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Imaging flow cytometry (IFC) cap-
tures multichannel images of hun-
dreds of thousands of single cells
within minutes. IFC is seeing a par-
adigm shift from low- to high-infor-
mation-content analysis, driven
partly by deep learning algorithms.
Wepredict awealth of applications
with potential translation into clini-
cal practice.

Imaging Flow Cytometry
Imaging flow cytometry (IFC) combines
the high-throughput, multiparameter
capabilities of conventional flow cytome-
try with morphological and spatial infor-
mation, all at [87_TD$DIFF]single-cell resolution.
Multichannel digital images of hundreds
of thousands of individual cells can be
captured within minutes (Figure 1), and
include several fluorescence channels as
well as bright field (transmitted light) and
dark field (scattered light). The throughput
of IFC means that it is especially well
suited to the analysis of rare cell types
such as circulating tumor cells (which
are cancer cells that escaped from a pri-
mary tumor and circulate in the blood-
stream) [1] and transition states [88_TD$DIFF], such
as cell cycle phases (mitosis) [2].

By extracting information from these digi-
tal images (Figure 1, middle panel), IFC
can quantify multiple properties of

constituents of interest (including pro-
teins, nucleic acids, glycolipids) in multiple
subcellular compartments (nucleus, mito-
chondria, etc.). The rich information
makes IFC ideal for high-content analysis,
as well as machine learning, raising the
possibility to profile complex cell pheno-
types, identify rare cells and transition
states, and, importantly, discover useful
targets for disease diagnosis, personal-
ized medicine, and drug development.
Here, we discuss significant recent devel-
opments in the IFC field and a perspective
on where IFC [89_TD$DIFF]could be adopted as a
diagnostic tool in clinical practice.

Advances in Instrumentation
Conventional Flow Cytometry
Conventional (zero-spatial-resolution)
flow cytometry, that is, without imaging,
saw its first commercial instruments in the
1970s. Thanks to continuous standardi-
zation and improvement, flow cytometry
is now routinely used as a diagnostic
instrument for health disorders, especially
hematologic diseases [3]. Although con-
ventional flow cytometry is considered
high throughput because it analyzes up
to 100 000 cells per second, it is consid-
ered to be low in information content
because typically only a single feature
(integrated intensity) is measured per fluo-
rescence marker. The current trend is to
increase the number of parameters that
can be simultaneously measured by
developing instruments with more lasers
and detectors in combination with new
fluorochromes that can be used in con-
cert with one another. Mass cytometry
can measure in excess of 40 markers
simultaneously using antibodies tagged
with rare earth metals [4]. This platform
significantly increases the number of
parameters measured beyond what is
currently achievable with conventional
flow cytometry and has [90_TD$DIFF]driven the adop-
tion of machine learning techniques when
analyzing such multidimensional data,
however, it is still limited to intensity-
based features [91_TD$DIFF].

Imaging Flow Cytometry
Equipped with 20�, 40�, or 60� objec-
tives and up to two charge-coupled
device cameras, IFC allows thousands
of morphological and spatial properties
to be measured for each individual cell.
These include bright [92_TD$DIFF]field, dark field, and
up to ten fluorescent channels (Figure 1)
[5]. Similar to its flow cytometry-based
siblings, IFC is well-suited to image non-
adherent or dissociated cells, key for
many clinical applications such as
[93_TD$DIFF]analyses of bodily fluids like blood, whose
structures can be distorted (smeared) by
placement onto a slide.

Advances in Data Analysis
Low-Content Analysis
IFC suffers from a ‘content gap’:
although the images are high in informa-
tion content, containing rich morphologi-
cal and spatial information (even in a
single bright-field channel), data analyses
often have low information content, that
is, [94_TD$DIFF]analyses are based on only very few
selected features, which are often man-
ually identified by applying binary gates
on cell populations of interest. These
approaches are highly subjective, require
significant user interaction, and only uti-
lize a few morphological features instead
of the hundreds that are inherently pres-
ent in the data, for example, only using
cell size to denote cell growth when there
are likely tens or hundreds of other fea-
tures that could describe and resolve the
biological differences in a more reliable
and powerful way. Such analyses make
use of far less information than is present
in the images. Yet, even with these lim-
itations, some IFC applications are
already heading toward the clinic [6],
such as the diagnostic assessment of
acute leukemia [7].

