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Abstract:  21 

This study presents the setup, calibration, validation and scenario application of the Soil and Water 22 

Assessment Tool (SWAT) for two contrasting macro-catchments along the Amazon agricultural 23 

frontier in the federal states of Pará and Mato Grosso, Brazil. Calibration and validation of the model 24 

is realised for the periods of the most intensive deforestation and agricultural expansion. In order to 25 

give consideration to the rapid, however gradual nature of land use change, the model implements 26 

an annual land use update combined with a land use dependent soil parameterization of the upper 27 

most soil layer. The comparison of these results with the results of a setup with a steady land use 28 

distribution shows distinct improvements of the prediction quality. Discharge prediction improves 29 

through the application of gradual land use change in the model by 12% for a 1.8% deforestation rate 30 

per year and 1.2% for a deforestation rate of 0.7% per year. Consequently, the validated models are 31 

applied to four land use scenarios for the period 2026 to 2035. Scenario simulation results show 32 

effects on the water balance proportional to land use change. Further, the changes in the water 33 

balance follow clear seasonal patterns with highest hydrological effects due to land use change 34 

during the rainy season in both catchments. Overall, with continuous deforestation peak discharge 35 

increases. Further, the conversion of native to pasture has the highest impact on the water balance. 36 

For example, monthly discharge in the rainy season increases by up to 24% for a 13% conversion of 37 

Cerrado savannah into pasture. 38 

 39 
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1. Introduction: 44 

The ever growing global demand for commodities rapidly pushes the agricultural frontiers around the 45 

world further into pristine nature and causes intensification on already existing farmland (Lambin et 46 

al., 2001). This is connected to changes in the hydrological balance. For example many studies find 47 

that deforestation leads to an increase in discharge (Q,  D’Almeida et al., 2007; Davidson et al., 2012), 48 

higher floods and more severe water scarcity (Bruijnzeel, 2004; D’Almeida et al., 2007; Fearnside, 49 

2007; Rodrigues et al., 2009). Also other effects, such as changes in the seasonality and the reduction 50 

of storage capacity, are frequently reported (Bosch and Hewlett 1982). These changes are further 51 

alarming due to their potential to fuel problems connected to the effects of Climate Change (CC, 52 

Davidson et al., 2012; Miles et al., 2006). Still, responses to Land Use Change (LUC) are highly variable 53 

and depend on the spatial heterogeneity of land use and soil characteristics (Almeida et al. 2006 and 54 

2007). Therefore, it is not surprising that effects of current and future LUC on the hydrological 55 

balance, especially of macro-catchments, often remain poorly understood (Bruijnzeel, 2004; Coe et 56 

al., 2009; De Roo et al., 2001; DeFries and Eshleman, 2004; Price, 2011).  57 

The largest agricultural frontier with historic and current rapid LUC is located in Southern Amazonia 58 

in Brazil (Arima et al., 2011; Fearnside, 2005, 2007). Figure 1 shows the natural vegetation of Brazil, 59 

the national highway BR-163 and the Amazon agricultural frontier. Due to its favorable climate for 60 

rainfed agriculture, Cerrado - the Brazilian savannah - is under extreme pressure from LUC (Beuchle 61 

et al., 2015; Miles et al., 2006). Historically, the deforestation of Cerrado vegetation was the most 62 

important source of new farmland in Brazil. Now, the Amazon agricultural frontier expands further 63 

towards the North through deforestation of rainforest (Arima et al., 2011), a process boosted by the 64 

accessibility through new roads (Wertz-Kanounnikoff, 2005). The ongoing paving of the BR-163 in 65 

Central Brazil lead to these typical frontier colonisation processes since the 1990s (Fearnside, 2005).  66 

Only a few macro-catchment studies in the Cerrado biome evaluate the hydrological effects of this 67 

comprehensive LUC. However, these studies consistently show a rising trend in Q with deforestation. 68 

For example, Costa et al. (2003) showed an increase of Q for the Tocantins River (of which the das 69 

Mortes River is a tributary) and an analysis of decadal runoff by Guzha et al. (2013b) showed a rise in 70 

runoff between 1968 and 1987 for the das Mortes River at Toriquejé (which coincides with 40% 71 

Cerrado removal). Macro-catchment LUC research in the rainforest biome is more common. 72 

However, these studies show contradictory results regarding hydrological effects (Coe et al., 2009; 73 

Lima et al., 2013).  74 

Hydrological models aid the understanding and enable the prediction of changes in the water 75 

balance components (WBC) due to future development. However, a reliable prediction of 76 

hydrological responses depends on an accurate formal model description of the relevant processes 77 

(Beven, 2010), e.g. processes connected to LUC. Typically, the long-term effects of LUC on hydrology 78 

are investigated with models calibrated with a steady land use distribution, which is subsequently 79 

applied to scenarios with a different and again steady land use distribution (Coe et al., 2009). Here, 80 

parameters connected to the different vegetation or land use types of the calibration and scenario 81 

periods are determined prior to the model application. This means that hydrological effects of LUC 82 

are present in these parameters. Hence, the effects of LUC in a scenario application is predetermined 83 

and not tested with observed effects of LUC on hydrology. In this study, we allow the model to adapt 84 

land use related parameters to observed hydrological LUC effects by including the gradual nature of 85 

