex QSPP. A
PTAS reduction from a maximization Problem A to a minimization Problem B
consists of three polynomial time computable functions f, g, and b such that the
following relations hold. Let Z be an instance of problem A. Function f maps Z
to an instance of problem B. Function g has three inputs: An error parameter e,
an instance Z, and an (1 + h(e))-approximate solution of the corresponding
problem f(Z). The output of g is a solution of Z that is at most (1 — €) times
worse than the optimal solution.

Proof. In the following, we define the construction that is used to map instances
of 1S3 to instances of the convex QSPP, i.e., the function §f. Given an instance
of 1S3 with a graph G’ = (V',E) with V' = {v1,...,v,}, we construct the
graph G = (V, A) for the instance of the convex QSPP as follows: The node set
V =V'U{ve} is the node set of the original graph expanded by one additional
node vg. The source node s = vy and the sink node ¢t = v,,. However, the arc
set is defined as the following multiset

A= {ai,di = (1}7;_1,’[17;)|i = 1, e ,n}.

We denote in the following all arcs a; as the top arcs and the arcs a@; as the
bottom arcs. The graph G = (V, A) is shown in Figure 1.

Next we give the cost structure that defines the objective function of the convex
QSPP. The linear cost vector is set to 0, i.e. ¢(a) =0 Va € A. The costs of the
arc pairs are defined as follows:

® Goa, =4Vi=1,...,n
® gg,a, =oVi=1,...,n
® Jo,a; = 1 V(%j) with (’Ui,'Uj) el

All other arc pairs have zero costs. By construction, the resulting matrix
Q € R?"*2" that represents the quadratic cost term is symmetric. To see that
Q is also positive definite, note that, since in G’ at most three edges are adjacent
to every node, we get that Ze,# Geer < 3 Ve € A. As qee > 4, we can conclude
that all eigenvalues of @) must be strictly positive by applying the Gershgorin
circle theorem [10].

Next, we describe the function g. We denote by P an s — t path in G.
Every such path contains either a; or @; for ¢ = 1,...,n. Hence, every path P
defines a partition of the node set V' = Vp U Vp, where Vp = {v; | a; € P}
and Vp = {v; | @; € P}. Given a path P we use this partition to construct an
independent set in G’ in the following way. If there exists an edge between two
nodes of Vp, we remove one of them (with out loss of generality the node with
the smaller index). We repeat this deletion procedure until no edge connects
two nodes of the set. Denote the so obtained independent set by Vp.

The function b is defined to be h(e) = 5.

To show that f,g, and b indeed define a PTAS reduction, we have to verify
the approximation property. Denote by f(P) the cost of an s — ¢ path P in the
convex QSPP instance, by k the size of the maximum independent set I’ C V'
in the original graph G’, and by OPT the optimal value of the constructed
QSPP instance. We clalm that OPT = 5n — k. To see that OPT < 5n — k
consider the following path P, where arc a; belongs to P if and only if v; € I'.
Then, f(P) = 5(n — k) + 4k = 5n — k as I’ is an independent set and, hence,
no non-diagonal entries of () must be considered. Assume that OPT < 5n — k.
Denote by P* the optimal solution of the convex QSPP instance. We must have
that |Vp«| > k as otherwise a path with cost lower than 5n — k is not possible.
In this case, however, Vp« cannot be an independent set anymore in G’ as the
size of the maximum independent set is bounded by k. Therefore, at least one
edge must connect two vertices v;,v; of Vp-. We can improve the objective
value of path P* by exchanging edge a; with @; for example. This will decrease
the costs of the path, as the diagonal cost of @; is only 1 larger as the diagonal
cost of a; and the costs paid for the two non-diagonal entries will decrease by
at least 2, as the number of edges connecting nodes from Vp- is reduced by one
and every edge is counted twice. This contradiction shows that OPT = 5n — k.

Now let P be a solution of the convex QSPP with f(P) < OPT(1 + h(e)).
The costs of P are given by f(P) = 5|Vs|+4|Vp|+2|E(Vp)|, where E(Vp) C E
are all edges that connect nodes of the set Vp. Using that [Vp| = n — |Vp| we
obtain

J(P)SOPT(L+6(e) & 5n—[Ve|+2EVe) < (Gn—k) (1+55)

o & (14 €) one

— —2|F
19 10 < |Vp| =2[E(Vp)|

The solution that is produced by function g is denoted by Vp and we have that
[Ve| > |Vp| —|E(Vp)|, as for every edge connecting two nodes from Vp, at most

one node needs to be removed from Vp. The proof is finished if we can show
that |Vp| > k(1 — €), as k is the optimal solution value of the original problem.
This follows from the following chain of inequalities

Vp| > |Vp| — |E(Vp)|
> |Vp| = 2|E(Vp)|

zk(H—%)—k%
> k(1 —e),

where we used the fact that & > 7 in the penultimate inequality. To get an
independent set of this size, just pick an arbitrary node of the vertex set and
remove all neighbors of this node from the node set. Note that every node can
have at most three neighbors. In this way, at least % of all nodes can be picked

and no edge will connect two picked nodes. O
Theorem 3.3. The convexr QSPP can be approrimated within a factor of n.

Note that the objective function of the QSPP is given by the expression
2T Qx + ¢z, which can be simplified to 27 (Q + Diag (c))z, where Diag (c) is a
diagonal matrix with ¢ on the diagonal. This follows from the observation that
x; = 22 Va; € {0,1}. Therefore, the objective function of the QSPP can be
represented by a single quadratic expression f(z) := 27 Mz. Without loss of
generality we can assume that M is symmetric.

Proof. As explained above, we assume that the objective function of the QSPP
is given by f(x) = 27 Mx with a quadratic matrix M. Denote by d the diagonal
entries of matrix M. Instead of minimizing function f we can also minimize a
function g that approximates f. Consider function g(z) := 2” Diag (d)x. We
claim that g(z) < f(z) < k- g(z) for all binary vectors with k one-entries. As
every vector x that represents a simple path has at most n one-entries, we get
that g(x) < f(z) < n-g(x) for all binary vectors representing simple paths. We
can restrict the analysis to simple paths as all costs are non negative. Note that
it is a classic shortest path problem to solve the problem min,cx,, g(z), since
2T Diag (d)z = d”x for all binary z.

We now prove the approximation guarantee of g. As all entries of the matrix
M are positive, we have that g(x) < f(z) Vz > 0. To see that f(z) < k- g(x)
consider the following (without loss of generality we assume that the first k
entries of are one):

f(zx) —xTMx—ZM”x +2Z Z M;jx;x;

=1 j=i+1

k
=k M — (k—1) ZM“J; +22 Z Mz,

=1 1= 1] i+1
=k- — (k-1 ZM”:E —1—22 Z M;jx;x;

i=1 j=i+1
ko k
—Z Z M“ac ”xlatj—i—Mijj

<k-g(z)

The last inequality follows since M is positive semidefinite. To see that 0 <
Mnxf —2Mx525 + ijm? for all ¢, j, consider := e; - x; — ¢; - ¢;, where ¢; is
the i*® unit vector. As f is a convex function, M must be positive semi definite.
Hence, 0 < 2T M3 = Miix —2M; TiTj + MJJ.'L‘j

Denote by & the path that minimizes g and by z* the optimal path of the
QSPP. Then,

f(@) <n-g(Z) <n-g(z") <n- f(a7).

The first and the last inequality follow from the approximation guarantee of g.
The second inequality holds as Z is a minimizer of function g. O

3.8. The Adjacent QSPP

The next theorem shows that the restriction to the AQSPP does not suffice to
reduce the complexity of the problem. Independently, the same result has been
proved in [14] using a reduction from the 2-disjoint path problem. Moreover,
one can use a similar (but simpler) reduction to show that the QSPP cannot
be approximated unless P = NP, even if the underlying graphs is series-parallel.
The idea of the reduction is to use a chain of two parallel arcs, representing the
literal assignment, followed by a chain of seven parallel arcs, representing the
feasible-clause assignment. The consistency between literal and clause assign-
ment can be ensured by the quadratic cost function.

