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ABSTRACT 26*

  The entomopathogenic fungus, Beauveria bassiana, is a microbial biological control 27*

agent capable of infecting a wide range of insect hosts. Conidia (spores) initiate infection via 28*

adhesion, growth, and penetration of the insect cuticle, whose outmost layer is rich in lipids. 29*

Conidial virulence was investigated in B. bassiana wild type and caleosin mutants (!Bbcal1), the 30*

latter a protein involved in lipid storage and turnover. Topical insect bioassays revealed that 31*

conidia of the wild type strain showed up to 40-fold differences in mean lethal dose (LD50) 32*

values depending upon the growth substrate. The most virulent conidia were harvested from 33*

potato dextrose agar (PDA) containing oleic acid, and the least potent those derived from 34*

Sabouraud dextrose-yeast extract agar (SDAY). However, with the exception of SDAY and 35*

Czapek-dox agar derived conidia, in which values were reduced, mean lethal times to kill (LT50) 36*

were essentially unaffected. In topical bioassays, the !Bbcal1 mutant displayed LD50 values 5-40 37*

fold higher than the wild type depending upon the growth substrate, with !Bbcal1 conidia 38*

derived from SDAY unable to effectively penetrate the host cuticle. The !Bbcal1 mutant also 39*

showed concomitant dramatic increases in LT50 values from an average of ~4.5 for wild type to 40*

>8.5 d for the mutant. In contrast, intrahemocoel injection bioassays that bypass cuticle 41*

penetration events, revealed only minor effects on virulence for either wild type or !Bbcal1 42*

conidia. These data highlight the importance of caleosin-dependent lipid mobilization and/or 43*

signaling in cuticle penetration events but suggest their dispensability for immune evasion and 44*

within-host growth. 45*

46*
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INTRODUCTION 47*

The Ascomycete fungus, Beauveria bassiana is among a group of insect pathogens that 48*

have been commercialized as biological control agents, especially within the framework of more 49*

environmentally friendly alternatives to chemical pesticides and as part of Integrated Pest 50*

Management practices (Glare et al., 2012; Lacey et al., 2015). As a broad host range pathogen, 51*

B. bassiana conidia (spores) can initiate infection essentially anywhere on the insect surface and 52*

does not require any specialized route of entry (Ortiz-Urquiza & Keyhani, 2013; Ortiz-Urquiza 53*

& Keyhani, 2016). The insect epicuticle, comprised of lipids that include abundant amounts of 54*

long chain hydrocarbons, fatty acids, and wax esters, is the first barrier to infection, and the 55*

fungus has evolved mechanisms for adhesion, germination on the scant nutrients available, and 56*

subsequent penetration of the host exoskeleton (Charnley, 2003; Holder & Keyhani, 2005; 57*

Jarrold et al., 2007; Zhang et al., 2011). Insects actively resist infection at this cuticular level, 58*

beginning with the epi-cuticule or waxy layer, via production of compounds toxic to microbes, 59*

e.g. certain fatty acids, quinones, and formic/acetic acid (Golebiowski et al., 2011; Toledo et al., 60*

2011; Tragust et al., 2013). Insect behavioral modifications aimed towards eliminating the 61*

pathogen and/or mitigating its infectivity can include heat seeking, burrowing, and grooming (de 62*

Crecy et al., 2009; Roy et al., 2006; Yanagawa & Shimizu, 2007). Such factors as well as insect 63*

chemical defenses can lead to an evolutionary arms race between the host and pathogen (Pedrini 64*

et al., 2015).  65*

Conidia are the infectious agents most commonly used in pest control formulations, and 66*

important knowledge has been gained in our understanding of factors important for conidial 67*

viability and application (Faria et al., 2012; Jin et al., 2013; Qin et al., 2014), although other cell 68*

types have also been shown to be virulent and of potential commercial use (Holder et al., 2007; 69*
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Mascarin et al., 2015). B. bassiana biochemical pathways that can utilize fatty acids, aliphatic 70*

and methyl branched alkanes, and glycerides as substrates, target insect cuticular lipids (Crespo 71*

et al., 2000; Lecuona et al., 1997; Pedrini et al., 2006; Pedrini et al., 2007). These systems 72*

include hydrocarbon oxidative pathways containing a set of cytochrome P450 enzymes 73*

implicated in lipid assimilation (Pedrini et al., 2010; Pedrini et al., 2013; Zhang et al., 2012). 74*

