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Abstract 5 

Distance functions are increasingly being augmented, with environmental goods treated as 6 

conventional outputs. A common approach to evaluate the opportunity cost of providing an 7 

environmental good is the exploitation of the distance function’s dual relationship to the value 8 

function. This implies that the opportunity cost is assumed to be non-negative. This approach 9 

also requires a convex technology set. Focusing on crop diversification for a balanced sample 10 

of 44 cereal farms in the East of England for the years 2007-2013, this paper develops a novel 11 

opportunity cost measure that does not depend on these strong assumptions. We find that the 12 
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1. Introduction 21 

Agriculture not only provides economic outputs, but also generates externalities including 22 

environmental goods (e.g., landscape conservation and habitat for birds) and ‘bads’ (e.g., 23 

nitrogen and phosphorus surplus due to fertiliser use). Environmental goods and bads are non-24 

marketed, and may call for government intervention to deal with or internalise these external 25 

benefits and costs to align consumers’ and producers’ interests (Areal, Tiffin et al., 2012). A 26 

large body of economic literature assesses the trade-off between production and externalities. 27 

Externalities have commonly been implemented in a distance function framework, to estimate 28 

environmental efficiency and productivity measures. The shadow price of an externality can be 29 

computed by exploiting the distance function’s dual relationship to the value function. Knowing 30 

the shadow price of an externality is useful for policy makers, who may set up schemes to 31 

compensate for the potential financial losses incurred by the farmers. 32 

Studies originally focused on environmental bads. Examples in the agricultural sector include 33 

nitrogen surplus (Piot-Lepetit and Vermersch, 1998; Reinhard, Lovell et al., 1999; Piot-Lepetit 34 

and Le Moing, 2007), phosphorus surplus (Reinhard, Lovell et al., 2000; Coelli, Lauwers et al., 35 

2007), pesticide pollution (Oude Lansink and Silva, 2004; Chambers, Serra et al., 2014; Serra, 36 

Chambers et al., 2014) and greenhouse gas emission (Oude Lansink and Silva, 2003; Dakpo, 37 

Jeanneaux et al., 2017). 38 

The literature has increasingly identified an interest in augmenting distance functions with 39 

environmental goods. To the best of our knowledge, Färe, Grosskopf et al. (2001) are the first 40 

to adopt this approach, focussing on non-marketed characteristics of conservation land in the 41 

United States. Other studies extend the distance function with the extent of wetland and interior 42 

forest (Macpherson, Principe et al., 2010), six key indicators of biotic integrity of watershed 43 

data (Bellenger and Herlihy, 2009; Bellenger and Herlihy, 2010), the extent of permanent 44 

grassland (Areal, Tiffin et al., 2012), cultural services, biodiversity, carbon sequestration and 45 

the extent of arable and grassland (Ruijs, Wossink et al., 2013; Ruijs, Kortelainen et al., 2017), 46 

the Shannon index for crop diversity (Sipiläinen and Huhtala, 2013), and wetland quality 47 

(Bostian and Herlihy, 2014). Färe, Grosskopf et al. (2001), Bellenger and Herlihy (2010), Ruijs, 48 

Wossink et al. (2013), Sipiläinen and Huhtala (2013), Bostian and Herlihy (2014) and Ruijs, 49 

Kortelainen et al. (2017) compute the shadow price of their environmental goods by exploiting 50 

the output distance function’s dual relationship to the revenue function. 51 

These studies’ distance function approach has two important limitations, which can lead to an 52 

incorrect assessment of the opportunity cost of the considered environmental good. First, it is 53 
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assumed that an environmental good can be treated as a conventional, strongly disposable 54 

output and that its shadow price is consequently always non-negative. Second, it is necessary 55 

to assume that the augmented environmental technology set is convex, to ensure that the 56 

distance function’s dual relationship to the value function holds. 57 

Both assumptions are very strong. The strong disposability assumption implies that the 58 

provision of an environmental good is assumed to be non-increasing for increases in the output 59 

level. However, several contributions argue that some environmental goods are complementary 60 

to conventional production for lower levels of the environmental good, and competitive for 61 

higher levels (Harvey, 2003; Hodge, 2008). This means that the shadow price of an 62 

environmental good could also be negative. Such a complementary-competitive relationship is 63 

hypothesized for inter alia the environmental quality of grassland and livestock production 64 

(Vatn, 2002), pollinator habitat and crop production (Wossink and Swinton, 2007), and the 65 

entire ecosystem on the farm and total agricultural production (Hodge, 2000). The strong 66 

disposability assumption also implies that the provision of an environmental good is assumed 67 

to be non-decreasing for increases in the input level. As shadow-pricing of environmental goods 68 

inherently focuses on the trade-off between the environmental good and the conventional 69 

output, this has generally been left undiscussed by the literature. However, there is no 70 

theoretical reason to assume this a priori. Ruijs, Wossink et al. (2013) and Ruijs, Kortelainen 71 

et al. (2017) seem to be the only authors that check the transformation function empirically and 72 

confirm the theorised relationships. Nonetheless, this remains a contested assumption for which 73 

the theoretical basis is lacking and the evidence is scarce. We believe that this assumption is 74 

especially problematic for inputs that increase the provision of environmental bads such as 75 

pesticides and fertilisers. 76 

More and more studies argue that the environmental technology set is non-convex (Di Falco 77 

and Chavas, 2009; Chavas and Di Falco, 2012). The convexity assumption is invoked for 78 

analytical rather than theoretical reasons (Pope and Johnson, 2013). Again, Ruijs, Wossink et 79 

al. (2013) and Ruijs, Kortelainen et al. (2017) seem to be the only authors that empirically test 80 

the convexity assumption. They do not find evidence of convexity. This implies that their 81 

resulting opportunity costs do not maximise benefits and should not be used to design a pricing 82 

mechanism. 83 

We focus on the Shannon index for crop diversity. This index was also the focus for Sipiläinen 84 

and Huhtala (2013), who computed its shadow price using the dual relationship of the distance 85 

function to the revenue function. Crop diversity has been shown to be linked with inter alia 86 

long-term stability of the carbon stock in the soil (Henry, Tittonell et al., 2009), improved 87 
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nutrient balance (Pimentel, Hepperly et al., 2005) and landscape diversity (Westbury, Park et 88 

al., 2011). In the context of crop production, it measures the crop diversity by representing the 89 

number of crop types and evenness of the area covered by the crops. Considering the number 90 

of crop types as well as evenness, the Shannon index for crop diversity is an essential 91 

determinant of sustainable food supply (Aguilar, Gramig et al., 2015). From an ecological 92 

perspective, it is thus important to increase the Shannon index for crop diversity. Various 93 

studies in the economics literature use the Shannon index for crop diversity as an environmental 94 

good (e.g., Weitzman, 2000; Di Falco and Chavas, 2008; Sipiläinen and Huhtala, 2013). 95 

Correct assessment of the opportunity cost of crop diversification is also relevant given the 96 

‘Green Direct Payment’ measure introduced recently in 2015 by the European Common 97 

Agricultural Policy (CAP), which holds for all member states of the European Union. This 98 

measure links thirty percent of the direct payments to the provision of environmental goods. 99 

One condition for receipt of these payments is the ‘2 or 3 crop rule’ (European Parliament, 100 

2013). This regulation imposes minimum requirements on the number of crops and their 101 

proportional cover, which is conceptually in line with the Shannon index for crop diversity. 102 

Farms of 10-30 ha should grow at least two crops, with the main crop covering at most 75% of 103 

the arable land. Farms larger than 30 ha should grow at least three crops, with the main crop 104 

covering at most 75% of the arable land, and two crops covering a maximum of 95% of the 105 

arable land. In summary, the Shannon index for crop diversity is relevant in terms of both 106 

ecological benefits and policy. 107 

Given the theoretical concerns of shadow-pricing environmental goods using the distance 108 

function approach, we compute the opportunity cost of crop diversification in a novel way. Our 109 

proposed method is conceptually straightforward. If we use a credible assumption of economic 110 

behaviour and its corresponding Shannon index for crop diversity, we can accurately compute 111 

the opportunity cost of crop diversification. Such an approach separates the environmental good 112 

from the production technology and does not necessarily require a convex technology set, thus 113 

overcoming the axiomatic problems associated with shadow-pricing using the distance function 114 

approach. 115 

We operationalise our proposal using recent methodological developments in the literature. 116 