Theorem 3.4. The AQSPP cannot be approzimated unless P = NP.

Proof. We give a gap-producing reduction from 3SAT. Given an instance of
3SAT we create an instance of the AQSPP in polynomial time. If the instance
of 3SAT is a yes-instance, i.e., there is an assignment for the literals such that
each clause is satisfied, the optimal path of the AQSPP instance has cost zero.
Conversely, if the instance of 3SAT is a no-instance, i.e., there is no assignment
for the literals such that each clause is satisfied, the optimal path has cost of
at least 2. Thus, the existence of an approximation algorithm for AQSPP that
runs in polynomial time would imply an algorithm that can decide 3SAT in
polynomial time, implying P = NP.

Let an instance of 3SAT be given in conjunctive normal form containing
n literals z1,...,z, and m clauses C4,...,C,,. For convenience, we assume

that each clause C; consists of exactly three literals x 1), 72y, and x;(3) in
positive or negative form (the proof also works without this assumption). For
the three literals of every clause, there exist 8 possible assignments from which
seven satisfy the clause. For example, consider the clause C; = (1 V T2 V x3).
The seven satisfying assignments are given by (z1,z2,23) = (0,0,0), (0,0,1),
(0,1,1), (1,0,0), (1,0,1), (1,1,0), or (1,1,1).

Given a 3SAT instance, we construct an instance of AQSPP, specified by
a graph G = (V, A), a cost vector ¢ and a matrix Q. The vertex set V =
{s} U{v1,...,u,} U{C1,...,Cp,} U {t} UV’ consists of a source node s, one
node v; for each literal x;, one node C; for each clause Cj, and a sink node ¢
(= Chy1) as well as an additional vertex set V'’ (cf. Figure 2). The vertex
set V' = {vik,0ijuli € {1,...,n},j € {1,...,m},k € {1,...,7}} consists of
14mn vertices that are used to establish an individual connection between each
clause and each literal. We connect v;—1 and v; for i = 1,...,n (vg := s) with
two distinctive paths P;, P; of length 7m + 1

Pz’ = (’Ui—17’U’L'117 ey V17, V21 - o 5 Uim 7y Ui) and
Pi = (0i—1,Ti11, - - -, U317, V215 - - -+, VimT, Vi)

All arcs introduced so far are arcs of type I. Additionally, there is an arc from
v, to the first clause node C4.

From each clause node C}, seven paths Qji,...,Q;7 are emanating. The
arcs of these paths are of type II. Each of these seven paths represents one
of the seven feasible assignments of clause C';. Each of these paths consists
of four arcs and connects C; with Cj4;. In the following we give an exact
description of path Qi for clause C; = (Z;(1) V Zj(2) V £(3)). Denote by 2’ the
kR feasible assignment of clause C;. The first arc points to the node Vj(1),j,k if
$9(1) = 0, otherwise, it points to the node vy ;. The second arc points to the
node vja) jx (O Uj2y,5k) if x;(2) =0 (or a:;@) = 1). The third arc points to the
node vj;(3y ;. (OF Tj3y4k) if .23;(3) =0 (or 3:9(3) = 1). This might become more
clear with a concrete example. Consider again clause C; = (z1 V Ta V x3). The
first feasible assignment is given by (x1,x9,23) = (0,0,0), hence the resulting
path Q11 = (C1,v1,1,1,v2,1,1, v3,1,1, C2), the fifth feasible assignment is given by
(.%'1,1‘27%‘3) = (1,071)7 hence, Q15 = (01751’1’5,U2’1’5753’1,5702). Path Qq; is
shown in Figure 2. Observe that we connect a clause node with the opposite
literal assignments.

Next, we give the description of the cost structure. All linear costs in the
corresponding AQSPP instance are zero, i.e., ¢(a) =0 for all a € A. Quadratic
costs occur if and only if two arcs are adjacent and belong to different arc types.
All arcs corresponding to the assignments of the clauses, i.e., the arcs on the
assignment paths Qj1,...,Qj7 from C; to Cjy1 (as described above) are of
type II. All other arcs are of the type I, except of the arc from v,, to C.

Next, we show that a 3SAT instance is satisfiable if and only if the optimal
solution of the corresponding AQSPP instance has costs zero.

First, suppose the given 3SAT instance is satisfiable. Let 2* be a literal
assignment that fulfills all clauses. We need to construct a path P* in G from
s to t with costs zero, thus, without producing quadratic costs. The first part
of P* from s to v, traverses path P; if we have 2} = 1, and P, if we have
xz; = 0. Since z* is a feasible literal assignment each clause C; is satisfied. If
C; is satisfied by its kth feasible assignment Qjk is part of P*. Note that the

— roseeeseeens .
(&) Cy : t

¥ —ore % - % - e e—e - =»

- e - —>e — e e - >

Figure 2: The graph used for the reduction in the proof of Theorem 3.4. All horizontal
arcs pointing from left to right are of type one, all dotted arcs are of type two. All dashed
arcs indicate chains of arcs. The dotted path that is completely shown corresponds to the
assignment x1 = 0,22 = 0, and z3 = 0 for clause C.

constructed path is clearly an s — t path. Note further that no quadratic costs
can occur since assignment paths @ consist only of nodes which correspond to
the opposing literal assignment. This may become more clear using a concrete
example. Consider the clause Ci = (x1,T2,23). Assume that this clause is
satisfied in the 3SAT instance by the literal assignment 7 = 0,23 = 0, and
x4 = 0. Hence, Py, Py, and P3 are part of P*. As Qi only contains nodes
of the paths P;, P>, and P3, no arc pair producing quadratic costs lies on this
section of the path (cf. Figure 2).

Conversely, suppose the given 3SAT instance is not satisfiable. We claim that
the optimal path of the constructed AQSPP instance has costs of at least 2.
Assume this is not the case and there is a path P’ with costs zero. Such a
path can never switch from an arc of type I to an arc of type II and vice versa
since, then, quadratic costs of at least 2 would occur. Hence, the path P’ must
traverse from s to v,, then from C; to C,, and finally to ¢. Thus, the path P’
must represent a literal and clause assignment. Let 2’ be the literal assignment
represented by P’. As the 3SAT instance is a no-instance, at least one clause
can not be satisfied by /. Let C; be the clause which is not satisfied by z’.
Since one of the seven paths Q;1,...,Q;7 is present in P’ and none of the seven
feasible assignments of C; is represented by 2, at least one variable is assigned
inconsistently. Hence, there exists a node on P’ which occurs twice. As the
corresponding arcs are of different type quadratic costs of at least 2 occur and
we obtain the desired contradiction. Again we use a concrete example to make
this more clear. Consider again clause C; = (x1,T2,23). Assume that Py, P,
and Ps3 are part of P/, i.e. P’ represents a literal assignment which does not
satisfy clause C;. Note that Qi N (P U Py U P3) # () for k = 1,...,7 and,
hence, the cost of P’ are at least 2.

We conclude the proof with a final remark about the size of the reduction.
Graph G consists of O(mn) nodes and arcs. Hence, the reduction is indeed
polynomial. O

10

Note that the proof of Theorem 3.4 can be used to show that the PFPP
remains NP-complete even if the list £ is restricted to adjacent arc pairs. The
same graph construction is used and the list £ is defined to be all pairs of arcs
that have a non zero contribution to the quadratic function. To the best of our
knowledge, this result has not been observed yet.

4. Effective Computation of Tight Lower Bounds

Lower bounds are a basic component of Branch-and-Bound algorithms, and
a standard tool for the evaluation of heuristic solutions for a minimization prob-
lem. In practice, the lack of efficiently computable tight lower bounds can be
one of the main reasons for the difficulty of solving even small size instances.
However, the choice of the lower bounding procedure should trade off the tight-
ness of the obtained bound and the required computation time. Keeping in
mind both the tightness of the bounds and the computational effort to compute
these bounds, in this section, we propose lower bounding schemes for the general
QSPP based on a closer investigation of the problem structure.