LUC in the calibration procedure. The SWAT model is an eco-hydrological model (here version 86 

SWAT2012, for documentation see Arnold et al., 2012; Gassman et al., 2007) which includes the 87 

possibility of gradual temporal changes on a daily basis (Pai and Saraswat, 2011). Only a few studies 88 
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have implemented gradual land use change in their SWAT models (Chiang et al., 2010; George, 2014; 89 

Guse et al., 2015; Koch et al., 2012; Mani et al., 2014; Wagner et al., 2016). Even fewer have included 90 

an evaluation of the performance of the included gradual LUC in the calibration and validation period 91 

(Guse et al., 2015; Koch et al., 2012). 92 

Aims and objective: 93 

Therefore, we present here a study simulating the hydrological effects during the rapid historic LUC 94 

in the calibration and validation period for two contrasting macro-catchments: the das Mortes 95 

catchment with 17,556 km2 in the Cerrado biome (-15.14°,-54.16°) and the Jamanxim catchment with 96 

37,403 km2 in the Amazon rainforest biome (-7.34°,-55.84°) including the gradual nature of LUC into 97 

the model setup. Furthermore, we assess in how far the inclusion of gradual LUC improves the model 98 

prediction by comparing the gradual LUC model setup to a setup with steady land use distribution. 99 

Lastly, the calibrated model for both catchments is put into practice for scenarios of future LUC with 100 

identical climate scenarios for the period 2026 to 2035 to estimate the magnitude of hydrological 101 

changes dependent on potential future LUC. 102 

2. Study area and period: 103 

The two catchments were chosen in areas of rapid historic deforestation and dominant rainfed 104 

agriculture to ensure that LUC effects are not influenced by technical water management (e.g. dams 105 

and irrigation). The das Mortes catchment is situated in the federal state of Mato Grosso. It is located 106 

on top of a plateau of cretaceous sandstone maintaining a large deep aquifer (Schneider, 1963). The 107 

climate is tropical wet and dry (dry period: May to September, Climate-Data.org, 2015), with an 108 

precipitation (P) of 1784 mm a-1 (Primavera do Leste , Global Weather Data, 2015). The dominant soil 109 

types are the highly permeable Ferralsol (70%) and Arenosol (23%, see the Brazilian Agricultural 110 

Research Corporation (EMPRAPA) soil map profiles, ESALQ, 2015). The average slope is 2.9%. Mato 111 

Grosso is the Brazilian state with the highest deforestation rate (Macedo et al., 2012). Deforestation 112 

rates are declining since 2000 (Davidson et al. 2012) due to exhaustion of forested areas on arable 113 

soils which are not protected in reservations. Parallel to the slowing deforestation in the last 15-20 114 

years, land use in Mato Grosso and especially in the das Mortes catchment is characterised by 115 

intensification with a shift towards double cropping and minimum tillage (Beuchle et al., 2015; 116 

Galford et al., 2010; Hunke et al., 2015b). For the das Mortes catchment, the historic land use 117 

classification was relalised with Landsat satellite imagery analysis by Schlicht (2013) with an accuracy 118 

of 97% and an omission error of less than 1% (for 1988 and 1998). Deforestation for 1970 prior to be 119 

the first Landsat image was 1% (IBGE, 2015). Consequently, the mid-1970s to mid-1980s are 120 

identified as the period with the most intensive deforestation in this area (Table 1). This coincides 121 

with the period 1968-1987 for which Guzha et al. (2013b) showed an increase in Q despite steady P 122 

records. For the das Mortes catchment, satellite and statistical information is not sufficient to reliably 123 

distinguish between cropland and pasture land uses. Consequently, the land use category “Non-124 

Forest” was defined.  125 

The Jamanxim catchment is located in the central southern part of the Amazon rainforest in the state 126 

of Pará. Its geological structure consists of Ordovician sedimentary and Precambrian metamorphic 127 

rocks (usouthal.edu, 2016). It has a tropical monsoon climate and a dry period from June to August 128 

(Climate-Data.org, 2015) with an annual P of 2232 mm (Novo Progresso, Global Weather Data, 2015). 129 

The dominant soil type is the deeply weathered Acrisol (84%, see ZEE, 2015). The average slope is 130 

12.7%. The historic land use classification was realised with Landsat satellite imagery by Macioscheck 131 

(2013, for 1998, 2007 and 2011) with an accuracy of 99% (Maciocheck, 2013). Deforestation rates 132 

peaked in the 2000s to open up pastures for cattle grazing. Compared to the total Brazilian Amazon 133 
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Basin, pre 1990 deforestation in the Jamanxim catchment was comparatively low, increasing rapidly 134 

in the 1990s and 2000s, now reaching 15% (see Tabel 1). 135 

For the das Mortes catchment, the period from 1977 to 1981 was chosen for calibration and 1982 to 136 

1986 for validation. This period combines good Q and P records, the most rapid LUC and a change in 137 

the relationship of Q and P. In the Jamanxim catchment the most rapid deforestation occurred in the 138 

last decade. Further, a longer time series of Q is only available from 2000 to 2009. Consequently, this 139 

period was chosen, with 2000 to 2004 for calibration and 2005 to 2009 for validation.  140 