Cherchye, De Rock et al. (2017) show how one can take into account the output-specific 117 

character of inputs and the extent to which reallocation of these inputs over outputs can increase 118 

efficiency. We adapt their input distance function framework to Ang and Oude Lansink 119 

(2017)’s dynamic profit-maximisation framework and focus on the optimal reallocation of 120 

output-specific land use. Using a nonparametric model, we assess the extent to which 121 
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reallocation of land use can increase current-value profit. We express the opportunity cost of 122 

increasing the Shannon index for crop diversity in terms of foregone current-value profit. Doing 123 

so allows us to calculate the opportunity cost of crop diversification in a way that avoids 124 

implementing the environmental good in the technology set and thus imposes less stringent 125 

assumptions on the axiomatic properties of the technology set. Our proposed approach is 126 

consistent with the behavioural assumption of dynamic profit-maximisation. Finally, we are 127 

able to assess the extent to which farmers would have complied with the CAP’s novel ‘2 or 3 128 

crop rule’ should they have optimally reallocated their land use. The application focuses on a 129 

balanced sample of 44 cereal farms in the East of England for the years 2007-2013. 130 

The remainder of this paper is structured as follows. The next section explains our method. This 131 

is followed by a description of the data. The results are presented and discussed in the 132 

subsequent sections. The final section concludes. 133 

2. Method 134 

Following Ang and Oude Lansink (2017), farms are faced with a dynamic, intertemporal profit-135 

maximisation problem where they are price takers in competitive input, output and capital 136 

markets, and have identical, static expectations on the discount and depreciation rates. It is 137 

assumed that the farms maximise the discounted flow of profits over time at any base time 138 

period, while being restricted by the adjustment-cost technology. The latter assumption 139 

coincides with the perspective that farms cannot instantaneously adjust quasi-fixed inputs to 140 

their long-term optimal levels and investments are coupled with adjustment costs (Silva and 141 

Stefanou, 2003; Silva, Oude Lansink et al., 2015). The (variable) intertemporal profit-142 

maximisation problem is (Ang and Oude Lansink, 2017): 143 

(1) 𝑊(𝑝, 𝐾𝑡, 𝑤, 𝑐) = max
{𝑦(.),𝑥(.),𝐼(.)}

𝑒−𝑟(𝑠−𝑡) ∫ [𝑝′𝑦(𝑠) − 𝑤′𝑥(𝑠)]
+∞

𝑡
𝑑𝑠 144 

s.t.  145 

(2) 
𝑑𝐾(𝑠)

𝑑𝑡
= 𝐼(𝑠) − 𝛿𝐾(𝑠) with 𝐾(𝑡) = 𝐾𝑡 146 

(3) 𝐷⃗⃗ 𝑇(𝑦(𝑠), 𝑥(𝑠), 𝐼(𝑠), 𝐾(𝑠), 𝐺(𝑠), 𝐿(𝑠); 𝑔𝑦, 𝑔𝑥, 𝑔𝐼) ≥ 0 with 𝑠 ∈ [0, +∞[ 147 

where 𝑊(. ) is the current value form of dynamic profit-maximisation, 𝑦 ∈ ℝ+
𝑀 is the crop 148 

output vector, 𝑥 ∈ ℝ+
𝑁 is the variable input vector, 𝐾𝑡 ∈ ℝ+

𝐹  is the initial capital stock vector, 149 

𝐼 ∈ ℝ+
𝐹  is the investment vector, 𝐿 ∈ ℝ+

𝑀 is the crop-specific land vector, 𝐺 ∈ ℝ+
𝑍  is the vector 150 

of non-reallocatable fixed factors, 𝑝 ∈ ℝ++
𝑀  is the vector of output prices, 𝑤 ∈ ℝ++

𝑁  is the vector 151 

of input prices, 𝑟 > 0 is the rental rate, 𝛿 is a diagonal 𝐹 × 𝐹 matrix of depreciation rates 𝛿𝑓 >152 
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0, 𝑓, … , 𝐹 and 𝐷⃗⃗ 𝑇(. ) is the dynamic directional distance function with the corresponding 153 

directional vector in terms of outputs, inputs and investments (𝑔𝑦, 𝑔𝑥, 𝑔𝐼). Eqs. (2) and (3) 154 

denote the equation of motion and the dynamic technology, respectively. For a full 155 

characterization of the dynamic directional distance function (extended with the net investment 156 

vector), we refer to the appendix of Ang and Oude Lansink (2017). 157 

In line with Cherchye, De Rock et al. (2013) and Cherchye, De Rock et al. (2017), we make a 158 

distinction between joint and output-specific inputs. A joint input cannot be allocated to one 159 

specific output and is thus needed for the production of multiple outputs. An output-specific 160 

input is allocated to one particular output. Variable and fixed non-reallocatable inputs are joint 161 

inputs. Land is our considered output-specific input. This approach is a more realistic 162 

representation of the production technology and allows for increased detection of non-163 

maximising farms. 164 

Omitting the time indicators for simplicity, the current-value formulation of Eqs. (1) – (3) is 165 

(Ang and Oude Lansink, 2017): 166 

(4) 𝑟𝑊(𝑝, 𝐾,𝑤, 𝑐) = max
{𝑦,𝑥,𝐼}

{𝑝′𝑦 − 𝑤′𝑥 + 𝑊𝐾(𝑝, 𝐾, 𝑤, 𝑐)′(𝐼 − 𝛿′𝐾)} 167 

s.t.  168 

(5) 𝐷⃗⃗ 𝑇(𝑦, 𝑥, 𝐼, 𝐾, 𝐺, 𝐿;  𝑔𝑦, 𝑔𝑥, 𝑔𝐼) ≥ 0 169 

where 𝑊𝐾(. ) is the shadow value of capital. 𝑊𝐾(. ) indicates the increase in current-value profit 170 

for a one-unit increase in net investment. It is an implicit, endogenous variable. Nonetheless, as 171 

all input prices and output prices are known, we can obtain farm-specific values for 𝑊𝐾(. ) by 172 

solving a minimax problem following Kuosmanen, Kortelainen et al. (2010) (see Appendix A). 173 

In what follows, we operationalise Eqs. (4) – (5) using a nonparametric approach. We note that 174 

the empirical analyst may also opt for a parametric approach, which can be more convenient 175 

for statistical comparisons. However, this requires a specification of the functional form, which 176 

is prone to violations of regularity conditions. The nonparametric approach does not violate any 177 

regularity conditions by construction, not requiring any specification of a functional form. In 178 

addition to these general remarks, a nonparametric approach is very suitable for this application 179 

in particular. First, our paper focuses on computing farm-specific opportunity costs of crop 180 

diversification rather than coefficients or elasticities. Second, there are several recent 181 

methodological advances in the nonparametric literature, apt for this application. By 182 

specifically characterising the inputs as output-specific or joint, and allowing for reallocation 183 
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possibilities of output-specific inputs (in our case land use), one can model the production 184 

process on the farm in a detailed way. 185 

We assume that the production technology satisfies the standard properties of closedness, 186 

boundedness, strong disposability of inputs, outputs and investments, and variable returns to 187 

scale (see e.g. Färe and Grosskopf, 2005). The benchmark scenario (A) is solved for each farm 188 

