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Abstract

This work reviews deterministic and diffusion approximations of the stochastic chem-

ical reaction networks and explains their applications. We discuss the added value the

diffusion approximation provides for systems with different phenomena, such as a defi-

ciency and a bistability. It is advocated that the diffusion approximation can be considered

as an alternative theoretical approach to study the reaction networks rather than a sim-

ulation shortcut. We discuss two examples in which the diffusion approximation is able

to catch qualitative properties of reaction networks that the deterministic model misses.

We provide an explicit construction of the original process and the diffusion approxima-

tion such that the distance between their trajectories is controlled and demonstrate this

construction for the examples. We also discuss the limitations and potential directions of

the developments.

Keywords: Bistable Systems; Deficiency; Diffusion Approximation; Hungarian Construction;

Reaction Networks; Stochastic Differential Equations.

1 Introduction

A mathematical modelling of chemical kinetics was initiated at the beginning of the previous

century. This topic has attracted an extensive attention and works of many excellent scientists

formed the Reaction Network Theory at the end of the 1980s. In this formalization, the con-

centration of species in the network of chemical reactions obeys deterministic laws which are

encoded into systems of the non-linear ordinary differential equations (ODEs). These equations

provided a rich collection of complex examples and helped to improve the theory of dynamical

systems (Érdi and Tóth, 1989; Feinberg, 1972).

Despite the fact that the deterministic models have been sufficient for the majority of appli-

cations available at that time, it was already known that a microscopic description of chemical
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kinetics should have included randomness (Érdi and Lente, 2014) for historical remarks). The

most popular way to describe the stochastic models of reaction networks is in terms of Con-

tinuous Time Markov Chain (CTMC). The reactions are considered as happening at random

events that modify the state of the network according to the stoichiometric equations. For

some time these two descriptions have been developed in parallel and using different tools: the

deterministic models were investigated in the theoretical and mathematical aspects, while the

stochastic models were mainly studied from a computational point, e.g. in the search of suitable

simulation algorithms.

The relation between the deterministic model and the stochastic counterparts was clarified

in the works by Kurtz (1970, 1972). It was proved that the stochastic models converge to the

deterministic ones if the initial amount of molecules is large. This was an important theoretical

breakthrough in both Chemistry and Mathematics since it is appeared that deterministic and

stochastic models are not independent alternative modelling frameworks. In fact, the deter-

ministic model is an approximation of the stochastic one which is of the key importance when

the system is large. Indeed, one of the practical problems of stochastic modelling is that for a

system with a large amount of molecules, reactions can be so frequent that even a numerical

simulation becomes computationally infeasible. Thus, the value of approximations which are

easier to handle either numerically or theoretically cannot be underestimated (Schnoerr et al.,

2017).

On the other hand, the deterministic approximation can lose an important information in

many stochastic systems. While it usually provides a good approximation of the process mean

value, it ignores completely other properties, for instance, variance, bimodality, tail behaviour,

etc. Kurtz (1976) provided a second approximation which retains the stochastic nature by

means of the diffusion process. The same equations had became popular in Chemistry under

the name of Langevin equations due to the contribution by Gillespie (2000). These equations

have been used in many works as a computational trick to speed up simulations of the original

process. While this computational approach to the diffusion approximation proved to be fruit-

ful, such interpretation hides in part the richness and the importance of the result by Kurtz

(1976). Moreover, stochastic reaction networks attracted a renewed interest recently (Ander-

son and Kurtz, 2015; Érdi and Lente, 2014; Santillán, 2014; Ullah and Wolkenhauer, 2011).

New motivations come both from the application in the system biology, demonstrating the

emergence of the stochastic effects at small scales, and from new theoretical investigations that

allowed to extend mathematical results, previously known in the deterministic setting only, to

the stochastic world (Anderson et al., 2017a, 2010; Cappelletti and Wiuf, 2016).

The goal of this communication is to review both deterministic and diffusion approximations

of the CTMC and to explain their implications and the added value the diffusion approximation

can provide for systems of the intermediate size. We emphasize that the results by Kurtz (1976)

are constructive. It allows to give an explicit construction of the CTMC and the diffusion

approximation coupled trajectories such that the uniform distance between them is controlled.

To our knowledge, this fact has been never highlighted in the applied literature, while deserving

to be understood better. We provide two examples in which the diffusion approximation is able

to catch qualitative properties of the reaction networks that the deterministic model misses.

We advocate that in the context of growing interest to the stochastic models, the diffusion

approximation (or other new approximations of the same nature) has an important role in

the development of the theory and deserves to be extended for new challenges opened by the

applications.
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2 Stochastic models of reaction networks and their ap-

proximations

2.1 Reaction networks and deficiency

A reaction network is a triple {S, C,R} such that

1. S = {S1, · · · , Sd} is the set of species of cardinality d where d is finite.

2. C is the set of complexes, consisting of some nonnegative integer linear combination of

the species.

3. R is a finite set of ordered couples of complexes which is defined by the stoichiometric

equations (2.1).

A reaction network of K chemical reactions is specified by stoichiometric equations

d∑
i=1

ckiSi →
d∑
i=1

c′kiSi, k = 1, . . . , K (2.1)

meaning that the reaction consumes
∑
ckiSi to produce

∑
c′kiSi where cki, c

′
ki are nonnegative

integers. The definition above implies the unique directed graph if the set of nodes coincides

with the set of complexes. The inference of qualitative properties of the reaction network

model is based on the algebraic properties of this graph, see e.g. Feliu and Wiuf (2015).

We define lk = c′k − ck as the reaction vector of the network where ck = [ck1, . . . , ckd]
T and

c′k = [c′k1, . . . , c
′
kd]

T. They can be collected as the columns of the d×K stoichiometric matrix.

One of the most important algebraic properties of the reaction network graph is the defi-

ciency. Let L be the number of connected components (also known as linkage classes) of the

reaction graph. The subspace of ZK given by

S = spank{lk},

is the stoichiometric subspace (with dimension dimS) of the network. The number of complexes

in the reaction network is given by |C|. The deficiency of the network is defined as the integer

θ = |C| − L− dimS.