Long chain alkanes, common constituents of the insect epicuticle are degraded by B. bassiana to 75*

free fatty acids, acylglycerols, and phospholipids, although important aspects of this process, 76*

including how lipids are transported into cells and the biochemical mechanisms of lipid storage 77*

and mobilization remain poorly understood (Crespo et al., 2008; Pedrini et al., 2013). In 78*

addition, it is known that culture conditions can affect virulence and that growth on insect 79*

derived alkanes can increase the virulence of conidia as compared to those harvested from 80*

standard glucose containing mycological media (Crespo et al., 2002).  81*

Lipid droplets (LDs) are cellular organelles that act as means for lipid storage, impacting 82*

metabolism, energy homeostasis, and development (Murphy, 2012; Welte, 2015). LDs consist of 83*

a phospholipid monolayer, embedded with various proteins that surround a lipid core chiefly 84*

consisting of triacylglyerols (TAGs). Caleosins, first described in plants, are LD-associated 85*

proteins containing EF-hand calcium-binding motifs (Naested et al., 2000). Some caleosins are 86*

capable of binding heme and have been shown to display peroxygenase activity, implicating 87*

these proteins in lipid-mediated signaling, e.g. stress response (Hanano et al., 2006; Partridge & 88*

Murphy, 2009). Caleosins are widely distributed in plants, typically found as gene families, and 89*

are also found in algae and fungi, but not in animals. While more extensively studied plants, 90*

several reports have examined the functions of caleosins in fungi. In Aspergillus flavus, a 91*

caleosin-like gene, designated AfPGX, was shown to exhibit peroxygenase activity and to be 92*
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critical for normal growth and development, as well as impacting aflatoxin accumulation 93*

(Hanano et al., 2015). In A. flavus, deletion of the AfPGX gene resulted in severe phenotypes 94*

with greatly reduced growth and little to no conidiation apparent. In contrast, targeted gene 95*

knockout of the caleosin gene in B. bassiana (!Bbcal1) resulted in little to no effects on 96*

vegetative growth and only small effects on conidiation (Fan et al., 2015). Impairment of spore 97*

dispersal was noted, apparently due to clumping of the conidia, and a moderate effect was seen 98*

with respect to the mean lethal time to kill (LT50) larvae of the greater wax moth, Galleria 99*

mellonella using topical bioassays, although only a single growth substrate was examined, i.e. 100*

the standard mycological media potato dextrose agar (PDA). Here, we sought to expand upon 101*

these results to: (1) probe the effect of lipid growth substrates on conidial virulence in terms of 102*

both the mean lethal dose to kill hosts (LD50) and LT50 values, and (2) determine whether 103*

caleosin-dependent reduction in virulence occurred mainly at the pre-penetration/penetration 104*

stage and/or further downstream, i.e. during hemocoel proliferation and immune evasion. Our 105*

data show that growth substrates have significant effects on wild type virulence, particularly in 106*

topical assays. In addition, the contribution of the caleosin to virulence was greater during pre-107*

penetration/penetration events; with more moderate effects seen once the insect cuticle was 108*

breached. These results reveal a critical role for caleosin-mediated lipid mobilization and/or 109*

signaling events during the initial phases of fungal infection.  110*

 111*

METHODS 112*

Fungal strains and culture conditions. The wild-type strain B. bassiana ATCC 90517 and a 113*

caleosin targeted gene knockout strain (Fan et al., 2015), were routinely grown on potato 114*

dextrose agar (PDA), Sabouraud dextrose agar (SDA) and/or Czapek-Dox agar (CZA) 115*
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supplemented or modified as indicated. For growth on lipid substrates, PDA was supplemented 116*

with 0.25% oleic acid, 0.5% glyceride trioleate (triolein), 0.5% olive oil, or 0.2% hexadecane 117*

(C16) prepared in hexane at a concentration of 10%, and added to the media immediately prior to 118*

pouring of the plates. For conidial production, agar plates were incubated at 26°C for 21 days 119*

and aerial conidia were harvested by flooding the plate with sterile distilled H2O containing 120*

0.02% Tween-80. Conidial suspensions were filtered through a single layer of Miracloth and 121*

final spore concentrations were determined by direct count using a hemocytometer and adjusted 122*

to the indicated spore suspension concentrations. 123*

Lipid analyses. Fungal conidia were harvested from various growth conditions including:  CZA, 124*

SDAY, PDA, and PDA supplemented with either 0.25% oleic acid, 0.5% glyceride trioleate, 125*

