

A Green Programming Model for Cloud Software Efficiency

Ah-Lian Kor, Colin Pattinson

School of Computing, Creative Technologies, and Engineering,

Leeds Beckett University, Leeds, UK

(e-mail: {A.Kor, C.Pattinson}@leedsbeckett.ac.uk)

Abstract: Cloud computing is emerging as a methodology for delivering more energy efficient

computing provision. The potential advantages are well-known, and are primarily based on the

opportunities to achieve economies of scale through resource sharing: in particular, by concentrating data

storage and processing within data centers, where energy efficiency and measurement are well

established activities. However, this addresses only a part of the overall energy cost of the totality of the

cloud: energy is also required to power the networking connections and the end user systems through

which access to the data center is provided, and researchers are beginning to recognize this. One further

aspect of cloud provision is less well understood: the impact of application software behavior on the

overall system’s energy use. This is of particular concern when one considers the current trend towards

“off the shelf” applications accessed from application stores. This mass market for complete applications,

or code segments which are included within other applications, creates a very real need for that code to

be as efficient as possible, since even small inefficiencies when massively duplicated will result in

significant energy loss. This position paper identifies this problem in detail, and proposes a support tool

which will indicate to software developers the energy efficiency of their software as it is developed.

Fundamental to the delivery of any workable solution is the measurement and selection of suitable

metrics, we propose appropriate metrics and indicate how they may be derived and applied within our

proposed system. Addressing the potential cost of application development is fundamental to achieving

energy saving within the cloud – particularly as the application store model gains acceptance.

Keywords: Energy Efficiency, Green Computing, Programming Model, Energy Efficient Cloud.

1. INTRODUCTION

This is a position paper which is concerned with the topical

issue of Green Computing, specifically focusing on

environmentally aware software development for Open

Computing Environments (OCEs). The proposed research

looks into novel software energy efficiency methods and

development of tools to support software developers in

monitoring, minimising the carbon footprint and optimising

energy efficiency resulting from developing and deploying

software in such environments. This proposed research is

timely because it addresses the need for continued

development of infrastructure support for OCEs in order to

optimise, monitor and reduce carbon footprint and costs for

OCE providers and end-users. The major contribution to the

carbon footprint of OCE software is energy consumed in its

operation, thus the primary aim of this proposed project is to

relate software design and energy use. Although energy use is

of relevance across all software design and implementation,

for this project we will make specific reference to cloud-

based services operations: the emergence of cloud computing

with its emphasis on shared software components which are

likely to be used and reused many times in many different

applications make it imperative that the software to be

developed is as energy efficient as it possibly can be.

1.1 Background

The primary output of this proposed research is the derivation

of explicit measures of energy requirements for inclusion

into the design and development process for software which

can be executed on any processing platform. However, the

delivery context of this proposed project will be a cloud

environment, because cloud computing is the emerging

paradigm for business computing and as its popularity grows,

the potential impact of cloud-based software grows in

significance. Cloud Computing aims to streamline the on-

demand provisioning of software, hardware, and data to

provide flexibility and agility, and economies of scale in IT

resource management. Although building, deploying and

operating applications on a cloud can help to achieve speed1,

scalability, and maintain a flexible infrastructure, it brings

about a variety of challenges due to its massive scalability,

complexity, as well as dynamic and evolving environments.

The provision of cloud programming environments for

applications and services is currently dominated by several

large commercial providers such as Amazon2, Google3,

Rackspace4, Microsoft5 , and IBM6.

2. LITERATURE REVIEW

 Note: throughout this document, our focus is on the energy requirements of software

development.
1 http://www.ibm.com/developerworks/cloud/
2 http://aws.amazon.com/what-is-aws/
3 http://code.google.com/appengine/
4 http://tools.rackspacecloud.com/category/applications/tools-for-developers/
5 http://www.microsoft.com/windowsazure/windowsazure/
6 http://www.internet.com/IBM_Cloud/Door/42153

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Leeds Beckett Repository

https://core.ac.uk/display/146499151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ibm.com/developerworks/cloud/
http://aws.amazon.com/what-is-aws/
http://code.google.com/appengine/
http://tools.rackspacecloud.com/category/applications/tools-for-developers/
http://www.microsoft.com/windowsazure/windowsazure/
http://www.internet.com/IBM_Cloud/Door/42153