Furthermore, the scenario application in both catchments was set to the decade around the year 141 

2030. Future LUC in the region is mainly dependent on political, economic and social development. 142 

The LANDSHIFT model (Schaldach et al., 2011; Schaldach and Koch, 2009) has the capability to 143 

estimate future LUC along storylines sketching political, economic and social development. For the 144 

two study regions, four different scenarios developed in an interdisciplinary effort by the Carbiocial 145 

project (carbiocial.de, Schönenberg et al., this issue) are taken into account: A trend scenario, where 146 

the development seen in the last decade will continue into the future, a sustainable scenario where 147 

regulations favour sectors with the most efficient land use, i.e. reduction of cattle ranching and a 148 

focus on crop production. Further, both the legal and illegal scenarios suggest a rapid agriculture 149 

expansion, either legal with the perpetuation of current protective areas or illegal without (for a 150 

detailed description refer to Göpel and Schaldach, this issue). The fractions of the land use in 2020, 151 

2025 and 2030 of the four LANDSHIFT calculated scenarios are also listed in Table 1. The land use 152 

distribution in the das Mortes catchment does not ideally reflect the overall development associated 153 

with the scenarios. For example, the illegal scenario displays the highest fraction of scrubland 154 

vegetation (Cerrado). The trend scenario is marked with a 12-14% higher fraction of pasture. The 155 

highest fraction of cropland is associated with the sustainable scenario and continuously declines 156 

from legal to illegal to trend scenario. For the Jamanxim catchment, the scenario differences are as 157 

intended with the highest remaining forest cover and a complete elimination of pasture for the 158 

sustainable scenario. In 2030, the legal and illegal scenarios show a land use with 23% more forest 159 

clearance in 2030 compared to the sustainable scenario. However, they display different 160 

deforestation rates in the years before where the legal scenario behaves similar to the sustainable. 161 

Furthermore, deforestation is distributed differently over the catchment. The trend scenario has an 162 

intermediate fraction of forest removal and an intermediate extend of pasture. 163 

 164 

3. Setup and parametrisation of the SWAT2012 model 165 

a. Topography: 166 

The SWAT model depends on a distributed representation of the catchment geometry and its river 167 

network (here, ASTER data sets (version 2) with 30 m grid cell resolution). It was delineated for the 168 

catchment outlet points at Toriquejé in the das Mortes catchment (-15.25°, -53.06°) and at Jardim do 169 

Ouro in the Jamanxim catchment (-5.50°, -55.83°). For the das Mortes catchment, sub-catchments 170 

are as best determined according to municipality borders to utilise information from the Brazilian 171 

Institute of Geography and Statistics (IBGE). In the Jamanxim catchment, sub-catchments include 172 

areas with similar land use. 173 

b. Hydrological Response Unit (HRU) definition and management operations: 174 

For each sub-catchment HRUs with a unique soil, slope and land use are defined. SWAT allows the 175 

selective parametrisation of these smallest units of execution. The management in the das Mortes 176 

catchment includes double cropping (soy and corn) and cattle grazing for Non-Forest, depending on 177 

the soil type (good quality leads to cropping, poor quality to grazing). No management is 178 
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implemented in Cerrado and gallery forest HRUs. For the Jamanxim catchment only HRUs with 179 

pasture are managed with cattle grazing.  180 

c. Vegetation parametrisation 181 

Parametrisation of new land use types were added to the SWAT2012 data base using a combination 182 

of literature data and own observations. Parameters for Cerrado and gallery forest were extracted 183 

from a range of eco-physiological and hydrological studies (Coe et al., 2009; Davidson et al., 2012; 184 

Lathuillière et al., 2012; Pongratz et al., 2006). For pasture, the SWAT 2012 database was extended 185 

with area specific information (Allen et al., 1998; Barona et al., 2010; Hayhoe et al., 2011; Lathuillière 186 

et al., 2012). Also, rainforest was added using literature information (Granier et al., 2000; Hayhoe et 187 

al., 2011; Kergoat, 1998; Sellers et al., 1989, 1996). A particular challenge is SWAT’s dependency on 188 

the dormancy during the winter season for the reinitiation of the growing season for perennial 189 

plants. This process is not a valid growing pattern in the tropics. Therefore, the plant growth 190 

modification of Strauch and Volk (2013) - originally developed for the Cerrado biome - was applied 191 

for Cerrado, rainforest, gallery forest and pasture. Here, the start of the growing season is triggered 192 

by an increase of available soil water. Evapotranspiration and leaf area index (LAI) curves were 193 

adjusted by manually changing SWAT specific parameters determining the LAI curve shape to match 194 

observations (Christoffersen et al., 2014; Giambelluca et al., 2009; Lima et al., 1990; Oliveira, 2014; 195 

Oliveira et al., 2014; Strauch and Volk, 2013).  196 

d. Soil parametrisation 197 

With regard to soil surface parametrisation, surface runoff (Qsur) and infiltration are determined by 198 

the SCS Curve Number (CN) method (Mishra and Singh, 2003). The initial parameter estimates are 199 

taken from Drewry et al. (2008); Hunke et al. (2015b); McGrath et al. (2001) and Oliveira et al. 200 