0.5% olive oil, or 0.2% alkane (prepared in hexane at a concentration of 10%). All the plates 126*

were cultured at 26oC for 30 d before harvesting of conidia. The conidia were harvested in 127*

sterilized H2O and 108-109 conidia were used for lipid profiles analysis. Lipids were extracted 128*

using the Folch method (Folch et al. 1957). Briefly, 30 µL of a 10 µg/mL solution of 129*

dilaurylphosphatidylcholine (internal standard) was added, then 1 mL of 2:1 130*

chloroform:methanol containing 100 mg/L of butylated hydroxytoluene (BHT) was added to 131*

each sample and mixed.  The samples were centrifuged at 10,000xg and the supernatant was 132*

transferred to a new tube.  Next, 200 µL of 0.9% NaCl was added to induce phase separation.  133*

After mixing and gentle centrifugation (1000xg), the chloroform layer was removed and 134*

transferred to a clean tube.  The extraction process was repeated once on the pellet and the 135*

chloroform layers were combined.  The combined mixture was dried under a gentle stream of 136*

nitrogen.  The dried samples were then reconstituted with 300 µL of isopropanol and 2 uL was 137*

injected for LC-HRMS analysis.  138*
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LC-HRMS analysis was performed on a Thermo Q Exactive with Dionex 3000UHPLC 139*

and autosampler. The mass spectrometer was operated in positive heated electrospray ionization 140*

mode with the following conditions: 3.5 kV, 300C probe temperature, 30 arb sheath gas, 5 arb 141*

aux gas, 1.0 ion sweep gas, s-lens of 35, and 320C heated capillary temperature. Spectra were 142*

collected from 200-1200 at 35,000 mass resolution and mass accuracy was 5 ppm or better and 143*

tandem mass spectra were collected using data dependent scanning (top 5). Separation was 144*

achieved on an Waters BEH C18 50x2.1mm, 1.7µm column with mobile phase A as 60/40 145*

Acetonitrile/water with 0.1% formic acid and 10 mM ammonium formate and mobile phase B 146*

was 90/8/2 isopropanol/acetonitrile/water with 0.1% formic acid and 10 mM ammonium formate 147*

under gradient elution conditions as previously (Ulmer et al., 2015). Data processing was 148*

performed with MZmine 2.20 for peak alignment and feature selection. An in house R built 149*

script was used to identify lipids based on tandem mass spectra and reference to known 150*

fragmentation pathways (manuscript in preparation).   151*

Insect bioassays. Fungal strains were bioassayed using the greater wax moth Galleria 152*

mellonella (Pet Solutions, Beavercreek, OH, USA) as the insect host. The larvae were treated 153*

topically by dipping for 15 s in solutions of 105, 106, 107, 5x107 and 108 conidia/ml harvested in 154*

sterile distilled H2O with 0.02% tween 80. Excess liquid on the insect bodies was removed by 155*

placement on a dry paper towel. Control larvae were treated with sterile dH2O. Mortality was 156*

recorded every 24 h and the median lethal dose and mortality time (LD50 and LT50) was 157*

determined by Probit analysis. Each treatment consisted of three replicates with at least 25 158*

insects each, and the entire experiment was repeated three times with different batches of fungal 159*

conidia. Additionally, conidia from both WT and !BbCal1 strains were injected into G. 160*

mellonella larvae. Each larva was injected with 800 conidia using a 1 ml syringe coupled to a 161*
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programmable syringe pump (World Precision Instruments, Sarasota FL). Three replicates with 162*

20 insects each were used for every treatment and the whole experiment was repeated three times 163*

with different batches of conidia. 164*

RESULTS 165*

Growth substrates and caleosin functioning affect virulence in topical insect bioassays 166*

Wild type and a targeted gene knockout of the single identified caleosin gene in B. 167*

bassiana (!Bbcal1, (Fan et al., 2015)), were grown on a variety of substrates including (1) 168*

standard complex mycological media (SDAY and PDA), (2) minimal mycological media 169*

containing sucrose as the carbon source (CZA), and (3) PDA supplemented with various lipids 170*

including hexadecane (C16), oleic acid, triolein, and olive oil. No obvious differences were noted 171*

in growth rate on the various media and conidia were harvested after 21 d of growth as detailed 172*

in the Methods section. In order to calculate LD50 values, five different conidial concentrations 173*

namely; 105, 106, 107, 5 x 107, and 108 cells/ml were used in insect bioassays. G. mellonella 174*

larvae were treated topically with fungal cell suspensions as detailed in the Methods section. 175*

Wild type cells harvested from the standard mycological media- PDA and CZA, displayed 176*

similar LD50 (at 9 d) values of  ~ 1.5 x 106 conidia/ml (Table 1), with an ~10-fold decrease in 177*

virulence (i.e. 10-fold higher LD50 value) seen for wild type conidia isolated from SDAY 178*