2.1 Cloud Application Platforms

A brief survey of various popular application platforms has

been conducted. Microsoft has proposed Azure7 as an

application platform for the Cloud based on the Windows

Azure Operating System. Common Microsoft programming

tools employed to develop Azure basic services such as SQL

Azure8 (to build, host and scale applications in Microsoft data

centres) or Windows Live9 do not offer specific programming

models. Although Microsoft .NET10 claims to offer a

comprehensive and consistent programming model, it has not

addressed the issue of energy efficiency. Manjrasoft Aneka11

platform is oriented on enabled .NET-based enterprise Grid

and Cloud platform. It provides services for

authentication/authorisation, dynamic resource allocation,

accounting, etc. Aneka considers multiple programming

models: Thread Programming Model (to adopt multi-

threaded application on a distributed system); Task

Programming Model (to implement independent bag of tasks

applications); and MapReduce Programming Model12

(proposed by Google as a programming model for developing

distributed data intensive applications in data centres).

Hadoop13 is an open source software platform that permits

the processing of vast amounts of data. Hadoop MapReduce

is a programming model and software framework for writing

applications that facilitates parallel processing of vast

amounts of data on large clusters of compute nodes.

MapReduce divides applications into many small blocks of

work. The Hadoop Distributed File System (HDFS) creates

multiple replicas of data blocks for reliability, placing them

on compute nodes around the cluster so that MapReduce can

then process the data where it is located. The Google App

Engine14 provides facility to develop and run web

applications on proven Google’s infrastructure. The current

supported languages are Python and Java. Google App

Engine makes it easy to build an application that runs

reliably, even under heavy load and with large amounts of

data. The Amazon Elastic Compute Cloud (Amazon EC215)

offers a web service that allows businesses to run their

application programs in the Amazon.com web-based and

virtual computing environment. Here, EC2 practically serves

as an unlimited set of virtual machines. On the other hand,

OASIS provides an open standard executable language, Web

Services Business Process Execution Language (WS-

BPEL16,17) for the formal specification of business processes

(based on Web Services) and business interaction protocols.

The interactions included in the standard are of two different

types: executable business processes, and abstract business

processes. Executable business processes model actual

behaviour of a participant in a business interaction while

abstract business processes are partially specified processes

7 http://www.microsoft.com/windowsazure/
8 Ibid.
9 http://explore.live.com/
10 http://www.microsoft.com/net/overview.aspx
11 http://www.manjrasoft.com/products.html
12 http://code.google.com/edu/parallel/mapreduce-tutorial.html
13 http://hadoop.apache.org/
14 http://code.google.com/appengine/
15 http://aws.amazon.com/ec2/
16 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
17 http://www.oasis-open.org/committees/download.php/14616/wsbpel-specification-

draft.htm

that are not intended to be executed (they have a descriptive

role).

In this proposed research, the main program will only

have invocations to services, nothing is related to the

middleware that is responsible for running services and

composition of applications will be based on general Web

Services. The programming model itself is an innovation in

the field of Cloud Computing. Thus far, only MapReduce has

been proposed as programming models in this environment.

Though BPEL has a more general approach and allows

description of service workflows, it does not focus on the

Cloud as the execution infrastructure. Our proposed

Programming Model covers a broader set of applications than

MapReduce, since MapReduce applications require the

programmer to open and close parallel regions in the code.

Our other proposed innovation is the co-existence of specific

application code parts and published services that will be

orchestrated by the proposed Programming Model run-time

(known as core elements of the application in this proposed

research). Some service compositions may require the

following actions: performing some appropriate calculations

or checking some data in order to inform decision making on

how to proceed. These calculations are not intended to be a

service but rather, a piece of code helping in the overall

process. The proposed Programming model run-time will be

able to dynamically schedule the core elements of an

application and allocate the resources from infrastructure

providers where the core elements are to be executed,

according to energy efficiency terms (more discussion in the

remaining part of this paper). The Programming Model run-

time will exchange messages with decision modules that will

consider many different parameters of the Cloud (e.g. Quality

of Service, QoS) in order to decide the best location for

scheduling the Programming Model core element.