(2014). Mean values for soil texture and bulk density were determined through statistical analysis of 201 

the RADAM soil profile data base (ESALQ, 2015; Jacomine, 2013). Lastly, hydraulic conductivity (ksat) 202 

for the main soil types was defined according to our own in situ measurements with a Compact 203 

Constant Head Permeameter (Amoozegar and Warrick, 1986).  204 

e. Implementation of gradual land use change 205 

The LUC for the calibration, validation and each scenario application was calculated separately in 206 

each sub-catchment and updated on an annual basis. The land use distribution for years without 207 

information was estimated with linear interpolation, also for each sub-catchment separately. On 208 

average during the calibration and validation periods, every year 1.8% of Cerrado vegetation was 209 

converted into Non-Forest in the das Mortes catchment. In the Jamanxim catchment, 0.7% forest 210 

was transformed into pasture. The LUC is concentrated in the Western parts of the catchment, which 211 

is crossed by the BR 163. The sub-catchments crossed by the BR 163 have a deforestation rate of 212 

2.4% p.a.. However, gradual LUC is connected to some shortcomings, since the SWAT land use 213 

update function allows only to redefine the fractions of existing HRUs, not the inclusion of new HRUs. 214 

In some cases it was not possible to redefine the land use class without also redefining either slope 215 

or soil class. In these cases areas of HRUs under LUC were preferable assigned to HRUs with the most 216 

similar soil type and slope class. Typically, for calibration, validation and scenario application this 217 

affected areas of less than 2.5%. Only in the case of the calibration and validation period in the Rio 218 

das Mortes 6% of the catchment area had to be reassigned from the Latosolo Vermelho-Amarelo to 219 

the Latosolo Vermelho soil class. Since this are small areas and in the case of the soil reassignment 220 

similar soil types, we do not expect this to causes considerable changes to water balance calculation. 221 

f. Weather data: 222 
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The daily weather records from INMET and ANA (Instituto Nacional de Meteorologia, BDMEP 2015 223 

and Agencia National de Aguas, ANA 2015) are applied in the das Mortes catchment. The P records 224 

are cross referenced for validity with CFSR reanalysed forecast data on a 35 km raster resolution 225 

(Fuka et al., 2014; Global Weather Data, 2015). For the das Mortes catchment, INMET and CFSR 226 

weather data are on average similar. In the Jamanxim catchment, due to the lack of weather data 227 

records, CFSR data is used as the source of weather information. Comparing the rainfall data with the 228 

closest weather station in Itaituba shows that the CFSR data is overestimating P in the wet season 229 

and underestimating P in the dry season. The Itaituba INMET station records an annual average of 230 

2070 mm (1530 mm in the rainy season and 540 mm in the dry season) for the period from 1961 to 231 

2010, whereas the mean of the CFSR data sets annual P to 2400 mm per annum (2105 mm in the 232 

rainy season and 295 mm in the dry season) for 1979 to 2014. From this a P correction factor was 233 

calculated for each month of the year which adapts the CFSR data to the level measured at Itaituba. 234 

For all LUC scenarios, the IPPC SRES A1B climate scenario downscaled with the STAR method (Böhner 235 

et al., 2013; Böhner, this issue) for the period 2026 to 2035 is applied. The scenario predicts a 236 

considerable reduction in annual P of 29% in the das Mortes catchment and 32% in the Jamanxim 237 

catchment in comparison to the calibration and validation period.  238 

g. Model calibration and validation: 239 

The model calibration is based on the optimisation of the modelled monthly Q (Qmod) at the outlets 240 

of the catchments towards the observed values (Qobs). The daily Q information (“ANA” 2015, station 241 

2650000) was transferred into monthly values. Both the calibration, and the estimation of the 242 

predictive uncertainty was automated with the software tool SWAT-CUP (Abbaspour, 2007) with the 243 

Sequential Uncertainty Fitting (SUFI-2) method (Abbaspour et al., 2004).  244 

The calibration concentrates on two groups of calibration parameters: Firstly, parameters, which are 245 

generally sensitive, such as groundwater related parameters. These are adapted in the calibration 246 

procedure for the whole catchment. Secondly, parameters connected to land use, which are 247 

parameters defining vegetation growth and properties of the upper soil, such as CN and ksat. In the 248 

calibration procedure these were adapted for each soil and land use type combination separately. 249 

For all calibration parameters, physically meaningful ranges are defined as the parameter space. 250 

From these, random samples are taken with the latin hypercube method (Abbaspour, 2007) for each 251 

of the 1500 iterations for one calibration run. 252 

At the end of the calibration run, the best estimation is identified with the Nash-Sutcliffe Efficiency 253 

index (NS) as the objective function. Further, the coefficient of determination (R2), percentual bias 254 

(PBIAS) and Root Mean Error (RME) are also calculated for the identified best estimation.  255 

The uncertainty is calculated from the cumulative distribution of the output variable(s) ( 𝑖𝑡) for every 256 

output time step (𝑡, here monthly). The 95% confidence interval (95CI) is the range between the 257 