𝑗 ∈ ℝ+
𝐽

: 189 

(A) 𝑟𝑊(𝑝, 𝑤, 𝐾, 𝑐)(1) = max
{𝑦,𝑥,𝐼,𝛾}

{𝑝′𝑦 − 𝑤′𝑥 + 𝑊𝐾(. )′(𝐼 − 𝛿𝐾)} 190 

s.t.  191 

(A.1)  𝑦𝑚 ≤ ∑ 𝛾𝑚
𝑗
𝑦𝑚

𝑗𝐽
𝑗=1 , 𝑚 = 1,… ,𝑀 192 

(A.2) ∑ 𝛾𝑚
𝑗
𝑥𝑗𝐽

𝑗=1 ≤ 𝑥𝑛, 𝑚 = 1,… ,𝑀, 𝑛 = 1,… ,𝑁 193 

(A.3) (𝐼𝑓 − 𝛿𝑓𝐾𝑓) ≤ ∑ 𝛾𝑚
𝑗
(𝐼𝑓

𝑗
− 𝛿𝑓𝐾𝑓

𝑗
)𝐽

𝑗=1 , 𝑚 = 1,… ,𝑀, 𝑓 = 1,… , 𝐹 194 

(A.4) ∑ 𝛾𝑚
𝑗
𝐺𝑗𝐽

𝑗=1 ≤ 𝐺𝑧 ,𝑚 = 1,… ,𝑀, 𝑧 = 1,… , 𝑍 195 

(A.5) ∑ 𝛾𝑚
𝑗
𝐿𝑚
𝑗𝐽

𝑗=1 ≤ 𝐿𝑚, 𝑚 = 1, … ,𝑀 196 

(A.6) ∑ 𝛾𝑚
𝑗𝐽

𝑗=1 = 1,𝑚 = 1,… ,𝑀 197 

(A.7) 𝛾𝑚
𝑗

≥ 0,𝑚 = 1,… ,𝑀, 𝑗 = 1,… , 𝐽 198 

where 𝛾𝑚
𝑗

∈ ℝ+
𝑀 are output-specific intensity weights. (A.1), (A.2), (A.3), (A.4) and (A.5) 199 

impose strong disposability on the inputs, outputs, net investments, non-reallocatable fixed 200 

inputs and reallocatable fixed inputs. (A.6) imposes variable-returns-to-scale. (A.7) ensures 201 

non-negativity of the intensity weights. The fixed factors are not included in the objective 202 

function, but affect current-value profit through the intensity weights 𝛾𝑚
𝑗

 in the constraints. 203 

Following Färe, Grabowski et al. (1997), Ang and Kerstens (2016) and Cherchye, De Rock et 204 

al. (2015); Cherchye, De Rock et al. (2017), the preceding intertemporal profit-maximisation 205 

problem can also be adapted to programme (B) where land use 𝐿𝑚 is optimally reallocated 206 

among 𝑀 crops for each farm 𝑗 ∈ ℝ+
𝐽

: 207 

(B) 𝑟𝑊(𝑝, 𝑤, 𝐾, 𝑐)(2) = max
{𝑦,𝑥,𝐼,𝐿𝑚

∗ ,𝛾}
{𝑝′𝑦 − 𝑤′𝑥 + 𝑊𝐾(. )′(𝐼 − 𝛿𝐾)} 208 

s.t.  209 

(B.1)  𝑦𝑚 ≤ ∑ 𝛾𝑚
𝑗
𝑦𝑚

𝑗𝐽
𝑗=1 , 𝑚 = 1,… ,𝑀 210 

(B.2) ∑ 𝛾𝑚
𝑗
𝑥𝑗𝐽

𝑗=1 ≤ 𝑥𝑛, 𝑚 = 1,… ,𝑀, 𝑛 = 1,… ,𝑁 211 

(B.3) (𝐼𝑓 − 𝛿𝑓𝐾𝑓) ≤ ∑ 𝛾𝑚
𝑗
(𝐼𝑓

𝑗
− 𝛿𝑓𝐾𝑓

𝑗
)𝐽

𝑗=1 , 𝑚 = 1,… ,𝑀, 𝑓 = 1,… , 𝐹 212 
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(B.4) ∑ 𝛾𝑚
𝑗
𝐺𝑗𝐽

𝑗=1 ≤ 𝐺𝑧 ,𝑚 = 1, … ,𝑀, 𝑧 = 1, … , 𝑍 213 

(B.5) ∑ 𝛾𝑚
𝑗
𝐿𝑚
𝑗𝐽

𝑗=1 ≤ 𝐿𝑚
∗ , 𝑚 = 1, … ,𝑀 214 

(B.6) 𝐿̅ = ∑ 𝐿𝑚
∗𝑀

𝑚=1 , 𝑚 = 1,… ,𝑀 215 

(B.7) ∑ 𝛾𝑚
𝑗𝐽

𝑗=1 = 1,𝑚 = 1,… ,𝑀 216 

(B.8) 𝛾𝑚
𝑗

≥ 0,𝑚 = 1,… ,𝑀, 𝑗 = 1,… , 𝐽 217 

(B.1), (B.2), (B.3), (B.4), (B.7) and (B.8) are equivalent to (A.1), (A.2), (A.3), (A.4), (A.6) and 218 

(A.7), respectively. Output-specific land use is endogenised and is thus an explicit choice 219 

variable 𝐿𝑚
∗  in constraint (B.5). Constraint (B.6) ensures that the sum of the optimal land uses 220 

is equal to the total land area 𝐿̅. 221 

Programmes (A) and (B) are linear and thus follow the Data Envelopment Analysis (DEA) 222 

approach. DEA assumes convexity of the technology set, as the frontier consists of convex 223 

combinations of resource allocations of dominating peers, resulting in a piecewise linear 224 

frontier. The convexity assumption is contested less for a production technology with only 225 

conventional inputs and outputs (as in problems (A) and (B)) than for a production technology 226 

augmented with environmental goods or bads (as is commonly done in the literature to compute 227 

environmental efficiency and productivity measures and corresponding shadow prices). 228 

However, this assumption may still be strong in the agricultural context, where various types 229 

of capital equipment are non-divisible (Ang and Kerstens, 2017). Being the main approach in 230 

the economics literature, our paper chiefly focuses on the DEA models. Nonetheless, it is 231 

important to point out that convexity of the technology set is not a necessary condition for our 232 

dynamic profit-maximisation problems. Varian (1984) and Kuosmanen (2003) show that static 233 

profit maximisation does not require convexity of the technology set. The profit-maximising 234 

resource allocations subject to a non-convex technology set can be computed using the Free 235 

Disposal Hull (FDH) method (Briec, Kerstens et al., 2004). Adapting this reasoning from a 236 

static to a dynamic context, we run such FDH models as a robustness check for non-convexity 237 

of the technology set. The FDH models are similar to the DEA models, being the solutions to 238 

programmes (A) and (B), but with binary intensity variables (i.e. 𝛾𝑚
𝑗

∈ [0,1]). This adjustment 239 

results in mixed-integer programmes by which the dynamic profit-maximising resource 240 

allocation is determined by the resource allocation of only one dominating peer. 241 

The gain in current-value profit from optimally reallocating land use is: 242 

(6) ∆𝑟𝑊(. ) = 𝑟𝑊(. )(2) − 𝑟𝑊(. )(1) where ∆𝑟𝑊(. ) ≥ 0 243 
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The Shannon index for crop diversity 𝑆(𝐿𝑚, 𝐺𝑓𝑎𝑙𝑙𝑜𝑤) is the environmental good considered in 244 

our analysis. It is a function of output-specific land use 𝐿𝑚 and fallow land 𝐺𝑓𝑎𝑙𝑙𝑜𝑤: 245 

(7) 𝑆(𝐿𝑚,𝐺𝑓𝑎𝑙𝑙𝑜𝑤) = −∑ [
𝐿𝑚

𝐿+𝐺𝑓𝑎𝑙𝑙𝑜𝑤
∗ ln

𝐿𝑚

𝐿+𝐺𝑓𝑎𝑙𝑙𝑜𝑤
]𝑀

𝑚=1 −
𝐺𝑓𝑎𝑙𝑙𝑜𝑤

𝐿+𝐺𝑓𝑎𝑙𝑙𝑜𝑤
∗ ln

𝐺𝑓𝑎𝑙𝑙𝑜𝑤

𝐿+𝐺𝑓𝑎𝑙𝑙𝑜𝑤
 246 

In line with the CAP’s ‘2 or 3 crop rule’, an area left fallow is counted as crop land use. 247 

Programme (B) seeks for the land allocation under dynamic profit maximisation. We are able 248 

to compute the Shannon index for crop diversity associated with the current allocation 𝑆(. )(1), 249 

on the one hand, and the land allocation under dynamic profit maximisation 𝑆(. )(2), on the 250 

other. We define the change in the Shannon index for crop diversity due to optimal reallocation 251 

of land use as: 252 

(8) ∆𝑆(. ) = 𝑆(. )(2) − 𝑆(. )(1) where ∆𝑆(. ) ⋚ 0 253 

Finally, we assess the trade-off between current-value profit and the Shannon index by the ratio 254 

of Eq. (6) to Eq. (8). In line with Sipiläinen and Huhtala (2013), we normalise by total land 255 

area: 256 

(9) 𝛼 =
−∆𝑟𝑊(.)/∆𝑆(.)