2.2 Cloud and Energy Efficiency

The outcomes of this proposed work are equally applicable to

any of the “as a service” options (Software, Platform, and

Infrastructure), all three are affected by the performance of

the software which is run: it is the energy requirements of

software which is the focus of this work. According to

Gartner Inc.18, there is an acceleration of adoption of cloud

applications and services by enterprises. Consequently,

experts warn of a dramatic increase in energy consumption

for cloud computing. A Greenpeace report19 predicts that the

global energy consumption for cloud computing will increase

from 632 billion kWh in 2007 to 1,963 billion kWh by 2020

and the associated CO2 equivalent emissions will reach 1,034

mega tonnes. In order for cloud providers to implement a

“green cloud”, it is essential to promote energy efficiency

awareness among all its stakeholders, and produce metrics to

demonstrate energy gains. Though some work has been

undertaken on the development of energy metrics, most

published measurements can be characterised as “hardware-

related”, and do not address the impact of software

performance on the overall energy efficiency of an IT system.

Currently, available metrics focus on relative measures of

data centre operations (e.g. Power Usage Effectiveness (PUE)

18 http://www.gartner.com/it/page.jsp?id=1389313
19 http://www.greenpeace.org/international/Global/international/planet-

2/report/2010/3/make-it-green-cloud-computing.pdf

http://www.microsoft.com/windowsazure/
http://explore.live.com/
http://www.microsoft.com/net/overview.aspx
http://www.manjrasoft.com/products.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://hadoop.apache.org/
http://code.google.com/appengine/
http://aws.amazon.com/ec2/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/download.php/14616/wsbpel-specification-draft.htm
http://www.oasis-open.org/committees/download.php/14616/wsbpel-specification-draft.htm
http://www.gartner.com/it/page.jsp?id=1389313
http://www.greenpeace.org/international/Global/international/planet-2/report/2010/3/make-it-green-cloud-computing.pdf
http://www.greenpeace.org/international/Global/international/planet-2/report/2010/3/make-it-green-cloud-computing.pdf

and Data Centre Infrastructure Efficiency (DCiE))20. Energy

efficiency metrics for a programming environment are yet to

be developed.

Work at the CLOUDS Laboratory at the University

of Melbourne [2] focuses on the deployment of virtual

machines and their interconnection and migration, with a

Service Level Agreement process to allow the customer to

specify their energy demands. Srikantaiah et al [5] have also

approached the issue of energy-efficient cloud computing

through (virtualised) resource consolidation. Mittinen and

Nurminen [4] have addressed the use of mobile clients to

access cloud provision, and described the split of energy use

as a client-server (or local-remote) relationship indicating that

energy efficiency is highly sensitive to workload, data

communication and technology in use. The SPECS “Power

and Performance Benchmark Methodology” (SPECS, 2010)21

uses an incremental series of benchmark loads to determine

the power/performance behaviour of a server under load,

expressing the result in terms of “performance per Watt”.

However, in both these cases, the “performance” or

“throughput” is derived from benchmark-type processing

activity, which may not be easily related to specific tasks.

The relevant aspect of this proposed project is the

“Green Tracker” currently being developed by Amsel et al

(2010)22 which assesses the energy consumption at the CPU

level of complete software applications, and is aimed at

allowing users to select between alternatives at run-time.

Whilst an interesting development (and evidence of the

timeliness and suitability of this proposed project, the focus

on CPU use; on extant software and on a user-level

presentation mean that it does not address the totality of

software energy; and does not lend itself to a tool which can

directly assist software developers in building applications.