The property of non-deficiency (θ = 0) has important consequences on the dynamics of both

deterministic and stochastic models (see Section 4 and Deficiency-Zero theorems (Anderson

et al., 2010) and Anderson and Kurtz (2015) for further details).

2.2 Stochastic models of reaction networks

A stochastic model of the reaction network is a Markov chain Y (t) whose state space is subset

of Nd. The state vector s = (s1, · · · , sd) corresponds to the number of molecules of each species

available in the system. If si ≥ cki for all i ∈ {1, · · · , d}, the kth reaction of (2.1) can occur,

updating the network from state s to state s+ lk. The occurrences of the reactions determine

the jumps of the Markov chain. The network follows the mass-action kinetics if the rate of

reaction k in state s can be written in the form

qs,s+lk =
λk

V 〈ck〉−1

d∏
i=1

(
si
cik

)
= V

[
λk∏d
i=1 cik!

d∏
i=1

(si
V

)cik
+O

(
1

V

)]
(2.2)
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where 〈ck〉 =
∑

i cik, λk is a transition propensity for reaction k and V is the constant volume

of the container in which the reactions take place.

The mass-action rates (2.2) allows the Markov chain models of reaction networks to satisfy

the property of the density dependence (approximately). This allows to apply the approxima-

tion results given in this communication.

Definition 1. A family of continuous time Markov Chains {Y [V ](t)} indexed by parameter V

and with state spaces contained in Zd is density dependent if its transition rates q
[V ]
s,s+l from any

state s to any other state s+ l can be written in the following form

q
[V ]
s,s+l = V fl

( s
V

)
(2.3)

where fl is a non-negative function defined on some subset of Rd.

Intuitively, the necessary conditions of the density dependence are (i) the linear relation of

transition rates on V and (ii) the dependence on the density of the population levels rather than

on the population values. Then, the argument s/V in (2.3) is the density associated with state

s and index l is the vector of transitions. In case of reaction networks, the indexing parameter

V is the volume of the container and the process Y [V ](t) provides a number of molecules at

time t. It becomes apparent from (2.3) that (2.2) has the approximately density dependent

form. In fact, it is more common to rescale the number of molecules to the concentrations.

Definition 2. For the density dependent family {Y [V ](t)} we define the family of density pro-

cesses {X [V ](t)} by setting for every V

X [V ](t) =
Y [V ](t)

V
. (2.4)

Let us remark that the name density process originated from the population dynamics. In

the reaction network model it represents the concentrations of the chemical species. Following

the theory of point processes (Anderson and Kurtz, 2015; Brémaud, 1981) density process

X [V ](t) can be written in two equivalent (in a sense of the probability law) forms. The first

form is the stochastic differential equation

dXt =
∑
l

l

V
dMl(t) (2.5)

where Ml(t) counts the occurrences of those reactions whose effect is to increase Y [V ](t) by l,

and hence to increase the density process X [V ](t) by l/V . The state dependent rate associated

with Ml(t) is

q
[V ]

X[V ](t),X[V ](t)+l/n
= V fl

(
X [V ](t)

)
.

The second representation of the process X [V ](t) is obtained by substituting counting process

Ml(t) by independent unit-rate Poisson process Nl(t). The effect of reactions with different

speed is achieved by the time change. The Poisson process implies a transformation that makes

the individual time of each reaction to go ‘faster’ when a higher jump rate is needed and ‘slower’

otherwise. This leads to the following form of the process

X [V ]
∗ (t) = X [V ]

∗ (0) +
∑
l

l

V
Nl

[
V

∫ t

0

fl
(
X [V ]
∗ (s)

)
ds

]
(2.6)
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where Nl(t) is an independent unit-rate Poisson process that counts the occurrences of the

events which increase Y [V ](t) by l (or the density process X [V ](t) by l
V

).

There are techniques (Érdi and Lente, 2014; Stewart, 1994) to characterize both initial

transient period and long run behaviour of the Continuous Time Markov Chains (CTMC).

However, in practice if the state space of the CTMC is large, an analytical treatment is not

feasible and an approximation is needed. The key idea is to construct a simpler process to

approximate the original CTMC when it models the interaction of large groups. We briefly

describe two of such approximations below.

2.3 Approximations

For large values of volume V , the jumps of the stochastic process (2.5) become more frequent

and have a smaller magnitude suggesting that corresponding trajectories can be approximated

by continuous functions (so-called the fluid limit or the fluid approximations). In Ethier

and Kurtz (1986); Kurtz (1970) a set of ordinary differential equations (ODE) providing the

deterministic approximation of (2.5) if both volume and number of molecules are large is derived.

This result is summarized below.

Approximation 1. Let x(t) be a deterministic solution of the d-dimensional ODE system

ẋ(t) = F (x(t)) =
∑
l∈C

lfl(x(t)) (2.7)

with initial condition x(0) = x0. Let us assume that for each compact K in the state space, the

function F is Lipshitz continuous in K and that
∑

l(|l| + |l|2) supx∈K fl(x) < ∞. Let X [V ](t)

be as in (2.5) with the initial condition satisfying

lim
V→∞

X [V ](0) = x0. (2.8)

Fix time T <∞. The density process X [V ](t) tends to x(t) for all t ≤ T and

sup0≤t≤T |X [V ](t)− x(t)| = O

(
1√
V

)
(2.9)

with probability one as V →∞. The constant time horizon T is arbitrary, but finite.