10∗(𝐿+𝐺𝑓𝑎𝑙𝑙𝑜𝑤)
 257 

where 𝛼 is the opportunity cost of the Shannon index as it measures the foregone current-value 258 

profit of increasing the Shannon index by 0.1 per unit of land. A positive (negative) 𝛼 indicates 259 

that greater crop diversity decreases (increases) current-value profit. As for shadow pricing by 260 

the distance function approach, it indicates a willingness to accept (pay) to increase the Shannon 261 

index by 0.1 per unit of land and is expressed in £ per hectare. 262 

A few comments are in order here. The Shannon index for crop diversity increases with the 263 

number of crops and evenness of the area covered by the crops. For a given number of crops, a 264 

farm can maximise its Shannon index by using an even distribution of crop areas. Although an 265 

increase in the Shannon index is generally beneficial in ecological terms, prudence is required 266 

in its interpretation. First, being an integrative measure, some information inevitably becomes 267 

masked. The Shannon index does not provide information about the exact crop shares. This is 268 

particularly relevant for the optimal crop shares under dynamic profit maximisation, where 269 

more profitable products (e.g. barley) can be more difficult to sell on the market or constrained 270 

by limitations on crop rotation. We therefore also discuss the change in land use corresponding 271 

to the optimal change in the Shannon index for crop diversity. Second, the Shannon index is 272 

sensitive to scale. A larger area leads in general to a higher species richness and as a result a 273 

higher Shannon index for crop diversity. Following Sipiläinen and Huhtala (2013), one may 274 
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choose between an ecologically meaningful scale and an economically meaningful scale. In line 275 

with their study, our application opts for the latter, as we are interested in computing farm-276 

specific opportunity costs of crop diversification. The farm level is also the relevant scale in the 277 

‘2 or 3 crop rule’ recently introduced by the CAP. 278 

By not implementing an environmental good in the production technology, we avoid making 279 

questionable assumptions about the production technology and do not predetermine the sign of 280 

the opportunity cost. Our approach does not depend on (1) a non-negative relationship between 281 

input use and production of the environmental good, (2) a non-negative trade-off between 282 

conventional production and production of the environmental good and (3) convexity of the 283 

production technology.  284 

The interpretation of the opportunity cost is not exactly the same as the shadow price obtained 285 

by exploiting duality. Shadow pricing in the augmented distance function framework is 286 

essentially a marginal concept which relies on convexity of the environmental technology set. 287 

Eq. (9) shows that 𝛼 should be interpreted as the average foregone current-value profit of 288 

increasing the Shannon index by 0.1 unit. Our approach is somewhat similar to that of Coelli, 289 

Lauwers et al. (2007), who avoid implementing the environmental “bad” (pollutant) in the 290 

production technology. They construct “shadow cost estimates” (p. 11) as opportunity costs by 291 

calculating the ratio of the difference between costs under minimised pollution and minimised 292 

costs, to the difference between minimised pollution and pollution under minimised costs. 293 

Throughout this paper, we use the term “opportunity cost” rather than “shadow price” or 294 

“shadow cost”, as the latter terms may have the connotation of differentiability of the 295 

technology set. 296 

3. Data 297 

We use data from the Farm Business Survey (FBS) dataset for the years 2007-2013. The FBS 298 

dataset provides farm-level information on economic and physical characteristics for a large 299 

sample of English and Welsh farms. We distinguish eight marketable crop outputs (wheat, 300 

barley, oats, beans, peas, potatoes and sugar beet, and ‘other outputs’2), eight variable inputs 301 

(seed and planting stock, fertilizer, crop protection, electricity, heating fuel, external labour, 302 

management and ‘other variable inputs’), two quasi-fixed inputs (buildings and machinery), 303 

one fixed output-specific input that can be reallocated (output-specific land) and two fixed non-304 

                                                 
2 The ‘other outputs’ category consists of outputs that cannot be counted as separate crop types following the 

CAP’s ‘2 or 3 crop rule’. Although its corresponding land use is assumed to be reallocatable, it does not enter the 

calculation of the Shannon index for crop diversity. 
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reallocatable inputs (residual land and family labour). Hired labour and management are 305 

expressed in annual working hours. Using price indexes obtained from the EUROSTAT (2015) 306 

database, we express the prices of crop outputs, the remaining variable inputs and the 307 

investments in quasi-fixed inputs in constant 2007 £. Implicit aggregated quantities are 308 

computed for ‘other outputs’ by using Törnqvist price indexes. All outputs include subsidies, 309 

but exclude direct payments. The historical depreciation of quasi-fixed inputs is obtained 310 

directly from the FBS dataset and also expressed in constant 2007 £. (Residual) land and family 311 

labour are measured respectively in hectares and annual working hours. Variable inputs and 312 

fixed non-reallocatable inputs are joint inputs. Note that some variable inputs (e.g., purchased 313 

seeds for wheat production) could in theory be output-specific, but that such a specification is 314 

not possible due to a lack of data. As residual land contains permanent grassland and other 315 

herbaceous forage and fallow land, it improves the nutrient cycling in the soil and benefits the 316 

overall production of the marketable outputs. Therefore, these land inputs are also assumed to 317 

be joint. 318 

We only consider specialised crop farms in the East of England that do not produce any 319 

livestock during the total time period, to obtain a homogenous sample. The FBS rotates the 320 

sample in such a way that every farm stays in the sample for five to seven years on average. 321 

We use a balanced dataset of 44 observations per year for a period of seven years to maximise 322 

the number of analysed years. Table 1 shows the summary statistics of the dataset. 323 

INSERT TABLE 1 AROUND HERE 324 

4. Results 325 

This section is structured as follows. First, we show the main results, where we show the 326 

maximum current-value profits obtained using DEA problems (A) and (B), the corresponding 327 

Shannon indices and the implied opportunity costs of crop diversification. Then, we conduct 328 

several robustness checks to examine the validity of our main results. This section ends with a 329 

comparison to the opportunity costs obtained employing Sipiläinen and Huhtala (2013)’s 330 

approach, which per usual exploits the distance function’s dual relationship to the value 331 

function. 332 

4.1. Main Results 333 

DEA problems (A) and (B) are run for each farm in the sample in each year. This procedure 334 

controls for shifts of the frontier in time due to technical progress and fluctuating weather 335 

conditions. We report the main results in Tables 2-4 and Figure 1. The monetary values are 336 

expressed in constant 2007 £ in what follows. 337 
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Table 2 shows the actual and maximum current-value profit and corresponding Shannon indices 338 

for crop diversity for DEA problems (A) and (B). The actual current-value profit is on average 339 

£ 123,900 for all years considered. There is substantial heterogeneity per year, indicating that 340 

fluctuating weather conditions play an essential role: while the actual current-value profit 341 

reaches on average £ 210,096 in 2012, it is on average only – £ 38,429 in 2009. Assuming that 342 

the actual land allocation is fixed, the maximum current-value profit is on average £ 157,407 343 

for DEA problem (A) for all years considered. Allowing for optimal reallocation of land use, 344 

the maximum current-value profit is on average £ 195,488 for DEA problem (B). The increase 345 

in maximum current-value profit is associated with an increase in the Shannon index for crop 346 

diversity from on average 0.85 to 1.13 for all years considered. This pattern is consistent for the 347 

whole period. 348 

INSERT TABLE 2 AROUND HERE 349 

Figure 1 illustrates the change in land use in percentage units that corresponds to the optimal 350 

change in the Shannon index for crop diversity. It suggests that some land use allocated to 351 

wheat, beans and potatoes should shift towards barley, peas, oats and sugar beet. This pattern 352 

generally holds, although there are annual fluctuations possibly due to changing market and 353 

weather conditions. Note that market conditions and restrictions on crop rotation may prevent 354 

farmers from optimally allocating land use. For instance, since wheat is highly marketable, 355 

farmers may choose to continue producing at a higher level than the level suggested by our 356 

dynamic profit-maximisation model. 357 

INSERT FIGURE 1 AROUND HERE 358 

Table 3 shows the computed opportunity costs of crop diversification obtained by Eq. (9). In 359 

what follows, we express the opportunity cost as the average cost (in constant 2007 £) of 360 

increasing the Shannon index by 0.1 unit per hectare. The average opportunity cost is - £ 101 361 

for the period, ranging from - £ 244 (in 2009) to £ 34 (in 2007), where only one year shows an 362 

average positive opportunity cost. This means that farms are on average willing to pay for crop 363 

diversification.  364 

67% of the full sample have a negative opportunity cost for crop diversification. The majority 365 

of the farms are thus willing to pay for an increase in the Shannon index for crop diversity. 19% 366 

of the calculated opportunity costs are zero, and only 15% are positive. This proportion is 367 

consistent for the whole time period.  368 

INSERT TABLE 3 AROUND HERE 369 

Table 4 presents the actual share and share under optimal reallocation of land use according to 370 