(LD50Wt-SDAY = 15.4 x 106 conidia/ml). The !Bbcal1 mutant fared worse, with LD50 values 25-179*

40-fold higher than wild type when derived from PDA and CZA media. !Bbcal1 conidia isolated 180*

from SDAY were the least virulent of the conditions tested, being reduced to 77.1 x 106 181*

conidia/ml, 5-fold lower than wild type cells isolated from SDAY.  182*

For the wild type strain, supplementation of PDA media with C16, olive oil, or oleic acid 183*

resulted in a 2-4 fold decrease (i.e. increased virulence) in LD50Wt values as compared to PDA.  184*
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In contrast, conidia isolated from PDA + triolein displayed an LD50Wt = 3.62 x 106 conidia/ml, 185*

represented an ~2-fold increase as compared to PDA. Conidia derived from the !Bbcal1 mutant, 186*

isolated from the same media, i.e. PDA + C16 (LD50 = 23.1 x 106 conidia/ml), PDA + triolein 187*

(LD50 = 18.1 x 106), PDA + olive oil (LD50 = 11.7 x 106), and PDA + oleic acid  (15.6 x 106) 188*

were (2-3 fold) more virulent than mutant conidia harvested from PDA alone, but were still 5-45 189*

fold less effective than wild type cells grown under correspondingly identical conditions.  190*

For B. bassiana wild type, with the exception of conidia derived from CZA and SDAY in 191*

which increases in the mean lethal time to kill (LT50) was seen, little differences were seen in 192*

regards to LT50 values between cells grown on PDA, and PDA supplemented with either C16, 193*

triolein, olive oil, or oleic acid, with values ranging from 4.31-4.98 d (Fig. 1, Table 1). As 194*

compared to PDA, an increase of ~ 1 and a more dramatic 2 d (reflecting decreased virulence) in 195*

the LT50 was seen for the wild type conidia derived from CZA and SDAY. The !Bbcal1 mutant 196*

displayed severely reduced LT50 values overall, and with the exceptions of conidia from SDAY 197*

and PDA + olive oil, requiring 3-4 d longer to kill 50% of infected hosts as compared to 198*

corresponding wild type cells. Conidia from PDA + olive oil displayed LT50!Bbcal1-PDA-olive oil = 199*

6.52 d, which was 2 d more than its corresponding wild type, and !Bbcal1 conidia isolated from 200*

SDAY were almost avirulent and an accurate LT50 value could not be calculated for these cells. 201*

Minor impairment of virulence after intrahemocoel injection 202*

Direct injection of fungal spores into the host hemocoel bypasses penetration events, 203*

while maintaining the requirement for hemolymph proliferation and immune evasion. For wild 204*

type B. bassiana cells, with the exception of conidia harvested from PDA + oleic acid, the mean 205*

lethal times to kill (LT50) values were essentially unaffected when comparing cells grown on 206*

PDA, CZA, SDAY, PDA + C16, PDA + triolein, and PDA + olive oil using intrahemocoel 207*
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injection assays into G. mellonella larvae (Table 2, Figure 2). Under these conditions LT50Wt 208*

values ranged from 2.42-2.93 d. A moderate decrease (~ 1 d) in the wild type LT50 was seen for 209*

conidia harvested from PDA + oleic acid (to 3.62 d). In general, small (< 0.5 d for CZA, PDA + 210*

triolein, and PDA + oleic acid) to moderate (~ 1 d, PDA, PDA + C16, and PDA + olive oil) 211*

increases in LT50 values were seen for the Bbcal1 knockout mutant as compared to their 212*

corresponding wild type conidia. B. bassiana !Bbcal1 conidia harvested from SDAY were more 213*

severely affected, showing a 3 d increase in LT50 values as compared to wild type cells. 214*

 Regardless of the mode of infection, i.e. for both topical infection and intrahemocoel 215*

injection assays, visual inspection of the cadavers revealed alterations in the melanization 216*

patterns during infection and death of the insect. Infection of G. mellonella larvae by the wild 217*

type strain results in a characteristic gradual darkening (melanization) of the insect during the 218*

course of the infection, which by the time the infected insect is near death or has died (< 24 h 219*

post-mortality) renders the cuticle a brown to dark brown discoloration (Fig. 3). In contrast, at or 220*

immediately following death of larvae infected by the !Bbcal1 strain only discrete patches of 221*

melanization are visible on the insects, and melanization over the entire cuticle as seen for wild 222*

type infections does not occur. Within 5-7 d post mortality, a profusion of mycelia and 223*

conidiation is seen for both the wild type and !Bbcal1 strains on infected cadavers (Fig. 3). 224*