2.5% and 97.5% levels of the distribution of 𝑖𝑡, which relates to the reliability of the estimation 258 

procedure, not the probability of a value being estimated. Further, the p-factor (fractions of values 259 

within 95CI) and the r-factor (relative bandwidth of 95CI = 
95𝐶𝐼𝑚𝑎𝑥−95𝐶𝐼𝑚𝑖𝑛

(𝑖𝑡𝑚𝑒𝑎𝑛+𝑖𝑡𝑠𝑑)−(𝑖𝑡𝑚𝑒𝑎𝑛−𝑖𝑡𝑠𝑑)
) are evaluated. 260 

Each calibration run with 1500 iterations suggests a progressingly smaller calibration parameter 261 

range until the 95CI of the model output is close to the standard deviation of the measured data. In 262 

order to generate comparable conditions for the calibration of the setup with and without gradual 263 

land use change, the initially identical parameter space was set to half its range in each consecutive 264 

calibration run. For each setup, calibration runs with 1500 iterations are repeated three times to 265 

achieve the before mentioned quality criterion. The final calibration parameter range from the setup 266 

with gradual land use change is then brought forward to be executed for the validation period (and 267 

the steady land use model setup from 1988 for the das Mortes catchment and from 2007 for the 268 
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Jamanxim catchment). For the scenario application, only the optimum value for each calibration 269 

parameter defined through the setup including gradual land use change is implemented. In order to 270 

highlight the performance of the land use update setup, the predictive error (PE=Qobs-Qmod) of the 271 

catchment discharge is evaluated. Further, the LOcally WEigted Scatterplot Smoothing (LOWESS) as a 272 

nonparametric regression using multiple regression models (Cleveland, 1981) is applied to PE to 273 

visualise trends concealed by the variability of PE.  274 

4. Results 275 

a. Optimum values of selected calibration parameters: 276 

A calibration parameter with fundamental influence especially on the distribution of water between 277 

the rainy and the dry season is the groundwater delay factor (given in days). This is a calibration 278 

parameter independent of land use, which determines the baseflow (Qgw) contribution to discharge. 279 

Since very little is known about the groundwater dynamics in both catchments, this parameter was 280 

defined during the calibration procedure. It displays a clear difference between the two study 281 

catchments. In the das Mortes catchment, Qgw makes up for ~80% of Q, fed by an extensive 282 

groundwater buffer, represented by an optimum groundwater delay of 316 days, maintaining 283 

minimum Q at 25% of the maximum Q. In the Jamanxim catchment, Q generation is foremost 284 

influenced by interflow (Qint), causing Q to be maintained at 5 to 10% of the maximum, which is 285 

associated with a much shorter groundwater delay of 74 days. This difference can be explained by 286 

the following characteristics of the catchments. The das Mortes catchment is dominated by a mostly 287 

flat relief (Guzha et al., 2013a) with sandy soils, causing water to percolate freely to the deep aquifer. 288 

Further, it is underlain by a pan like geological structure of cretaceous sandstone supporting an 289 

aquifer of up to 1300 m depth (Parana Mesozoic and Paleozonic groundwater province, Schneider, 290 

1963). The Jamanxim catchment belongs to a greater part to the Central Precambrian groundwater 291 

province, which typically only supports a thin deep aquifer and wells with low yields (Schneider, 292 

1963). Further, the relief is comparable steep supporting a faster lateral runoff. 293 

There is strong evidence that LUC alters particularly the properties of the upper soil layer (Bruijnzeel, 294 

2004; Christoffersen et al., 2014). Therefore, CN and ksat of the upper most soil layer, which were 295 

initially parameterized according to soil type only, were adapted during the calibration procedure 296 

independent for each soil and land use type. Table 2 lists their land use dependent optimum values 297 

as suggested by the final iteration of the calibration runs with gradual land use change. Overall CN 298 

values are low, confirming the initial high infiltration into the upper soil layer in both catchments due 299 

to permeable soils. Nevertheless, the calibration procedure identified lower CN for natural 300 

vegetation compared to cropland and pasture. The calibration also suggests higher ksat values for 301 

natural vegetation compared to pasture and cropland in both catchments. Such a change of 302 

properties in the upper soil layer with LUC is in accordance with own measurements and literature 303 

data (Christoffersen et al., 2014; Hunke et al., 2015a).  304 

b. Prediction quality: 305 

The identified optimum calibration parameters result in a Qmod in good accordance with Qobs. 306 

Table 3 shows that if we are looking at NS both the das Mortes and the Jamanxim catchment have a 307 

very good to good performance rating for the calibration, validation of both land use update and 308 

steady land use application (Moriasi et al., 2007). The values are well within the results reported for 309 

other macro-catchment models (Fukunaga et al., 2015; Guzha et al., 2013a; Nandakumar and Mein, 310 

1997; Schilling et al., 2008). Divergences between the land use update and steady land use 311 

application for the das Mortes catchment are reflected in NS and the r-factor. NS is considerable 312 

higher for the calibration with gradual land use. Further, the r-factors of both the calibration and 313 

validation period in the das Mortes catchment are smaller than in the steady land use application. 314 
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Similar differences in the Jamanxim catchment are less pronounced, however perceivable. Here, the 315 

small fraction of areas with LUC (see Table 1) compared to the large area of remaining rainforest 316 

buffers the responses of the hydrological balance.  317 

To highlight the different performance of the land use update and the steady land use setup, Figure 318 