4.1. The Gilmore-Lawler Type Bound

The Gilmore-Lawler (GL) procedure, proposed in [11] and [16] to compute
a lower bound for the Quadratic Assignment Problem (QAP). This approach is
one of the best known for the QAP due to its simplicity and lower computa-
tional cost, and has been adapted to many other quadratic 0—1 problems in the
meantime [5, 19].

For each arc (i, j) € A, potentially in the solution, we consider the minimum
interaction cost of (7,7) in a path from s to t. To find these costs we need to
compute the shortest among the paths from s to ¢ which contain arc (i, 7), using
the 7j-th row of the quadratic cost matrix as the cost vector. Unfortunately, this
problem is NP-complete as it corresponds to the Two Disjoint Paths Problem,
which is known to be NP-complete [2]. To avoid computing the exact solution of
this problem, we relax the integrality constraints to obtain a minimum cost flow
problem. In this way we underestimate the true value of the original problem
and, hence, generate also a valid lower bound. Let P;; be such a subproblem
for a given arc (7,7) € A. The minimum cost flow problem contains two origins
s and j and two destinations ¢ and ¢. One unit of flow needs to be transferred
from each origin to each destination. The resulting solution consists either of a
path from s to ¢ and from j to ¢ or of the union of a path from s to t that does
not contain arc (¢, 7) and a cycle containing (4, j).

The resulting minimum cost flow problem for each fixed (i,7) € A is given by:

min Z QijkiTh (Pij)
(k,EA
st. e Xy
:Eij =1

Denote by z;; the optimal value of P;;. This value underestimates the smallest
possible quadratic contribution to the QSPP objective function when arc (i,)

11

is in the solution. Once z;; has been computed for each (¢, j) € A, the GL bound
is given by the solution to the following shortest path problem:

LBgr, = min Z (Cij + Zij)l‘ij cx € Xgt
(4,7)€EA

The popularity of the GL approach for computing lower bounds stems from
its low computational cost. However, for some quadratic 0-1 problems the
obtained bounds deteriorate quickly as the size of the problem increases [6, 20].
To overcome this problem, we present an iterative procedure in the following
subsection.

4.2. An lIterative Procedure to Improve the GL Bound

The GL procedure described above transfers part of the quadratic costs to
the linear-cost vector by solving each of the P;; subproblems. Nevertheless,
the part of quadratic costs that is not included in the solutions of P;; is simply
ignored when computing LB¢gy,. Inspired by the reformulation scheme proposed
by [6] for the QAP, our next lower bound captures this left-over part by means of
the reduced costs associated to the optimal solution of each P;; subproblem. To
define the reduced cost we have to consider the dual problems D;; of problems
P;;. For all (i, j) € A the dual of P;; is given by:

max (Aij)e = (Aij)s + 7ij (D))
st (M) — (Mg < Giji V(k, 1) € A, (k1) # (i, 7)
(Nij)j — (Nij)i + mij < ujij

For all (4,j) € A the new linear and quadratic costs are given by

Cij = Cij + Zij (2)
Gkt = Qigir + (A5 — (M) V(K1) € A, (k1) # (4,) (3)
Gijij = Qigig + (Njj)i — (Nij)i — 735 (4)

where z;; is the optimal value of P;; and Aj; and 77; are the optimal dual values
of D;;. Note that the constraints of D;; ensure that § > 0. Replacing the costs
leads to problem RQSPP, which is equivalent to QSPP, but has increased linear
costs.

RQSPP: Zz* = min Z (jijklasijxkl + Z @j.ﬁij
(i.), (k1) €A (i) €A (5)
s.t. = € X4, x binary.

Theorem 4.1. Problems QSPP and RQSPP are equivalent.

Proof. To show that both problems are equivalent, we prove that all feasible
solutions x € X, have the same objective function value. Hence, let x € X4

12

be arbitrary and fixed. Then

E g QijkiTRiTi; + E CijTij

(i,5)€A (kl)€A (,7)eA

= > | DD @+ Ok — Mz — maly |+ Y (e + 2i5)wi
(i.9)

(i,))eA \(k,)EA

S0 Gimaamg — Y > (= k)zmmiy + 7 | +

(i,j)€A (k,l)eA (i,5)€A \(k,1)EA

Z CijTij + Z ZijTij
(i,5)€A (i,5)€A

Z Z QijklTkITij + Z CijTij (*)
(i,7)€A (k,1)EA (1,j)€A

The last equality (*) can be derived by the following arguments. For all (¢,5) € A
we have that

Z ((A:j)l - (/\fj)lc)xkl = ()\;‘kj)t - ()‘;‘kj)s = Zij — 77;';'

(k,l)eA

as x represents an s — t path and strong duality holds between P;; and D;;.
This is equivalent to

Z (N — (N e)TrL + 735 = 2ij

(k,l)eA

Multiplying with z;; and summing over all (¢,) € A on both sides yields

Z Z ((/\:])l_(/\)k)xklxu +7T GLij | = Z ZijTij

(i,))€A \(k,)EA (1,7)€A
O]

The reformulation strategy incorporates the quadratic contributions cap-
tured by the GL bound into the linear costs. This makes it possible to compute
the GL bound for the original problem by simply ignoring the quadratic costs
in RQSPP and computing a linear shortest path. Applying the GL bound
to the reformulated problem, on the other hand, provides no additional im-
provement as the GL procedure cannot increase the linear costs any further
(z:;5 = 0V(3,5) € A). However, it is possible to further improve the bound by
directly changing the quadratic cost matrix. In Example 4.1 we present a small
QSPP sample instance, which shows that two different cost matrices, specifying
the same QSPP can lead to different GL bounds.

Example 4.1. Consider an instance of the QSPP with the underlying graph
depicted in Figure 3 and the cost structure shown in Table 2. We solve the
subproblems for each edge and add the results to the linear costs of each edge.
We present in Figure 4 the two different shortest path problems corresponding

13

to cost matrices Q1 and Q2 which need to be solved to compute the GL bound.
The left number over the edge represents its cost ¢; and the right the optimal
value z; of the corresponding subproblem. The GL bound is found by solving a
shortest path problem with the updated cost. Note that the cost matrices ()1 and
Q32 lead to different subproblems with different optimal values. The shortest path
on the left has length 5 and the shortest path on the right costs 6.

e €3

€9 €4

Figure 3: The underlying graph of the sample QSPP instance.

Ci (o ‘ €1 €2 €3 €4 Q2 ‘ €1 €2 €3 €4
€1 1 €1 0 4 6 8 €1 0 2 3 4
€9 2 €9 0 0 2 4 €9 2 0 1 2
es | 2 es| 0O 0 0 2 es | 3 1 0 1
eq | 1 eq | 0 0 0 0 eq | 4 2 1 0

Table 2: The cost structure of the instance shown in Figure 3. Note that both quadratic cost
matrices @1 and Q2 describe the same QSPP.

1+6 2+0 1+3 2+1
2+2 140 2+1 1+2

Figure 4: The figure on left corresponds to the cost matrix @1, while the right one corresponds
to the cost matrix Q2.

Based on the results of Theorem 4.1 and motivated by Example 4.1, we
propose an iterative procedure to find a sequence of reformulations of the original
problem that lead to better and better lower bounds. Note that an iterative
procedure which sequential improves the lowerbound for the QAP was already
introduced in [6]. Starting from the original reformulation RQSPP with linear
costs & and quadratic costs Q, the first iteration finds a new reformulation,
RQSPP’, with new linear cost ¢ and quadratic cost Q’ , which provides a better
lower bound than the GL bound obtained with RQSPP. The iterative procedure
is summarized as follows.

o Step 1. Initialize ¢;; = c¢;j for all (4,5) € A, and Gijr1 = Gijr for all
(i,7), (k,1) € A. Set an iteration counter itr = 0 and the current lower
bound LB*" = (.

e Step 2. For each (i,j) € A, change the coefficient G;jii to a percentage
of the sum of Gijri + Qrisj, and then adjust grii; so that the sum remains
constant. (In our computational experiments we set Gijkl = Qrlij = ((jijkl +

14

Griiz)/2 for all (i,7), (k,1) € A withi < k). Upon solving the corresponding
subproblem (Py;) with new cost Q, use (2) to (4) to update ¢ and Q and
proceed to the next step.

e Step 3. Solve a shortest path problem with new cost &, and set LB™" equal
to the objective value. Stop when a predetermined number of iterations
have been performed, otherwise increase the iteration counter by 1 and
return to Step 2.