DEA problem (B) that would have complied with the CAP’s ‘2 or 3 crop rule’. Since all farms 371 
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in the sample cover more than 30 hectares, the most stringent rule would have been applied. All 372 

farms should have produced at least three crops, where the main crop should not have covered 373 

more than 75% of the arable land and the two main crops together not more than 95%. 57% of 374 

the observations would have complied with the ‘2 or 3 crop rule’. However, if farms would 375 

have optimally reallocated their land use, this share increases to 84%. This pattern is consistent 376 

for the whole time period. 377 

INSERT TABLE 4 AROUND HERE 378 

4.2. Robustness Checks 379 

We conduct three robustness checks. First, we investigate the results for the subsample of farms 380 

that obtain current-value profits close to their optimal level. Our opportunity cost measure 381 

assumes that farms would reallocate land use so as to maximise profit in the long run. Along 382 

the lines of Wossink and Swinton (2007), we thus assume that farms are only interested in crop 383 

diversification to the extent that it increases current-value profit. However, some farmers may 384 

not operate under this behavioural assumption as they are motivated by social and lifestyle goals 385 

(Howley, 2015). This robustness check thus focuses on the farms who are likely interested in 386 

dynamic profit maximisation. Second, we check the results for the subsample excluding 387 

outliers. Such a robustness check is useful as DEA is sensitive to outliers. Third, we investigate 388 

the results using the FDH approach, which relaxes the convexity assumption of the technology 389 

set. All tables for the robustness checks can be found in the Online Appendix. 390 

4.2.1. Non-Profit-Maximising Behaviour 391 

Table B1 shows the share of farms that have a dynamic profit efficiency of 80% or more for 392 

DEA problems (A) and (B). We only take into account the farms that have a positive maximum 393 

current-value profit for DEA problems (A) and (B)3. 36% of the observations have a dynamic 394 

profit efficiency of 80% or more for DEA problem (A). The share ranges from 30% (in 2011) 395 

to 52% (in 2007). 26% of the observations have a dynamic profit efficiency of 80% or more for 396 

DEA problem (B). The share ranges from 16% (in 2009) to 41% (in 2007). 397 

There are thus many observations with resource allocations deviating greatly from the long-run 398 

profit-maximising point. This may indicate that the concerned farms are not long-term profit 399 

                                                 
3 Since total land is implemented as a fixed factor, the maximum current-value profit is negative for several 

observations, especially for bad years such as 2009. 
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maximisers4. Table B2 inspects the opportunity costs for the farms that have a dynamic profit 400 

efficiency (i.e., ratio of actual current-value profit to maximum current-value profit) of 80% or 401 

more for DEA problems (A) and (B). As for the general results, the computed opportunity costs 402 

are on average negative and are only positive on average for one year. Their average opportunity 403 

cost is – £ 69 for the period, ranging from – £ 302 (in 2008) to £ 27 (in 2011). 404 

On average 47% of the farms with a dynamic profit efficiency of 80% or more for DEA problem 405 

(B) have a negative opportunity cost, while 17% have a positive cost. Only in the year 2011, 406 

did the number of farms with a positive opportunity cost exceed the number of farms with a 407 

negative opportunity cost. Observe that the dynamically profit efficient farms following DEA 408 

problem (B) (36%) have by definition zero opportunity cost of crop diversification, as their land 409 

allocation should not be changed.  410 

Table B3 shows the actual share and share under optimal reallocation of land use according to 411 

DEA problem (B) that would have complied with the CAP’s ‘2 or 3 crop rule’ for the farms 412 

with a dynamic profit efficiency of 80% or more. 57% of these observations would have 413 

complied with the ‘2 or 3 crop rule’. If farms would have optimally reallocated their land use, 414 

this share increases to 75%. This pattern is consistent for the whole time period (except for the 415 

year 2010, where the estimated share for DEA problem (B) is equal to the actual share).  416 

4.2.2. Outliers 417 

Following Oude Lansink and Silva (2004), we truncate the original sample by excluding 418 

observations that are at least two standard deviations from the mean, to check the robustness to 419 

outliers. Table C1 shows the opportunity costs of this truncated subsample. The resulting 420 

opportunity costs are on average negative for each year. Their average opportunity cost is – £ 421 

28 for the period, ranging from – £ 91 (in 2013) to – £ 3 (in 2010). 43% of the farms from the 422 

truncated subsample have a negative opportunity cost and 17% a positive cost. 423 

Table C2 reveals that more farms from the truncated subsample would comply with the ‘2 or 3 424 

crop rule’ if they would have optimally reallocated their land use. Dynamic profit maximisation 425 

allowing for reallocation of land use leads to an increase in compliance from 57% to 84%. This 426 

pattern is consistent for the whole period. 427 

4.2.3. Non-Convexity 428 

                                                 
4 Obtaining the shadow price by using the dual relationship of the value function to the distance function faces a 

similar issue, as this depends on an arbitrary projection to the technological frontier. This is particularly a problem 

for very inefficient farms where the shadow price is sensitive to the choice of the directional vector or orientation. 
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Table D1 shows the opportunity costs of crop diversification using the FDH model. The 429 

resulting opportunity costs are on average £ 35 considering the whole period, with a minimum 430 

of – £ 21 (in 2008) and a maximum of £ 77 (in 2010). 31% (15%) of the farms have a negative 431 

(positive) opportunity cost. This pattern holds for the whole period. Note that the FDH model 432 

allows for non-convexity of the technology set, but results in reduced detection of non-433 

optimising farms. Therefore, the share of farms with a zero opportunity cost is high (55%). 434 

Table D2 shows the actual share and share under optimal reallocation of land use according to 435 

problem (B) adjusted for non-convexity that would have complied with the CAP’s ‘2 or 3 crop 436 

rule’. Dynamic profit maximisation allowing for reallocation of land use leads to an increase in 437 

compliance from 57% to 67%. This pattern is consistent for the whole period. Again, these 438 

gains are somewhat more modest due to a lower detection of non-optimising farms inherent to 439 

the FDH model. 440 

4.3. Comparison to Usual Shadow-Pricing Approach 441 

The prevailing negative opportunity costs contrast with the imposed non-negative shadow 442 

prices of the usual approach of modelling environmental goods as conventional outputs in a 443 

distance function framework. Sipiläinen and Huhtala (2013) also computed the opportunity cost 444 

of the Shannon index for crop diversity using the distance function’s dual relationship to the 445 

value function. They found an average opportunity cost between £ 12 and £ 45 (in constant 446 

2007 terms) per 0.1 ha for a sample of Finnish cereal farms. We apply their approach for 447 

comparison (see Appendix E) and show the results in table 5. We run their model for each farm 448 

in the sample in each year to ensure comparability with our proposed approach. The estimated 449 

shadow price is £ 79 for the period, ranging from £ 22 (in 2008) to £ 212 (in 2013). As expected, 450 

these results are non-negative, which contradict the results of our introduced opportunity cost 451 

measure. 452 

INSERT TABLE 5 AROUND HERE 453 

 454 

5. Discussion 455 

Our main finding is that dynamic profit-maximisation allowing for optimal land reallocation is 456 

generally associated with an increase in the Shannon index for crop diversity. The opportunity 457 

cost of crop diversification is mostly negative and most farms would have complied with the ‘2 458 

or 3 crop rule’ recently imposed by the CAP if they had optimally reallocated their land use. 459 