Neutral lipid analysis in B. bassiana 225*

 Changes in total neutral lipid contents, i.e. diacylglycerol (DAG) and triacylglycerol 226*

(TAG) levels in the wild type and !Bbcal1 strains were examined in conidia harvested from 227*

different growth substrates. Growth substrates included PDA, CZA, SDAY, and PDA 228*

supplemented with oleic acid, C16, olive oil, and glycerol trioleate. No significant changes in 229*

DAG content was seen between the wild type and !Bbcal1 mutant strain in conidia isolated from 230*
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the various growth substrates with the exception of growth on olive oil, in which the DAG 231*

content in the !Bbcal1 mutant was significantly higher than the wild type (Fig. 4A, P < 0.05). 232*

TAG content was much higher (20-30X) than DAG content in the cells examined, however, no 233*

significant differences were noted between the wild type and mutant strains in TAG content, 234*

although under a number of conditions, i.e. CZA and PDA + oleic acid, a large variation was 235*

seen (Fig. 4B).  236*

 237*

DISCUSSION 238*

 Media composition, i.e. the growth substrates from which fungal spores are isolated, is 239*

known to influence virulence of fungal insect pathogens (Kim et al., 2014; Maldonado-Blanco et 240*

al., 2014; Pelizza et al., 2011), with complex relationships between various spore parameters, 241*

e.g. stress response, germination rate and cuticle degrading enzyme activities have been reported 242*

(Mascarin et al., 2013; Rosas-Garcia et al., 2014). Conidia derived from media containing lower 243*

carbon/nitrogen ratios, including those derived from insect passage but subsequently grown on 244*

different synthetic media, were found to display lower LT50 values (i.e. were more virulence) 245*

(Safavi et al., 2007). However, it has also been reported that B. bassiana conidia isolated directly 246*

from insect cadavers were less virulent that those harvested from rice or synthetic media and the 247*

method of application was found to influence virulence (Santoro et al., 2007). A comparison of 248*

B. bassiana grown on colloidal chitin, insect (Sphenarium purpurascens) cuticle, wheat bran, or 249*

Sabouraud-dextrose agar (SDA), revealed similar LT50 values for all conidia against adults of the 250*

mealworm beetle (Tenebrio molitor), but differential mortality against T. molitor larvae 251*

(Rodriguez-Gomez et al., 2009). Similarly, small effects were reported for the entomopathogenic 252*

fungus Metarhizium anisopliae when conidia were isolated from media containing various 253*
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carbon and nitrogen ratios and only moderate correlations were seen between protease and lipase 254*

activities and virulence when tested against larvae of the diamondback moth, (Plutella xylosta) 255*

(Wu et al., 2010). Stress conditions have also been shown to affect M. anisopliae virulence, with 256*

the highest mortality reported for conidia grown on minimal media containing lactose (~ = CZA) 257*

(Rangel et al., 2008). B. bassiana conidia grown on C16 as the sole carbon source displayed 258*

decreased LT50 values (increased virulence) when tested against the bean weevil 259*

(Acanthoscelides obtectus) as compared to cells isolated from glucose grown agar (Crespo et al., 260*

2002), and inducible pathways for assimilation of long chain hydrocarbons that are prevalent on 261*

the insect epicuticle have been reported (Pedrini et al., 2010; Zhang et al., 2012). For the most 262*

part, however, relatively small effects have been reported and only the LT50 parameter examined. 263*

 Our data show that for B. bassiana wild type, grown on standard PDA and CZA 264*

mycological media produces conidia that have lower LD50 values (15-fold more infective) when 265*

tested using topical bioassays, as compared to the carbon/nitrogen rich media, SDAY. Conidia 266*

isolated from PDA were more efficacious than those derived from either CZA or SDAY, with 267*

the latter showing a dramatic ~2 d shift in LT50. These data are in general agreement with 268*

previous reports (see above) indicating that production on more minimal media results in more 269*

virulent spores. Amongst the mid-to long-chain alkanes, C16 is known to be one of the preferred 270*

carbon sources for B. bassiana, and oleic acid can be used as an energy source that can feed 271*

directly into lipid droplet formation pathways (Pedrini et al., 2010; Pedrini et al., 2013). Olive oil 272*

consists of TAGs and small amounts of free saturated (palmitic; 13% and stearic; 1.5%) and 273*

unsaturated fatty acids (oleic; 70%, linoleic; 15%, palmitoleic; 0.3-3.5%, and "-linolenic; 0.5%), 274*

and these minor constituents may act to induce other aspects of fatty acid metabolism. 275*