See Ethier and Kurtz (1986); Kurtz (1970) for the proof. Let us remark that by equation (2.8),

the parameter V is related to the initial number of molecules and by letting V to increase, the

number of molecules in the system increases as well. Since x(t) provides a strong (path-wise)

approximation of the process X [V ](t), for large V every trajectory remains bounded in a small

interval around the deterministic function x(t). In such a regimen the stochastic nature of the

process X [V ](t) is lost, with only the mean being relevant and approximated by x(t) (note that

for finite V the mean of X [V ](t) is not necessarily given by x(t) (Jahnke and Huisinga, 2007)).

The limit (2.7) coincides with the classical deterministic formulation of the reaction network

models (Érdi and Tóth, 1989; Feinberg, 1972; Kurtz, 1972).

In a lot of cases (Érdi and Lente, 2014) the size of the system is not large enough to justify

the deterministic approximation, and stochastic effects such as variance, skewness, bimodalities

are to be included into the approximating model. A sharper continuous strong approximation

that is able to capture stochastic fluctuations was obtained by Ethier and Kurtz (1986); Kurtz

(1976) in terms of the diffusion process.
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Approximation 2. Let X [V ](t) be as in (2.5) and let x(t) solve (2.7) with initial condition

x(0) = x0. Let G
[V ]
∗ (t) be a diffusion process with initial condition satisfying X [V ](0) = G

[V ]
∗ (0)

and limV→∞X
[V ](0) = x0 which solves the following stochastic differential equation (given in

the integral form)

G[V ]
∗ (t) = G[V ]

∗ (0) +
∑
l

l

V

[
V

∫ t

0

fl(G
[V ]
∗ (s))ds+Wl

(
V

∫ t

0

fl(G
[V ]
∗ (s))ds

)]
(2.10)

where the Wl(t) are independent standard Wiener processes. Let E[V ] ⊂ R be the smallest

hyperrectangle (Cartesian product of d intervals) that contains the discrete state space of X [V ](t).

Let U be any open connected subset of E[V ] that contains x(t) for every 0 ≤ t ≤ T . Let

f̄l = supx∈U fl(x) <∞ and suppose f̄l = 0 except for finitely many l. Suppose M > 0 satisfies

both the two equations below for any x, y ∈ U

|fl(x)− fl(y)| ≤M |x− y|
|F (x)− F (y)| ≤M |x− y|.

(2.11)

Let τV = inf{t : X [V ](t) /∈ U or G
[V ]
∗ (t) /∈ U}. Note that P(τV > T )→ 1 for V →∞. Then for

V →∞,

sup
0≤t≤τV ∧T

|X [V ]
∗ (t)−G[V ]

∗ (t)| = O

(
log V

V

)
(2.12)

for any fixed time horizon T .

See Ethier and Kurtz (1986) for the proof and for a better estimate of the distance (2.12). The

statement of Approximation 2 is quite complex, therefore, we provide some rephrasing of the

main conclusion and the main assumptions.

Regarding the conclusion, Approximation 2 states that it is possible to construct coupled

trajectories of the two processes X
[V ]
∗ (t) and G

[V ]
∗ (t) on the same probability space (using the

same random numbers) in the way that the maximum distance between them is vanishing with

a rate log V
V

when V →∞.

Regarding the assumption, some of them are technical, while others deserve to be discussed

in more details. Firstly, the initial concentration is kept constant when the volume increases, the

large systems with a huge number of molecules are approximated. Secondly, the assumptions

on the functions fl(·) are rather natural in the context of chemical kinetics as they prescribe

that there is a finite number of reactions and none of them has an infinite speed. Finally, the

approximation is only valid in any open set U that is contained in E[V ] and that contains the

whole trajectory of the deterministic approximation x(t). The introduction of such open set

prevents both X
[V ]
∗ (t) and G

[V ]
∗ (t) from visiting the boundary of E[V ]. The concentration of each

chemical species can never become negative. In some example the concentration of a species is

unbounded, in other it has an upper bound. In the case it may be unlimited, the introduction

of such open set is needed since the approximation will only work as far as the processes do

not exceed any arbitrarily large but finite threshold (excluding explosions). Moreover, in the

case if the concentrations vanish the results of Approximation 2 would not hold any more. Let

us remark that when V is large enough both processes will be arbitrary close to x(t) with high

probability and visits of the boundaries will become less frequent (and absent in the limit). For

the medium-large size systems visits to boundary might still be possible and the approximation
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would fail. This is recognised as an important problem and has attracted a lot of attention in

the literature (Angius et al., 2015; Leite and Williams, 2017; Schnoerr et al., 2014).

Importantly, the process G
[V ]
∗ (t) has the same law as the solution of the stochastic differential

equation

G[V ](t) = G[V ](0) +
∑
l

l√
V

[√
V

∫ t

0

fl(G
[V ](s))ds+

∫ t

0

√
fl(G[V ](s))dWl(s)

]
(2.13)

due to the theory of time changed Wiener integrals (Øksendal, 2003, Theorem 8.5.7).

We would like to emphasize that both x(t) and G[V ](t) provide the strong approximations

of X [V ](t) and are not different in this sense. The first term of (2.13) is similar to the term

in the deterministic approximation (2.7), but the second one adds noise and represents the

stochastic nature of the process. The approximation G[V ](t) preserves a random behaviour of

the process and corresponds to the lower rate of the error in (2.12) compared to rate (2.9) for

the deterministic fluid approximation. As a result, this approximation can be applied in many

cases where the deterministic one fails. A few examples are given in Section 4.

The process (2.13) is widely used to model chemical reactions and well-known in Chemistry

under the name of Langevin equations (Gillespie, 2000), mainly as a trick to speed up simula-

tions. In our opinion, the diffusion approximation result obtained by Ethier and Kurtz (1986)

is not fully appreciated and deserves to be disseminated and applied more widely. Indeed, in

addition to the guarantee that the laws of the processes X [V ](t) and G[V ](t) are similar, it gives

the constructive procedure to generate discretized trajectories of the two processes X
[V ]
∗ (t) and

G
[V ]
∗ (t) on the same probability space (i.e., with the same random numbers) that they stay

close to each other trajectory by trajectory with probability one. Since such construction is not

given (to out best knowledge) explicitly in any work easily accessible to non-mathematicians,

we provide it in the next section.