These results are robust to excluding observations far from the dynamic profit-maximising 460 

point, excluding outliers, and allowing non-convexity of the technology set. Negative 461 
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opportunity costs could not have been obtained by exploiting the distance function’s dual 462 

relationship to the value function as commonly done in the literature. Our results are in line 463 

with the conceptual and empirical work of respectively Wossink and Swinton (2007) and Sauer 464 

and Wossink (2013), who argue that many farms would be willing to pay to increase the 465 

provision of environmental goods as its relationship with conventional production is not purely 466 

competitive. This coincides with the ecological perspective that environmental measures may 467 

be needed for long-term economic benefits. 468 

Since nonparametric models are in essence deterministic, we have implicitly assumed that 469 

farms can perfectly foresee the outcomes of their production decisions. However, there is in 470 

reality considerable uncertainty in agricultural production due to unforeseen weather 471 

conditions. As a result, our model may compare farms that have different output realisations 472 

due to different ‘States of Nature’ (Quiggin and Chambers, 2006). We partially control for this 473 

issue by running the DEA models per year. For instance, since 2009 clearly marks a year with 474 

a bad State of Nature, the reference technology only consists of observations for the year 2009. 475 

One could consider controlling for this issue even more by also running the DEA models per 476 

government office region. However, subdividing our sample into smaller subsamples leads to 477 

dimensionality problems given the large number of inputs, outputs and net investments in 478 

dynamic factors compared to the relatively low number of observations. Moreover, all farms 479 

considered are located in the East of England, which is a fairly homogeneous region with similar 480 

weather conditions. This ensures that the bias due to different States of Nature at the time of 481 

production is small. Note that our findings are persistent for each of the seven years considered, 482 

hold for the subsample of farms with a dynamic profit efficiency of 80% or more, is robust to 483 

excluding extreme observations, and hold for a non-convex production technology. 484 

In the light of the ‘Green Direct Payment’ measure introduced recently by the CAP, we may 485 

reflect on whether the relative robustness of our results translates into predictive power. On the 486 

one hand, the predicted potential is possibly underestimated. We have aggregated spring and 487 

winter crops as these belong to the same species. However, according to the ‘2 or 3 crop rule’, 488 

spring and winter crops can be counted as separate crops. Also fallow land can be counted 489 

separately according to this rule. Although we take this into account in our calculations, these 490 

are assumed to be non-reallocatable inputs that jointly contribute to the production of 491 

marketable outputs. In addition, it is plausible that farmers use crop diversification as a risk-492 

reducing mechanism, even if it would lead to lower rather than higher expected profits (Di Falco 493 

and Chavas, 2008; Di Falco and Chavas, 2009). On the other hand, there are also several reasons 494 
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to believe that the predicted potential is overestimated. There is plenty of evidence of persistent 495 

inefficient behaviour due to inherent non-economic objectives (Howley, 2015) or persistent 496 

technical inefficiency (Emvalomatis, Stefanou et al., 2011). Such dynamic profit inefficiency 497 

is also present in the current study. Moreover, although dynamic profit maximisation would 498 

lead to a shift to more profitable products such as barley, this remains constrained by market 499 

conditions and limitations on crop rotation. In summary, although our findings suggest no 500 

general justification of subsidisation of crop diversification, we remain cautious about the 501 

predictive power of our model.  502 

6. Conclusions 503 

Distance functions are increasingly being augmented with environmental goods treated as 504 

outputs to assess the trade-off between environmental goods and outputs. A common approach 505 

to evaluate the opportunity cost of providing an environmental good is the exploitation of the 506 

distance function’s dual relationship to the value function. However, this approach may rely on 507 

problematic assumptions about the environmental goods’ axiomatic properties. In particular, it 508 

is assumed that an environmental good can be treated as a conventional, strongly disposable 509 

output and that its shadow price is as a result always non-negative. Moreover, the convexity 510 

assumption of the augmented environmental technology set is necessary to ensure that the 511 

output distance function’s dual relationship to the revenue function holds. 512 

Focusing on crop diversification, this paper develops an opportunity cost measure that 513 

overcomes these drawbacks for a sample of English cereal farms covering the years 2007-2013. 514 

Using a nonparametric model, we assess the extent to which reallocation of land use can 515 

increase current-value profit. As this increase is linked to a change of the Shannon index for 516 

crop diversity, this allows us to express the opportunity cost of crop diversification in terms of 517 

foregone current-value profit. Our proposed measure relies solely on standard axiomatic 518 

properties of conventional inputs and outputs, does not critically depend on convexity of the 519 

technology set, and is consistent with the behavioural assumption of dynamic profit-520 

maximisation. Our results are robust to excluding observations far from the dynamic profit-521 

maximising point, excluding outliers, and relaxing the convexity assumption of the technology 522 

set. 523 

The results show that the opportunity cost of crop diversification is mostly negative. This is an 524 

interesting outcome, as distance functions augmented with environmental goods treated as 525 

outputs implicitly assume that shadow prices of environmental goods are always non-negative. 526 

The results also indicate that optimal reallocation of land use, which would have maximised 527 
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dynamic profit, would have led to increased compliance with the CAP’s recently introduced ‘2 528 

or 3 crop rule’. These results may be interpreted that crop diversification does not generally 529 

justify subsidies, suggesting a reconsideration of the financial mechanism of the CAP’s Green 530 

Direct Payment measure. However, we remain cautious about the general policy implications 531 

of the results, for we have focused on a sample of specialised farms in a particular region (East 532 

of England). Additionally, we have observed high dynamic profit inefficiency, which is likely 533 

to persist after the introduction of the ‘2 or 3 crop rule’. Finally, market conditions and 534 

limitations on crop rotation may limit shifts to the dynamic profit-maximising land allocation.  535 

We have several suggestions for future research. First, there is a demand from policy makers to 536 

develop a holistic sustainability measure which incorporates environmental goods and bads in 537 

a rigorous way. Understanding the trade-offs among inputs, outputs, and environmental goods 538 

and bads is essential to this end. Our measure has explicitly separated the environmental good 539 

from the production technology. There could be other ways to realistically model environmental 540 

goods and bads within the production technology. Murty, Russell et al. (2012) develop distance 541 

functions that specifically model the pollution-generating inputs. It may be worthwhile to also 542 

model the inputs that generate environmental goods. Second, our measure can be augmented 543 

by taking into account spatial heterogeneity, which occurs due to different environmental 544 

circumstances and market conditions (Polasky, Nelson et al., 2008; Nelson, Mendoza et al., 545 

2009). Third, our measure can be extended by accounting for risk along the lines of Chavas and 546 

Di Falco (2012), since crop diversification is an important mechanism of risk reduction, 547 

potentially at the expense of expected profits.  548 
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On-Line Appendix A 549 

Following Kuosmanen, Kortelainen et al. (2010), we solve the following linear problem to find 550 

values for 𝑊𝐾(. ) for each farm 𝑗 ∈ ℝ+
𝐽

: 551 

(C) min
{𝑝,𝑤,𝑣,𝑊𝐾,𝜌}

𝜌 552 

s.t.  553 

(C.1) 𝜌 ≥ (𝑝′𝑦 − 𝑤′𝑥 − 𝑣′𝐿 + 𝑊𝐾′(𝐼 − 𝛿𝐾)) − (𝑝′𝑦𝑖 − 𝑤′𝑥𝑖 − 𝑣′𝐿𝑖 + 𝑊𝐾′(𝐼𝑖 −554 

𝛿𝑖𝐾𝑖)), 𝑖 = 1,… , 𝐽   555 

(C.2) 𝑝′𝑔𝑦 + 𝑤′𝑔𝑥 + 𝑣′𝑔𝐿 + 𝑊𝐾′𝑔𝐼 = 1, (𝑔𝑦, 𝑔𝑥, 𝑔𝐼 , 𝑔𝐿) = (
1

𝑝
, 0,0,0) 556 

(C.3) 𝑝′𝑔𝑦 + 𝑤′𝑔𝑥 + 𝑣′𝑔𝐿 + 𝑊𝐾′𝑔𝐼 = 1, (𝑔𝑦, 𝑔𝑥, 𝑔𝐼 , 𝑔𝐿) = (0,
1

𝑤
, 0,0) 557 

(C.4) 𝑝 ≥ 0 558 

(C.5) 𝑤 ≥ 0 559 

(C.6) 𝑣 ≥ 0 560 

(C.7) 𝑊𝐾 ≥ 0 561 

where 𝑦 ∈ ℝ+
1  is the aggregated output vector, 𝑥 ∈ ℝ+

1  is the aggregated variable input vector, 562 

𝐾𝑡 ∈ ℝ+
𝐹  is the initial capital stock vector, 𝐼 ∈ ℝ+

𝐹  is the investment vector, 𝐿 ∈ ℝ+
2  is the vector 563 

of fixed factors consisting of total agricultural land area and family labor, 𝑝 ∈ ℝ+
1  is the vector 564 

of aggregated output prices, 𝑤 ∈ ℝ+
1  is the vector of aggregated input prices, 𝑣 ∈ ℝ+