4.8. An LP-Based Bound

In this section, we present an MILP formulation for the QSPP which takes
advantage of the GL bounds presented in Section 4.1. We associate an overall
cost a;;j(x) = ¢ij + Z(k’l)eA Gijk1%k to each arc (i,7) that depends on the arcs
that are present in the solution. This allows us to rewrite QSPP as

2* = min Z a;ij(x)zi;: x € X p . (6)

(i,j)€A
If we replace each a;;(x) with its minimum value ¢;; + 2;; over the set of possible
feasible solutions where arc (4, 7) is in the solution, the GL bound is obtained.

Let us define a new variable y;; = a;;(z)x;; for all (i,5) € A. Therefore, we
have
Yij = (cij + zi)zij (i,4) € A (7)
Moreover, let w;; represent an upper bound on the cost Z(k,l)eA QijkiTr. In
principle, we can compute w;; by setting w;; = Z(k,l)eA qijr1- However, taking
into account the structure of the graph, a better estimation may be obtained.
For acyclic graphs, for example, w;; can be computed by solving the following
minimum cost flow problem:

Wij = maX{ Z QijklTEl * T € Xst} = _mil'l{ Z —QijkiTkl - T € Xst}-
(k,HeA (k,H)eA

Following the well-known results of [12], we can derive the following inequality:

Yij > Z Gijixr — Wi (1 — 245) + iy (4,7) € A (8)
(k1)eA

Using (7) and (8) the QSPP can be linearized as follows:

MILP: z* = min Z Yij

(i,5)€A
s.t. Yij > (Cij + zij)xij (Z,]) €A
Yij = Z GijriZr — wij (1 — x55) + cijzi; (i,75) € A
(k,l)eA

x € X, x binary.

Observe that an optimal solution to the MILP will yield an optimal solution
to the QSPP. However, if the binary restrictions on variables x are relaxed in
the MILP, the problem is no longer equivalent to the QSPP, providing a lower
bound on the optimal value of the QSPP.

15

5. The Branch-and-Bound Algorithm

In this section, we describe our approach to incorporating the previous lower
bounds into a Branch-and-Bound strategy in order to obtain an optimal solu-
tion to the QSPP. More specifically, the application of Branch-and-Bound to
the QSPP requires a method to obtain a lower bound, a method to obtain a
feasible solution (an upper bound), and a method to partition the feasible re-
gion of a given problem (branching rule). Both the lower and upper bound
can be generated by any of the lower bounding procedures we described in Sec-
tions 4.1 and 4.2, as their application also provides feasible QSPP solutions.
The objective value of any feasible QSPP solution provides an upper bound to
the QSPP.

To satisfy the third requirement, we instead exploit the structure of the
QSPP. Given a source node s and a target node ¢, a feasible solution to our
problem is a path connecting these two nodes. A simple way to partition the
solution space therefore consists in considering the subproblems associated with
each of the neighbors of the start node. The same idea can then be applied re-
cursively by taking the considered neighbor as the start node of the subproblem,
and considering its own neighbors.

Let us consider a sub-problem corresponding to a neighbor v. The solution
to this sub-problem consists of the concatenation of the path from s to v and
the solution to a quadratic shortest path problem from v to t. Clearly, to
obtain a correct subproblem when forcing a neighbor, v, as a new start node,
it is necessary to update the costs of the arcs in the subproblem by taking
into account the presence of the arc forced into the solution by the branching
operation.

Let us consider what happens when we partition a problem from u to ¢ by
branching on one of the neighbors of u, for example v. The branching step
involves forcing arc (u,v) into the solution, and the solution to the problem
from u to ¢ will consist of the arc (u,v) together with the solution of a new
subproblem from v to t. The new v-to-t subproblem will thus have to take into
account the presence of arc (u,v) in the solution. To this end, the cost of each
arc in the v-to-t subproblem will have to incorporate the quadratic contribution
corresponding to its coexistence with arc (u,v). This is easily achieved by
summing the row and the column of the quadratic cost matrix corresponding to
arc (u,v) to the linear costs vector of the new problem. If c*~*~¢ and gv—to~t
are the cost vector and quadratic cost matrix for the problem from u to ¢, and
c?~%~* is the linear cost vector for the sub-problem from v to ¢, then we have
the following, for each (i,7) € A:

v—to—t __ u—to—t u—to—t u—to—t

Cij = ¢y T Qjuy Tt Qi

After updating the costs like this, the branch-and-bound algorithm first com-
putes a lower and upper bound for the new subproblem, and then determines
whether to close this branch (if the lower bound is greater than the current low-
est upper bound), or to keep exploring updating the current best lowest upper
bound if appropriate.

As described above, the lower and upper bounds can be obtained using any
of the bounding algorithms described in Section 4. Yet the novelty of our so-
lution consists in adopting a hybrid approach. Specifically, at the root node
of the branching tree, we apply the iterative procedure described in Section

16

4.2 to obtain a RQSPP. Then at each node of the Branch-and-Bound tree, we
simply obtain an upper and lower bound by solving a linear shortest path prob-
lem with the node’s current linear cost vector. The linear cost of the path
define the lower bound and the linear plus quadratic cost of the path define
the upper bound. Before devising this hybrid approach, we had also run some
experiments with Branch-and-Bound strategies that use the same bounding al-
gorithm (e.g. the GL bound, or the reformulation) throughout all nodes, but
the overall computing times were worse. While computing a new reformulation
at all Branch-and-Bound nodes reduces the number of nodes, it increases the
time required to compute the bound at each node, thereby leading to poorer
overall performance.

6. Computational Results

In this section we present our computational experiments with the MILP
formulation and the Branch-and-Bound algorithm introduced in this paper. We
compare our methods with Cplex 12.6 when applied directly to the problem
formulation (1). We also use Cplex 12.6 with default parameter settings to
solve the MILP formulation. We implemented the Bound and Branch-and-
Bound algorithms in C++ and ran them on an Intel Xeon CPU E5335 (2 quad
core CPUs running at 2GHz). For the reformulation bound, we used a maximum
of 20 iterations as a stopping condition. In the following, we first present the test
instances, give some results showing the effectiveness of the iterative procedure
described in Section 4.2, and provide the Branch-and-Bound results in detail.

6.1. Test Instances

To evaluate and compare the approaches studied in this paper, we consider
three groups of instances, GRID1, GRID2, and GRID3, described as follows.

GRID1. This class consists of grid-like networks with n = k£ x k nodes and
m = 2k(k — 1) arcs, for k = 10,...,15. Each node is linked by an arc to the
node to the right and to the node above. The source node s is the node in the
lower left corner of the grid, and the target node t is in the upper right corner.
We consider three variants of GRID1 with the following cost structures.

e GRIDIDENSE: General QSPP with dense quadratic cost matrices). For
linear costs, we associate each arc with a uniformly random integer in
{1,...,10}. For quadratic costs, we associate each pair of arcs with a
uniformly random integer in {0,...,9}.

e GRIDISPARSE: General QSPP with sparse quadratic cost matrices Q.
For linear costs, we associate each arc with a uniformly random integer in

{1,...,10}. For quadratic costs, we associate each pair of adjacent arcs,
as well as one third of non-adjacent pairs with a uniformly random integer
in {0,...,9}. This represents the situation in which pair-wise interactions

are more likely for adjacent arcs. Table 3 gives the average number of
nonzero quadratic costs (#nzqc) over five randomly generated instances
for both sparse and dense matrices for n € {100,121, 144,169,196, 225}.