2a shows the PE between Qobs and model Qmod for land use update (PE1) and steady land use (PE2) 319 

setup in the das Mortes catchment. PE shows that both overprediction (negative PE) and 320 

underprediction (positive PE) are more pronounced for a steady land use setup (PE2). LOWESS 321 

regressions are applied to show the trend in PE over the application period. Both PEs decline towards 322 

the end of the period. Additionally, the difference between PE1 and PE2 declines, showing that the 323 

steady land use setup prediction becomes more accurate towards the date of the applied land use 324 

distribution (from the year 1988). Similar, but less pronounced differences can be seen in the PEs for 325 

the Jamanxim catchment in Figure 2b. Again, the steady land use setup has both a higher over- and 326 

underprediction of the observed discharge. If looking at the LOWESS regression, in the first seven 327 

years of the application period, the land use update setup shows a slightly lower underprediction 328 

compared to the steady setup. For the year 2007, the land use update PE1 and the steady land use 329 

PE2 are the same.  330 

c. Scenario application 331 

The four LUC scenario applications in each catchment (for degree of LUC refer to Table 1) were 332 

executed with identical climate projections to reflect purely on alteration of WBCs due to LUC. Mean 333 

annual WBCs in relation to mean annual P for the scenario period from 2026 to 2035 are shown in 334 

Figure 3a and b. In the das Mortes catchment, the WBC in the sustainable, legal and illegal scenarios 335 

are of the same magnitude reflecting the distribution of land cover with only a gradual change of 336 

Cerrado and cropland. Only the trend scenario with the highest fraction of pasture results in a higher 337 

Q due to a lower evapotranspiration and ksat reduction. Moreover, it is the scenario with the highest 338 

surface runoff, however rates are generally limited to less than 1 mm month-1. Considerable surface 339 

runoff (> 10 mm month-1) only occurs in the Western parts of the catchment (on Latosolo) during the 340 

very wet month of February in 2034 with more than 400 mm P causing soil saturation and therefore 341 

soil saturation excess runoff. 342 

The land cover scenarios in the Jamanxim catchment show gradual differences between all scenarios. 343 

Differences in Q are mirrored in ET with the lowest Q and highest ET for the sustainable scenario with 344 

forest protection and an elimination of pastures. Surface runoff is limited to the steep headwater 345 

catchments in the south.  346 

Additionally to the changes in the overall WBC, the seasonality of runoff generation changes. Figure 4 347 

shows monthly ΔQ for the sustainable, legal and illegal scenario, where ΔQ is the difference between 348 

Q of the trend scenario and Q of each of the other scenarios (ΔQ=Qtrend scenario-Qother scenraios). For the 349 

seasonal comparison, the trend scenario Q is also plotted. The differences in mean Q are not 350 

distributed equally throughout the year but predominantly associated with the peak discharge 351 

months. In the das Mortes catchment, highest ΔQ is found during rising Q at the beginning of the 352 

rainy season. Additionally, during the low flow period in dry years, the trend scenario maintains 353 

higher flows. The trend scenario has the highest proportion of pasture, which means that pasture 354 

generates more runoff at the beginning of the rainy season and higher Qgw compared to the other 355 

land use types. This is in accordance with research showing that pasture causes higher peak 356 

discharge (Costa et al., 2003; Drewry et al., 2008; Guzha et al., 2013b; Hodnett et al., 1995; Hunke et 357 

al., 2015a). We account this to the ready available leaf area resulting in immediate 358 

evapotranspiration (Cerrado) of the received P and a higher water storage capacity of the less 359 

compacted soil.  360 
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In the Jamanxim catchment, largest ΔQs are associated with the sustainable scenarios, with the 361 

highest fraction of remaining forest cover. The trend scenario has a land cover distribution similar to 362 

the legal and illegal scenario and therefore ΔQs are very low. The pattern of ΔQ for the sustainable 363 

scenario follows a pattern of lower discharge, especially during the rising stage of the wet season and 364 

the maintenance of higher flows during the dry season.  365 

This seasonal pattern is potentially characteristic for hydrological effects of LUC in areas with 366 

pronounced wet and dry periods, since it was also observed in a similar SWAT model application 367 

including gradual LUC by Wagner et al. (2016) for a catchment in India with monsoon climate. 368 

5. Discussion: 369 

For our catchments with intensive LUC in the calibration and validation period, the model setups 370 

including gradual land use change show a better performance than the model setups with a steady 371 

land use distribution. This is reflected in the throughout smaller PE of the land use update setup in 372 

the two contrasting catchments. The difference between the error calculations of the two setups is 373 

dependent on the degree of LUC. In the das Mortes catchment with 1.8% deforestation per annum, 374 

absolute PE1 is on average 19 mm per annum smaller (corresponding to 11.2% Q or 1.8% P) than 375 

absolute PE2. For the Jamanxim catchment with 0.7% deforestation per annum, the difference is 8 376 

mm per annum (corresponding to 1.2% Q or 0.4% P).  377 

Classically, land use influence on water balance is dependent on differences in evapotranspiration. 378 