2  is the 565 

vector of fixed factor prices, 𝑐 ∈ ℝ+
𝐹  is the vector of capital prices, 𝑊𝐾 ∈ ℝ+

𝐹  is the vector of 566 

shadow values of capital, 𝛿 is a diagonal 𝐹 × 𝐹 matrix of depreciation rates 𝛿𝑓 > 0, 𝑓, … , 𝐹 567 

(𝑔𝑦, 𝑔𝑥, 𝑔𝐼 , 𝑔𝐿) is the directional vector in terms of outputs, inputs, investment and fixed factors. 568 

Outputs and inputs are aggregated by Törnqvist price indexes to reduce dimensionality. This 569 

means that quality differences are assumed to be revealed by the implicit quantity (Cox and 570 

Wohlgenant, 1986). This model is run per year. It also solves for the prices 𝑣 ∈ ℝ+
2   of the 571 

vector of fixed factors (total land and family labour). By setting (𝑔𝑦, 𝑔𝑥, 𝑔𝐿 , 𝑔𝐼) = (
1

𝑝
, 0,0,0) 572 

and (𝑔𝑦, 𝑔𝑥, 𝑔𝐿 , 𝑔𝐼) = (0,
1

𝑤
, 0,0) in respectively C.2 and C.3, we ensure that 𝐿 is treated as a 573 

vector of fixed factors and the known information on output and input prices is incorporated in 574 

the model. The farm-specific values for 𝑊𝐾 are plugged into DEA problems (A) and (B).  575 
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On-Line Appendix B 576 

Table B1. Share of farms with a dynamic profit efficiency of 80% or more for DEA problems (A) and (B), 577 

2007-2013 578 

Year Share for DEA problem (A) Share for DEA problem (B) 

2007 52% 41% 

2008 43% 39% 

2009 30% 16% 

2010 32% 18% 

2011 30% 27% 

2012 32% 20% 

2013 34% 23% 

   

Period 36% 26% 

 579 

Table B2. Opportunity costs of the Shannon index for crop diversification per 0.1 ha for farms with a 580 

dynamic profit efficiency of 80% or more for DEA problem (B) using the proposed method, 2007-2013 581 

Year Number of 

farms 

Average (in 

constant 2007 £) 

Std. Dev. (in  

constant 2007 £) 

Share 

    Negative 0 Positive 

2007 18 -17 169 39% 50% 11% 

2008 17 -302 1342 59% 29% 12% 

2009 7 -1 3 29% 71% 0% 

2010 8 -14 42 38% 38% 25% 

2011 12 27 47 33% 25% 42% 

2012 9 -12 46 44% 22% 33% 

2013 10 -22 24 80% 20% 0% 

       

Period 81 -69 618 47% 36% 17% 

 582 

  583 
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Table B3.  Actual share and share under optimal reallocation of land use according to DEA problem (B) 584 

that would have complied with the CAP’s ‘2 or 3 crop rule’ for farms with a dynamic profit efficiency of 585 

80% or more, 2007-2013 586 

Year Actual share Estimated share for DEA 

problem (B) 

Gains from optimal 

reallocation in percentage 

units 

2007 61% 72% +11% 

2008 47% 71% +24% 

2009 57% 86% +19% 

2010 63% 63% +0% 

2011 58% 83% +25% 

2012 56% 78% +22% 

2013 60% 80% +20% 

    

Period 57% 75% +17% 

 587 

  588 
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On-Line Appendix C 589 

Table C1. Opportunity costs of the Shannon index for crop diversification per 0.1 ha for subsample 590 

excluding outliers, 2007-2013 591 

Year Number of 

farms 

Average (in 

constant 2007 £) 

Std. Dev. (in  

constant 2007 £) 

Share 

    Negative 0 Positive 

2007 42 -9 105 55% 26% 19% 

2008 43 -25 144 72% 19% 9% 

2009 43 -15 210 77% 19% 5% 

2010 41 -3 75 59% 24% 17% 

2011 43 -42 163 58% 19% 23% 

2012 43 -28 240 65% 16% 19% 

2013 43 -91 174 81% 12% 7% 

       

Period 298 -28 169 67% 19% 14% 

 592 

Table C2.  Actual share and share under optimal reallocation of land use according to DEA problem (B) 593 

that would have complied with the CAP’s ‘2 or 3 crop rule’ for subsample excluding outliers, 2007-2013 594 

Year Actual share Estimated share for DEA 

problem (B) 

Gains in share from optimal 

reallocation in percentage 

units 

2007 50% 76% +26% 

2008 51% 88% +37% 

2009 60% 98% +37% 

2010 56% 80% +24% 

2011 53% 72% +29% 

2012 58% 84% +26% 

2013 67% 91% +23% 

    

Period 57% 84% +28% 

 595 

  596 
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On-Line Appendix D 597 

Table D1. Opportunity costs of the Shannon index for crop diversification per 0.1 ha using the proposed 598 

method adjusted for non-convexity, 2007-2013 599 

Year Number of 

farms 

Average (in 

constant 2007 £) 

Std. Dev. (in  

constant 2007 £) 

Share 

    Negative 0 Positive 

2007 44  13  164 23%  55%  23%  

2008 44  -35 286 27%  57%  16%  

2009 44  -21 97 39%  39%  23%  

2010 44  77  639  39%  55%  7% 

2011 44  16 184  34%  57%  9% 

2012 44  23 202  25%  64%  11% 

2013 44  70 532 27%  57%  16%  

       

Period 308 21 354 31%  55%  15% 

 600 

Table D2.  Actual share and share under optimal reallocation of land use according to problem (B) adjusted 601 

for non-convexity that would have complied with the CAP’s ‘2 or 3 crop rule’ 602 

Year Actual share Estimated share for problem 

(B) adjusted for non-

convexity 

Gains from optimal 

reallocation in percentage 

units 

2007 52% 57% +5% 

2008 52% 64% +11% 

2009 61% 75% +14% 

2010 57% 73% +16% 

2011 55% 66% +11% 

2012 57% 66% +9% 

2013 68% 70% +2% 

    

Period 57% 67% +10% 

 603 

604 
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On-Line Appendix E 605 

We exploit the directional distance function’s dual relationship to the profit function by solving 606 

a minimax problem similar to linear program (C) in line with Kuosmanen, Kortelainen et al. 607 

(2010). We solve the following linear problem to find shadow price 𝑢 for each farm 𝑗 ∈ ℝ+
𝐽

: 608 

(D) min
{𝑝,𝑤,𝑣,𝑢,𝜃}

𝜃 609 

s.t.  610 

(D.1) 𝜃 ≥ (𝑝′𝑦 − 𝑤′𝑥 − 𝑣′𝐿 + 𝑢′𝑆(. )(1)) − (𝑝′𝑦𝑖 − 𝑤′𝑥𝑖 − 𝑣′𝐿𝑖 + 𝑢′𝑆(. )(1)), 𝑖 =611 