17

Table 3: Average numbers of the non-zero quadratic costs for the sparse and the dense in-
stances

Instance dense sparse

n m #nzqce density(%) #nzqc density(%)
100 180 14483 89.4 5137 31.7
121 220 21675 89.6 7622 31.5
144 264 31221 89.6 10867 31.2
169 312 43648 89.6 15112 31.0
196 364 59452 89.7 20484 30.9
225 420 79157 89.7 27195 30.8

e GRIDICONVEX: The mean-variance Shortest Path problem with non-
negative variances. We generate matrix @ as described in [17] for the
Steiner travelling salesman problem with correlated costs: First we gen-
erate |A| x |A] non-negative random numbers from the standard normal
distribution. Each of the |A| vector coordinates are scaled to have length
one and multiplied by a uniform random number in range [0, 10]. Let U be
the matrix whose columns are the |A| dimensional vectors, in any order,
we set Q = UTU. By construction matrix @ is positive semidefinite and
the resulting QSPP instance is convex.

GRID2. To show how the topology of the graph can affect the level of difficulty
of the instances, we generated a cyclic version of GRID1 with n = k X k nodes
and m = 4k(k — 1) arcs, for k = 10,...,15. Each node is linked by two arcs
to the nodes to the right and left as well as to the nodes above and below. To
generate linear and quadratic costs, we proceed like for GRID1 for the arcs that
were already in GRID1. For the new arcs that are only in GRID2 and for pairs
of arcs that involve at least one new arc, we set the corresponding cost to 0.

GRrID3. This class consists of three sub-classes of grid-like networks with a
stricter scheme [15]. Each network consists of transshipment nodes forming a
grid of n, rows and n. columns as well as a source node s and a target node ¢.
The source node s is connected to the nodes of the first column, and the nodes
of the last column are connected to the target node t. Each transshipment node
is connected to the node on the right and to the node below if these exist. Based
on different values for n, and n., we consider three classes: GRID3SQUARE with
n, = n. € {16,23}, GRID3LONG with n, = 16, n. € {32,64}, and GRID3WIDE
with n, € {32,64}, n. = 16. For all instances, we generate linear and quadratic
costs in the same way as for GRID1DENSE: uniformly at random in, respectively,
{1,...,10} and {0,...,9}.

6.2. Behavior of the Reformulation Bound

Before presenting the results of our solution method, we briefly analyze the
behavior of our reformulation lower bound. Table 4 analyzes the improvement
of the lower bound and the upper bound at each iteration on the largest instance
of each instance class. The data shows that our iterative procedure significantly
improves the GL bound in all instance classes. Moreover, it achieves this im-
provement in just a few iterations. In all considered instances, 9 iterations suffice

18

to obtain bound values that are very close to those obtained when our stopping
condition of 20 iterations is met (last row). This suggests that, if needed, we
could further improve computation time by stopping after fewer iterations or
when the improvement in the value of the bound goes below a certain threshold.

Table 4: Bound values at each iteration for the largest instances of each instance class.

GRID1DENSE GRID1SPARSE GRID1ICONVEX GRID2

1b ub time Ib ub time Ib ub time 1b ub time

0 104.0 1848 0.00 104.0 428 0.00 238.0 296 0.00 94.0 1825 0.00
1 977.5 1698 0.18 190.5 444 0.16 243.5 296 0.16 826.5 1792 0.55
2 1105.5 1738 0.33 204.7 444 0.31 247.0 296 0.31 926.7 1792 1.07
3 1151.8 1718 0.47 211.1 432 0.45 249.2 296 0.45 964.4 1792 1.60
4 11746 1738 0.61 2154 432 0.60 250.9 296 0.59 982.2 1792 2.15
5 1185.5 1738 0.75 218.0 432 0.74 251.8 296 0.74 991.7 1792 2.71
6 1192.1 1718 0.89 219.3 432 0.89 252.3 296 0.88 997.1 1792 3.27
7 11959 1718 1.04 219.9 432 1.03 252.6 296 1.03 1000.2 1792 4.05
8 1198.3 1718 1.18 220.2 432 1.17 252.8 296 1.17 1002.0 1792 4.78

20 12029 1718 2.94 2209 432 2.90 253.0 296 2.91 1005.3 1792 11.60

Tter GRID3SQUARE GRID3LONG GRID3WIDE

Ib ub time 1b ub time Ib ub time
0 95.0 1828 0.00 281.0 14020 0.02 53.0 853 0.02
1 966.0 1284 1.04 7244.5 9847 3.69 4925 661 4.64
2 1060.2 1284 2.01 7940.5 9542 7.22 533.7 661 8.97
3 1096.1 1284 2.99 8174.4 9557 10.86 547.8 661 13.32
4 1113.8 1284 3.97 8281.2 9557 14.58 557.8 661 17.72
5 11222 1284 4.97 8331.1 9557 18.37 562.8 661 22.15
6 1126 1284 6.01 8354.2 9557 22.23 564.7 661 26.56
7 1128.3 1284 7.06 8366.5 9557 26.11 565.8 661 30.99
8 1129.7 1284 8.10 8373.3 9557 30.01 566.5 661 35.43
20 1132.3 1284 20.42 8381.2 9557 77.65 567.2 661 88.65

6.3. Branch-and-Bound Results

Tables 5 to 11 present the results for our solution approach. In each table,
the first three columns give, for each instance, the number of nodes (n), the
number of arcs (m), and the optimal objective value (opt.) obtained by our
Branch-and-Bound algorithm. The next columns present the results of CPLEX
applied to the problem formulation (1) (Cplex(QP)), CPLEX applied to the
MILP formulation (Cplex(MILP)), and our Branch-and-Bound algorithm. For
each algorithm, we present the lower bound in the root node (Ib.o0t), the total
number of nodes enumerated in the search tree (nodes), and the total required
time (in seconds) to solve the problem (time). An entry “TL” indicates that the
corresponding algorithm was not able to solve the instance within the specified
time limit. We considered a time limit of 10800 seconds for each instance.
The lower bound in the root node of our Branch-and-Bound algorithm is the
reformulation bound based on the iterative procedure.

19

Table 5: Results for the GRID1 instances with dense quadratic cost matrices. All times are
given in seconds.

Instance Cplex (QP) Cplex (MILP) B-and-B

n m opt. 1broot nodes time lbroot mnodes time lbroot mnodes time

100 180 621.0 200.0 7264 16.9 442.8 1943 2.8 510.6 441 0.6
100 180 635.0 211.0 8482 17.5 438.7 2687 3.7 511.4 1154 0.7
100 180 636.0 217.0 7078 15.6 452.5 2229 3.2 529.8 1085 0.7
100 180 661.0 209.0 11814 20.2 457.2 7332 15.8 533.6 1083 0.7
100 180 665.0 233.0 10974 20.6 468.3 7141 16.1 544.6 963 0.7

121 220 813.0 253.0 33736 72.9 547.4 12135 35.5 662.7 1637 1.1
121 220 788.0 251.0 24883 61.9 539.1 9049 29.1 630.7 1477 1.1
121 220 795.0 225.0 26607 59.0 543.0 11211 33.0 644.8 1336 1.0
121 220 782.0 236.0 24863 62.4 544.0 9797 30.6 647.2 813 1.0
121 220 767.0 228.0 19309 51.8 540.1 6111 20.2 643.4 2068 1.7

144 264 959.0 271.0 67971 203.8 640.6 26869 117.8 TT4T 3457 2.2
144 264 963.0 282.0 91341 254.3 641.6 33383 157.1 763.0 6257 3.2
144 264 900.0 259.0 61308 209.1 615.6 15423 66.8 734.2 3198 2.1
144 264 960.0 236.0 104978 285.8 642.1 33939 152.2 765.5 4321 2.6
144 264 976.0 289.0 86862 249.8 654.5 33710 141.4 771.3 4389 2.6

169 312 1159.0 335.0 338092 1367.2 747.7 140710 727.6 890.2 11036 6.2
169 312 1178.0 333.0 342119 1315.2 765.4 119759 636.0 919.5 8223 4.7
169 312 1164.0 325.0 305351 1218.8 751.9 133369 750.6 875.1 9374 5.0
169 312 1110.0 301.0 231176 951.6 746.7 79201 458.7 874.1 5124 3.8
169 312 1115.0 322.0 175669 816.5 757.6 37872 211.8 896.1 7175 4.5