Supplementation of PDA with C16, olive oil, or oleic acid increased the infectivity of conidia 2-4 276*



Microbiology*(2016),*162:*199351921*

* 13*

fold but had little effect on the efficacy of the conidia. However, conidia isolated from PDA 277*

containing triolein (TAG, glycerol trioleate) were 2-fold less infective than those isolated on 278*

PDA alone, although equally efficacious. These data imply that the components of olive oil, i.e. 279*

free fatty acids, mixture of TAGs, and/or other compounds, or the combined constituents result 280*

in the production of more virulent conidia.  281*

 In addition to the effects on virulence, a distinct alteration in host melanization that 282*

occurs during the infection process was noted. During wild type infections, whether topical or 283*

via artificial intrahemocoel injection of the fungal conidia, a gradual darkening of the insect 284*

cuticle occurs up to and after mortality of the insect. During the last stages of infection, as the 285*

insect is dying, internal fungal hypha penetrate outwards, growing as mycelia and sporulating on 286*

the cadaver within 5-6 d post-mortality (Ortiz-Urquiza & Keyhani, 2013; Ortiz-Urquiza & 287*

Keyhani, 2016). This host melanization is typically considered to be part of the host defense 288*

response, however, in the !Bbcal1 mutant, which is impaired in virulence, host melanization 289*

also appears to be dramatically reduced, with only small, localized melanized patches visible on 290*

infected host during the time of death. The darkening of the host cuticle may also be linked to the 291*

production to fungal secondary metabolites. This raises an intriguing alternative hypothesis that 292*

this melanization response during the late stages of infection is actively induced by the fungus 293*

rather than acting as a defense response or a lack of production of critical late stage fungal 294*

metabolites occurs in the caleosin mutant. Although speculative, this may help fungal infection 295*

in several ways including by diverting resources away from other defense responses and/or 296*

minimizing potential competition by other microbes as the insect dies.  297*

Our data strongly support the idea of growth substrate “priming” of conidia. This priming 298*

may entail several processes that can include (pre-) induction of pathways in conidia via 299*
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accumulation of (1) gene transcripts and/or proteins (e.g. enzyme, transporters, and regulators) as 300*

determined by the original growth substrate that would allow for utilization of similar carbon and 301*

nitrogen sources more rapidly, (2) metabolites and energy stores that can act as stress response 302*

modulators and rapid sources of energy, and/or (3) factors that directly affect host interactions, 303*

e.g. cuticle degrading enzymes, secondary metabolites and toxins, compounds needed for 304*

adhesion, more rapid germination, and penetration of insect cuticle. As expected, the neutral 305*

lipids seen in the fungal conidia were mainly composed of TAGs (10-30-fold higher as compared 306*

to DAGs), however little difference was seen between either TAG or DAG content between the 307*

wild type and !Bbcal1 mutant. This is in contrast to significant changes seen in phospholipid, 308*

ceramide, and even ergosterol levels in the caleosin mutant as compared to the wild type (Fan et 309*

al., 2015). The only significant difference between the wild type and !Bbcal1 mutant was seen 310*

in total DAG content when grown on PDA containing olive oil, intriguingly these conditions also 311*

result in the formation of copious amounts of lipid droplets in the mutant fungal cells (Fan et al., 312*

2015).   313*

LD formation has been linked to virulence in a number of fungi including via regulation 314*

of cellular DAG in the rice blast fungus, Magnoporthe oryzae (Abu Sadat et al., 2014), by the fat 315*

storage-inducing transmembrane protein 2 (FIT2) in Candida parapsilosis, and through the 316*

activity of a glycerol-3-phosphate acetyltransferase that contributes to TAG biosynthesis in M. 317*

roberstsii (formerly M. anisopliae) (Gao et al., 2013), where lipid metabolism has also been 318*

linked to autophagy (Duan et al., 2013). In the plant fungal pathogen Colletotrichum orbiculare, 319*

LDs appear to accumulate and then disappear during appressorial maturation, the latter 320*

specialized fungal infection structures used to penetrate host tissues (Asakura et al., 2012), and a 321*

perilipin (Plin1 homolog), a major protein constituent of LDs, has been implicated in LD 322*
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maintenance, appressorial turgor pressure, and virulence in M. robertsii, (Wang & Leger, 2007). 323*