1, … , 𝐽   612 

(D.2) 𝑝′𝑔𝑦 + 𝑤′𝑔𝑥 + 𝑣′𝑔𝐿 + 𝑢′𝑔𝑆 = 1, (𝑔𝑦, 𝑔𝑥 , 𝑔𝐿 , 𝑔𝑆) = (
1

𝑝
, 0,0,0) 613 

(D.3) 𝑝′𝑔𝑦 + 𝑤′𝑔𝑥 + 𝑣′𝑔𝐿 + 𝑢′𝑔𝑆 = 1, (𝑔𝑦, 𝑔𝑥 , 𝑔𝐿 , 𝑔𝑆) = (0,
1

𝑤
, 0,0) 614 

(D.4) 𝑝 ≥ 0 615 

(D.5) 𝑤 ≥ 0 616 

(D.6) 𝑣 ≥ 0 617 

(D.7) 𝑢 ≥ 0 618 

where 𝑦 ∈ ℝ+
1  is the aggregated output vector, 𝑥 ∈ ℝ+

1  is the aggregated variable input vector, 619 

𝐿 ∈ ℝ+
2  is the vector of fixed factors consisting of total agricultural land area and family labour, 620 

𝑆(. )(1) is the Shannon index for crop diversity computed by Eq. (9),  𝑝 ∈ ℝ+
1  is the vector of 621 

aggregated output prices, 𝑤 ∈ ℝ+
1  is the vector of aggregated input prices, 𝑣 ∈ ℝ+

2  is the vector 622 

of fixed factor prices, 𝑢 ∈ ℝ+
1  is the vector of shadow values of capital, 𝛿 is a diagonal 𝐹 × 𝐹 623 

matrix of depreciation rates 𝛿𝑓 > 0, 𝑓, … , 𝐹. (𝑔𝑦, 𝑔𝑥, 𝑔𝐿 , 𝑔𝑆) is the directional vector in terms 624 

of outputs, inputs, fixed factors and the Shannon index for crop diversity. Outputs and inputs 625 

are aggregated by Törnqvist price indexes to reduce dimensionality. This means that quality 626 

differences are assumed to be revealed by the implicit quantity (Cox and Wohlgenant, 1986). 627 

This model is run per year. It also solves for the prices 𝑣 ∈ ℝ+
2   of the vector of fixed factors 628 

(total land and family labor). By setting (𝑔𝑦, 𝑔𝑥, 𝑔𝐿 , 𝑔𝑆) = (
1

𝑝
, 0,0,0) and (𝑔𝑦, 𝑔𝑥 , 𝑔𝐿 , 𝑔𝑆) =629 

(0,
1

𝑤
, 0,0) in respectively C.2 and C.3, we ensure that 𝐿 is treated as a vector of fixed factors 630 

and the known information on output and input prices is incorporated in the model. 631 

  632 
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Tables 792 

Table 1. Descriptive statistics of the dataset (308 observations for 44 cereal farms), 2007-2013 793 

Variables Unit Mean Std. Dev. 

Outputs    

Wheat Constant 2007 £ 173,175 242,325 

Barley Constant 2007 £ 7,815 16,023 

Oats Constant 2007 £ 3,583 9,818 

Beans Constant 2007 £ 4,242 14,516 

Peas Constant 2007 £ 8,184 31,342 

Potatoes Constant 2007 £ 51,797 75,696 

Sugar beet Constant 2007 £ 10,462 21,210 

Other outputs Constant 2007 £ 3,630 18,483 

Output-specific land    

Wheat Hectares 154 199 

Barley Hectares 10 19 

Oats Hectares 5 13 

Beans Hectares 6 14 

Peas Hectares 8 30 

Potatoes Hectares 51 65 

Sugar beet Hectares 6 12 

Other outputs Hectares 3 12 

Variable inputs    

Seed and planting stock Constant 2007 £ 28,186 41,084 

Fertilizer Constant 2007 £ 72,226 79,435 

Crop protection Constant 2007 £ 73,105 87,139 

Electricity  Constant 2007 £ 2,995 6,091 

Heating fuel Constant 2007 £ 1,140 2,396 

External labor Annual working hours 2,829 3,927 

Management Annual working hours 16 114 

Other variable inputs Constant 2007 £ 9,714 14,144 

Investments    

Buildings Constant 2007 £ 6,566 23,596 

Machinery Constant 2007 £ 54,093 88,128 

Historical depreciation    

Buildings Constant 2007 £ 6,622 10,782 

Machinery Constant 2007 £ 31,078 38,539 

Fixed non-reallocatable inputs    

Grassland and other herbaceous forage Hectares 15 34 

Fallow land Hectares 2 7 

Family labour Annual working hours 1,865 822 
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Table 2. Actual and maximum current-value profit and corresponding Shannon indexes for crop diversity 794 

for DEA problems (A) and (B), 2007-2013 795 

Year Actual current-

value profit (in 

constant 2007 £) 

Actual Shannon 

index for crop 

diversity 

Maximum current-

value profit for 

DEA problem (A) 

(in constant 2007 

£) 

Maximum current-

value profit for 

DEA problem (B) 

(in constant 2007 

£) 

Shannon index for 

crop diversity for 

DEA problem (B) 

2007 154,483 (314,419) 0.87 (0.34) 170,212 (310,268) 195,978 (324,841) 1.10 (0.37) 

2008 120,307 (173,665) 0.81 (0.35) 140,512 (168,810) 175,024 (180,673) 1.15 (0.33) 

2009 - 38,429 (126,077) 0.88 (0.34) 5,724 (100,200) 51,696 (105,261) 1.29 (0.25) 

2010 122,038 (220,333) 0.85 (0.41) 144,279 (217,925) 178,307 (229,371) 1.16 (0.40) 

2011 176,152 (272,026) 0.82 (0.34) 225,998 (271,740) 278,024 (294,843) 0.96 (0.26) 

2012 210,096 (428,709) 0.82 (0.33) 270,091 (421,990) 304,165 (425,447) 1.06 (0.34) 

2013 122,651 (206,530) 0.89 (0.38) 145,034 (200,918) 185,223 (214,574) 1.19 (0.31) 

      

Period 123,900 (273,035) 0.85 (0.35) 157,407 (269,026) 195,488 (279,285) 1.13 (0.34) 

 796 

 797 

Table 3. Opportunity costs of the Shannon index for crop diversification per 0.1 ha using the proposed 798 

method, 2007-2013 799 

Year Number of 

farms 

Average (in 

constant 2007 £) 

Std. Dev. (in  

constant 2007 £) 

Share 

    Negative 0 Positive 

2007 44  34  290 55%  25%  20%  

2008 44  -149 830 73%  18%  9%  

2009 44  -244 1531 77%  18%  5%  

2010 44  -21  159  59%  23%  18% 

2011 44  -110 481  59%  18%  23% 

2012 44  -105 564  66%  16%  18% 

2013 44  -113 257  80%  11%  9%  

       

Period 308 -101 730 67%  19%  15% 

 800 

  801 
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Table 4.  Actual share and share under optimal reallocation of land use according to DEA problem (B) 802 
that would have complied with the CAP’s ‘2 or 3 crop rule’, 2007-2013 803 

Year Actual share Estimated share for DEA 

problem (B) 

Gains in share from optimal 

reallocation 

2007 52% 77% +25% 

2008 52% 89% +36% 

2009 61% 98% +36% 

2010 57% 80% +23% 

2011 55% 73% +18% 

2012 57% 82% +25% 

2013 68% 93% +25% 

    

Period 57% 84% +27% 

 804 

 805 

Table 5. Opportunity costs of the Shannon index for crop diversification per 0.1 ha using the directional 806 

distance function approach, 2007-2013 807 

Year Number of 

farms 

Average (in 

constant 2007 £) 

Std. Dev. (in  

constant 2007 £) 

Share 

    Negative 0 Positive 

2007 44 49 125 0 27% 73% 

2008 44 22 68 0 52% 48% 

2009 44 37 50 0 48% 52% 

2010 44 65 151 0 64% 36% 

2011 44 110 330 0 66% 34% 

2012 44 61 169 0 16% 84% 

2013 44 212 941 0 61% 39% 

       

Period 308 79 391 0 48% 52% 

 808 

  809 
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Figures 810 

 811 

Figure 1. Change in land use required for dynamic profit maximisation, 2007-2013 (in percentage units) 812 
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