196 364 1363.0 364.0 1021928 5857.6 863.8 362553 2699.4 1045.6 18397 12.0
196 364 1367.0 357.0 1104406 6276.7 876.5 361179 2541.6 1055.5 22936 14.1
196 364 1320.0 334.0 715390 4171.6 841.2 216562 1586.1 1008.4 14530 8.9
196 364 1347.0 348.0 918668 5087.0 876.3 284703 2017.9 1061.4 13739 9.3
196 364 1344.0 354.0 835595 4706.4 878.9 278683 2105.2 1042.8 22825 13.8

225 420 1551.0 367.0 1539600 TL 989.4 405943 3598.9 1199.7 15070 13.2
225 420 1588.0 412.0 1707723 TL 1003.4 464441 3600.6 1210.2 40451 29.5
225 420 1561.0 419.0 1787478 TL 953.6 485195 3710.1 1167.8 62190 42.2
225 420 1569.0 386.0 1769978 TL 966.4 485644 3650.3 1145.7 39097 30.3
225 420 1582.0 389.0 1699500 TL 1001.7 471452 3689.5 1202.9 27193 18.4

Tables 5, 6, and 7 report the results for the three variants of the GRID1
instances. Table 5 shows that our reformulation scheme achieves stronger root
bound than Cplex(QP) and Cplex(MILP). In turn, Cplex(MILP) obtains much
stronger bounds than Cplex(QP). More precisely, the bounds produced by our
reformulation scheme are, on average, 16.2% stronger than those produced by
Cplex(MILP) and 64.6% stronger than those obtained by Cplex(QP). In addi-
tion, the bounds obtained by Cplex(MILP) are, on average, 57% stronger than
those of Cplex(QP).

Concerning the overall performance for solving the instances to optimality,
both Cplex(MILP) and our Branch-and-Bound algorithm can solve all instances
within the time limit while Cplex(QP) reaches the three-hour limit for n = 225.
When all approaches are able to solve an instance to optimality within the
time limit, our reformulation-based Branch-and-Bound algorithm does so about
140 times faster than Cplex(MILP) and 320 times faster than Cplex(QP). Also
Cplex(MILP) reaches optimality about 2.3 times faster than Cplex(QP).

20

Table 6: Results for the GRID1 instances with sparse quadratic cost matrices. All times are
given in seconds.

Instance Cplex (QP) Cplex (MILP) B-and-B

n m opt. lbroot mnodes time lbroot nodes time Ilbroot nodes time

100 180 179.0 142.5 252 8.6 119.8 1244 0.9 1248 955 0.7
100 180 184.0 141.9 186 89 126.3 879 0.8 136.2 573 0.6
100 180 193.0 160.6 166 6.6 139.7 917 0.8 148.8 529 0.6
100 180 192.0 157.4 215 8.5 1328 1769 1.1 1423 866 0.6
100 180 193.0 160.3 166 11.4 139.0 1356 1.2 1454 1213 0.7

121 220 223.0 169.3 515 21.1 147.3 6728 8.2 1559 891 1.0
121 220 207.0 163.4 225 16.1 140.3 2155 2.1 131.6 1168 1.1
121 220 222.0 177.1 212 20.7 1483 5664 6.5 167.9 2657 1.4
121 220 215.0 174.7 194 17.4 149.8 2365 2.1 170.0 613 0.9
121 220 218.0 173.7 338 18,5 148.9 2256 1.7 161.3 1280 1.0

144 264 246.0 183.6 795 36.5 161.3 6954 126 169.3 2604 1.9
144 264 234.0 178.8 484 31.3 1446 7577 13.4 170.6 1907 1.8
144 264 225.0 169.9 627 36.0 146.9 7896 12.4 149.0 1839 1.8
144 264 238.0 176.0 679 39.0 145.6 7683 14.4 156.0 3975 2.3
144 264 248.0 189.8 581 35.6 162.8 8409 14.3 167.6 2055 1.7

169 312 276.0 207.4 836 749 180.4 12652 26.6 185.3 8569 5.0
169 312 283.0 204.3 1162 729 176.8 20471 36.8 179.0 2907 2.8
169 312 265.0 195.7 550 47.5 164.5 9452 20.8 170.3 1429 2.1
169 312 277.0 199.1 1794 87.8 168.9 22966 40.9 180.1 4563 3.5
169 312 273.0 199.8 1041 76.6 169.2 15733 31.6 1795 5788 3.9

196 364 319.0 223.7 2239 203.4 179.1 56025 131.9 205.3 11965 7.6
196 364 334.0 232.4 6420 609.2 190.6 75795 169.2 226.3 13659 9.3
196 364 319.0 224.3 1574 164.6 184.8 52323 107.6 214.6 4640 4.6
196 364 311.0 218.6 1507 134.5 190.6 27301 68.9 2069 6815 5.4
196 364 312.0 2159 6748 5929 177.8 84084 1854 199.7 8889 6.4

225 420 368.0 244.7 7511 1098.0 212.9 154715 429.0 235.6 13828 11.9
225 420 370.0 238.4 10303 1472.7 201.3 253601 655.0 234.4 19433 16.2
225 420 336.0 2223 7349 9794 184.8 121651 368.4 203.4 30055 20.6
225 420 345.0 229.1 2704 277.5 1925 123893 338.9 212.5 14317 11.1
225 420 361.0 241.8 6719 1054.8 206.1 217408 556.8 220.9 15493 12.7

We can observe from Table 6 that the sparse instances are much easier to
solve: all the three approaches can solve all instances within the time limit. One
interesting observation is that Cplex(QP) obtains stronger lower bounds than
both Cplex(MILP) and our reformulation technique. Yet Cplex(QP) remains
much slower in finding the optimal solutions.

With convex objective functions (Table 7), the bounds obtained by Cplex(QP)
and Cplex(MILP) are comparable to those obtained by our reformulation scheme.
But in terms of the overall running time, our reformulation-based Branch-and-
Bound algorithm still outperforms the others.

Table 8 presents the results for the GRID2 instances. As we expected, the
cyclic structure of the network makes the problem much harder: this class
of instances turns out to be the most difficult among all the tested datesets.
Cplex(QP) and Cplex(MILP) can only solve instances of up to 121 and 144 nodes
respectively within the time limit while our Branch-and-Bound algorithm can
solve all but two instances within the allotted 3 hours. For these two instances,

21

Table 7: Results for the GRID1 instances with Convex objective function. All times are given
in seconds.

Instance Cplex (QP) Cplex (MILP) B-and-B

n m opt. lbroot nodes time lbroot mnodes time lbroot nodes time

100 180 2024.0 1887.5 54 3.3 1928.1 86 0.3 1957.0 175 0.6
100 180 2047.0 1905.0 64 3.3 1962.4 92 0.3 1971.5 115 0.4
100 180 2021.0 1939.6 5 3.3 19858 13 0.2 1987.2 37 0.3
100 180 1971.0 1842.1 58 3.3 18825 132 0.3 1887.5 137 0.4
100 180 2158.0 2002.4 77T 3.3 2060.2 126 0.3 2080.2 141 04

121 220 1802.0 1656.5 103 7.6 1695.0 296 0.7 17128 141 0.6
121 220 1895.0 1723.8 166 7.6 1774.1 411 0.8 1807.3 171 0.6
121 220 1821.0 1691.7 109 7.4 17223 185 0.5 17323 169 0.6
121 220 1798.0 1606.3 357 8.0 1669.1 962 1.3 1719.2 187 0.6
121 220 1843.0 1686.5 87 7.4 17449 277 0.6 1759.3 101 0.5

144 264 1320.0 12144 54 174 1239.6 115 0.6 12334 107 1.0
144 264 1444.0 1284.2 367 19.6 1333.6 696 1.7 1339.8 285 1.0
144 264 1451.0 1264.5 700 18.7 1305.5 1638 2.7 13254 753 1.0
144 264 1457.0 1303.1 328 18.7 1337.2 636 1.4 1351.5 347 1.3
144 264 1478.0 1329.3 273 16.4 13714 486 1.2 1372.0 286 1.0