These data suggest the importance of lipid mobilization in infection by certain fungi. A B. 324*

bassiana caleosin (Bbcal1), another protein constituent of LDs has recently been characterized 325*

(Fan et al., 2015). Targeted gene inactivation of Bbcal1 did not significantly affect normal 326*

growth and germination or stress response, however, altered cellular phospholipid profiles were 327*

noted and changes intracellular vesicle-like structures, that may have represented distorted LDs, 328*

vacuoles, and/or endoplasmic reticulum elements, were seen. In addition, a decrease in the LT50 329*

was seen in topical insect bioassays from conidia harvested from PDA plates. Here we have 330*

extended the analysis of the virulence deficiency of !Bbcal1 mutants to examine both infectivity 331*

and efficacy, and in particular, to determine whether impairment occurred during pre/penetration 332*

events or post-penetration, the latter during growth in the insect hemocoel and requiring 333*

competent immune evasion. Conidia of the !Bbcal1 mutant derived from PDA showed a >20-334*

fold decrease in infectivity as compared to wild type and a dramatic loss (4 d) of efficacy in 335*

topical bioassays. On CZA, infectivity was even lower (~ 40-fold compared to wild type CZA 336*

conidia), and efficacy was also 4 d lower than the wild type counterpart. !Bbcal1 conidia 337*

harvested from SDAY were the least infectious of all conditions tested, although were only 5-338*

fold lower than SDAY-wild type conidia. However, the efficacy of the !Bbcal1SDAY conidia was 339*

so low that an accurate LD50 could not be calculated. These data indicate that caleosin 340*

functioning is critical for both infectivity and efficacy of B. bassiana infection of G. mellonella 341*

larvae. Addition of C16, olive oil, of oleic acid to PDA improved the infectivity of the resultant 342*

!Bbcal1 conidia, however LD50 values were still 20-44 fold higher than their wild type 343*

counterparts. The only exception in the trends observed was seen using PDA + triolein, in which 344*

conidia fared worse (~2-fold) in terms of infectivity than those isolated from PDA for the wild 345*



Microbiology*(2016),*162:*199351921*

* 16*

type, whereas they fared better (~2-fold) for the !Bbcal1 mutant. However, overall, the 346*

!Bbcal1triolien conidia were 5-fold less infective than their wild type counterparts. These data 347*

imply that loss of caleosin functioning impacts the ameliorating effects of growth on the various 348*

lipid substrates in terms of infectivity. The efficacy of the !Bbcal1 mutants grown in the 349*

presence of various lipids was also significantly affected; ~3-4 d increase for PDA + C16, 350*

triolein, and oleic acid, but only an ~ 2 d increase for PDA + olive oil.  351*

 In conclusion, our data illustrate two key points concerning insect virulence mediated by 352*

the entomopathogenic fungus, B. bassiana. The first is the growth substrate dependence on the 353*

virulence of resultant conidia, with the major effect seen with respect (1) to topical infection with 354*

in general minor effects seen once the cuticle has been breached, and (2) to infectivity and only 355*

minor effects seen with respect to efficacy. Growth substrates that included lipids commonly 356*

found on insect cuticles generally increased (topical) infectivity, and the C/N rich media, SDAY, 357*

resulted in spores with lower infectivity and efficacy. These data are potentially useful in 358*

production strategies for the biological control agent. The inability to properly produce an/or 359*

regulate lipid droplet formation and turnover via a caleosin dependent pathway, significantly 360*

decreased both infectivity and efficacy, with the major effect seen in topical assays. These latter 361*

data support a model in which lipid mobilization is critical for pre- and/or penetration events, but 362*

less important for subsequent proliferation within the hemocoel and immune evasion. Important 363*

questions that remain include determining the molecular contributions and functioning of the 364*

caleosin within the context of LDs, interacting proteins, and their regulation in fungi. 365*
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Table 1. Calculated LD50 and LT50 values derived from topical infection of B. bassiana wild 595*
type and !Bbcal1 conidia harvested from different substrate media using G. mellonella 596*
larval insect bioassays 597*

Values indicate Mean ± SE 598*
1Conidia were harvested from indicated agar media.  599*
2Calculated using 5 x 107 conidia/ml. 600*
 601*

 602*

Table 2. Calculated LT50 values derived from intrahemocoel injection of B. bassiana wild 603*
type and !Bbcal1 conidia into G. mellonella larvae 604*
 605*

! LT50!(days)
1!

Growth!substrate! WT! !BbCal1'
PDA! 2.67!±!0.10! 3.32!±!0.33!