PAS 205023 provides a benchmark and standard assessment

method to determine the carbon footprint across the entire

lifecycle of a product – defined very broadly: the guidance

notes use examples of food production and an IT service

helpdesk. In the context of our research, we shall adapt the

principles of PAS 2050, where appropriate for calculating the

energy requirements of software. For scoping purposes, our

focus will only be on the calculation of energy costs relating

to the developing and running of code (as illustrated in Figure

1). While the projects noted in the previous paragraph

represent significant contributions to the area, we believe that

the energy requirements of the software applications which

run on the hardware units (virtual or real) must be

incorporated into the overall development and deployment

process. The total characterisation of software energy in

respect of the impact of the software structure on energy use

is not incorporated into any current models. It is this gap

which this project will address. Determining the relationship

between software structure and its energy use will allow us to

20 http://www.microsoft.com/environment/our_commitment/articles/green_grid.aspx
21 http://www.spec.org/power/docs/SPECpower-

Power_and_Performance_Methodology.pdf
22 N. Amsel, B. Tomlinson. 2010. "Green Tracker: A Tool for Estimating the Energy

Consumption of Software." In: ACM Conference On Human Factors In Computing

Systems (CHI 2010), Work in Progress. Atlanta, GA.
23 BSI (2008). Guide to PAS 2050 How to assess the carbon footprint of goods and

services

http://www.footprintexpert.com/PCFKB/Lists/kbdocuments/Guide%20to%20PAS%202

050.pdf

define a set of software energy metrics similar in concept to

those for hardware. By associating those metrics (via tags)

with existing component libraries, and by creating the tags

during the production of new software components, we will

be able to populate a software development toolkit with

information to predict the energy requirements of

applications, thereby allowing alternative selections of both

existing (reused) and newly-created code components to be

made, using energy as a selection criterion.

3. PROGRAMME

3.1 Research Aim and Objectives

The proposed project’s goal is to understand and characterise

the factors which affect energy efficiency in software

development, deployment and operations. Our main novel

contribution is the incorporation of a holistic approach to

references to both hardware and software energy efficiency in

the lifecycle (as shown in Figures 1 and 2). We will

demonstrate the outputs of this characterisation through the

development of an integrated development environment

(IDE) for the deployment of services, the target users being

programmers. We envisage this taking the form of a

dashboard with drag and drop components including

identified energy efficiency and performance measures. Users

can program and choose from alternative service

compositions through a user friendly interface. In particular,

the research objectives for this project are to:
1. Elicit requirements for the Programming IDE and Runtime

Environment with the following primary components:

programming models; service composition; service

deployment; service operations; energy efficiency;

2. Develop and evaluate the description of the services ecosystem

components (depicted in Figure 2);

3. Develop and evaluate a framework with identified energy

efficiency parameters and metrics for services;

http://www.microsoft.com/environment/our_commitment/articles/green_grid.aspx
http://www.spec.org/power/docs/SPECpower-Power_and_Performance_Methodology.pdf
http://www.spec.org/power/docs/SPECpower-Power_and_Performance_Methodology.pdf
http://www.footprintexpert.com/PCFKB/Lists/kbdocuments/Guide%20to%20PAS%202050.pdf
http://www.footprintexpert.com/PCFKB/Lists/kbdocuments/Guide%20to%20PAS%202050.pdf

4. Develop, verify, and validate programming models for

particular applications and services;

5. Develop methods for measuring, analysing, and evaluating

energy use for software development;

6. Integrate energy efficiency (measures, analysis, and evaluation)

into service composition, deployment, and operations;

7. Develop, implement, and evaluate the Programming IDE and

Runtime Environment in Research Objective 1.

4. METHODOLOGY

Typical components in existing Service Oriented

Architecture (SOA) service lifecycles are: identification,

modelling, composition, provisioning, deployment,

management, and evaluation (ORACLE)24; or modelling,

assembly, deployment, and management (IBM)25. These

lifecycles primarily focus on the software aspect. However,

IBM recently extended such a typical service lifecycle which

is referred to as Service Lifecycle Management26. IBM’s

Service Lifecycle Management is socio-technical centric and

includes novel as well as existing integrations of software.

The integrations afforded in the extended model are as

follows: enhanced hardware and software connection to

streamline the resolution of infrastructure-related problems;

service desk and development connection to effect efficient

cooperation between service desk and operation tools;

operations and test/development connection to simplify and

automate information handoffs between the two faculties by:

streamlining dataflow between them; minimizing response

time to data requests; facilitate efficient data analysis. In this

project, we have adapted IBM’s SOA Service Lifecycle and

its extended model (Service Lifecycle Management), calling

it the Energy Efficiency Embedded Service Lifecycle

(acronym, EEESL; see Fig 1) which contains functional

blocks and addresses questions (shown as arrows in Figure

1). The novelty of our model is that it has energy efficiency

as its pivotal anchor. The main goal of this model is to create

a service ecosystem whose components (see Figure 2) work

efficiently and seamlessly together.