High-Content Analysis and Deep
Learning
IFC data are now beginning to benefit
from significant advancements in
high-content analysis from the world of
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high-throughput microscopy [8]. High-
content analysis might unveil disease
states hidden to the eye of even special-
ists, leading to entirely new diagnostic
capabilities. In image-based profiling,
once single cells are identified and seg-
mented, thousands of quantitative met-
rics can be extracted, including shape,
intensity, texture, and object relation-
ships. The general strategy is to ‘measure
everything first, then ask questions later’.
A morphological profile is created, which
is like a fingerprint of each cell. Then the
similarities (correlations) between profiles
can be compared to define cell subpopu-
lations or identify disease-specific pheno-
types [9]. This profiling strategy might be
particularly useful when applying IFC for
clinical phenotyping, where the cell
changes present in a chronic disease
often spread throughout a spectrum of

phenotypes, from pluripotent precursors
to nascent immature cells to terminally
differentiated cells, each with distinct
morphologies and associated functions.

However, advanced IFC analysis pipe-
lines often involve multistep workflows
challenging to those who are not compu-
tational experts. Momentum to enable a
broader group of biomedical researchers
and clinicians to carry out complex anal-
yses is growing; for example, a user-
friendly open-source high-content IFC
protocol based on machine learning is
now available [2,10].

Deep learning is revolutionizing computer
vision across many domains, including
computational biology [11]. In particular,
deep convolutional neural networks have
proven to be very powerful (Box 1). The

nature of data obtained using IFC is per-
fectly suited for deep learning for several
reasons. Deep learning requires a large
number of examples to train the network
and IFC can quickly produce millions of
single-cell images. In addition, deep
learning operates at the pixel level and
does not depend on prerequisite prepro-
cessing or object segmentation, which is
often prone to errors. Deep learning has
shown success in identifying colon can-
cer cells [5] and reconstructing cell cycle
and disease progression [12]. However,
major challenges for applying deep learn-
ing to IFC in a clinical setting are the
development of user-friendly workflows,
satisfying heavy computational require-
ments, evaluation of diagnostic accuracy,
and approval for clinical use. The Food
and Drug Administration (FDA) approved
the first clinical deep learning application
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Figure 1. Imaging Flow Cytometry Acquires Images of Single Cells in High Throughput. Typical throughput is up to 5000 cells/s, but modifications to the
instruments can increase this to 100 000 cells/s [14]. The images of each cell are captured by charge-coupled device detectors as the cell flows past the light sources
(left panel) andmorphological features are extracted (middle panel). For instance, patient blood could be analyzed to distinguish leukemic from normal cells or monitor in
vitro or in vivo response to therapeutic intervention (right panel). High-content analysis could be used for personalized diagnosis, prognosis, and therapy.
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for health care in 2017 (www.forbes.com/
sites/bernardmarr/2017/01/20/first-
fda-approval-for-clinical-cloud-
based-deep-learning-in-healthcare).

Opportunities Ahead
Many potential clinical [95_TD$DIFF]uses of IFC are
conceivable, for instance a differential
diagnosis of acute and chronic lympho-
cytic/myeloid leukemia, possibly using
fewer biomarkers, or ideally unstained
and unmanipulated blood samples.
Reducing the number of required,
descriptive biomarkers would greatly

simplify the laboratory sample preparation
and help preserve the intact ‘nativeness’
of samples, which are often fragile in
hematological diseases. Recently, IFC
was shown to deliver integrated leukemia
diagnostics in one test [7].