3 Construction of paired trajectories of CTMC and dif-

fusion approximation

The constructions of X
[V ]
∗ (t) and G

[V ]
∗ (t) are built on two preliminary steps and one key argu-

ment. Firstly, let Ñ(t) = N(t) − t be a compensated Poisson process with zero mean. Note

that Ñ(t) is a martingale and equation (2.6) can be written as

X [V ]
∗ (t) = X [V ]

∗ (0) +
∑
l

l

V

{
V

∫ t

0

fl
(
X [V ]
∗ (s)

)
ds+ Ñl

[
V

∫ t

0

fl
(
X [V ]
∗ (s)

)
ds

]}
. (3.1)

Secondly, notice that the sole difference between equation (3.1) and equation (2.10) is that

independent compensated Poisson process Ñl(t) is substituted by independent Wiener process

Wl(t). The key argument is a consequence of the KMT theorem, named after Komlós et al.

(1975). It states that paired trajectories of Wiener and Poisson processes can be constructed on

the same probability space such that the uniform distance between them is suitably controlled.

Following Ethier and Kurtz (1986) and Komlós et al. (1975) we state the following Proposition.

Proposition 1. Given a Wiener process W (t), a compensated Poisson process Ñ(t) can be

constructed on the same probability space such that for any β > 0 there exist positive constants

7



λ, κ and c such that

P
(

sup
t≤βV
|Ñ(t)−W (t)| ≤ c log V + x

)
≤ κV −2e−λx

for any V > 1 and x > 0.

Given coupled trajectories of compensated Poisson process Ñl(t) and independent Wiener

processeWl(t) constructed by Proposition 1, it is a (non-trivial) technical matter to show that

the uniform distance between X
[V ]
∗ (t) and G

[V ]
∗ (t) fulfils equation (2.12). We start from the

revisiting the construction needed to generate paired discretized sample paths of Ñl(t) and

Wl(t) and then we demonstrate how to build a discretization scheme for X
[V ]
∗ (t) and G

[V ]
∗ (t).

We would like to stress that a Poisson process can be seen as the partial sums of its in-

crements and that the problem of approximating partial sums by Wiener process (strongly)

has received a great attention in the literature. Strassen et al. (1967) has used the Skorohod’s

embedding scheme to provide the first construction. This construction, however, was shown to

have not the best convergence rate (Csörgő and Révész, 1975). Instead, the new construction

based on the quantile transformation of the increments of the original process was proposed

by Csörgő and Révész (1975). The quantile transformation of each value, however, was in-

sufficient, while transforming blocks of increments proved a step in the right direction. The

intuitive explanation is based on the central limit theorem which states that the sum of several

independent and identically distributed random variables (under some conditions) tends to be

normally distributed which makes the quantile transformation close to the identity. Therefore,

it was proposed by Csörgő and Révész (1975) to divide the values of process in blocks and to

apply quantile transformations to sums in these blocks. The similar idea was used by Komlós

et al. (1975) and further extended to the quantile transformation into the individual blocks.

The construction by Komlós et al. (1975) was proved to achieve the best possible convergence

rate and is provided below.

3.1 Construction of paired Wiener and Poisson processes

Importantly, the work by Komlós et al. (1975) proves the existence of coupled Poisson and

Wiener processes and gives the construction of these processes. Precisely, given asequence of

independent standard normal random variables {W̄i}i=1···N , it is possible to construct sequence

of independent standard random variables {N̄i}i=1···k with given distribution F (x). It is also

shown that the processes of the partial sums Tn =
∑n

i=1 W̄i and Sn =
∑n

i=1 N̄i fulfil

P
(

sup
1≤n≤k

|Sn − Tn| > C log k + x

)
< Ke−λx

for any arbitrary x, n and for some positive constants C, K, λ which depend on F only.

As stated above, the KMT theorem by Komlós et al. (1975) is constructive and gives an

explicit algorithmic expression for the random variables {N̄i}i=1···k in terms of the sequence

{W̄i}i=1···N . This construction is also known as the Hungarian construction. Below we present

its easily coded version allowing to simulate two discretized trajectories of Wiener process with

drift and Poisson process based on the same random numbers. Note that one can equivalently

generate either (i) Wiener process with drift and Poisson process or (ii) Wiener process and

compensated Poisson process. The goal of the representation below is pedagogical, thus we
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focus on the most straightforward implementation of the method rather than on computational

costs or a memory usage. We refer the reader to Komlós et al. (1975) for the mathematical

justifications.

Let us consider the time interval [0, n∆] and its discretization with fixed step ∆, {0,∆, 2∆, . . . , n∆}.
We specialize the KMT Theorem to the case when the random variables {N̄i}i=1···n are stan-

dardized Poisson increments

N̄i =
Nl(i∆)−Nl((i− 1)∆)−∆√

∆
.

Then, Poisson process and Wiener process with drift having the same mean and variance can

be obtained on the discretized time interval [0, n∆] as

N(k∆) =
k∑
i=1

(√
∆N̄i + ∆

)
, k = 1, . . . , n, (3.2)

W (k∆) =
k∑
i=1

(√
∆W̄i + ∆

)
, k = 1, . . . , n, (3.3)

where random variables (W̄i)
n
i=1 are distributed according to the standard normal distribu-

tion function with cumulative distribution function Φ. The construction proceeds as follows.

Given standardized Wiener increments {W̄1, W̄2, . . . , W̄n}, we would like to find corresponding

standardized Poisson increments {N̄1, N̄2, . . . , N̄n}.
Without loss of generality, assume that the length of the trajectory n can be written as

n = 2K where K is positive integer. Following the notation of Komlós et al. (1975), we

introduce the following quantities

Vj = T2j , Vj,k = T(k+1)2j − Tk2j , Ṽq,k = Vq−1,2k − Vq−1,2k+1.