5. UNDERLYING COMPONENTS FOR THE PROPOSED

CLOUD SERVICE ECOSYSTEM

5.1 Energy Software

Intuitively, there is a relationship between software design

and energy consumed by that software: at a very basic level,

code fragments (in whatever programming language is used)

convert into a sequence of machine code instructions, and

since each instruction can be associated with a number of

CPU operations, the total number of such operations can be

determined, and, if we know the energy use per cycle, the

overall energy “cost” can be identified. It is not difficult to

envisage a formalisation of this intuitive relationship.

However, in practice, outside the specialist implementations

where resources are at a premium, such considerations are

not uppermost in the minds of designers. Further complexity

is added by the realisation that overall energy use is affected

by factors such as the sequence in which a test-branch

24

http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/concepts/introduction.ht

ml
25 http://www.ibm.com/developerworks/rational/library/mar07/mcbride/
26 http://ptaknoel.com/wp-content/uploads/2009/12/IBM-Service-Lifecycle-

Management-FINAL.pdf

operation is carried out, the order in which incoming data is

presented and the final output requirements of any process.

Furthermore, energy is not consumed only by CPU cycles,

other parts of the system (such as those involved in data

storage and transfer) are of increasing significance as the data

and processing environment becomes more disparate.

Extrapolating this to take account of a large piece of

software, potentially implemented across a number of

different platforms and comprising software components

from a range of sources, indicates the possible complexity

involved, and suggests that an automated approach is

required. Such a solution is possible, making use of a

combination of theoretical analysis of software code,

measurement of existing components, modelling tools for a

complex situation (e.g. AHP–Analytic Hierarchical

Process27), and simulation. We will associate energy with

processor activity and other resource use, and use that

association to derive the energy requirements of sequences of

operations, and hence of identifiable program segments. Our

analysis will permit us to create a knowledge base of the

energy use of specific segments. Through a combination of

measurement (of existing code) and simulation (of newly

developed code), we will extend this knowledge base to

support a generic energy estimation tool. We envisage this

tool being used by program designers and developers to guide

selection of new and reused code fragments, to make

deployment choices between alternative platforms, and to

allow informed negotiations around service level agreements.

Information–referred to from here on as metrics-derived from

this knowledge base will be associated (via tags) with

software components, allowing users to understand the effect

of design choices on overall energy requirements.

5.2 Programming Model, Program Construction, and

Incorporation of Energy Metrics

Software will be constructed based on a programming model

(shown in Figure 1) specifically developed for open

computing environments including but not restricted to the

cloud. Our project confers equal importance to the

development of new software, to the adaptation and

combination of legacy software, and to the composition of

software services within a larger context. As noted earlier, we

base our proposal on earlier work by IBM28. The two types of

programming models introduced by IBM are: Service

Programming Model and Process Programming Model. IBM

(2000, 2004)29 views the service programming model as one

that defines/describes what a service is and how it is

developed while a process programming model

defines/describes what a process is and how it is developed.

Description or semantics annotation of services is facilitated

by service modelling languages (e.g. WSDL, Web Services

Description Language). The dimensions in a service

programming model are as follows: data; service interface (a

mechanism for logical grouping of business operations); and

service implementations (description of how services are

implemented and executed by an endpoint such as a business

application system). The development of a service

27 IBM(2009). How much energy do your IT devices use? A guide to comparing their

efficiency and cutting their carbon footprint, supported by the UK Government’s Green

CIO, http://www-935.ibm.com/services/uk/cio/pdf/howmuchenergy_lr.pdf
28 http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/
29 Ibid.