Another potential clinical use of IFC is to
analyze bodily fluids for rare cells, for
example, the typically small number of
leukemic cells that remain in the patient
during treatment, known as [96_TD$DIFF]minimal
residual disease (Figure 1, right panel)
[6]. There is substantial interest in liquid

biopsy, the analysis of circulating tumor
cells, which are extremely rare [12]. Liquid
biopsy might detect cancer at an early
stage, circulating metastatic or drug-
resistant neoplastic cells, clotting abnor-
malities of platelet microparticles, or fetal
abnormalities. A major advantage of the
liquid biopsy is that it can be carried out in
a simple, noninvasive way. One reason it
took the liquid biopsy so long to develop
is that circulating tumor cells are found in
low concentrations in the bloodstream
[12]. IFC in combination with machine
learning has the potential to identify a

Box 1. Image Processing and Deep Learning

Bioimaging research has recently made great strides thanks to deep learning, a subclass of machine learning. A deep learning network consists of an input layer, a
number of hidden layers, and an output layer. The larger the number of hidden layers, the deeper the network. Among several deep learning methods, convolutional
neural networks have shown [78_TD$DIFF]the most impressive results in object detection [11].

Convolutional neural networks operate on the raw pixels of each image where the network learns to enhance complex abstractions in images, such as eyes, faces, or
in the case of IFC, a cellular phenotype or signature of disease, while suppressing irrelevant information in the images (see [79_TD$DIFF]Figure I). By rastering a window over the
input image, the feature maps are created (by a mathematical operation called ‘convolution’). The feature maps represent how the input image looks when seen
through the convolutional filter. Pooling refers to downsampling the feature maps to reduce the number of pixels while keeping the relevant information [11]. The
output layer is [80_TD$DIFF], the classification probability which assigns a class to each input image with a certain probability, for example, Class 1 and 2 could correspond to
leukemic and normal cells, respectively.

In contrast to deep learning, in conventional image analysis, the images are first preprocessed, then cellular objects are identified (segmented) by analysis software,
followed by the extraction of hundreds of human-engineered features per channel and object ( [81_TD$DIFF]middle panel in Figure 1), including shape, intensity, and texture [8,9].
While classical machine learning techniques rely on human-engineered features, deep learning filters can have a much higher level of abstraction and complexity.

Recent open-source frameworks, such as TensorFlow, Keras, [82_TD$DIFF]PyTorch and CAFFE, provide convenient and effective means to adopt powerful deep learning
architectures into bioimaging research. With a wide range of practical applications emerging in various industries, we expect that such frameworks will become
increasingly stable and robust, and thereby [83_TD$DIFF]suitable for clinical applications.
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Figure I. Illustration of a Convolutional Neural Network.
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single tumor cell out of millions of cells
with unprecedented accuracy. Blood
specimens can then be sampled in serial
fashion (Figure 1, right panel), providing a
more comprehensive monitoring of a
patient’s cancer than can be obtained
through traditional methods, as was dem-
onstrated for hepatocellular carcinoma
[1]. Liquid biopsies [97_TD$DIFF]could also be analyzed
by imaging technologies other than IFC:
Recently, multiplex protein detection on
circulating tumor cells using imaging
mass cytometry has been demonstrated
[13].

Despite this promise, IFC is currently pri-
marily used in research [98_TD$DIFF]rather than clinical
practice. We see the data analysis as the
primary hurdle: it is often prone to varia-
tion, manual tuning, and interpretation.
[99_TD$DIFF]These issues might be overcome with
machine learning approaches. As well,
there is a need for standardization of
IFC, which should include standard oper-
ating procedures and standardized qual-
ity control [100_TD$DIFF]of hardware performance.
Although a common practice for conven-
tional flow cytometry, this has not yet
been implemented as such in IFC.

User-friendly, robust, and standardized
workflows that can facilitate machine

learning, especially deep learning, will
accelerate the paradigm shift from low-
to high-content analysis in IFC. Further-
more, cloud computing can overcome
the computational infrastructure hurdles.
These developments are [101_TD$DIFF]key for practical
IFC applications to reach the clinic, fueling
the applicability of IFC as a diagnostic,
prognostic, and therapeutic tool.
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