CZ! 2.93!±!0.28! 2.97!±!0.34!

SDAY! 2.99!±!0.10! 5.97!±!0.45!!

PDA!+!C16! 2.51!±!0.16! 3.46!±!0.22!

PDA!+!triolein! 2.42!±!0.11! 3.02!±!0.08!

PDA!+!olive!oil! 2.57!±!0.14! 3.47!±!0.12!

PDA!+!oleic!acid! 3.62!±!0.17! 3.67!±!0.21!
1LT50 calculated using 800 conidia/larval injection. Values indicate Mean ± SE 606*
 607*
 608*
 609*
*610*
 611*
 612*

 613*

! LD50!(x10
6!conidia/ml)! LT50!(days)

2!

Growth!substrate1! WT! !BbCal1' WT! !BbCal1'
PDA! 1.52!±!0.20! 36.43!±!4.71! 4.61!±!0.13! 8.69!±!0.35!

CZ! 1.34!±!0.22! 51.90!±!3,71! 5.4!±!0.38! 8.75!±!0.37!

SDAY! 15.41!±!2.33! 77.07!±!1.30! 6.59!±!0.7! P!

PDAPC16! 0.83!±!0.11! 23.12!±!1.80! 4.8!±!0.20! 8.66!±!0.51!

PDA!+!triolein! 3.62!±!0.14! 18.08!±!0.21! 4.31!±!0.11! 7.9!±!0.32!

PDA!+!olive!oil! 0.49!±!0.07! 11.74!±!0.79! 4.48!±!0.07! 6.52!±!0.23!

PDA!+!oleic!acid! 0.35!±!0.04!! 15.57!±!1.57! 4.98!±!0.15! 8.00!±!0.30!
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 614*

FIGURE LEGENDS 615*

Fig. 1. Topical insect bioassays. Larvae of the Greater waxmoth, G. mellonella, were topically 616*

treated with conidia derived from B. bassiana wild type (blue lines, filled symbols) or the 617*

!Bbcal1 mutant (red lines, open symbols). (A) Infections were initiated using conidia harvested 618*

from PDA (squares), CZA (triangles, dashed lines), and SDAY (circles, dotted lines). (B) 619*

Infections were initiated using conidia harvested from PDA + C16 (diamonds) and PDA + oleic 620*

acid (circles, dashed lines). (C) Infections were initiated using conidia harvested from PDA + 621*

olive oil (squares) and PDA + triolein (circles, dotted lines). Mock treated controls for each 622*

graph are included (�). Data are shown using a cell concentration of 5 x 107 conidia/ml. The 623*

percentage mortality ± SE over the indicated time course is presented.  624*

Fig. 2. Intrahemocoel injection insect bioassays. Larvae of the Greater waxmoth, G. 625*

mellonella, were injected with conidia (800 conidia/larvae) derived from B. bassiana wild type 626*

(blue lines, filled symbols) or the !Bbcal1 mutant (red lines, open symbols). (A) For the wild 627*

type, cells derived from PDA, CZA, and SDAY gave essentially the same curves and are 628*

represented by a single line (blue squares). For the !Bbcal1 mutant, infections were initiated 629*

using conidia harvested from PDA (squares), CZA (triangles, dashed lines), and SDAY (circles, 630*

dash-dotted lines). (B) Infections were initiated using conidia harvested from PDA + C16 631*

(diamonds) and PDA + oleic acid (circles, dashed lines). (C) Infections were initiated using 632*

conidia harvested from PDA + olive oil (squares) and PDA + triolein (circles, dotted lines). 633*

Mock treated controls for each graph are included (�). The percentage mortality ± SE over the 634*

indicated time course is presented.  635*
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Fig. 3. Melanization and fungal growth on G. mellonella larvae. Representative images of G. 636*

mellonella larvae topically infected with wild type and !Bbcal1 conidia at or near the onset of 637*

mortality (top panels) and 5-6 d post-mortality (bottom panels). Similar results were obtained 638*

when G. mellonella larvae were assayed via intrahemocoel injection (data not shown). 639*

Fig. 4. Diacylglycerol (DG, A) and triacylglycerol (TG, B) content in wild type and !Bbcal1 640*

conidia. DG and TG levels were examined in B. bassiana wild type and !Bbcal1 mutant conidia 641*

harvested from PDA, CZA, SDAY, PDA + oleic acid, PDA + C16, PDA + olive oil, and PDA + 642*

glycerol trioleate as detailed in the Methods section. Error bars ± SE. 643*
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