http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/concepts/introduction.html
http://download.oracle.com/docs/cd/E13159_01/osb/docs10gr3/concepts/introduction.html
http://www.ibm.com/developerworks/rational/library/mar07/mcbride/
http://ptaknoel.com/wp-content/uploads/2009/12/IBM-Service-Lifecycle-Management-FINAL.pdf
http://ptaknoel.com/wp-content/uploads/2009/12/IBM-Service-Lifecycle-Management-FINAL.pdf
http://www-935.ibm.com/services/uk/cio/pdf/howmuchenergy_lr.pdf
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/

programming model entails the following steps: the creation

of service definition based on an existing implementation

(e.g. a Java class, or IS function, etc.) or creation of a service

implementation from an existing service interface (e.g. a Java

class skeleton); generating deploy code for the services to be

deployed so that services of an integrated application are

accessible via different protocols and easily tested within a

test environment (e.g. IDE); creating service proxy which

involves the creation of the client side proxy for a service30

offered by an integration application. As for the Process

Programming Model, it defines/describes what a process is

and how it is developed31. The development of a process

could either be a top-down or bottom-up approach

encompassing process interfaces that are synchronous or

asynchronous and process implementation. In our project, we

envisage the adoption and adaptation of IBM’s notion

programming models. Our novel contribution to the

development of programming models for an open computing

environment (e.g. cloud) is the incorporation of energy

efficiency metrics into the service and process programming

models as described in the previous section.

5.3 Service Composition, Deployment, Operation, and

Evaluation

As previously mentioned, a service in this project is formed

by the integration of new code, existing services (not

necessary traditional Web Services), and the

adaptation/combination of legacy software. We envisage the

building/reuse of these platform-independent software

components and we shall call them service components. An

application could be assembled from a set of appropriate

service components and this process is called a service

composition. A hybrid mechanism (manual, automated or

semi-automated) will be developed for assembling the

services. Each service component will be described by either

a semantic annotation (of what it does) and by a functional

annotation (of how it behaves) [6]. The novelty of our

contribution is to incorporate an associated energy efficiency

measure into the functional annotation of each service

component (the energy metrics “tags” referred to above) so as

to promote the development of energy efficiency aware

service compositions (note: users who are software

developers will be able to view the calculated total possible

energy efficiency for each type of chosen service

composition). One of the critical issues to address in service

provisioning is a Service Level Agreement (SLA) where

service consumers and providers effectively achieve

agreements on non-functional aspects such as the Quality of

Service (QoS) [7]. As a result of the association of energy

requirements with created software, our service compositions

are QoS aware (in respect of the likely resource demands of a

service instance) and thus resource allocation can be

consistent with the SLA [3] description of service quality

related content according to SLA parameters; enabling the

service provider to apply QoS values for invoked services. In

order to facilitate wide adoption and reach the critical mass of

software services required to support open computing

environments such as clouds, it is imperative to avoid ad-hoc

and manual processes in the remaining steps of the service

30 http://msdn.microsoft.com/en-us/library/dd815336(VS.85).aspx
31 http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/

lifecycle. This project will offer a set of tools to automate and

standardize service deployment and operation, with energy

efficiency as the basis for the decisions taken at each stage. In

the deployment phase, a service is placed on an Infrastructure

Provider (IP) for operation. Some of the activities in this

phase are32: testing and debugging of a service (to test

whether it works properly)33; modification of a service

according to an environment; selecting a suitable IP to host

the service; deploy a service package to a deployment slot

within a new hosted service. Other activities include the

negotiation of SLA terms between Service Providers (SP)