Here we also included the differentiation of properties of the upper soil layer under different land 379 

use. For each land use and soil type combination, these are adapted independently in the calibration 380 

procedure. The calibration results support that LUC is accompanied by soil compaction processes 381 

through deforestation and agricultural land use. Remarkably, our results fit well with reported field 382 

research findings, regarding the soil compaction through land use in this area (Bruijnzeel, 2004; 383 

Christoffersen et al., 2014; Drewry et al., 2008; Hunke et al., 2015b; Nobrega et al., 2015; Scheffler et 384 

al., 2011). These established higher optimum CN and lower optimum ksat values for cropland and 385 

pasture compared to natural vegetation have a clear effect on Q prediction. This agreement of field 386 

records and calibration outputs indicates an adequate representation of pedo-hydrological processes 387 

connected to LUC.  388 

The model applications are an advanced tool to contribute to the discussion about changes of WBC 389 

due to future LUC, since they include both, the change of evapotranspiration and soil properties with 390 

LUC. Moreover, in many cases LUC effects on hydrology are subordinate to CC effect. Therefore, the 391 

different LUC scenarios are simulated with the same climate scenario to ensure that all observed 392 

hydrological effects are purely LUC effects. According to our results, for both the das Mortes and the 393 

Jamanxim catchment, the model shows an increase of Q with continuous deforestation. For the das 394 

Mortes catchment, a reduction of Cerrado of 5% and an increase of pasture of 12% (compare illegal 395 

to trend scenario 2030) results in an 3.4% increase of annual Q, which confirms findings of (Costa et 396 

al., 2003; Guzha et al., 2013a). In the Jamanxim catchment, 24% more deforestation (compare 397 

sustainable to illegal scenario 2030) increases Q by 13 mm per annum (2.0% of Q, 0.8% of the P). 398 

However, Coe et al. (2009) and Lima et al. (2013) stress the fact, that P is dependent on recycled 399 

transpiration from the forest vegetation (P-feedback). This process is most effective in the rainforest 400 

biome, where studies state that with complete deforestation, P is reduced by 20 to 35% (D’Almeida 401 

et al., 2007; De Paiva et al., 2013; Nobre et al., 1991). Coe et al. (2009) and Lima et al. (2013) both 402 

showed with the application of a model with and without P-feedback, that the inclusion of P-403 

feedback is crucial for Q prediction in the Amazon rainforest biome. Our Jamanxim results are similar 404 

to the results of the Coe et al., (2009) model without P-feedback, where a deforestation of 26% leads 405 
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to an 8% increase of Q, however, with P-feedback for the same area Coe et al. (2009) find Q to 406 

decrease by 12%. Consequently, for our model a more accurate prediction needs to include P-407 

feedback. This cannot be realised in SWAT directly, but needs to be incooperated in the climate 408 

model. In the current STAR climate prediction an adaption of P according to the different LUC 409 

scenarios is not implemented, not least because of the complex nature of P-feedback, which is highly 410 

dependent on deforestation pattern (Negri et al., 2004). However, our future research aims to 411 

include these complex feedbacks.  412 

Independent of P-feedback effects, a comparison of scenarios suggests a severe influence of 413 

conversion into pasture on the WBC. In the das Mortes catchment, a 13% increase of pasture 414 

(compare trend and sustainable scenario) causes a 4 to 27 mm (13.3-73.0%) increase in monthly Q at 415 

the beginning of the rainy season (December and January) due to decreased evapotranspiration and 416 

an increase in Qsur and interflow (Qint, Fig. 4a). The differences in Q seasonality for increased Q due 417 

to pasture and cropland area are similar in the Jamanxim catchment. For example, 14% more 418 

cropland (compare trend and legal scenario in 2030) leads to up to 30 mm month-1 higher discharge 419 

during the rainy season. 420 

 421 

Conclusions: 422 

 Through the implementation of gradual land use change, the accordance of Qmod and 423 
Qobs is improved by 11.2% in the catchment with 1.8% annual deforestation and by 1.2% 424 
in the catchment with 0.7% annual deforestation. This demonstrates that in regions with 425 
intensive LUC during the application of a hydrological model, the inclusion of gradual 426 
land use change is necessary to ensure the best possible prediction quality. 427 

 The model predictions for four land use scenarios in two fundamentally different macro-428 

catchments show changes in WBC predominantly during the wet season, with strongest 429 

effects for the conversion of native vegetation (Cerrado and rainforest) to pasture.  430 

 In the das Mortes catchment with the more pronounced dry season, the ground water 431 

components are more relevant for annual discharge generation. The more seasonal 432 

climate also coincides with more pronounced LUC effects on hydrology at the beginning 433 

of the rainy season, whereas under less seasonal rainforest climate (≤ 3 arid month), LUC 434 

effects on hydrology are apparent during the whole rainy season. 435 
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 673 

Figure :1 Vegetation biomes in Brazil, locations of the study catchments, the BR-163 and the current 674 
extent of the Amazon agricultural frontier (base map from “Forests in Brazil” 2015; frontier 675 
reproduced after “Global Forest Watch” 2015) 676 