As Wiener increments {W̄1, . . . , W̄n} are already given, one can compute all of these quantities.

The values of Vj,k for all j = 0, 1, . . . , K − 1 and k = 1, . . . , n− 1 can be written as elements of

K × (n− 1) dimensional matrix V with entries
T2 − T1 T3 − T2 . . . . . . . . . . . . . . . Tn − Tn−1

T4 − T2 T6 − T4 . . . . . . Tn − Tn−2 0 . . . 0

T8 − T4 T12 − T8 . . . Tn − Tn−4 0 . . . . . . 0
...

...
...

...
...

...
...

...

Tn − Tn−2K−1 0 . . . . . . . . . . . . . . . 0


K,n−1

Using the elements of V, Ṽq,k for all q = 1, 2, . . . , K − 1 and k = 1, . . . , n − 1 can be found as

elements of (K − 1)× (n
2
− 1) dimensional matrix Ṽ

V0,2 − V0,3 V0,4 − V0,5 . . . . . . . . . V0,n−2 − V0,n−1

V1,2 − V1,3 V1,4 − V1,5 . . . V1,n
2
−2 − V1,n

2
−1 . . . 0

...
...

...
...

...

VK−2,2 − VK−2,3 0 . . . . . . . . . 0


K−1,n

2
−1
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The matrix Ṽ can be computed by Algorithm 1.

1: for q = 1, 2, . . . , K − 1 do

2: compute Vq,2k-Vq,2k+1 for all k ≤ n
2q
− 1 and set elements of matrix with k > n

2q
− 1 equal

0

3: end for

Algorithm 1: Computing elements of matrix Ṽ
Similarly, let us introduce the quantities

Uj = S2j , Uj,k = S(k+1)2j − Sk2j , Ũq,k = Uq−1,2k − Uq−1,2k+1.

Note that Si are not yet known. In fact, the KMT computes Si using Ui which are to be found

using Vi. Let us define matrices U and Ũ similarly to V and Ṽ such that the entries of U and

Ũ have the same structure, respectively, but in terms of Poisson increments N̄i.

Since the goal of the method is to compute Poisson increments based on Wiener increments,

we rephrase our goal by saying that we aim to compute the first line (j = 0) of the matrix U.

Before Poisson increments can be computed the cumulative distributions function, conditional

cumulative distributions function and corresponding quantile transformations should be defined

as follows

Fj(x) = P (Uj < x) Fq(x|y) = P
(
Ũq,0 < x|Uq0 = y

)
Gj(t) = sup{x : Fj(x) ≤ t} Gq(t|y) = sup{x : Fq(x|y) ≤ t}

Let us define Poiλ(x) as distribution function of a Poisson r.v. with intensity λ. The cumulative

distribution function Fj(x) takes the form

Fj(x) = Poi2j∆

(√
∆x+ 2j∆

)
.

The conditional distribution function Fj(x|y) can be calculated observing that if A and B

are independent Poisson random variables with intensity 2j−1∆, then

P (A−B < t | A+B = j) =


0 t < −j∑
−j≤i<t, i≤j

P(B= j−1
2
,A= j+i

2 )
P(A+B=j)

−j ≤ t ≤ j

1 t > j.

Noticing that Ũj,0 has the same distribution as (A−B)/
√

∆ and Uj has the same distribution

as (A+B − 2j∆)/
√

∆ leads to

Fj(x|y) = P
(
A−B <

√
∆ x | A+B =

√
∆ y + 2j∆

)
.

10



Then, the elements of matrix U are computed by Algorithm 2

1: Compute N̄1 = G0

(
Φ
(
W̄1

))
2: Compute the first column of U using Uj,1 = Gj

(
Φ
(

2−
j
2Vj,1

))
3: for j, k such that Uj,k is computed do

4: Compute Ũj,k = Gj

(
Φ
(

2−
j
2 Ṽj,k

)
|Uj,k

)
5: Compute

Uj−1,2k =
1

2

(
Uj,k − Ũj,k

)
Uj−1,2k+1 =

1

2

(
Uj,k + Ũj,k

)
6: end for when elements U0,k = Nk+1 are found for all k = 1, . . . , n− 1.

Algorithm 2: KMT algorithm

Algorithm 2 computes the elements of matrix U from the last line (j = K − 1) to the first one

(j = 0). While the equations are explicit, the order of elements computations might not be

straightforward at the first glance. Therefore, we provide a pseudo-code for the computation

in Algorithm 3
1: Set c1 = c2 = 1

2: for u = 1, 2, . . . , K − 2 do

3: for v = 1, . . . , c2 do

4: Compute Uq−1,2c1 and Uq,2c1+1 for all q = 1, . . . , K − u
5: Compute Ũq−1,2c1 and Ũq−1,2c1+1 for all q = 2, . . . , K − u
6: c1 = c1 + 1

7: end for v

8: c2 = 2c2

9: end for u

Algorithm 3: Computing elements of matrix U
The processes needed to construct the original density dependent process X

[V ]
∗ (t) and the

diffusion approximation G
[V ]
∗ (t) can be obtained by applying (3.2) and (3.3), respectively.

3.1.1 Illustration

To illustrate the construction we consider a toy example with n = 16 (K = 4) and ∆ = 1. We

simulate 16 standard normal random variables
(
W̄i

)16

i=1
which are then truncated to

[− 0.18,−0.93,−0.78,−1.65,−0.41,−1.10,−1.69, 2.52, 1.40,

0.18,−0.96, 1.26, 1.48, 0.52,−2.25, 0.47]T

for reproducibility.

Then, Ṽ takes the form presented in Table 1 and U has the elements listed in Table 2,

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

q = 1 0.87 0.69 -4.21 1.22 -2.23 0.95 -2.72

q = 2 -2.33 1.27 3.78

q = 3 1.65

Table 1: Elements of the matrix Ṽ for the illustrative example. The missing values are zeros.
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j/k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 -1 -1 -1 −1 −1 −1 2 2 0 -1 1 2 0 -1 -1

1 -2 -2 1 2 0 2 −2

2 -1 2 0

3 2

Table 2: Elements of the matrix U for the illustrative example. The missing values are zeros.