169 312 991.0 836.1 1279 38.0 867.4 4832 18.1 896.1 2371 2.6
169 312 1010.0 868.6 883 36.6 893.1 2170 4.6 915.2 468 1.8
169 312 1018.0 885.6 723 33.8 899.1 2934 6.2 920.2 643 1.4
169 312 1014.0 869.9 892 34.6 883.6 2114 4.5 914.0 799 1.7
169 312 1024.0 882.0 1936 42.4 901.8 7201 28.2 922.6 1001 1.7

196 364 592.0 485.1 965 33.2 509.0 2271 5.3 540.5 376 2.2
196 364 604.0 486.0 3825 50.6 506.7 8578 36.8 521.1 1331 2.7
196 364 591.0 502.3 538 29.0 516.5 1090 3.2 504.1 611 2.5
196 364 568.0 468.5 1187 33.7 475.6 4596 21.8 486.0 2235 3.0
196 364 591.0 473.1 1177 38.9 491.2 2716 6.1 517.3 735 2.1

225 420 327.0 240.4 10332 46.0 274.1 7868 27.6 268.7 4421 5.8
225 420 321.0 254.2 2537 37.8 281.1 1568 4.3 275.7 849 3.3
225 420 324.0 243.8 4847 35.6 275.7 4607 17.8 270.1 2139 4.6
225 420 316.0 245.5 3035 33.0 278.2 2043 4.8 269.5 1355 3.7
225 420 296.0 232.9 833 19.5 265.5 524 1.6 253.0 373 4.2

we also ran our branch-and-bound approach without time limits. For the first
of these two instances, the unlimited run terminated in 3 hours and 8 minutes
and confirmed that the upper bound obtained at the end of 3 hours (1567) was
already equal to the optimal solution. For the second, the run terminated in
slightly more than 3 hours and 18 minutes, with an optimal solution of 1539
versus an upper bound of 1580 at the end of three hours.

Tables 9 to 11 report the results for the GRID3SQUARE, GRID3LONG, and
GRID3WIDE instances, respectively. Again, our reformulation scheme obtains
stronger root bounds than Cplex(QP) and Cplex(MILP). For these instances,
Cplex(QP) either reaches its limit even in the root node or produces negative
bounds. Such negative bounds can arise because Cplex(QP) first needs to con-
vexify the instances in order to obtain a tractable continuous relaxation. The
convexification often leads to rather weak lower bounds, which in our case may
even become negative. In fact, Cplex(QP) was able to solve to optimality only
GRID3SQUARE instances with n = 258 within the time limit. Our reformulation-

22

Table 8: Results for GRID2 instances with uniformly random quadratic cost matrices. All
times are given in seconds. Two of the instances show the upper bound corresponding to the
current best feasible solution at the end of the time limit for our Branch and Bound method.

Instance Cplex (QP) Cplex (MILP) B-and-B

n m opt. lbroot modes time Ibroot nodes time 1broot nodes time

00 360 660.0 241.6 20828 989.4 405.4 392722 307.5 472.7 24048 12.8
100 360 649.0 254.0 13512 628.4 400.6 290760 259.9 459.9 9572 7.1
100 360 615.0 234.0 13547 629.1 395.2 96583 83.4 4513 4905 4.2
100 360 671.0 248.5 16726 718.3 413.0 321709 2445 4933 16886 10.7
100 360 642.0 223.3 12581 578.2 394.5 221362 180.1 459.5 15110 8.9

121 440 765.0 252.1 48235 4553.3 495.3 210120 236.2 581.1 13870 11.3
121 440 790.0 252.7 60393 4666.1 486.1 663537 683.6 560.0 26045 18.7
121 440 786.0 240.7 72035 6554.5 477.0 1342489 1332.2 560.9 28647 21.2
121 440 843.0 243.9 84789 6626.9 502.6 3921407 3444.5 590.4 85430 56.5
121 440 801.0 249.8 91603 TL 478.6 1781839 2056.2 543.6 71993 474

144 528 948.0 291.1 61908 TL 559.4 7905508 9671.2 664.3 112343 94.1
144 528 967.0 297.5 64769 TL 573.6 2761107 38154 676.1 266409 220.8
144 528 951.0 272.1 74994 TL 560.3 8070885 10799.0 668.9 100773 85.1
144 528 975.0 285.0 68677 TL 583.1 2061121 2765.2 687.0 81002 68.9
144 528 965.0 285.1 61244 TL 578.2 7824617 9658.1 693.2 142760 117.8

169 624 1154.0 309.8 38369 TL 669.8 8185752 TL 795.3 889716 929.5
169 624 1139.0 315.6 29091 TL 655.4 7794825 TL 778.7 442314 480.4
169 624 1138.0 283.1 18044 TL 659.0 7254006 TL 783.4 701955 756.7
169 624 1130.0 290.4 23762 TL 653.5 6042951 TL 754.3 369189 404.0
169 624 1143.0 307.4 18554 TL 666.5 6748938 TL 771.6 543761 603.7

196 728 1349.0 342.8 15411 TL 762.7 5582520 TL 9254 840045 1249.6
196 728 1348.0 318.0 12201 TL 748.7 5201814 TL 887.0 1915627 2742.1
196 728 1326.0 299.2 16011 TL 730.4 5868876 TL 883.0 1317825 1886.7
196 728 1357.0 323.8 11751 TL 758.8 5949645 TL 9109 1791916 2534.9
196 728 1294.0 331.2 17031 TL 762.4 5350713 TL 899.5 645206 922.9

225 840 1584.0 329.6 9141 TL 877.3 5175612 TL 1067.3 4621981 8953.0
225 840 1567.0° 322.0 11292 TL 862.9 4576566 TL 1045.4 5528272 TL
225 840 1512.0 340.6 6768 TL 831.7 4541850 TL 1003.5 2143568 4144.2
225 840 1580 337.6 9486 TL 853.4 4385241 TL 1038.1 5534067 TL
225 840 1527.0 350.0 10323 TL 854.3 3992073 TL 1005.3 3179855 6120.3

* Upper bound given by the best feasible solution found by our Branch-and-Bound ap-
proach within the time limit.

based Branch-and-Bound algorithm instead solved all instances to optimality
and outperformed even Cplex(MILP). In particular, for GRID3LONG instances,
Cplex(MILP) was unable to solve instances with n = 1026 within the time
limit while our Branch-and-Bound algorithm was able to solve all instances in
less than 15 minutes. For the instances of GRID3SQUARE, GRID3WIDE, and
GRID3LONG for which both Cplex(MILP) and the Branch-and-Bound algorithm
solve the problem to optimality within the time limit, our Branch-and-Bound
algorithm is, respectively, 15.9, 3.8, and 51.3 times faster than Cplex(MILP)
on average. Finally, we observe that GRID3LONG instances appear to be the
most difficult among the GRID3 groups, possibly because the optimal paths in

23

Table 9: Results for the GRID3SQUARE instances. All times are given in seconds.

Instance Cplex (QP) Cplex (MILP) B-and-B

n m opt. lbroot mnodes time lbroot nodes time lbroot mnodes time

258 512 622.0 -330.0 9747 1951.3 530.6 161 4.3 594.0 89 4.3
258 512 632.0 -333.1 10599 2357.2 530.8 235 5.6 589.0 123 4.5
258 512 650.0 -334.7 14249 2866.3 530.6 309 6.4 564.7 99 4.5
258 512 641.0 -333.9 13720 1525.7 514.5 295 5.7 586.0 91 4.4
258 512 593.0 -329.6 8533 1749.5 521.9 74 3.7 562.8 49 4.3

531 1058 1283.0 -759.4 4684 TL 997.9 5579 518.6 1125.6 414 22.6
531 1058 1281.0 -757.0 4783 TL 1001.3 4899 4929 1146.4 438 22.3
531 1058 1302.0 -812.7 4688 TL 1007.4 4944 490.1 1130.3 768 24.3
531 1058 1283.0 -757.8 5419 TL 979.2 5113 526.3 1129.0 568 23.0
531 1058 1263.0 -807.4 3354 TL 1009.2 2101 125.9 1132.3 314 229

Table 10: Results for the GRID3LONG instances. All times are given in seconds.