and IPs, and the propagation of contextual information

necessary for instantiating the service once when it has been

deployed. Service deployment tools will facilitate the

packaging of services and their complete software stacks as

well as the addition of security capabilities to images prior to

deployment and execution. However, services testing tools

will provoke a reflection on service integration, autonomy,

stability, performance, etc…34. This project aims to provide

an integrated approach for deploying services, including

functionality for a careful evaluation of resource providers in

respect of their energy requirements. To achieve this, the

energy consumption requirements of the software

components are specified during the programming

construction phase and the integration is carried out during

service operation (or execution). The former is the result of

our development of software energy metrics, as described

above. The latter is achieved through the dynamic allocation

of resources according to the energy consumption

requirements of each element within the context of the

service. The result is that, without the intervention of the

software developer, the execution of the service evolves

according to the infrastructure requirements of each core

element and the status of the available infrastructure. As

previously mentioned, the AHP (Analytical Hierarchical

process) 35modelling technique would also be implemented in

the service lifecycle because it takes into account the

different parameters and metrics for energy efficiency for

each phase, sets out the relevant information clearly and

succinctly so as to support the software developer’s decision

making with regard to the choice of software components for

a particular service. The three main aspects that will be

considered in the operations phase are: result, energy

efficiency and performance. The project will aim to improve

the execution of services by utilizing a governance process to

define energy efficiency policies for harmonizing all

management activities throughout the service lifecycle. These

policies will integrate disparate software management

requirements, from high-level Business Level Objectives

(BLOs) to resource requirements, into a unifying view to

verify that the services are executing as expected.

5.4 Integrated Development Environment (IDE) and Runtime

Environment

32 http://msdn.microsoft.com/en-us/library/ff683668.aspx
33 http://www.infoworld.com/t/architecture/soa-services-deployment-putting-theory-

practice-232
34 http://www.infoworld.com/t/architecture/soa-services-deployment-putting-theory-

practice-232
35 IBM(2009). How much energy do your IT devices use? A guide to comparing their

efficiency and cutting their carbon footprint, supported by the UK Government’s Green

CIO, http://www-935.ibm.com/services/uk/cio/pdf/howmuchenergy_lr.pdf

http://msdn.microsoft.com/en-us/library/dd815336(VS.85).aspx
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel/
http://msdn.microsoft.com/en-us/library/ff683668.aspx
http://www.infoworld.com/t/architecture/soa-services-deployment-putting-theory-practice-232
http://www.infoworld.com/t/architecture/soa-services-deployment-putting-theory-practice-232
http://www.infoworld.com/t/architecture/soa-services-deployment-putting-theory-practice-232
http://www.infoworld.com/t/architecture/soa-services-deployment-putting-theory-practice-232
http://www-935.ibm.com/services/uk/cio/pdf/howmuchenergy_lr.pdf

In this proposed project, an integrated environment for the

programming, composition, deployment and execution of

services and applications will be developed. The IDE will

have available a friendly GUI with several sets of tools:

creation tools for creating services and processes;

composition tools for integrating services and services,

services and processes, processes and processes; tools for

testing, debugging, and running the services and processes;

deployment tools for deploying the services (to put the

service into an application server); invocation tools for clients

to invoke deployed services. This interface will include also

tools for easily publishing and un-publishing services to

make them available to third parties. The tools developed for

this phase will be operating system independent and codes

generated for the services and processes will conform to

industry standards and open-source specifications (e.g. Web

Service Invocation Framework, WSIF36). Many traditional

approaches for Web Services Composition rely on applying

static planning techniques to deploy and execute the

compositions [1]. In contrast, the Programming Model

runtime developed in this project will be able to dynamically

schedule the core elements of an application and dynamically

allocate resources from infrastructure providers where the

core elements are to be executed, according to energy

efficiency considerations. Messages will be exchanged with

decision modules regarding different parameters of the

potential deployment environment (e.g. QoS) in order to

decide the best location to schedule the Programming Model

core element.

5.5 Environmental Impact

The proposed project will focus on a particular type of OCE -

cloud computing - to develop and demonstrate the research

outcomes. Cloud computing gives users seamless access to a

wide range of computational, storage and network resources,

enabling them to execute tasks far beyond the capabilities of

their own resources/infrastructures. Usage of OCEs in

general was initially driven by the e-Science community (in

particular their use of Grid computing). However,

developments of recent years, especially those addressing key

issues such as transparency, security, data transfer, resource

brokering, workflow and risk management37 have driven

larger scale commercial uptake of the technology and seen

the emergence of cloud computing as a way of offering mass

data processing and storage without the cost of purchase and

maintenance. Many organizations which stand to benefit

from such environments, especially those within the

commercial sector have policies relating to energy and

sustainability, including the consumption of ICT resources

and services. These policies are being increasingly shaped by

a social awareness of green issues and a wish to conduct

business with the least possible impact on the environment.