The bold, underlined, overlined and figures in italics correspond to the corresponding order of

computing the elements.

where different fonts, under and over lines correspond to the order of computing. The procedure

starts from the first column (black bold) and filling up next two columns (underlined). Then

each new column is used to obtain two more columns: columns 4-7 (overlined) and 8-15 (in

italics), subsequently. It is easy to see that blocks of filling doubles (1, 2, 4 and 8 columns),

respectively. This fact is coded using c2 in Algorithm 3. To compute the process of interest we

apply (3.2) and (3.3). The obtained pair of processes is given in Figure 1. It is demonstrated

5 10 15

0
2

4
6

8
1

0
1

2
1

4

Time

P
ro

c
e

s
s

Figure 1: The pair of distretized Wiener process with drift (dashed grey line) Wi and Poisson

Ni process (black cross)

that the constructed Poisson process captures the behaviour of the Wiener process with drift

and the distance between these processes is controlled.

The explicit construction allows to provide a hint why the KMT construction has the best

possible rate. As the construction fits different blocks there are two kind of errors arise: (i)

the sum of the errors of the quantile transformation and (ii) the maximum of the maxima of

the partial sums in the individual block. Then, the construction chooses the optimal trade-

off between these two errors. Furthermore, the simple quantile transformation Û2n of Ṽ2n is

strictly independent of U2n and therefore the joint distribution of Û2n and U2n is not equal to

12



the desirable one. This problem is solved by the conditional quantile transformation which

fixes the value of U2n.

3.2 Paired trajectories of the CTMC and of the diffusion approxi-

mation

As the processes Nl(t) and Wl(t) are continuous time processes, one can compute the discretised

trajectories X̂ [V ](t) of density process X
[V ]
∗ (t) given in (2.6) using an Euler scheme with step δ

(which might not to coincide with step ∆ in Section 3.1). We would get

X̂ [V ](jδ) = X̂ [V ]((j − 1)δ)+ (3.4)

+
∑
l

l

n

[
Nl

(
nδ

j−1∑
k=0

fl(X̂
[V ](kδ))

)
−Nl

(
nδ

j−2∑
k=0

fl(X̂
[V ](kδ))

)]
,

for j = 1, . . . , N with X̂ [V ](0) = X [V ](0). Similarly, one can obtain the discretised trajectories

Ĝ[V ](t) of the diffusion approximation G∗
[V ](t) given in (2.10) by

Ĝ[V ](jδ) = Ĝ[V ]((j − 1)δ)+

+
∑
l

l

n

[
Wl

(
nδ

j−1∑
k=0

fl(Ĝ
[V ](kδ))

)
−Wl

(
nδ

j−2∑
k=0

fl(Ĝ
[V ](kδ))

)]
, (3.5)

for j = 1, . . . , N with Ĝ[V ](0) = G
[V ]
∗ (0). Since processes Nl(t) and Wl(t) are not available in

continuous time, but only on a discrete grid of amplitude ∆, one needs to introduce a further

approximation by replacing the four times

nδ

j−1∑
k=0

fl(X̂
[V ](kδ)), nδ

j−2∑
k=0

fl(X̂
[V ](kδ))

nδ

j−1∑
k=0

fl(Ĝ
[V ](kδ)), nδ

j−2∑
k=0

fl(Ĝ
[V ](kδ))

by the closest times on the grid of obtained Wiener and Poisson processes. This would often

require long trajectories of Nl and Wl using extremely small step ∆ to get Ĝ[V ](t), X̂ [V ](t) trajec-

tories of a moderate length. However, the challenge is computational only and can be resolved

by storing long trajectories of these processes. As a final remark, we would like to emphasize

that we further consider two reaction network examples for which the trajectories of CTMC

and its strong diffusion approximation are provided (see Figure 4 and Figure 7). However, due

to the computation costs, it is strongly recommended to a reader to simulate independent tra-

jectories of (2.5) and (2.13) using the classical algorithms instead if the trajectory-by-trajectory

behaviour is not of interest.

4 Examples

In this section we describe two examples of the chemical reaction systems taken from the recent

literature. The aim is to discuss the ability of the deterministic and diffusion approximations

to capture the dynamical properties of the original Markov Chain.
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4.1 A toy model of metabolism and an interpretation of the defi-

ciency

The deficiency of the network has been introduced as an algebraic property of the reaction

graph in Section 2.1. Polettini et al. (2015) proposed a thermodynamic interpretation of the

deficiency in terms of the entropy balance. According to this interpretation, the deficiency can

be understood as a number of the ‘hidden’ closed pathways, or thermodynamic cycles. In case

θ = 0, the average stochastic dissipation rate equals the rate of the corresponding deterministic

model. They proposed the following toy model inspired by metabolism for the illustration

nE
λ5−⇀↽−
λ6
∅ λ1−⇀↽−

λ2
N

N + mE
λ3−⇀↽−
λ4

(m + n)E
(4.1)

where N is number of nutrients and E is number of tokens of energy. The first reaction introduces

(eliminates) nutrients and energy to (from) the environment. The second reaction processes the

nutrients and m tokens of energy to produce more energy and vice versa. Following Polettini

et al. (2015), we fix n = 2. The stoichiometric matrix[
1 −1 −1 1 0 0

0 0 2 −2 −2 2

]
(4.2)

displays in the i-th column the increment caused in (N,E) by the reactions with propensities

λ1, . . . , λ6 in system (4.1). The approximate rates of reactions (neglecting the terms with higher

order in 1/V in equation (2.2)) equal

q
(1)
(N,E),(N+1,E) = λ1V, q

(2)
(N,E),(N−1,E) = λ2N

q
(3)
(N,E),(N−1,E+2) = λ3

NEm

V m
, q

(4)
(N,E),(N+1,E−2) = λ4

E2+m

V 1+m
.

q
(5)
(N,E),(N,E−2) = λ5

E2

V
, q

(6)
(N,E),(N,E+2) = λ6V

If m is strictly positive, the network is made of 5 complexes with 2 connected components

and the stoichiometric space has a dimension of 2. Then, the deficiency equals θ = 5−2−2 = 1

and is non-vanishing. In contrast, if m = 0, the network is made of just 3 complexes, it has the

single connected component and the stoichiometric space has a dimension of 2. Thus, there is

no deficiency in the system θ = 3− 1− 2 = 0.