Instance Cplex (QP) Cplex (MILP) B-and-B

n m opt. lbroot nodes time lbroot mnodes time lbroot nodes time

514 1008 2469.0 -254.1 57932 TL 1880.7 16655 1575.6 2140.5 1234 23.7
514 1008 2518.0 -318.7 72043 TL 1901.6 18219 1523.0 2145.2 1525 254
514 1008 2453.0 -254.8 64599 TL 1880.6 14214 1226.8 2134.5 1283 24.2
514 1008 2400.0 -250.9 95704 TL 1866.3 9880 861.7 2120.7 535 20.8
514 1008 2453.0 -243.3 100000 TL 1889.6 9104 825.3 2184.2 1025 23.0

1026 2000 9392.0 TL TL TL 7300.4 16564 TL 8308.9 11943 263.4
1026 2000 9434.0 TL TL TL 7285.4 14398 TL 8281.7 28520 525.8
1026 2000 9514.0 TL TL TL 7345.9 19723 TL 8264.7 30169 539.3
1026 2000 9520.0 TL TL TL 7299.5 16174 TL 8335.8 45043 747.4
1026 2000 9542.0 TL TL TL 7318.2 11747 TL 8381.2 34461 572.8

GRID3LONG are on average twice as long as those in the other instance types.

7. Conclusion

In this paper, we studied the QSPP. We showed that both the general QSPP
and the AQSPP cannot be approximated unless P = NP. For the case of a con-
vex objective function, we presented an n-approximation algorithm, where n is
the number of nodes in the graph, and we showed that the problem is APX-hard.
In order to solve the problem efficiently, we provided two methods. First we
reformulated the QSPP as an MILP and solved it using a state-of-the-art solver.
Second, we proposed a lower bound based on an iterated reformulation approach.
We used this lower bound to implement an exact Branch-and-Bound algorithm
that can reach the optimal solution significantly faster than the state-of-the-art
solver. One possible future research direction is to extend our approach for the
QSPP with possible negative quadratic costs. In spite of the correctness of our
reformulation strategy in this case, neither solving the linear part of the refor-
mulated problem nor the GL procedure result in a valid lower bound for the
original problem. Therefore, it would be interesting to extend our results with
new bounding procedures that can lift this limitation.

24

Table 11: Results for the GRID3WIDE instances. All times are given in seconds.

Instance Cplex (QP) Cplex (MILP) B-and-B

n m opt. lbroot mnodes time [broor nodes time Ilbroot nodes time

514 1040 633.0 TL TL TL 514.2 500 41.9 572.1 259 20.8
514 1040 621.0 TL TL TL 501.3 631 46.4 567.2 201 20.4
514 1040 605.0 TL TL TL 512.2 383 38.0 585.1 65 21.1
514 1040 645.0 TL TL TL 5126 921 61.0 569.0 479 21.6
514 1040 604.0 TL TL TL 496.2 406 40.1 559.1 321 21.1

1026 2096 633.0 TL TL TL 499.0 1723 436.6 562.3 405 93.9
1026 2096 620.0 TL TL TL 507.6 1193 363.7 574.8 245 91.9
1026 2096 631.0 TL TL TL 504.8 1416 376.8 581.0 299 94.5
1026 2096 639.0 TL TL TL 497.6 2138 516.4 5745 459 95.0
1026 2096 602.0 TL TL TL 496.7 776 261.7 567.2 145 89.5

[1] Edoardo Amaldi, Giulia Galbiati, and Francesco Maffioli. On minimum

reload cost paths, tours, and flows. Networks, 57(3):254-260, 2011.

[2] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Al-

berto Marchetti-Spaccamela, and Marco Protasi. Complexity and Approzi-
mation: Combinatorial Optimization Problems and Their Approzimability
Properties. Springer, 1999.

[3] Piotr Berman and Toshihiro Fujito. On approximation properties of the

independent set problem for degree 3 graphs. In Algorithms and Data
Structures, volume 955 of Lecture Notes in Computer Science, pages 449—
460. Springer, 1995.

[4] Christoph Buchheim and Emiliano Traversi. Quadratic 0-1 optimization

using separable underestimators. Technical report, Optimization Online,
2015.

[5] Alberto Caprara. Constrained 0-1 quadratic programming: Basic ap-

proaches and extensions. Furopean Journal of Operational Research,
187(3):1494-1503, 2008.

[6] Paolo Carraresi and Federico Malucelli. A new lower bound for the

quadratic assignment problem. Operations Research, 40(1-supplement-1):
S22-527, 1992.

[7] BiY. Chen, William H. K. Lam, Agachai Sumalee, Qingquan Li, Hu Shao,

and Zhixiang Fang. Finding reliable shortest paths in road networks under
uncertainty. Networks and Spatial Economics, 13(2):123-148, 2012.

[8] Edsger W. Dijkstra. A note on two problems in connexion with graphs.

[10]

Numerische Mathematik, 1(1):269-271, 1959.

H. N. Gabow, Shachindra N. Maheshwari, and Leon J. Osterweil. On two
problems in the generation of program test paths. Software Engineering,
IEEE Transactions on, SE-2(3):227-231, Sept 1976.

Semyon Gerschgorin. Uber die Abgrenzung der Eigenwerte einer Matrix.
Izvestija Akademii Nauk SSSR, Serija Matematika, 7(3):749-754, 1931.

25

[11]

[12]

[13]

[19]

[20]

[21]

Paul C. Gilmore. Optimal and suboptimal algorithms for the quadratic
assignment problem. Journal of the Society for Industrial €& Applied Math-
ematics, 10(2):305-313, 1962.

Fred Glover. Improved linear integer programming formulations of nonlin-
ear integer problems. Management Science, 22(4):455-460, 1975.

Laurent Gourves, Adria Lyra, Carlos Martinhon, and Jérome Monnot. The
minimum reload s—t path, trail and walk problems. Discrete Applied Math-
ematics, 158(13):1404-1417, 2010.

Hao Hu and Renata Sotirov. Special cases of the quadratic shortet path
problem. Technical report, arXiv, 11 2016.

Péter Kovacs. Minimum-cost flow algorithms: An experimental evaluation.
Optimization Methods and Software, 30(1):94-127, 2015.

Fugene L. Lawler. The quadratic assignment problem. Management sci-
ence, 9(4):586-599, 1963.

Adam N. Letchford and Saeideh D. Nasiri. The Steiner travelling salesman
problem with correlated costs. Furopean Journal of Operational Research,
245(1):62 — 69, 2015.

Kazutaka Murakami and Hyong S. Kim. Comparative study on restoration
schemes of survivable atm networks. In INFOCOM’97. Sizteenth Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEFE, volume 1, pages 345-352. IEEE, 1997.

Temel Oncan and Abraham P. Punnen. The quadratic minimum span-
ning tree problem: A lower bounding procedure and an efficient search
algorithm. Computers € Operations Research, 37(10):1762-1773, 2010.

Borzou Rostami and Federico Malucelli. Lower bounds for the quadratic
minimum spanning tree problem based on reduced cost computation. Com-
puters & Operations Research, 64:178-188, 2015.

Borzou Rostami, Federico Malucelli, Davide Frey, and Christoph Buch-
heim. On the quadratic shortest path problem. In Evripidis Bampis, edi-
tor, FEzperimental Algorithms, volume 9125 of Lecture Notes in Computer
Science, pages 379-390. Springer International Publishing, 2015.

Suvrajeet Sen, Rekha Pillai, Shirish Joshi, and Ajay K. Rathi. A mean-
variance model for route guidance in advanced traveler information sys-
tems. Transportation Science, 35(1):37-49, 2001.

Raj A. Sivakumar and Rajan Batta. The variance-constrained shortest
path problem. Transportation Science, 28(4):309-316, 1994.

26