Therefore, not only does this research seek to reduce the

environmental impact of such infrastructures; it has the

potential to drive commercial uptake further by bridging the

gap between organizational green policy and practice, and

drawing attention to green issues within OCEs. Increasing

discussion of environmentally friendly ICT at both

36 http://ws.apache.org/wsif/ ; http://ws.apache.org/wsif/ ,

http://www.ibm.com/developerworks/webservices/library/ws-appwsif.html
37 http://www.ggf.org

government and European Commission level are further

evidence of the importance with which the subject is viewed.

At UK level, the government has published an 18 step carbon

emissions reduction plan38 focused on reducing the carbon

impact of government ICT operations throughout its entire

operation. Most recently, an EU-supported code of conduct39

for data centers has further emphasized the significance of the

ICT sector in the delivery of climate-saving policies.

6. CONCLUSIONS

Our novel EEESL incorporates aspects of software efficiency

as a fundamental component in all steps of the service

lifecycle. In order to deliver this vision, appropriate measures

of efficiency for this context will be identified: measures

which must be accurate, usable and repeatable. With these

definitions of software efficiency, we will be able to

construct a model to estimate the relative performance of

different design approaches. An important element of our

work will be that the methods derived from it will be

applicable both to new and pre-existing software, thus a

measurement methodology will be developed to assess

energy efficiency at a number of activities in the service

lifecycle: design; coding; compilation; machine readable

(executable). To reiterate, no workable and comprehensive

methodology for the measurement of energy use of software

processes currently exists, so it is envisaged that the creation

of such a methodology, and its verification and validation,

will itself offer a major contribution to the field. Decision

support will be provided for the deployment phase of the

resulting software, since the platform(s) on which the

resulting code is run will also have a major impact on the

overall efficiency. Therefore, following will be investigated

on: the relationship between energy use and hardware and

network design, deriving a model of the efficiency structures.

Once again, this work is novel, we are not aware of any

existing models which effectively describe the relationships

among all the components in a Services Ecosystem depicted

in Figure 2 with the main emphasis on the trade-offs between

performance and energy efficiency.

REFERENCES

[1]. Agarwal, V., Chafle, G., Mittal, S., and Srivastava, B. (2008). Understanding

approaches for web service composition and execution, In Proceedings of the 1st

Bangalore Annual Compute Conference (Bangalore, India, January 18 - 20,

2008); COMPUTE '08. ACM, New York, NY.

[2]. Beloglazov, A., and Buyya, R. (2010). Energy Efficient Allocation of Virtual

Machines in Cloud Data Centers. Proceedings of the 10th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2010),

Melbourne, Australia, May 17-20, 2010.

[3]. Dong, W. L., and Jiao, L. (2008). QoS-Aware Web Service Composition Based

on SLA, Proceedings of the Fourth International Conference on Natural

Computation,Vol.5,pp.247-251.

[4]. Mittinen, A. P., and Nurminen, J. K. (2010.). Energy efficiency of mobile clients

in cloud computing, Proceedings of HotCloud'10, USENIX Association Berkeley,

CA, USA.

[5]. Srikantaiah, S., Kansal, A., and Zhao, F. (2008). Energy Aware Consolidation for

Cloud Computing, Proceedings of the 2008 Conference on Power Aware

Computing and Systems(HotPower’08). Berkeley, CA, USA.

[6]. Srivastava, B., and Koehler, J. (2003). Web Service Composition - Current

Solutions and Open Problems, ICAPS 2003 Workshop on Planning for Web

Services, pp. 28-35,

[7]. Yan, J., et. al (2007). Autonomous service level agreement negotiation for service

composition provision, Future Generation Computer Systems, Volume 23 , Issue

6, pp.748-759.

38 http://www.gartner.com/DisplayDocument?id=730607.
39 Commission Joint Research Centre Code of Conduct on Data Centres Energy

Efficiency. 2008, European Commission: Brussels.

http://ws.apache.org/wsif/
http://ws.apache.org/wsif/
http://www.ibm.com/developerworks/webservices/library/ws-appwsif.html
http://www.ggf.org/
http://www.gartner.com/DisplayDocument?id=730607