Following the choice of parameters by Polettini et al. (2015), we set λ1 = 10, λ2 = 1, λ3 =

10, λ4 = 1, λ5 = 10, λ6 = 1. Trajectories of the stochastic model (CTMC) of the system (4.1)

in both non-deficient (m = 0) and deficient (m = 3) cases are given in Figure 2. Figure 2 also

shows the deterministic approximation which solves the system of ODEs

u̇ = 10− u− 10uem + en+m

ė = 2
(
10uem − en+m + 1− 10en

)
where the variable (u, e) are interpreted as nutrients concentrations u = N/V and energy

concentration e = E/V . We fix the value V = 600 as in the original example. To generate
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Figure 2: Deterministic (dashed black) and stochastic (solid grey) trajectories of N/V (upper

part) and E/V (lower part) in the system (4.1) in the nondeficient case (left panels, m=0) and

in the deficient case (right panels, m=3).

the trajectory of the CTMC we use the stochastic simulation algorithm by Gillespie (1977)

implemented in R (R Core Team, 2017).

While being quite accurate in the non-deficient case, the deterministic approximation fails

to catch properties of the stochastic system in the deficient case for the chosen value of V .

Indeed, according to the deterministic model, for m = 3 the system should display damped

oscillation around the equilibrium that becomes of negligible amplitude as time goes. At the

same time, the stochastic model prescribes sustained oscillations that are reducing their ampli-

tude. This important qualitative feature is missed by the deterministic model. We remark that

the inadequacy of the deterministic approximation is due to the choice of V . While the result

in Approximation 1 says that the deterministic approximation is valid for V large enough, it,

however, fails to reflect the properties of the original process for the original choice of V .

We further investigate whether the diffusion approximation is able to capture the qualitative

dynamical properties of the system. Trajectories of the diffusion approximation (2.13) are given

in Figure 3.

One can see that oscillations are not damped according to the diffusion approximation. The

trajectories of the diffusion closely resemble the behaviour of the original Markov chain. Im-

portantly, the computation cost to compute the diffusion approximation is significantly lower

than for the original CTMC. For instance, to obtain a trajectory up to t = 50, CTMC takes
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Figure 3: Trajectories of N/V (left) and E/V (right) according to the diffusion approximation

(2.13), for the system (4.1) only in the deficient case m=3. The diffusion approximation is in

very good agreement with the Markov Chain of Figure 2.

nearly 14.7 seconds, while the diffusion approximation takes less than 1.8 seconds. Note, how-

ever, that trajectories in Figure 3 are generated independently of CTMC, by Euler-Maruyama

discretization method, applied to the equation (2.13). To check how well the diffusion can

approximate the trajectory of the CTMC given the same random numbers, we apply the algo-

rithms described in Section 3 to generate paired trajectories. Due to the high computational

costs, we limit the time to 2 which would be enough to see the general pattern. Two paired

trajectories are given in Figure 4.

One can see that the corresponding trajectories are located close to each other to a very

high extent and are in agreement. It follows that the diffusion approximation can mimic

the behaviour of the original process, but with much less computational and analytical costs.

Finally, we would like to outline that the diffusion approximation should not be considered as

a short cut (to reduce the simulation time) only, as the theoretical analysis of systems with

oscillations can been also performed on its basis (Baxendale and Greenwood, 2011).

4.2 A minimal chemical reaction systems with bistability

A bistable system is a system which has two stable equilibrium states and can be resting in

either of these states. Bistable systems have been studied extensively to analyse kinetics, non-

equilibrium thermodynamics and stochastic resonance. Due to its outstanding importance,

the theoretical foundations of the bistability such as necessary and sufficient conditions have

attracted an extensive attention in the literature, see, e.g., Joshi and Shiu (2013); Wilhelm

(2009).

The approach to formulate the necessary conditions of the bistability proposed by Wilhelm

(2009) is to find a corresponding minimal bistable chemical system (MBCS). The authors use

the wording chemical system to indicate a special case of a mass-action system such that all

the reaction involved are at most bimolecular. More complicated reactions are indeed believed

16



0.00 0.02 0.04 0.06 0.08

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Defecient (m=3)

time

N
/V

0.00 0.02 0.04 0.06 0.08

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Defecient (m=3)

time

E
/V

Figure 4: Paired trajectories of N/V (left) and E/V (right) according to the CTMC, (grey

line) and the diffusion approximation, (dashed black line) for system (4.1) in the deficient case

m = 3.

not to be physical. We refer a reader to the original proposal of Wilhelm (2009) for the detailed

definition of the minimal chemical system and for the comparison to alternative definitions, for

instance, Schlogl model (Schlögl, 1972). The proposed MBCS consists of four reactions

S + Y
λ1−→ 2X

2X
λ2−→ X + Y (4.3)