Table 1: Main land use types during the historic calibration and validation period (Landsat imagery 677 
evaluation and *statistical data) and for future LUC scenarios (developed with LANDSHIFT (Göpel and 678 
Schaldach, this issue) 679 

 Das Mortes catchment Jamanxim catchment  

Historic 1970 1988 1998 1998 2007 2011 

Cerrado and Forest 97.5* 64.26 39.79 95.34 91.42 85.03 

Cropland - - - 0.10 0.03 0.09 

Non-Forest/Pasture 2.00* 35.57 59.89 4.34 8.34 14.57 

Trend Scenario 2020 2025 2030 2020 2025 2030 

Cerrado and Forest 12.53 11.42 10.96 83.31 79.59 77.20 

Cropland 54.31 54.31 54.31 9.91 10.06 10.09 

Pasture 32.93 34.04 34.50 5.42 9.17 11.61 

Sustainable Scenario 2020 2025 2030 2020 2025 2030 

Cerrado and Forest 13.24 12.42 11.66 88.10 88.10 88.10 

Cropland 64.29 65.70 67.12 9.90 9.90 10.04 

Pasture 22.25 21.65 21.00 0.21 0.21 0.08 

Legal Int. Scenario 2020 2025 2030 2020 2025 2030 

Cerrado and Forest 14.00 13.61 13.40 82.30 76.67 65.24 

Cropland 63.92 64.31 64.48 7.46 12.29 23.71 

Pasture 21.86 21.86 21.89 10.04 10.04 10.04 

Illegal Int. Scenario 2020 2025 2030 2020 2025 2030 

Cerrado and Forest 17.05 16.66 16.39 69.94 66.82 64.56 

Cropland 60.58 60.97 61.23 18.14 21.20 23.46 

Pasture 22.15 22.14 22.16 11.04 11.14 11.17 
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Table 2: Optimum calibration parameter values for land use dependent top soil parameters 680 

 Das Mortes Jamanxim 

Land use Gallery 
forest 

Non-
Forest 

Pasture 

Non-
Forest 

Cropland 

Cerrado  Rain-
forest 

Pasture 

CN 44 58 48 35  36 60 

ksat  Latosolo 
vermelho mm h-1 

183  117 262 ksat  
Argilosolo  
mm h-1 

461 453 

ksat Latosolo  
Vermelho amarelo 
mm h-1 

559  407 594 ksat  Latosolo 
vermelho-
amarelo mm 
h-1 

670 587 

ksat Neosolo  
mm h-1 

103 120  224 ksat Neosolo  
mm h-1 

221 212 

 681 

Table 3: Calibration Statistics for the Model calibration, validation and steady land use application in both study catchments 682 
for a monthly time step calibration (coefficient of determination: R², Nash-Sutcliffe Efficiency index: NS, percentual bias: 683 
PBIAS, p- and r-factor of the 95% confidence interval) 684 

 
 

Das Mortes Jamanxim 

 R² NS PBIAS p-
factor 

r-
factor 

R² NS PBIAS p-
factor 

r-
factor 

Calibration 0.85 0.74 -4.54 0.84 0.87 0.8 0.8 -0.5 0.60 0.47 

Validation 0.79 0.73 -8.1 0.91 0.86 0.8 0.8 0.8 0.42 0.63 

steady 
land use 

0.84 0.61 -16.4 0.81 0.99 0.8 0.8 1.7 0.52 0.48 

 685 

 686 
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 687 

 688 
Figure 2a Das Mortes catchment model, Prediction Error 689 
(PE=Qobs-Qmod) of the land use update (PE1) and steady 690 
land use (PE2) setup, difference in PE (PE1-PE2) and LOWESS 691 
trend lines of all latter, for the calibration and validation  692 

2b Jamanxim catchment model, Prediction Error (PE=Qobs-693 
Qmod) of the land use update (PE1) and steady land use (PE2) 694 
setup, difference in PE (PE1-PE2) and LOWESS trend lines of all 695 
latter, for the calibration and validation 696 

  697 
 698 

Figure 3 a and b  699 

Das Mortes catchment; annual water balance components in relation to mean annual rainfall for model scenario period 700 
2026 to 2035, Q: discharge, ET: Evapotranspiration, Qint: interflow from shallow aquifer, Qgw: Groundwater or Baseflow 701 
contribution to discharge, Qsur: Surface runoff contribution to discharge  702 
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Jamanxim catchment, annual water balance components in relation to mean annual rainfall for model scenario period 2026 703 
to 2035, Q: discharge, ET: Evapotranspiration, Qint: interflow from shallow aquifer, Qgw: Groundwater or Baseflow 704 
contribution to discharge, Qsur: Surface runoff contribution to discharge 705 

 706 

707 

 708 
Figure 4 a: Difference in scenario predicted stream discharge: ΔQ=Qtrend-Qother scenarios, and 709 
simulated stream discharge for trend scenario, das Mortes catchment  710 

Figure 5 b: Difference in scenario predicted stream discharge: ΔQ=Qtrend-Qother scenarios, and 711 
simulated stream discharge for trend scenario, Jamanxim catchment 712 
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