X + Y
λ2−→ Y + P

X
λ4−→ P

where X, Y are reactants and S, P are substrates and products whose concentrations are kept

fixed. The corresponding stoichiometric matrix takes the form[
2 −1 −1 −1

−1 1 0 0

]
with the same convention adopted for equation (4.2) and the approximate rates (neglecting the

terms with higher order in 1/V in equation (2.2)) are

q
(1)
(X,Y ),(X+2,Y−1) = λ1Y, q

(2)
(X,Y ),(X−1,Y+1) = λ2

X2

V

q
(3)
(X,Y ),(X−1,Y ) = λ3

XY

V
, q

(4)
(X,Y ),(X−1,Y ) = λ4X

where the constant concentration of S is incorporated in λ1. The system can be described by

the ODE system

ẋ = 2λ1y − λ2x
2 − λ3xy − λ4x
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ẏ = λ2x
2 − λ1y

where x and y are concentrations of X and Y , respectively. Setting λ2 = 1, without restrictions

of generality (Wilhelm, 2009) has shown that the system has three steady states x̄1 = ȳ1 = 0

and x̄2,3 = λ1±
√
λ1D

2λ3
, ȳ2,3 =

x̄22,3
λ1

where D = λ1 − 4λ3λ4 and the steady states 1 and 3 are stable

and the steady state 2 is unstable. Following Wilhelm (2009) we set λ1 = 8, λ2 = λ3 = 1 and

λ4 = 1.5 for the illustration. In this case the steady states are x̄1 = ȳ1 = 0, x̄2 = 2, ȳ2 = 1/2

and x̄3 = 6, ȳ3 = 9/2. One hundred trajectories of the CTMC corresponding to system (4.2)

and starting at the unstable steady state x(0) = 2, y(0) = 1/2 are given in Figure 5 where the

deterministic approximation of the system is also presented.
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Figure 5: 100 stochastic (grey line) and 1 deterministic (black dashed line) trajectories of

X/V (left panel) and Y/V (right panel) in system (4.2) starting at the unstable steady state

x(0) = 2, y(0) = 1/2.

The different trajectories originating at the same unstable steady state are driven by the

noise, towards one of the stable equilibria picked randomly. Let us remark that despite many

trajectories are initially attracted to the upper equilibrium, sooner or later they will escape its

domain of attraction and they will end up visiting the state (0, 0) that is absorbing. Notice that

this effect cannot be illustrated in the simulations since the time required to leave the upper

equilibrium is much larger than the time windows that one can explore.

The deterministic approximation is not able to capture this complex and rich behaviour of

the system. Therefore, this approximation could lose important properties of the original pro-

cess and should not be used. We then investigate the behaviour of the diffusion approximation.

One hundred discretized trajectories (starting at the same point of unstable steady state) of

the diffusion approximation are given in Figure 6.

The diffusion approximation mimics the qualitative behaviour of the original CTMC very

closely. Further, we study whether the diffusion approximation is able to reproduce the be-

haviour of the original process for different starting points. We calculate the proportion of

trajectories of the CTMC and of the diffusion approximation that is attracted to each steady
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Figure 6: 100 discretized trajectories (dashed black lines) of the diffusion approximation of X/V

(left panel) and Y/V (right panel) starting at the unstable steady state x(0) = 2, y(0) = 1/2.

state for different initial conditions at some fixed time point t. The results of nine sets of the

initial points and the fixed time t = 20 for the CTMC and the diffusion approximation are

given in Table 3. Clearly, the diffusion approximation correctly reflects the behaviours of the

Table 3: The proportion of times the CTMC (upper lines) and the diffusion approximation

(lower lines) is attracted to the first steady state. The results are based on 104 replications.

Initial point y(0) = 0.45 y(0) = 0.5 y(0) = 0.55

x(0) = 1.95
94.89% 75.24% 34.85%

94.89% 75.54% 34.49%

x(0) = 2.00
85.12% 49.63% 14.76%

85.23% 49.55% 14.48%

x(0) = 2.05
65.09% 25.04% 4.83%

65.52% 25.45% 4.63%

original process up to the moment at which the absorbing state (0, 0) (a boundary of the state

space) is reached, as described in the comments following the statement of Approximation 2.

Importantly, the computation time for 100 trajectories of the CTMC was nearly 96 minutes,

while the diffusion approximation took a half of the minute. Both this and its good property

to mimic the behaviour of the original process make the diffusion approximation a reasonable

tool to study the behaviour of the minimal bistable chemical system.

As a further investigation on the diffusion approximation, we now compare the paired

trajectories of the original process and the diffusion. Again, we limit time to t = 3.5 due to the

computational cost. The two trajectories are plotted in Figure 7. One can see that the both

trajectories show a great agreement on the whole trajectory. The distance between processes
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Figure 7: Paired discretized trajectories of the diffusion approximation (dashed black) and of

the original CTMC (grey solid) of X/V (left panel) and Y/V (right panel) starting at the

unstable steady state x(0) = 2, y(0) = 1/2.

stays little. The same conclusions were obtained for different starting values and, therefore, are

not provided here.

5 Limitations and perspective

In this work we demonstrated that the deterministic and diffusion approximations are useful

tools in the modelling of reaction networks. The diffusion approximation is able to capture

the behaviour of the original process and is able to mimic trajectories of the CTMC for many

different system. However, many questions of their applicability to important problems remain

unanswered. Firstly, both approximations are derived on a finite time horizon. It is well known

that deterministic equations may fail to catch the limiting distribution of the corresponding

stochastic model when time goes to infinity as it happens in the Example presented in Section

4.2, and for all the chemical systems with absolute concentration robustness (Anderson et al.,

2014, 2017b). At the same time, they can capture such asymptotic behaviour correctly in case of

the complex balanced stochastic systems (Cappelletti and Wiuf, 2016). Similar results are not

yet obtained for the diffusion approximation. Secondly, both the diffusion and the deterministic

approximations are known to fail when the state space of the processes is bounded and the

boundaries are visited with non-negligible probability. This may be a major drawback for the

medium-large size systems where the size is not large enough. Alternative approximations have

been proposed for this case by Angius et al. (2015); Beccuti et al. (2014); E. Bibbona (2017);

Leite and Williams (2017); Schnoerr et al. (2014), but the complete mathematical theory is still

under development.
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